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Abstract 

We develop a model of a platform featuring producers of fake news as well as users who can share 

content and verify it at a cost. Since users supply news to other users, their actions affect fake news 

prevalence and strategic complementarities can arise: high levels of verification can lead to low 

prevalence of fake content, in turn inducing more unverified sharing that sustains high levels of 

verification. Equilibria in this market then arise as intersection points between a standard supply curve 

and a novel correspondence that generalizes a demand function to account for the users’ strategic 

environment. Equilibria exhibiting more fake news production and diffusion can be consistent with higher 

user welfare due to the strong verification complementarities at play. We also quantify externalities 

associated with users affecting the average quality of news items in the platform and examine the effects 

on outcomes of (i) lowering verification costs, (ii) certifying verified content, and (iii) using algorithmic 

filters. 
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1 Introduction

The phenomenon of misinformation online has attracted substantial attention, increasingly

threatening societies in areas as diverse as elections, markets, and disease spread.1 Fur-

thermore, it is argued that as artificial intelligence advances, the problem may become even

worse.2 Social media platforms have therefore responded by taking important steps in the

area of fact-checking : they have partnered with independent professional entities specialized

in the verification of content;3 deployed algorithms designed to detect misinformation;4 and

begun labeling content as true or false.5

Nevertheless, underlying these responses is the key principle that users themselves must

ultimately assess the veracity of news and decide how to act upon it. To empower users,

therefore, suspicious news items are now accompanied either by reports that assess the

content’s trustworthiness, or by related material that provides context. What this means

is that the success of fact-checking initiatives is inevitably linked to users’ willingness to

verify the truthfulness of the news items encountered. However, such a verification process

is naturally costly, even if the evidence is readily available.

In this paper, we develop a model of fake news production, verification and sharing to

understand how verification incentives—an understudied yet critical aspect of the fake news

problem—determine the extent of misinformation diffusion, which is a natural first step

towards evaluating the magnitude of this threat. We show how this topic can be analyzed

with competitive analysis tools featuring a “strategic spin” linked to natural social influence

effects at play, leading to richer predictions than in those traditional analyses.

Model and equilibrium We develop a stationary matching model in which a large num-

ber of small users encounter news in any period. Such items originate from a large set of

small producers, and a fraction of them can be false. Upon encountering a news item, a

user can uncover its veracity only after paying a cost; and after this decision is made, the

user can decide whether to share the news. Thus, the pool of news in any period consists of

fresh items recently introduced and those produced in the past that were shared by users.

1Allcott and Gentzkow (2017) estimate that 760 million interactions with fake news occurred on the web
around the 2016 U.S. presidential election, while Guess et al. (2020) show that online platforms facilitated
traffic to untrustworthy websites. See Rapoza (2017) for an incident of the stock market’s reaction to fake
news, and DiResta and Garcia-Camargo (2020) for falsehoods regarding the COVID-19 pandemic.

2The World Economic Forum has termed fake news as a major global risk (Howell, 2013), with artificial
intelligence deployed to “deepfake” videos a major long-term threat (World Economic Forum, 2020).

3Some platforms partner with fact-checking organizations that adhere to the International Fact-checking
Code of Principles: https://www.ifcncodeofprinciples.poynter.org.

4https://ai.facebook.com/blog/heres-how-were-using-ai-to-help-detect-misinformation/.
5https://transparency.meta.com/en-gb/features/how-fact-checking-works/.
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We assume that all news items live for two periods—e.g., the platform’s algorithm deletes

old content—so sharing decisions from only a period earlier matter. Further, all users enjoy

sharing true content but dislike sharing fake news; thus, misinformation spreads only when it

is not verified. Matches between users and news are random, a proxy for residual uncertainty

in how the platform’s algorithm decides to allocate news across users.

In practice, an inference problem familiar to all of us is at play when encountering news

online: to which extent has the content been vetted by others in the past? This uncertainty

simply is a reflection of all past choices along sharing chains not being readily observable

to any individual user. To capture this situation, we assume that individual sharing and

verification decisions by other users are not observable: say, our platform displays content via

“news feeds” that collect news based on novelty (a fresh, “vintage one,” item) and popularity

(a “vintage two” item that was shared). The prevalence of fake news—the proportion of false

items among those circulating in any period—is then not only determined by producers, but

also directly affected by users’ choices. Importantly, this happens in a way that users cannot

discern between items that have definitely not, or may have been, verified in the past.

