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Abstract 

We exploit the information in the successive vintages of gross domestic expenditure (GDE) and gross 
domestic income (GDI) from the current comprehensive revision to obtain an improved, timely measure 
of U.S. aggregate output by exploiting cointegration between the different measures and taking their 
monthly release calendar seriously. We also combine all existing overlapping comprehensive revisions to 
achieve further improvements. We pay particular attention to the Great Recession and the pandemic, 
which, despite producing dramatic fluctuations, does not generate noticeable revisions in previous growth 
rates. The estimated parameters of our dynamic state-space model suggest that comprehensive revisions 
have not changed the long-run growth rate of U.S. GDP. 
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1 Introduction

Despite the recent interest in alternative measures, such as the Human Development Index

or the different Gross National Happiness measures, Gross Domestic Product (GDP) remains

the dominant concept to gauge the aggregate performance of an economy over a given period

of time. In the United States of America, the estimates of aggregate economic activity that

the Bureau of Economic Analysis (BEA) publishes as part of its National Product and Income

Accounts (NIPA) are used not only by policy makers and research economists, but also by private

sector agents, including households and firms, in making their production and consumption

decisions, as well as their financial plans.

The BEA uses a mixture of survey, tax and other business and administrative data, as well

as various indicators, which are subject to sampling errors and biases that cannot be directly

assessed. As time goes by, though, the BEA acquires more and better information, and for

that reason it systematically updates its measures, which results in a sequence of estimates

for a given quarter known as revisions. In fact, the whole revision process is rather elaborate,

and it is important to distinguish between three types: (i) successive early releases for a given

quarter, usually called the “advance”, “second” and “third” estimates; (ii) annual (or “final”)

revisions, which simultaneously update all the quarters of several previous calendar years;

and (iii) occasional comprehensive revisions, which recompute the entire history of the series

after a major methodological change that effectively modifies its definition. The importance of

revisions should not be underestimated. For example, Orphanides (2001) convincingly argues

that the use of final instead of preliminary GDP measures can lead to different monetary policy

recommendations.

While in the last two decades there has been considerable progress in jointly modeling the

different vintages of US GDP (see, for example, Aruoba (2008), Jacobs and van Norden (2011) and

the references therein), some of these studies have ignored a second important consideration:

the BEA produces not just one but two different official measures of real aggregate output

and income: Gross Domestic Expenditure (GDE) and Gross Domestic Income (GDI). GDE

measures activity as the sum of all final expenditures in the economy, which is reflected in the

output side of the NIPAs. In turn, GDI measures activity as the sum of all income generated

in production, and is therefore captured on the income side of the NIPAs.1 In theory, the

flows of income and expenditure should be equal, and thus, GDE and GDI should yield the

1The value added approach would complete the usual trinity of GDP measurements, but the BEA does not
produce quarterly real estimates.
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same measure of economic activity. In practice, though, they differ not only because of the

revisions but also because each is calculated from data from completely different sources (see

Landefeld, Seskin, and Fraumeni (2008) for a review). The systematic, and at times noticeable,

deviation between them – officially known as statistical discrepancy2– was traditionally regarded

by many academic economists as a curiosity in the NIPAs. However, the Great Recession led to

substantially renewed interest in academic and policy circles about the possibility of obtaining

more reliable economic activity figures by combining the two measures. As a consequence,

various proposals for improved combinations have been discussed (see, e.g. Nalewaik (2010),

Nalewaik (2011), Greenaway-McGrevy (2011), Aruoba, Diebold, Nalewaik, Schorfheide, and

Song (2016) and Jacobs, Sarferaz, Sturm, and van Norden (2022)). For example, the GDPplus

measure of Aruoba et al. (2016) is currently released on a monthly schedule by the Federal

Reserve Bank of Philadelphia.

The purpose of our paper is to simultaneously tackle all these measurement issues within

a single, internally coherent, signal extraction framework.3 Intuitively, given that GDE and

GDI are based on different sources, one would expect to obtain a more accurate estimate of the

underlying economic concept by making use of the dynamic and static recurrent patterns in the

observed series.

Despite involving a moderately large number of both latent and observed variables, our

model is both flexible and parsimonious thanks to the economic and statistical discipline that we

impose on the measurement errors. Although the modelling of US GDP as a unit root process

rather than as a trend stationary one is now conventional (see Campbell and Mankiw (1987) and

the references therein for the earlier debate), our crucial point of departure from the previous

literature is that we follow Almuzara, Amengual, and Sentana (2019) and Almuzara, Fiorentini,

and Sentana (2022) in imposing that (i) any two aggregate output and income measures (in

logs) are cointegrated, with cointegrating vector (1,-1); and (ii) measurement errors are mean-

reverting and stationary, although they may be serially correlated. Thus, we are able to focus not

only in quarterly growth rates, but also assess the level of US output, which is of considerable

interest in itself, particularly in regional or cross-country comparisons.

In addition, the data release calendar is at the core of our model. Specifically, we explicitly

take into account that the “advance”, “second” and “third” GDE estimates are published one,

two and three months after the end of the quarter, respectively. Moreover, we acknowledge the

2See Grimm (2007) for a detailed methodological insight.
3Stone, Champernowne, and Meade (1942) is the first known reference to the signal extraction framework of

our paper. Weale (1992) surveys the early literature; see also Smith, Weale, and Satchell (1998).
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fact that the timing of the quarterly releases for GDI is somewhat different, as it incorporates

information from the quarterly census of employment and wages. Importantly, we also consider

the annual data revisions of both series that are published in the summer of the following and

subsequent years, and which typically affect the values for all the quarters of the most recent

previous years. For example, the July 2017 annual update revised all quarters for 2014, 2015

and 2016.

The final novel ingredient of our model is the combination of data from different com-

prehensive revisions, which take place approximately every five years based on an economic

census of millions of US businesses. These revisions also incorporate changes in definitions,

classifications, and statistical methodology. For example, in 2013 the BEA started counting R&D

as an investment rather than as a cost, which “boosted” US GDP by over 2%. The most recent

comprehensive revision was published in July 2018, with a detailed analysis in a BEA paper

(see Kerry, McCulla, and Wasshausen (2018)). In that report, the U.S. statistical office presented

revised annual estimates for 1929-2017 and revised quarterly estimates for 1947-2017.4 Often,

comprehensive revisions reflect either improved or totally new coverage of sectors of the econ-

omy that have become increasingly important. In addition, real GDP is usually re-based, with

the reference year kept fixed during subsequent annual updates.5

Despite these systematic differences, the joint modeling of multiple comprehensive revisions

is particularly relevant at the time when a new one is released, which is precisely when there

is very little information about the statistical properties of its successive vintages and annual

revisions.

The closest paper to ours is Jacobs et al. (2022), which also use the different releases of

GDE and GDI to obtain improved real-time estimates of economic activity. Nevertheless, these

authors focus on growth rates and abstract from comprehensive redefinitions.6

From the point of view of implementation, our model can be cast in linear state-space form

and is therefore amenable to the use of Bayesian methods of inference for both parameters and

latent variables. In particular, we develop a Gibbs sampling algorithm that tackles estimation

and signal-extraction simultaneously, allowing for an efficient and conceptually simple integra-

tion of uncertainty coming from different sources. Thus, we obtain a posterior distribution for

4The next comprehensive revision is expected in July 2023.
5Vintages released in July of both 2011 and 2014 are exceptions because the reference year was also revised. This

resulted in a change of the GDP deflator and, in turn, a change of real GDP for the whole series since 1947.
6One additional difference is that Jacobs et al. (2022) propose a framework to separate news from noise in the

revision process along the lines of Jacobs and van Norden (2011). In appendix E, we explain how to write their
news-noise model as a special case of ours. We could use the expressions we derive there to provide a decomposition
of the measurement errors between “news” and “noise”, a promising avenue for future research.
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the different benchmark definitions of underlying GDP, whence we can obtain not only point

estimates but also measures of dispersion that reflect the remaining uncertainty about the true

value of aggregate activity. Nevertheless, given that analysts and policy makers typically focus

on the evolution of the current GDP definition, we will refer to our point estimate of the most

recent benchmark version as GDPsolera henceforth. The moniker “solera” arises because the

recurrent updating of our signal extraction process is analogous to the criaderas and soleras

system of sherry wine aging, whereby the final product is obtained by fractional blending in-

puts from different vintages over a perennial dynamic procedure that gives sherry its distinctive

character.7

After estimating our model making the best use of all the available US data, we use it to

answer a number of empirically relevant questions. First, do comprehensive revisions modify

the empirical characteristics of economic growth, such as its long-term mean or its persistence?