As users’ verification and sharing choices affect the likelihood of encountering misinforma-

tion, they ultimately influence other users’ same choices. A key finding is that this feedback

loop—a “prevalence-driven” social influence effect—can manifest in strategic complementar-

ities : high, intermediate and trivial levels of verification can arise at fixed levels of fake

news production. In parallel, different degrees of unverified sharing—the mass of users who

skip verification and always share, which determines the rate of diffusion of fake content—

emerge, also ranked in the same order: for example, high diffusion rates of misinformation

are supported by high levels of verification, because the latter induce low levels of prevalence

that sustain high degrees of unverified sharing at the same time. This finding is non-trivial

because it arises for intermediate—and endogenous—levels of fake news production. Other-

wise, verification is uniquely pinned down either because not verifying news is a dominant

strategy, or because verification choices are strategic substitutes: as more users verify and

prevalence falls, more users enjoy sharing content without paying verification costs.

We make the natural assumption that fake news producers positively respond to mis-

information diffusion rates, so an increasing supply curve emerges on the production side.

Stationary equilibria then arise as intersection points between a standard supply curve and

a correspondence capturing the possibility of multiple outcomes on the users’ side. The

novelty of this correspondence lies on its resemblance with traditional demand functions: as

production grows and prevalence increases, unverified sharing is less attractive at all three

possible levels of verification, which means that the “branches” of this correspondence are all

weakly decreasing. The competitive-strategic duality of our setting is clear here. On the one
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hand, any equilibrium is the outcome of forces akin to supply and demand locally balancing

each other. On the other hand, the presence of multiple possibilities makes salient that an

actual game among users is at play. Crucially, this dual aspect is because our demand side

is not a traditional one: users act both as consumers and suppliers of news.

Welfare and externalities The complementarities uncovered have important implica-

tions. Concretely, when multiple stationary equilibria exist, the one displaying the largest

fake news production maximizes user welfare. Indeed, this equilibrium exhibits such a rel-

atively high level of verification that two phenomena occur simultaneously: (i) welfare per

news item grows due to the prevalence of fake content falling sharply (quality effect) and (ii)

total circulating news grows due to high induced rates of unverified sharing (volume effect).

Outside this multiplicity region, or along each decreasing branch of the correspondence, the

prevailing substitution effects lead to the opposite prediction: welfare falls with production

(say, as the supply curve shift outwards) due to news falling in terms of quality and volume.

Altogether, users exert quality and volume externalities on others. We then turn to bet-

ter understand the inefficiencies that arise through the more interesting quality channel, as

volume can always be maximized by mandating unverified sharing for everyone (at the ex-

pense of quality, of course). Concretely, we show that for a planner interested in maximizing

welfare per news, equilibrium verification is always too low when it takes place, and the diffu-

sion rate of fake content too high (unless production is excessively high, in which verification

becomes too costly). A revealed preference argument helps illustrate the benefits of more

verification along this prevalence channel proxy for quality. First, as the likelihood of finding

truthful news grows, the payoff for those originally sharing news necessarily increases—any

switching between options reflects substitution effects from improved opportunities. Second,

some users originally not sharing news at all will do it now—an extensive margin effect.

Policy We study three types of policies: lowering verification costs, say by facilitating

access to fact-checking reports; using algorithmic filters, or technology that can assess news

veracity without direct human aid; and news certification, labeling news as true or false

depending on the users’ verification outcomes. We focus on user welfare per news item to

isolate how these policies affect users through the implied change in prevalence.

Verification costs affect outcomes directly through impacting users’ payoffs and indirectly

via behavior impacting prevalence. In equilibria with high verification, lowering such costs

leads to more verification (at the expense of fake news diffusion) which reduces prevalence

and raises user welfare. For equilibria displaying intermediate verification levels, the opposite

occurs. Indeed, in close analogy with mixed strategy equilibria, only a fraction of individuals

verify news in this case so that there is indifference between verifying news and not sharing
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at all. As verification costs fall, equilibrium prevalence has to increase to maintain such

indifference; thus, welfare falls, and in fact there is less verification in equilibrium.

Filters do not directly affect users’ payoffs; instead, their effect on users is through the

likelihood of encountering misinformation. With filters that (i) assess incoming fresh news

items before these reach users and (ii) make errors only with fake content, prevalence falls

ceteris paribus. As the chance of sharing misinformation falls, the pass-through correspon-

dence weakly expands; meanwhile, the supply of fake content contracts, because fake content

has to pass an extra layer of vetting. With a “demand expansion and a supply contraction”

the “price” must necessarily increase: fake news diffuse more among users. Despite an am-

biguous effect on production, prevalence must fall in the equilibrium with high verification

to sustain higher diffusion rates—thus, welfare increases. After the imposition of a filter

then, content will diffuse at higher rates conditional on reaching users; but this is just the

reflection of a welfare-enhancing extra layer of protection.

Finally, the practical benefits of labeling fake content as such seem intuitive—but what

are the effects of certifying truthful content? Our third policy exercise speaks to this issue.

Concretely, as more content that has been verified to be truthful gets labeled as such, users

can “remove” even more content from the pool of news with dubious quality. Thus, the

composition of this residual pool worsens. In an equilibrium with high verification, fake

news prevalence grows among such items, and hence there is less unverified sharing and

lower user welfare among such items. In other words, introducing this policy lowers the rate

at which uncertified false items diffuse, but this is a reflection of their relative abundance.

We also show that these policies have refining effects if sufficiently precise: they shrink

the region where multiple equilibria can arise. When this occurs, the first two policies select

the equilibrium with high verification, complementing each other towards this end.

Robustness We conclude the paper with a number of variations of our baseline model.

First, we examine alternative options for our supply side. Second, we study network ex-

ternalities, understood as ex post payoffs—i.e., benefits and losses—explicitly depending on

aggregate behavior. Third, we perform an exhaustive list of variations for how (exogenous

and independent) benefits and losses can vary across the population of users. Through this

last exercise we uncover that changes in prevalence should have sufficiently strong “extensive

verification effects” for strategic complementarities to arise: as prevalence falls, more users

must enter the verified sharing world than those switching to unverified sharing because

now misinformation is less prevalent. We discuss this topic in more detail at the end of the

model section: irrespective of whether the complements or substitutes channel dominates,

prevalence-driven social influence effects will be at play if verification takes place.
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Roadmap We review the related literature next. Section 2 presents the model and its

motivation, while the equilibrium analysis is in Section 3. Section 4 examines user welfare

and Section 5 studies three policy exercises. Finally, Section 6 performs extensions and

variations of the main model, and Section 7 concludes. All the proofs are in the Appendix.

Related literature There is a growing theoretical literature analyzing various aspects of

the fake news problem. In Papanastasiou (2020) and Cheng and Hsiaw (2022), verification

costs are present and the main focus is on long-run learning: the first focuses on informational

cascades with an exogenous supply side, while the second features a sender-receiver setup

where talk is cheap. In turn, Kranton and McAdams (2024) also follow a “supply and share”

approach with two main differences: first, they feature an explicit network structure (number

of neighbors), while in ours exposure to shared news is mediated by the platform; second,

their verification technology is costless and imperfect. A common element, however, is that

exposure to news is endogenous in both worlds: in their setup, users decide how many news

to seek out from producers; instead, in our paper, users affect the user-to-user exposure

margin through the implied value of prevalence—combining this latter feature with costly

verification is at the heart of the complementarities that we uncover. Finally, other papers

focus on the dispersion of beliefs when users share news: see Bowen et al. (2023) on belief

polarization, or Acemoglu et al. (2023) on virality and eco chambers; in our setting, prior

beliefs are homogeneous across users, but endogenously determined.