Second, what is the contribution of the different estimates (i.e., advance, second, third, etc.)

to the precision of signal extraction about economic activity? Our estimates suggest that (i)

comprehensive revisions have not led to appreciable changes in the average growth rate, and

that (ii) noticeable precision gains in signal extraction occur not only when the advance, second

and third estimates of GDE and GDI are released but also when the annual estimates become

available in July of the subsequent years.

Finally, we provide several additional empirical exercises, including an assessment of the

sensitivity of our improved estimate of economic activity to our identification assumptions, as

well as its behavior during the COVID-19 pandemic. In this respect, we find that the real time

version of our solera measure provides accurate estimates of the quarters mostly affected by the

pandemic, which seem to be in line with the subsequent BEA revised estimates. We also find

that despite the dramatic nature of the GDP movements in 2020, our estimates of its growth

rate for previous quarters are hardly affected.

The rest of the paper is organized as follows. We begin with a detailed description of

the data in section 2. Section 3 introduces the model, while section 4 includes the details of

the estimation and filtering algorithms. Section 5 reports the empirical analysis, including

the improved GDPsolera measure of economic activity produced by our method. Finally, we

present our conclusions and directions for further research in section 6, relegating proofs and

other technical details to several appendices. Readers mostly interested in the empirical results

may safely skip sections 3 and 4 initially.

7As explained by agent 007 to M in the 1971 James Bond film Diamonds are forever.
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2 Data background

Our empirical analysis uses data on the successive GDE and GDI vintages from the BEA. To

get a better sense of the data, it is instructive to review the timing of the release process as

it happens regularly over a typical year. Table 1 exemplifies the process in a recent period.

Estimates for quarterly GDP are released in the following order:8

(A) Advance estimate, based on source data incomplete or subject to further revision by the

source agency, and released near the end of the first month after the end of the quarter.

(B) Second/third estimates, which use broader and more detailed data, and are released near

the end of the second and third months, respectively.

(C) Latest estimates, which reflect the results of both annual and comprehensive updates.

For GDI only second, third and latest estimates are prepared because of data availability,

except for the fourth quarter of each year, for which only third and latest estimates are released.

Normally, a single estimate for the latest quarter is added to the GDE/GDI series at a time,

but there are two kinds of updates where multiple quarters are simultaneously updated:

(a) Annual updates, usually done in July, which cover at least the three most recent calendar

years (e.g. the July 2017 annual update revised all quarters for 2014, 2015 and 2016). They

incorporate newly available annual source data, and minor methodological changes.

(b) Comprehensive (or benchmark) updates, which are done approximately every 5 years

(the actual updates took place in December 2003, July 2009, July 2013 and July 2018). They

incorporate periodic data released at frequencies lower than 1 year, such as the quinquennial

US Economic Census, and some major methodological changes.

In our main empirical analysis, we use the available seasonally adjusted9 GDE and GDI

vintages over the period 1984Q1-2021Q4, including the five benchmark versions of US economic

activity resulting from the comprehensive revisions in 2003, 2009, 2013 and 2018.

We depict the series (in levels) of different comprehensive revision releases in Figure 1,

where we also plot data produced by early and annual revisions for the periods between two

consecutive benchmark revisions. As we explained in the introduction, the vertical differences

8Before 2009Q2, the BEA used the terminology “advance”, “preliminary” and “final” for what it now calls
“advance”, “second” and “third”, respectively.

9Since July 2018, BEA also publishes non-seasonally adjusted data.
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TABLE 1. GDE and GDI release schedule for the period 2016Q1-2018Q2.

Release Month Estimate GDE GDI
New Updated New Updated

Jan 2017 Advance 2016Q4
Feb 2017 Second 2016Q4
Mar 2017 Third 2016Q4 2016Q4
Apr 2017 Advance 2017Q1
May 2017 Second 2017Q1 2017Q1
Jun 2017 Third 2017Q1 2017Q1
Jul 2017 Advance 2017Q2 2014Q1-2016Q4 2014Q1-2016Q4

Aug 2017 Second 2017Q2 2017Q2
Sep 2017 Third 2017Q2 2017Q2
Oct 2017 Advance 2017Q3
Nov 2017 Second 2017Q3 2017Q3
Dec 2017 Third 2017Q3 2017Q3
Jan 2018 Advance 2017Q4
Feb 2018 Second 2017Q4
Mar 2018 Third 2017Q4 2017Q4
Apr 2018 Advance 2018Q1
May 2018 Second 2018Q1 2018Q1
Jun 2018 Third 2018Q1 2018Q1
Jul 2018 Advance 2018Q2 1947Q1-2017Q4 2018Q2 1947Q1-2017Q4

NOTES. [*] Annual update, [**] Comprehensive update, [†] 13 quarters, i.e. last 3 years

partly reflect different base years for the deflators. In turn, Figure 2 zooms in on two three-

year subperiods to illustrate in closer detail the different measures of economic activity. The

release of the July 2018 comprehensive revision led to a thorough revision of the GDE and

GDI figures for the first subperiod (2015Q1-2017Q4), which explains the marked differences in

levels between the advance, second and third releases, and the annual ones. In contrast, no

such differences appear in the second subperiod (2019Q1-2021Q4), which nevertheless shows

the dramatic effects of the COVID-19 pandemic. We will return to the analysis of this second

period in subsection 5.4.

3 Model

Let xt be an aggregate quantity of interest — in our empirical analysis, US aggregate economic

output (in logs) during quarter t. As most of the literature that followed Stone et al. (1942), we

treat xt as a latent variable of which only noisy measurements yt are available. The task is to

construct rules mapping measurements into inferences about the latent xt.
10

Next, we develop the framework that will allow us to combine multiple yt’s for the purposes

10For background on output measurements, see Landefeld et al. (2008), Nalewaik (2010), and Nalewaik (2011).
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of obtaining an improved estimate of economic activity. For the sake of clarity, we begin in

subsection 3.1 with a version of our model that has no comprehensive revisions, adding them

in subsection 3.2.

3.1 Modeling early and annual estimates

Let ym
it be a noisy measurement of xt, where the index i denotes type (e.g., GDE and GDI

estimates) while the index m denotes release (e.g., early and annual estimates). This distinction

is important because we will assume orthogonality of measurement errors along i but we

will permit correlation over m for measurements with the same i. Orthogonality between the

measurement errors of the expenditure and income estimates is not only plausible because they

are based on completely different data sources, but also useful to achieve identification of the

serial dependence in xt. In contrast, correlation between the measurement errors of different

releases of the same measure is to be expected, as they share revised versions of the same data

sources.

The model is given by the set of measurement equations

ym
it = xt + vm

it , m = 1, . . . ,Mi, i = 1, . . . ,N,

where vm
it is the measurement error in ym

it . For each i, we collect y1
it, . . . , y

Mi
it into the vector yit

and stack y1t, . . . , yNt into yt. Defining vit, for each i, and vt likewise, we obtain,

yt = 1M×1xt + vt,(1)

where M =
∑N

i=1 Mi and 1M×1 is an M-dimensional vector of ones.