On empirics and experiments, our assumption that passing on fake content yields losses is

consistent with Pennycook et al. (2021) where users find it important to share only accurate

news, and with Altay et al. (2022) where users worry about their reputations when fake

news is shared. In turn, Pennycook et al. (2020) show that labeling only a subset of false

news articles leads users to believe that untagged articles are more accurate, which increases

their sharing: this is consistent with the effect of algorithmic filters in our model, and is

the mirror image of our false-news certification. On the supply side, Allcott and Gentzkow

(2017) and Tucker et al. (2018) document that clicks are the main source of profitability for

untrustworthy websites—but sharing rates are a key catalyst for clicks to happen.

The quality externality uncovered operates through the likelihood of encountering fake

news, which is an endogenous belief in our model; thus, our mechanism resembles those

in models with information externalities. In this line, Board and Meyer-ter Vehn (2021)

examine how inspecting and adopting a product of unknown quality is affected by the net-

work’s structure when neighbors’ adoption choices are observable, with ensuing implications

about learning dynamics. Instead, our model is stationary, focusing on how unobserved

sharing-verification choices affect users’ perception of misinformation, with ensuing impli-
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cations about the type of strategic interaction among users (verification choices acting as

complements or substitutes). In turn, Che and Hörner (2018) examine how platforms can in-

fluence product adoption through recommendation systems that can depend on other users’

past adoptions. Instead, we examine market outcomes absent this form of manipulation

when users themselves have the ability to expose others to products of unknown quality.

Finally, our model contributes to the matching literature in settings in which individuals

choose to protect themselves at a cost; see Quercioli and Smith (2015) and Vásquez (2022).

However, we do this in the context of a novel externality stemming from protection choices

by market participants non-trivially affecting the quality of matches that can take place in

future rounds—see Chade et al. (2017) for a general survey of matching models, with and

without transferable utility, and where other types of externalities are discussed.

2 Model

We develop a model of a platform over an infinite horizon in which a large number of

infinitesimal users encounter fake content that originates from a large number of infinitesimal

fake news producers. With agents who cannot affect aggregate variables, all players maximize

flow payoffs at all times; and due to stationarity, these flows are identical across periods. We

introduce the main elements of our model next, and subsequently justify our assumptions.

News viewers A unit mass of infinitesimal risk neutral users have access to an online

platform where they encounter news of unknown veracity. Upon encountering a news item,

each user can first decide to determine its truthfulness by paying a verification cost t > 0:

the search costs incurred when consulting specialized websites for fact checks, or the time

costs associated with reviewing related articles presented as part of “contextual information,”

or even attention costs. After the verification decision is made, users can decide to share

the news item. While not sharing the item yields a payoff of zero, the payoff of sharing

depends on the item’s veracity: sharing truthful news yields a benefit b > 0 while sharing

fake content entails a loss ℓ > 0. Altogether, since users dislike passing on fake articles and

the verification technology is perfect, misinformation is shared only when it is not verified.

Our baseline model features b and t as constant across users, with b > t so verification can

arise in equilibrium. In turn, the losses ℓ vary according to an atomless cumulative distribu-

tion function (CDF) G(·), with support [0,+∞) and differentiable density g(·). Alternative
specifications are discussed at the end of this section.

Fake news producers In every period, a unit mass of news items, all different from one

another, enters the platform, a fraction π ∈ [0, 1] of them being false. Fake news production π
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originates from a set of producers each facing the choice of producing a fake news article upon

paying a cost c ∈ [0, 1]: in this sense, our producers can be interpreted as “malicious” in that

they specialize in fake content production and the costs that they bear reflect their forgone

opportunities unrelated to news production. These costs vary across producers according to

an atomless CDF F (·) with support [0, 1] and continuous density f(·). We assume that a

producer receives a payoff of 1 every time that the item is viewed.

Random matching and prevalence The platform allocates all the news available ran-

domly across users in every period. From a user’s perspective then, the likelihood of

an encountered item being false is determined by the proportion of fake news currently

circulating—or fake news prevalence, which we will denote ψ ∈ [0, 1]. This proportion not

only depends on the current volume of fake news produced π, but also on users’ past sharing

and verification choices.6 Letting σU ∈ [0, 1] denote the mass of users who share without ver-

ifying news, and σV ∈ [0, 1] that of those who verify (and hence who share only if truthful),

we will have ψ = Ψ(π, σU , σV ) for some function Ψ.7

We assume that each news lives for two periods. In this case, Ψ(·) takes a simple form

(see (1) in Section 3) and a producer’s per unit expected payoff is 1 + σU : fake content will

reach a first user with certainty as it enters the platform, but subsequently this item will

get a second view only if the first encounter was with a user doing unverified sharing, which

happens with probability σU . Because the intercept is common across producers and the cost

distribution F general, we normalize revenue to σU and have producers’ costs distributed

over [0, 1] as stated earlier. We refer to σU as the misinformation pass-through rate, as this

is the rate at which fake content diffuses among users within the platform.8

Information and equilibrium The timing of moves within a period is as follows. First,

producers simultaneously decide whether to produce or not. Second, the resulting cohort of

fresh—vintage 1—news items is collected by the platform’s algorithm and so are the (now)

vintage 2 items that were “fresh” in the previous period and shared by users then. Third,

given this pool of news, the algorithm allocates all the news to users randomly. Fourth, all

users make their verification and sharing choices simultaneously.

We assume that the history of individual choices of all players are unobserved to their

counterparties. In particular, users do not observe other users’ individual sharing and ver-

ification choices from the previous period. This helps us focus on the following inference

6Thus, a user may receive more than one piece of news in any given period. We assume no attrition, and
so this consideration is irrelevant because all benefits and costs are per news item.

7Since some users may never share news, σU + σV < 1, and carrying σU and σV separately is needed.
8We also use misinformation for users because they do not know an item’s veracity when sharing it.
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problem: when seeing a news item, to which extent has it been verified by others in the

past? We elaborate on this modeling choice at the end of the section; the bottom line is,

users can learn the quality of news only from their own verification choices.

Definition 1 (Equilibrium concept). In a stationary equilibrium: (i) users’ verification

and sharing decisions, as well as producers’ choices, are constant across time; and (ii) all

players simultaneously best respond to one another.

A stationary equilibrium will give rise to a triplet (π, σU , σV ) that is constant across

time.9 Moreover, as we will show, this triplet will end up encoding all the payoff-relevant

information about the behavior of others: from any player’s perspective, only (π, σU , σV ) is

needed to find a best response—in the case of users, this occurs through the implied fake

news prevalence value ψ = Ψ(π, σU , σV ). This is the topic of equilibrium analysis, which we

examine in the next section. Before then, let us first justify some of our modeling choices.

Interpreting the model Our model is an approximation of a large network of individuals

participating in an online platform that actively displays news to its users via so-called “news

feeds:” a mix of recent news (our fresh items) and popular ones (i.e., items that have been

shared by other users). In such a world, users’ verification decisions, via their sharing choices,

affect the average quality of the news observed by others, in turn influencing those same

verification and sharing choices: such feedback loops then encode social influence effects.

From this perspective, it is useful to break down a discussion of our assumptions as follows.

1. Information and news. While in practice users do get to see the sharing decisions of

individuals in their own network, they need not see the sharing decisions of individuals

they are not connected with. Importantly, platforms have the power to diffuse these

decisions to other parts of the network through such news feeds, especially when articles

are profusely shared—in this case, inferences must be made regarding the extent to

which news items have been shared and verified in the past, as in our model.

From this standpoint, allowing for news of only two vintages—proxy for a news feed

algorithm that gives less relevance to older news—simplifies the inferences encoded in

the prevalence function Ψ. But note that even if users were able to see when a news

item is shared with them via another user—thus permitting discriminating between

old and new content—letting news now live for three periods would make the inference

problem reemerge: someone who receives a news item from another user has to evaluate

9With infinitesimal agents, the model’s solution is independent of the observability assumptions on this
triplet within and across periods (of course, producers do not observe (σU , σV , ψ) in the same period, etc.)
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whether the news is of vintage 2 (i.e., it is shared by a user for the first time) or of

vintage 3. In other words, our model is the simplest laboratory for examining how

people’s perception of the pervasiveness of fake content is affected by others’ past

behavior when the actions along sharing chains are not perfectly observed.

A similar justification applies to our assumption that all news are different. If instead

news cohorts carried non-trivial masses of identical news, users could differentiate news

based on previous encounters, and so some uncertainty regarding vintages would be

needed. By having different items, however, we eliminate mechanical “public goods”

effects from the same item being consumed by many people (albeit at different points

in time), which is important for differentiating the externalities that we study.