In this context, we assume that the following conditions hold:

Assumption 1.

(a) ∆xt is I(0);

(b) v1t, . . . , vNt are I(0);

(c) ∆xt, v1t, . . . , vNt are orthogonal across blocks at all leads and lags.

We make assumption 1(a) because yt measures economic activity in (log) levels.11 Together
11We take the definition of I(0) process from the multivariate generalization of the one in Stock (1994): Consider

a time series ωt =
∑
∞

`=0 Θ`εt−`, with Θ` an n × n matrix and εt and n-dimensional vector. Then, ωt is I(0) if (i) εt is a
weakly stationary vector martingale difference sequence, (ii)

∑
∞

`=0 Θ` is nonsingular, and (iii)
∑
∞

`=0 `‖Θ`‖ < ∞.
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with assumption 1(b), it implies that yt is cointegrated with cointegration rank M− 1.12 Cointe-

gration is a very plausible assumption for aggregate measurement problems. In fact, assuming

that the growth rates in yt follow a strictly invertible covariance stationary process necessarily

implies that the different measures of xt would diverge in the long run, which is implausible

(see Almuzara et al. (2022) for additional discussion). On the other hand, Assumption 1(c),

which allows for dynamic dependence within blocks but rules out dependence between shocks

to the signal and the different measurement errors, is key for identification, as asserted in the

following proposition, whose proof can be found in appendix A:

Proposition 1. Under assumption 1, if N > 1, the autocovariance matrices of ∆xt, v1t, . . . , vNt are

nonparametrically identified from the autocovariance matrices of ∆yt.

Our empirical analysis features N = 2, as we use GDE and GDI measurements of output.13

3.2 Modeling comprehensive revisions

Our approach to modeling comprehensive revisions is to treat each version of the variable of

interest introduced by the revision process as a different latent variable, while at the same time

allowing for strong dependence among them.

Let C be the number of benchmark versions. Rather than a single variable, our extended

model makes xt a vector, namely xt = (x1t. . . . , xCt)
′. Here xct represents the hypothetical value

of economic output that could be measured with the definitions and methods adopted for the

comprehensive revision c if the data sources and measuring tools were perfect. For example,

the first three elements of xt would treat R&D as a cost while the last two as an investment, as

we explained in the introduction.

While analysts and policy makers typically focus on the latest version xCt, there are impor-

tant reasons for jointly modeling x1t, . . . , xCt: first, older definitions of economic activity are

important from a historical perspective because, after all, those were the only ones available

at the time; second, understanding the impact of comprehensive revisions on the static and

dynamic characteristics of the growth rates in aggregate economic activity is particularly rele-

vant too; finally, there is also substantial interest in quickly learning about the dynamics of the

measurement errors in the most recent version, which might lead to improved inferences about

xCt itself.
12Any set consisting of M − 1 pairwise differences among the ym

it is a potential basis for the cointegration space.
13N = 1 may be relevant for other applications. In those cases, identification can be achieved by imposing

restrictions on the cross-dependence among v1
1t, . . . , v

M1
1t (e.g., assuming vm1

1t and vm2
1t orthogonal at all leads and lags),

or by a sufficiently tight parametric structure.
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Measurement equation. Let δm
it be a 1 × C array that has 1 in entry c if ym

it measures xct and

0 otherwise. The array δm
it is deterministically time-varying but known, and can be easily

computed by comparing the year of the comprehensive revisions and the exact release date of

ym
it . Our model postulates that

ym
it = δm

it xt + vm
it , i = 1, . . . ,N, m = 1, . . . ,Mi.

Concatenating δm
it vertically to conform with yit and yt, we obtain the Mi × C array δit and the

M × C array δt, which lead to the measurement equation

yt = δtxt + vt.(2)

Equation (2) generalizes (1) into a deterministically time-varying measurement equation. We

also note that some of the entries of yt may be missing because, for example, the release protocol

stipulates so or old methods are not applied to the computation of new estimates.

Thus, our framework generalizes naturally the multiple measurements - single latent vari-

able models in the extant literature (e.g., Weale (1992), Smith et al. (1998), Aruoba et al. (2016),

Almuzara et al. (2019), and Almuzara et al. (2022)) to a situation in which there are multiple

latent variables of interest.

Identification revisited. We adopt assumption 1 without much change, except that ∆xt is a

vector process now. Because the measurement equation is time-varying, the spectrum of yt

depends on t. However, given that the time-variation is deterministic, this entails a trivial

form of non-stationarity from the point of view of identification. In our empirical analysis,

moreover, there is a subvector of yt that is stationary since there is a time-invariant block in

δt. This allows us to establish identification through a generalization of proposition 1 applied

to the time-invariant block. We state sufficient conditions for non-parametric identification in

proposition 2, whose proof is also in appendix A.

Proposition 2. Suppose there are indices i1, i2 (i1 , i2) and matrices Ei1
,Ei2

such that (a) Ei1
yt and

Ei2
yt are nonempty subvectors of yi1,t

and yi2,t
, respectively, (b) Ei1

δt and Ei2
δt are time-invariant, and

(c) rank(Ei1
δt) = rank(Ei2

δt) = C. Then, under assumption 1, the autocovariances of ∆xt, v1t, . . . , vNt

are nonparametrically identified from those of ∆yt.

As an example, consider a model with C = 2 versions of economic activity. Suppose N = 2
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with M1 = M2 = 2 and δt =
(
I2 I2

)′ for all t. The measurement equation is


y1

1t

y2
1t

y1
2t

y2
2t


=


1 0

0 1

1 0

0 1


x1t

x2t

 +


v1

1t

v2
1t

v1
2t

v2
2t


.

This setup clearly satisfies the conditions of proposition 2 with i1 = 1, i2 = 2, Ei1
=

(
I2 02×2

)
, and

Ei2
=

(
02×2 I2

)
. Consequently, the autocovariance matrices of ∆xt, v1t, v2t are identified from

those of ∆yt. Some intuition can be gained by first considering the measurement sub-systemsyc
1t

yc
2t

 = 12×1xct +

vc
1t

vc
2t

 , c = 1, 2.

Proposition 1 can be applied and immediately delivers the marginal serial dependence structure

of the processes ∆x1t,∆x2t, v
1
1t, v

2
1t, v

1
2t, v

2
2t.

Next, it is possible to recover the cross-autocovariances of the two signals by observing that

Cov
(
∆x1t,∆x2,t−`

)
= Cov

(
∆yc

1t,∆yc
2,t−`

)
holds for c = 1, 2 and all `. Finally, for i = 1, 2 and all `, we have

Cov
(
∆v1

it,∆v2
i,t−`

)
= Cov

(
∆y1

it,∆y2
i,t−`

)
− Cov

(
∆x1t,∆x2,t−`

)
.

In our empirical analysis we rely on C = 5 versions of both GDE and GDI, in addition to

their early and latest estimates. This implies that, for all t, δt contains two distinct blocks which

are equal to IC corresponding to GDE and GDI measurements, respectively, so the conditions

in proposition 2 are automatically satisfied. Consequently, the joint dynamics of ∆xt are non-

parametrically identified.14

Transition equation. Although the spectrum of xt is non-parametrically identified, to imple-

ment our empirical analysis we specify a parametric model for the spectra of ∆x, v1, . . . , vN that

satisfies assumption 1 and, at the same time, is amenable to estimation by Bayesian methods. We

14One qualification worth making is that because past benchmark versions are discontinued, we are learning
about the joint autocorrelation structure of xt within the period in which they overlap. This amounts to a long period
in our sample, spanning 1947Q1 to 2003Q2 (the time of the first comprehensive revision), yet a period that excludes
the instabilities originating with the Great Recession or the COVID-19 pandemic.
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adopt a Bayesian approach because it allows us to easily integrate both estimation uncertainty

and filtering uncertainty in performing signal extraction, our main objective.

Specifically, we model ∆xt as a diagonal VAR with a single factor structure in the error term,

∆xt = µx + diag(ρx)
(
∆xt−1 − µx

)
+

(
λxηxt + diag(σx)εxt

)
,(3)

ηxt
iid
∼ N(0, 1) independent of εxt

iid
∼ N(0C×1, IC).

The single factor structure parsimoniously captures the strong cross-sectional dependence in

the innovations of the signals of the different comprehensive revisions. We then collect the

unknown parameters of the ∆xt process in θx = (µx, ρx, λx, σx). In principle, there could be

differences in the mean, persistence and variance of economic growth across versions, which

will allow us to empirically test whether comprehensive revisions had any impact on the static

or dynamic properties of US output.

The initial condition for the level is modelled as independent of ηxt, εxt for all t as:

x1 ∼ N(µ1,Σ1).

This accommodates potential differences in levels between versions xt, which adequately cap-

tures the use of deflators with a different base year, among other things.15

For the measurement errors of type i we postulate the following parsimonious diagonal

VAR(1) model with a single factor structure in the error too:

vit = diag(ρi)vi,t−1 +
(
λiηit + diag(σi)εit

)
,(4)

ηit
iid
∼ N(0, 1) independent of εit

iid
∼ N(0Mi×1, IMi

),

and place the unknown parameters of this process into θi = (ρi, λi, σi). Autocorrelated mea-

surement errors in levels capture the persistent but stationary serial dependence observed in

the statistical discrepancies. We also allow for variation in the autocorrelations and volatilities

across different releases.

State-space representation. The parameter vector of the model is θ = (θx, θ1, . . . , θN). Given

θ, we can cast equations (2), (3) and (4) (i = 1, . . . ,N) in state-space form as

yt = HtXt,

15We will treat µ1 and Σ1 as known and take Σ1 to reflect a diffuse prior over x1. A relatively easy-to-implement
alternative would be to estimate µ1.
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Xt = C(θ) + F(θ)Xt−1 + G(θ)Ut,

Ut
iid
∼ N(0(C+M+N+1)×1, IC+M+N+1),

where Xt = (xt, xt−1, v1t, . . . , vNt)
′,

Ut = (ηxt, εxt, η1t, ε1t, . . . , ηNt, εNt)
′,

Ht =
(
δt 0M×C IM

)
,

C(θ) =


[IC − diag(ρx)]µx

0C×1

0M×1

 ,
F(θ) = diag


 IC + diag(ρx) −diag(ρx)

IC 0C×C

 ,diag(ρ1), . . . ,diag(ρN)

 ,
G(θ) = diag

([
λx diag(ρx)

]
,
[
λ1 diag(ρ1)

]
, . . . ,

[
λN diag(ρN)

])
.

For the initial condition we have X1 ∼ N(µ̃1, Σ̃1) where µ̃1, Σ̃1 are compatible with µ1,Σ1 and

the covariance-stationarity of v1t, . . . , vNt.

This linear state-space representation with Gaussian errors is important because it implies

that X1:T,U1:T will be jointly normally distributed conditional on y1:T, θ, so that we can rely

on the algorithm of Durbin and Koopman (2002) to efficiently simulate from the conditional

distribution of the latent variables given the observed ones (see subsection 4.2).

4 Inference for parameters and latent variables

Our objective is to conduct inference on parameters θ and latent variables x1:T. As we have

already mentioned, a Bayesian approach offers a convenient option to perform both tasks,

integrating estimation and signal-extraction uncertainties in a unified, conceptually natural

framework.

4.1 Estimation

Prior. We start by specifying N + 1 independent priors for θx, θ1, . . . , θN. The family of priors

we describe is fairly standard and permits a simple implementation of the Gibbs sampler when

the priors are conjugate conditional on the latent variables. It can also accommodate a flat prior

for certain values of the hyperparameters.

Specifically, for the parameters of the signals process we use

12



• πx = 1/σ2
x ∼ ΓC(dx/2, px/dx), with divisions understood elementwise and ΓC representing

a vector of independent gamma-distributed random variables, and

• βx = ((IC − diag(ρx)µx, ρx, λx)|σx ∼ N(bx,Rx ⊗ diag(σ2
x)).

The hyperparameters px and bx control the prior mean of πx and βx, while dx and Rx govern

the informativeness of the prior distributions. In particular, higher dx and Rx produce tighter

priors while dx = 0C×1 and Rx = 03×3 yield a flat prior over πx and βx, which is not necessarily

flat for θx.

In turn, for the parameters of the measurement errors process we use for each i = 1, . . . ,N

• πi = 1/σ2
i ∼ ΓMi

(νi/2, pi/νi), and

• βi = (ρi, λi)|σi ∼ N(bi,Ri ⊗ diag(σ2
i )).

The same considerations we made for px, bx, dx,Rx above apply to pi, bi, di,Ri too.

Gibbs sampler. Let p(·) denote a generic density (with respect to an appropriate dominating

measure). Although the prior p(θ) and the likelihood p(y1:T|θ) are readily available because the

latter is an output of the Kalman filter applied to the state-space representation of the model,

the posterior p(θ|y1:T) is not. Bayesian estimation can instead be performed via Markov Chain

Monte Carlo (MCMC), which effectively draws a Markov chain {θs
}s≥1 whose unconditional

distribution coincides with the desired posterior.

As we mentioned before, a convenient approach to MCMC in our model is Gibbs sampling,

which draws from the posterior of a block of variables or parameters conditional on previous

draws from the other blocks in a sequential manner. We describe the algorithm in detail in

appendix B.

4.2 Filtering

Signal extraction of xt is a natural by-product of our estimation procedure. The latent variable

draws we obtain in step (1) from iteration over the Gibbs sampler algorithm (xs
0:T)s≥1 have the

desired distribution p(x0:T|y1:T). Moreover, the Gibbs sampler already integrates estimation

uncertainty because

p
(
x0:T

∣∣∣y1:T
)

=

∫
Θ

p
(
x0:T

∣∣∣θ, y1:T
)

p
(
θ
∣∣∣y1:T

)
dθ,

where Θ denotes the parameter space.
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It is worth noting that while p
(
x0:T

∣∣∣θ, y1:T
)

is a normal density, x1:T need not be normal given

y1:T once θ is integrated out. In particular, Var
(
xt

∣∣∣y1:T
)

may depend on the data through the

posterior density of θ, in contrast to Var
(
xt

∣∣∣θ, y1:T
)
, which is constant in y1:T.

Finally, the Markov chain (xs
0:T, θ

s)s≥1 is all that we need to approximate by simulation the

posterior distribution of the different objects of interest that we will study in the next section.

In practice, we estimate our model using the prior described above running the Gibbs

sampler for 105,000 iterations with a burn-in of 5,000 and a thinning of 1 every 5 iterations. The

result is a Markov chain (Xs
1:T, θ

s)S
s=1, with S = 20, 000 and low autocorrelation across draws that

by all accounts appears to have converged. Our empirical analysis in the next section is based

on it.

5 GDP solera: empirical analysis

5.1 Parameter estimates and their stability across comprehensive revisions

Table C.1 in Appendix C summarizes the posterior distributions of the model parameters,

while Figures C.1, C.2 and C.3 in the same appendix compare those distributions to their priors.

Although the annual revision process was extended from three to five years in July 2019, we

consider three annual revisions, which are the only ones available for most of our sample.

We can use the posterior distribution of µx, ρx, λx, σx to assess whether comprehensive

revisions have modified the static and dynamic properties of economic activity. In this respect,

a noteworthy observation is that the unconditional means of the growth rates of the five different

benchmark versions of US aggregate economic activity that the BEA has produced so far are

remarkably similar, even though the comprehensive revision process has certainly affected the

levels of US GDP, as we saw in Figure 1. In contrast, its persistence seems to have become

somewhat smaller more recently, which is perhaps not surprising in view of the unusual nature

of the 2020 COVID-19 recession. We will study the potential effects of this change in section 5.4

below.

Table C.1 also suggests that the common shock to the different elements of xt is more

important than their idiosyncratic shocks in explaining the variance of the innovations in the

signals, as one would expect from the strong cross-sectional dependence between the different

comprehensive revisions observed in the same figure.
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5.2 Precision gains from using all releases for a given comprehensive revision

The root mean square error (RMSE)√
Vτ

t =

√
Var

(
E
[
xct

∣∣∣Yτ] − xct

)
,

where Yτ denotes the σ-algebra generated by all measurements available until month τ, mea-

sures the precision of our signal extraction procedure. Figure 3 reports this RMSE for c = 5 and

a fixed t as a function of τ for a sequence of 39 months starting in October of year t, which is

when the advance GDE estimate for the third quarter becomes available, under the assumption

that no comprehensive revision takes place during those three years and a quarter.16

As expected, the release of the advance GDE figure almost halves the RMSE of the prediction

of the third quarter growth rate made at the end of September. Nevertheless, substantial

precision gains also occur when the second and third estimates of GDE and GDI are released.

Moreover, there are further gains when the annual estimates become available in July of the

following three years. Still, the non-singular nature of our dynamic model, combined with the

fact that the BEA does not attempt to reconcile the GDE and GDI figures, implies that there is

a positive floor to the RMSE, which will not go to zero regardless of the number of subsequent

annual revisions.

Exactly the same pattern arises if we repeat this exercise for the first and second quarters

of year t in April and July, respectively, but not for the fourth quarter, which shows a slightly

different initial pattern (not reported here) because there is no second GDI release in February.

5.3 Effects of combining all comprehensive revisions

To assess the effect of using data from all comprehensive revisions simultaneously, we have

also estimated the single signal version of the model in Section 3 using only the data from

most recent comprehensive revision. Figure 4 reports the posterior medians of GDP growth

generated by our MCMC estimation and filtering procedure and their point-wise 90% credible

sets based on both datasets for the period 2017Q1 to 2019Q4.17 As can be seen, the use of the five

comprehensive revisions results in not only significantly tighter bands around the smoothed

estimates of economic activity but also a smoother temporal evolution for those estimates.

16In computing this figure we maintain the joint posterior distribution of the model parameters fixed at its estimate
in September 2018 to focus on the precision gains of the smoother as new data becomes available. Consequently,
the annual revisions correspond to July 2019, 2020 and 2021.

17In this case, we maintain the joint posterior distributions of the parameters of the models with either one or
five signals fixed at their estimates in January 2022.
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5.4 Solera releases

Figure 5 reports the smoothed estimates for US GDP growth from six different solera releases,

which we have recursively estimated as follows. The first series uses data until January 2012 to

provide estimates up to 2011Q4. Similarly, the second series provides estimates up to 2013Q4

using data until January 2014, and so forth, until the sixth series, which represents estimates

of GDP growth until 2021Q4 using the data available at the BEA website at the end of January

2022. As can be seen in panel (a), which depicts the six series starting in 2004Q1, all estimates

display close paths until 2010Q1.

Still, the growth rates estimates for the last few quarters of each series are somewhat different

from the corresponding estimates in the next ones, an effect that it is very likely due to the

smoothing embedded in our filtering algorithm, which systematically reassesses the past after

observing the future.

Additionally, the two most recent solera releases that we display in green present a different

pattern from the others in the second quarters of 2011 and 2012. These differences can be

explained by the fact that the data underlying those last two series incorporate modifications

to the GDP definition resulting from the comprehensive revision the BEA released in July 2018.

Indeed, panel (b), which only reports the two most recent series in panel (a), shows an

extremely similar pattern between them even though the most recent version of GDPsolera

includes data from the pandemic. Therefore, the post pandemic estimates for the pre-pandemic

period are remarkably stable to the inclusion of the large outliers in 2020 data, which affect not

only the output of the simulation smoother for fixed parameter estimates but also the posterior

distribution of the parameter estimates.

5.5 Analysis of some specific quarters

Next, we shed some light on the effect of data revisions as well as the arrival of information for

subsequent periods on the estimates of US GDP growth rate both through the smoother and

the re-estimation of the model parameters in three specific quarters of interest: 2001Q1, 2008Q4

and 2019Q2.

We chose the first one because of the political controversy surrounding what at the time some

Republican politicians called the “Clinton recession”, in marked contrast to the NBER Business

Cycle Dating Committee, which officially dated the peak of the previous ten year expansionary

phase in March 2001. Although the BEA only publishes vintage data from September 2002

onwards, Figure 6, which uses blue crosses and red diamonds to represent GDE and GDI

16



estimates, respectively, shows that the data initially available suggested that GDP growth had

already turned negative in the first quarter of 2001. However, the comprehensive revision that

became available in December 2003 is more ambiguous, with GDE and GDI growth rates having

different signs. If anything, the subsequent annual revision released in July 2004 increases the

degree of ambiguity. Not surprisingly, when one looks at the solid and dashed lines in that

figure, which represent the posterior medians with and without parameter re-estimation, and

the shaded areas, which display the corresponding 90% point-wise credible bands, the only

conclusion that one can draw is that the uncertainty is too large to determine the sign of the

GDP growth rate unequivocally.

Our next example focuses on 2008Q4, the worst quarter of the Great Recession, which

we analyze in Figure 7. Although the advanced GDE estimate the BEA released initially

pointed to a serious but not dramatic recession, subsequent releases justify the adjective ‘’Great”.

Nevertheless, this figure also shows the adjustment of the posterior median of our solera GDP

growth estimate as soon as we process the third releases of GDE and GDI, which is in line

with the evidence we observed in Figure 3. In addition, Figure 7 also shows the effect that the

comprehensive revision of July 2009 had on the precision of the estimates, and especially the

annual revision of July 2010, which reduced further not only the growth rate but also the width

of the credible sets.

Our third and final example focuses on 2019Q2, a relatively normal quarter despite the

fact that some Federal Reserve officials had previously expressed concerns about a potential

deceleration of the economy. This quarter is also interesting because it allows us to explicitly

assess the effect of the pandemic data on our parameter estimates. As Figure 8 shows, the

estimates of economic growth were noticeably revised downwards after the annual update

that the BEA released in July 2020. However, a substantial part of this reduction was reversed

following the July 2021 annual revision. Interestingly, the width of the credible sets goes down

fairly slowly, which probably reflects the fact that the unprecedented GDP fluctations in 2020Q2

and 2020Q3 increased the uncertainty of the parameter estimates.

5.6 Comparison with GDPplus

We also compare our measure of economic activity – GDPsolera – with the GDPplus initially

proposed by Aruoba et al. (2016), and released on a monthly basis by the Federal Reserve Bank

of Philadelphia since the end of August 2013.

To begin with, we look at the smoothed estimates of GDP between the first quarter of 1985
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and the fourth quarter of 2021. To construct our solera measure, we use the data released by

the BEA by the end of January 2022, while for GDPplus we use the release that uses the same

dataset to level the playing field.18 We plot the estimated annualized growth rates in panel (a)

of Figure 9. As can be seen, the two series are quite close to each other with a contemporaneous

correlation of 0.86, and an average annualized growth rate of 2.61% for GDPplus and 2.54% for

GDPsolera over the entire sample period. Nevertheless, our solera estimates are clearly more

volatile, with a standard deviation that is 40% larger. The smoothness of GDPplus results in

relatively more conservative estimates of the large fall and rise of economic activity after the

start of the COVID-19 outbreak.

To shed further light on this, we report in panel (b) of Figure 9 the two real-time estimates

of economic activity for 2020Q1 and 2020Q2 using the data available at the time. Perhaps not

suprisingly, for 2020Q1 both estimators of GDP are in agreement, and remain quite stable as

new information became available. In contrast, the estimators for 2020Q2 are very different and

this difference increased in October 2020 when the BEA published the advance GDE estimate for

2020Q3. Interestingly, the most recent figures produced by the BEA for the COVID-19 recession

are closer to the GDPsolera series. Nevertheless, it must be acknowledged that the extremely

atypical size of the pandemic shock is a challenge to linear Gaussian state-space models, which

makes the comparison difficult.

In our last exercise, we compare the concurrent online estimates of GDP growth rates

generated by GDPplus and our procedure. Specifically, we consider estimates for each quarter

based on the information available one month after the end of that quarter, by which time only

the “advance” GDE estimate is available. In addition, we also look at the estimates of the same

GDP growth rates obtained three months after the end of the quarter, which also make use of

the “second” and “third” estimates of GDE and GDI released by the BEA. Panels (a) and (b) of

Figure 10 displays these two set of results. Interestingly, the real time GDPsolera and GDPplus

estimates appear to be more similar than the historical ones we saw in Figure 9. Still, we can

observe a few differences in the first two quarters of 2015 afected by the 2018 comprehensive

revision, and at the end of the sample, starting after the 2020Q2 drop.

18Given that GDPplus is based on the mostly recently available estimates of GDE and GDI rather than on multiple
vintages, it can use data from 1960Q1. Nevertheless, this should not affect too much their estimates in recent years.
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5.7 Allowing for correlation across expenditure and income measures

As mentioned earlier, there are two reasons for imposing zero correlation between the shocks

to the true GDP and the GDI and GDE measurement errors. Primarily, it allows us to achieve

non-parametric identification. And second, the empirical evidence that there is a sufficiently

strong cyclical pattern in the statistical discrepancy is subject to debate (see, Nalewaik (2010)

and the subsequent discussion).

Nevertheless, we have explicitly re-estimated a generalised version of our model in which

we allow for non-zero correlation between the shocks to the common factor of the signals and

the common factors in the measurement errors of the expenditure and income measures. In a

set up with multiple measurements, this assumption is analogous to the one made in Aruoba

et al. (2016). To conduct this exercise, and given that the identification information for those

correlations comes from their priors, we have decided to use a grid of degenerate priors ranging

from 0 to 30% to assess the sensitivity of our smoothed estimates to the values of that parameter.

As can be seen in Figure 11, the posterior means are hardly affected, except in the third

quarter of 2020. As a consequence, the identifying assumption of zero correlation does not

seem to explain on its own the fact that GDPsolera is more volatile than GDPplus.

6 Conclusion

We make the best use of the information in the different vintages of GDE and GDI from the

current comprehensive revision to obtain an improved timely measure of US aggregate output

by imposing cointegration between the different measures and taking seriously their monthly

release calendar. We also combine overlapping comprehensive revisions to achieve further

improvements.

We express our model in linear state-space form, and use Bayesian methods of inference

for both parameters and latent variables. Specifically, we develop a Gibbs sampling algorithm

that tackles estimation and signal extraction simultaneously, allowing for an efficient and con-

ceptually simple integration of uncertainty coming from different sources. Thus, we obtain a

posterior distribution for the underlying GDP measure, whence we can obtain not only point

estimates but also measures of dispersion.

The estimated parameters of our dynamic state-space model suggest that comprehensive

revisions have not changed the long-run growth rate of US GDP, but they have somewhat

lowered the persistence of its shocks.
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Our results suggest that noticeable precision gains in signal extraction occur not only when

the advance, second and third estimates of GDE and GDI are released but also when the annual

estimates become available in July of the subsequent years. We also observe that the use of

the five comprehensive revisions not only results in significantly tighter bands around the

smoothed estimates of economic activity, but also a smoother temporal evolution for those

estimates.

In addition, we pay particular attention to certain recent episodes, like the Great Recession

or the COVID-19 pandemic, which, despite producing dramatic fluctuations, does not generate

noticeable revisions in previous growth rates.

We also find that the real time GDPsolera and GDPplus estimates appear to be remarkably

similar, with small exceptions at the end of the sample after the 2020Q2 drop.

Although the objective of our analysis is not the creation of a real time activity index (see

e.g. Lewis, Mertens, Stock, and Trivedi (Forthcoming) and the references therein), combining

our approach with either high frequency data or additional quarterly variables constitutes a

promising avenue for further research. Assessing the effect of incorporating the seasonally

unadjusted GDE and GDI data that the BEA has released since 2018 to our empirical results

would also provide a valuable addition.

Similarly, the potential forecasting improvements of the model we propose in this paper for

the early releases of GDE and GDI would be worth investigating, as they would provide an

external validity check on our modelling approach. In this respect, another potential extension

would allow for a more flexible autocorrelation structure, as well as conditional heteroskedas-

ticity and non-normal shocks, although the latter would require replacing the analytical Kalman

filter by a numerical non-linear one.

Finally, it would interesting to apply our Solera approach to the different components of

GDE and GDI, as well as other macroeconomic series subject to revisions, like the Non-farm

Payroll Employment figures or the Chained Consumer Price Index for All Urban Consumers

released by the US Bureau of Labor Statistics.
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Appendix A Identification

A.1 Proof of proposition 1

Let fω denote the spectrum of a time series {ωt}. Identification of the autocovariance function

of {ωt} is equivalent to identification of fω. Hence, an alternative statement to proposition 1 is

that under assumption 1, if N > 1, f∆x and fv1
, . . . , fvI

are nonparametrically identified from f∆y.

To see why the proposition holds, let us write

f∆y(λ) = 1M×M f∆x(λ) + |1 − eiλ
|
2 diag

(
fv1

(λ), . . . , fvN
(λ)

)
, 0 ≤ λ ≤ 2π.

If Ei is the Mi×M matrix such that yit = Eiyt, we get Ei1
f∆y(λ)E′i2 = 1Mi1

×Mi2
f∆x(λ) for i1 , i2—such

a pair i1, i2 exists only if N > 1. With f∆x pinned down, one then recovers

fvi
(λ) = |1 − eiλ

|
−2Ei

(
fDy(λ) − 1M×M fDx(λ)

)
E′i ,

dealing with the removable singularity at λ = 0 by using that each entry fvi
is holomorphic over

the unit circle. �

It follows from the proof of proposition 1 that if in addition to N > 1 we have Mi > 1 for at

least one i, the model imposes overidentifying restrictions and is, therefore, testable. This is the

case in our empirical analysis, although we do not pursue such tests. If the spectra f∆x, fv1
, . . . , fvN

belong to a particular parametric class, an indirect approach to testing the overidentifying

restrictions is to use dynamic specification tests as in Fiorentini and Sentana (2019).

A.2 Proof of proposition 2

By condition (b) in the proposition, Di1
= Ei1

δt and Di2
= Ei2

δt are time-invariant. By assumption

1 and condition (a), moreover, Ei1
vt and Ei2

vt are uncorrelated at all lags and leads. Ergo,

Ei1
f∆y(λ)E′i2 = Di1

f∆x(λ)D′i2 , 0 ≤ λ ≤ 2π.

Now, by condition (c), rank(Di1
) = rank(Di2

) = C. In that case,

f∆x = (D′i1Di1
)−1D′i1 f∆yDi2

(D′i2Di2
)−1.

Identification of fv1
, . . . , fvN

then follows by an analogous argument to that in proposition 1. �
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Appendix B Details of estimation algorithm

The algorithm updates unknowns by drawing iteratively from the following distributions:

(1) p
(
X1:T

∣∣∣θ, y1:T
)
: using the state-space representation of the model, X1:T is obtained from the

simulation smoother proposed by Durbin and Koopman (2002).

(2) p
(
θx

∣∣∣θ1, . . . , θN,X1:T, y1:T
)
: first notice that (∆x1:T, ηx,1:T) are sufficient for θx, i.e.,

p
(
θx

∣∣∣θ1, . . . , θN,X1:T, y1:T
)

= p
(
θx

∣∣∣∆x1:T, ηx,1:T

)
,

and because of the conjugacy of the prior we recover µx, ρx, λx, σx from

(i) πx = 1/σ2
x|∆x1:T, ηx,1:T ∼ ΓC(d̃x/2, p̃x/d̃x) where

d̃x = dx + T − 1,

d̃x

p̃x
=

dx

px
+

T∑
t=2

(
∆xt − µx − diag(ρx)(∆xt−1 − µx) − λxηxt

)2 ;

(ii) βx = ((IC − diag(ρx)µx, ρx, λx)|σx,∆x1:T, ηx,1:T ∼ N(b̃x, R̃x ⊗ diag(σ2
x)) where

R̃x = Rx +

T∑
t=2


1 ∆xt−1 ηxt

∆xt−1 ∆x2
t−1 ∆xt−1ηxt

ηxt ∆xt−1ηxt η2
xt

 ,

R̃xb̃x = Rxbx +

T∑
t=2


∆xt

∆xt−1∆xt

ηxt∆xt

 .

(3) p
(
θi

∣∣∣θx, (θ j) j,i,X1:T, y1:T

)
for each i: first notice that (vi,1:T, ηi,1:T) are sufficient for θi, i.e.,

p
(
θi

∣∣∣θx, (θ j) j,i,X1:T, y1:T

)
= p

(
θi

∣∣∣vi,1:T, ηi,1:T

)
,

and because of the conjugacy of the prior we recover ρi, λi, σi from

(i) πi = 1/σ2
i |vi,1:T, ηi,1:T ∼ ΓMi

(d̃i/2, p̃i/d̃i) where

d̃i = di + T − 1,
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d̃i

p̃i
=

di

pi
+

T∑
t=2

(
vit − diag(ρi)vi,t−1 − λiηit

)2
;

(ii) βi = (ρi, λi)|σi, vi,1:T, ηi,1:T ∼ N(b̃i, R̃i ⊗ diag(σ2
i )) where

R̃i = Ri +

T∑
t=2

 v2
i,t−1 vi,t−1ηit

vi,t−1ηit η2
it

 ,
R̃ib̃i = Ribi +

T∑
t=2

vi,t−1vit

ηitvit

 .
A small comment is that the choice of hyperparameters dx = 0C×1, Rx = 03×3, di = 0Mi×1,

and Ri = 02×2, despite implying improper priors, still leads to a well-defined algorithm and a

proper posterior distribution.

Appendix C Posterior distributions

Parameter Post. mean 90%-CI MC s.e.

µx
(1) 2.579 [2.231, 2.935] 0.0029

µx
(2) 2.639 [2.334, 2.966] 0.0028

µx
(3) 2.623 [2.317, 2.949] 0.0030

µx
(4) 2.679 [2.390, 2.985] 0.0028

µx
(5) 2.711 [2.406, 3.035] 0.0030

ρx
(1) 0.514 [0.466, 0.562] 0.0003

ρx
(2) 0.512 [0.470, 0.554] 0.0003

ρx
(3) 0.511 [0.471, 0.552] 0.0003

ρx
(4) 0.501 [0.462, 0.539] 0.0003

ρx
(5) 0.448 [0.405, 0.491] 0.0003

λx
(1) 2.688 [2.462, 2.911] 0.0019

λx
(2) 2.664 [2.487, 2.846] 0.0015

λx
(3) 2.751 [2.574, 2.929] 0.0014

λx
(4) 2.796 [2.634, 2.957] 0.0013

λx
(5) 3.227 [3.055, 3.410] 0.0015

σx
(1) 0.710 [0.613, 0.831] 0.0005

σx
(2) 0.622 [0.543, 0.720] 0.0004

σx
(3) 0.618 [0.541, 0.712] 0.0004

σx
(4) 0.567 [0.501, 0.643] 0.0003

σx
(5) 0.651 [0.564, 0.759] 0.0006

ρnc
GDE

(1) 0.055 [0.014, 0.095] 0.0002

ρnc
GDE

(2) 0.055 [0.027, 0.082] 0.0002

ρnc
GDE

(3) 0.059 [0.029, 0.090] 0.0002

ρnc
GDE

(4) 0.115 [−0.008, 0.239] 0.0005

ρnc
GDE

(5) 0.092 [0.005, 0.185] 0.0004

ρnc
GDE

(6) 0.068 [−0.009, 0.159] 0.0006
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ρc
GDE

(1) 0.036 [−0.003, 0.079] 0.0002

ρc
GDE

(2) 0.010 [−0.021, 0.043] 0.0002

ρc
GDE

(3)
−0.006 [−0.036, 0.025] 0.0001

ρc
GDE

(4)
−0.002 [−0.034, 0.033] 0.0002

ρc
GDE

(5) 0.014 [−0.024, 0.056] 0.0002

λnc
GDE

(1) 1.638 [1.534, 1.744] 0.0012

λnc
GDE

(2) 1.604 [1.520, 1.690] 0.0012

λnc
GDE

(3) 1.580 [1.494, 1.670] 0.0012

λnc
GDE

(4) 0.581 [0.390, 0.777] 0.0017

λnc
GDE

(5)
−0.148 [−0.298, 0.003] 0.0017

λnc
GDE

(6)
−0.076 [−0.216, 0.056] 0.0014

λc
GDE

(1) 1.196 [1.085, 1.308] 0.0011

λc
GDE

(2) 0.950 [0.850, 1.054] 0.0011

λc
GDE

(3) 0.763 [0.668, 0.852] 0.0011

λc
GDE

(4) 0.624 [0.532, 0.712] 0.0010

λc
GDE

(5) 0.707 [0.613, 0.800] 0.0010

σnc
GDE

(1) 0.594 [0.515, 0.689] 0.0004

σnc
GDE

(2) 0.300 [0.256, 0.358] 0.0003

σnc
GDE

(3) 0.364 [0.308, 0.433] 0.0003

σnc
GDE

(4) 1.574 [1.379, 1.813] 0.0011

σnc
GDE

(5) 0.827 [0.679, 0.995] 0.0010

σnc
GDE

(6) 0.683 [0.524, 0.855] 0.0015

σc
GDE

(1) 0.379 [0.300, 0.492] 0.0007

σc
GDE

(2) 0.303 [0.252, 0.374] 0.0003

σc
GDE

(3) 0.293 [0.244, 0.360] 0.0004

σc
GDE

(4) 0.316 [0.260, 0.393] 0.0005

σc
GDE

(5) 0.376 [0.300, 0.484] 0.0008

ρnc
GDI

(1) 0.306 [0.175, 0.427] 0.0007

ρnc
GDI

(2) 0.334 [0.222, 0.444] 0.0006

ρnc
GDI

(3) 0.395 [0.285, 0.500] 0.0005

ρnc
GDI

(4) 0.462 [0.371, 0.550] 0.0006

ρnc
GDI

(5) 0.400 [0.316, 0.486] 0.0005

ρc
GDI

(1) 0.000 [−0.041, 0.044] 0.0002

ρc
GDI

(2) 0.365 [0.300, 0.429] 0.0003

ρc
GDI

(3) 0.226 [0.170, 0.282] 0.0003

ρc
GDI

(4) 0.188 [0.150, 0.229] 0.0003

ρc
GDI

(5) 0.217 [0.176, 0.260] 0.0004

λnc
GDI

(1) 1.260 [0.993, 1.533] 0.0015

λnc
GDI

(2) 1.236 [0.985, 1.490] 0.0013

λnc
GDI

(3) 0.915 [0.693, 1.140] 0.0013

λnc
GDI

(4) 1.018 [0.818, 1.218] 0.0014

λnc
GDI

(5) 1.228 [1.029, 1.422] 0.0015

λc
GDI

(1) 0.822 [0.713, 0.927] 0.0011

λc
GDI

(2) 1.259 [1.111, 1.411] 0.0010

λc
GDI

(3) 1.707 [1.566, 1.851] 0.0010

λc
GDI

(4) 1.913 [1.820, 2.010] 0.0008

λc
GDI

(5) 1.982 [1.885, 2.082] 0.0008

σnc
GDI

(1) 1.661 [1.412, 1.975] 0.0017

σnc
GDI

(2) 1.704 [1.479, 1.981] 0.0014

σnc
GDI

(3) 1.720 [1.501, 1.988] 0.0012

σnc
GDI

(4) 1.360 [1.184, 1.570] 0.0010
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σnc
GDI

(5) 1.270 [1.101, 1.473] 0.0012

σc
GDI

(1) 0.392 [0.306, 0.527] 0.0011

σc
GDI

(2) 0.853 [0.730, 1.004] 0.0007

σc
GDI

(3) 0.753 [0.644, 0.876] 0.0007

σc
GDI

(4) 0.402 [0.325, 0.493] 0.0006

σc
GDI

(5) 0.429 [0.342, 0.531] 0.0007

TABLE C.1. Posterior distribution of parameters of the model

NOTES. Unconditional means µx, loadings λx, λGDE, λGDI and standard deviations, σx, σGDE, σGDI are annualized.
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Appendix D Implications of L2-optimality

Consider the following model for the release process. For each type of estimate i and quarter t,

the statistical office collects inputs ι1it, . . . , ι
Jit
it – such as sectoral surveys – on which the estimates

ym
it are based. Our objective is to show that if estimates were produced to minimize expected

square loss (i.e., the L2-distance between the estimate and xt), the optimal signal-extraction rule

would map xt to its most recent release. For ease of exposition, let C = 1 (which gives the model

with no comprehensive revisions). Fix i and t and let σ(·) denote a (generated) σ-algebra. We

will assume that (i) there are integers {Jm
it }

Mi
m=1 such that Jm

it ≤ Jm+1
it and ym

it is Im
it -measurable with

I
m
it = σ{ι1it, . . . , ι

Jm
it

it } for all m, and (ii) the statistical office minimizes L2(ym
it − xt) = E

[
|ym

it − xt|
2
]
.

Assumption (i) allows for data on past and future periods to be included among the time-t

inputs. We also assume xt has finite variance by an appropriate choice of initial conditions.

From (i) we obtain Im
it ⊂ I

m+1
it for all m, and from (ii),

ym
it = E

[
xt

∣∣∣Im
it

]
, m = 1, . . . ,Mi.

Let Ĩit be a σ-algebra such that Ĩit ⊂ I
m
it for all m. For example, if the time-t inputs include all

the data needed to construct past measurements, Ĩit may be the σ-algebra generated by all past

measurements. With a slight abuse of notation,

E
[
xt

∣∣∣y1
it, . . . , y

m
it , Ĩit

]
= E

[
E
[
xt

∣∣∣Im
it

]∣∣∣∣y1
it, . . . , y

m
it , Ĩit

]
= E

[
ym

it

∣∣∣y1
it, . . . , y

m
it , Ĩit

]
= ym

it ,

by the law of iterated expectations.

In words, if measurements minimize expected square loss, all measurements of xt but the

most recent one contain no useful information to extract xt. A reasonable situation is one where

the statistical office computes ym
it using input data corresponding only to quarter-t economic

activity. A measure that captures L2-optimality in that context would compare the expected

loss of ym
it with that of E

[
xt

∣∣∣y1
it, . . . , y

m
it

]
(i.e., taking Ĩit = ∅). For example,

Dm
it = Var

(
E
[
xt

∣∣∣y1
it, . . . , y

m
it

]
− xt

) /
Var

(
vm

it

)
.

We have 0 ≤ Dm
it ≤ 1 with Dm

it = 1 indicating full L2-optimality. Thus, Dm
it < 1 may be evidence

that, for example, the measurements optimize a different loss function or the weights given to

the inputs disregard the dynamic model.
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Appendix E News and noise model

Consider a setup in which N = 1, so that we can omit the subindex indicating type, which

would be 1, M = M1 = 3, and there is a single comprehensive version of GDP, so that C = 1.

Suppose the data follows the news-noise model of Jacobs and van Norden (2011) and Jacobs

et al. (2022):

∆yt =


∆y1

t

∆y2
t

∆y3
t

 =


1

1

1

∆ỹt +


ν1

t

ν2
t

ν3
t

 +


ζ1

t

ζ2
t

ζ3
t

 = 13×1∆ỹt + νt + ζt,

where νm
t and ζm

t are news and noise components. News are defined by the condition that

Cov
(
νm

t ,∆ỹt + νm′
t

)
= 0 for all m′ ≤ m, while noise must satisfy Cov

(
ζm

t ,∆ỹt + νm
t
)

= 0. These,

however, are not enough to pin down a unique decomposition of yt in terms of ỹt, νt, ζt and we

will further impose ζ1
t , ζ

2
t , ζ

3
t are uncorrelated with each other.

To simplify the argument, we will assume that (i) ∆ỹt + ν3
t follows an AR(1) process and (ii)

νt and ζt are uncorrelated over time. Moreover, we note that the news-noise model is typically

applied to measurements of GDP growth, as opposed to our model, which focuses on the level.

The goal is to understand how the news-noise model maps to ours, namely
y1

t

y2
t

y3
t

 =


1

1

1

 xt +


v1

t

v2
t

v3
t

 = 13×1xt + vt.

We can write

∆yt =


∆y1

t

∆y2
t

∆y3
t

 =


1

1

1

 (∆ỹt + ν3
t ) +


(ν2

t − ν
3
t ) + (ν1

t − ν
2
t )

(ν2
t − ν

3
t )

0

 +


ζ1

t

ζ2
t

ζ3
t

 ,
where ν1

t − ν
2
t , ν

2
t − ν

3
t , ζ

1
t , ζ

2
t , ζ

3
t are mutually orthogonal white noise processes. If we set

∆xt = ∆ỹt + ν3
t ,

∆v1
t = (ν2

t − ν
3
t ) + (ν1

t − ν
2
t ) + ζ1

t ,

∆v2
t = (ν2

t − ν
3
t ) + ζ2

t ,
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∆v3
t = ζ3

t ,

we obtain a particular case of our model in which, not surprisingly, ρ = 13×1. Measurement

error are therefore white noise in first differences with a particular variance matrix,

Var
(
∆vt

)
=


Σ11 Σ12 0

Σ12 Σ22 0

0 0 Σ33

 .
If we give ∆vt the factor structure in (4) (again maintaining ρ = 1M×1),

∆vt =


∆v1

t

∆v2
t

∆v3
t

 =


λ1

λ2

λ3

 ηt +


σ1ε1

t

σ2ε2
t

σ3ε3
t

 = ληt + diag(σ)εt,

with ηt
iid
∼ N(0, 1), εt

iid
∼ N(03×1, I3) and ηt independent of εt, the news-noise model implies the

restriction λ3 = 0. The rest of the parameters, λ1, λ2, σ1, σ2, σ3, can be recovered from Var
(
∆vt

)
.
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