2. Preferences. Our assumptions on users’ payoffs are natural for understanding how mis-

information can diffuse despite everyone disliking to share fake content. The starting

point is that verification is costly and people act in their own interest; having veri-

fication costs that are common to everyone simplifies our policy exercises. Equipped

with this, our main point is that expectations regarding others’ behavior can have

non-trivial effects on outcomes, and the fact that benefits are concentrated while losses

vary across users matters in this respect: strategic complementarities can emerge, man-

ifested in large swings in the extent of verification that are supported by self-fulfilling

expectations of what other users will do.

While the mathematical details are in the next section, it is useful to anticipate the

logic behind this finding. In order to verify news, users must consider two margins.

First, is verified sharing—i.e., sharing only when content it truthful—profitable in

absolute terms? Second, is it relatively more attractive than doing unverified sharing?

On the first margin, note that verification requires an upfront payment (i.e., a cost with

certainty) in exchange for a benefit that may not materialize (e.g., the verified item

was false). When more users verify news and prevalence falls, the benefit accrues more

often, and having these benefits concentrated can lead to an activation of verification

incentives for many users, opening the way for complementarities to arise. The problem

is that there are substitution effects too, which brings us to the second margin: if

prevalence falls, more people will want to avoid paying the (certain) verification cost

and simply take their chances with fake content. When losses vary smoothly, the

strength of this substitution effect can be dominated for intermediate production levels.

We chose our baseline model because it offers the richest set of predictions: it displays

the dominance of the complements channel or the substitutes counterpart within the

same framework. Away from this case, Section 6 presents an exhaustive list of varia-
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tions regarding the distribution of losses (i.e., bounded support or even concentrated

losses, in Section 6.3), and benefits (varying across users, with and without atoms, in

Section 6.4). A general message is that even when the complementarity does not arise,

social influence effects will remain at play—it is just that they have a unique resolution.

In that section, we also explore more traditional network externalities: benefits and

losses explicitly depending on the aggregate behavior of others (Section 6.2).

Regarding producers, we have assumed that their revenue is given by views; but it could

also be driven by explicit “sharing clicks,” in which case expected revenue (per item)

would be non-linear in σU . Also, note that by assuming that the possible total inflow of

news is fixed, increases in fake news production crowd out truthful content: this only

strengthens our result that equilibria with more verification can deliver more welfare

(Section 4). Importantly, what really matters in the end is that fake news production

positively responds to σU , which is a natural property to have: in our baseline model,

this manifests in a standard supply function emerging. Alternatively, in Section 6.1 we

examine the case where producers face a non-trivial choice between producing costly

truthful content versus costless fake news, thus resembling news outlets of dubious

reputation than straight malicious actors. The treatment of this case ends up being

qualitatively identical.

3. Random matching and stationarity. The random matching technology can be seen as

stemming from producers’ imperfect ability to reach specific users (i.e., those engaged

in unverified sharing) when attempting to distribute news to populations of interest

(i.e., based on observable characteristics). In practice, this can happen because users’

preferences and actions can be private information (so achieving granular levels of

targeting is difficult), but also because it is a platform’s algorithm that ultimately

decides who gets to see what in any news feed. Finally, the stationary aspect is for

tractability: it is the simplest setting for incorporating realistic inter-temporal effects

associated with an endogenous measure of news quality—namely, prevalence—being

affected by sharing and verification choices in previous periods.

3 Equilibrium Analysis

Our model combines competitive and strategic elements. On the one hand, it features a large

number of producers and consumers of news, none of whom can affect aggregate variables.

In traditional competitive markets, however, only a single variable—the quantity traded or

the price—suffice to characterize equilibrium outcomes. Instead, here we must augment π by
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(σU , σV ) due to the social influence effects at play: users’ conjectures of different degrees of

verification (here, of σV ) can lead to different (π, σU) pairs that in turn sustain such levels of

verification. This mechanism operates through people’s perception of fake news prevalence,

ψ, which introduces interdependence in expected payoffs—the “game” aspect of our model.

Fake news prevalence To determine this variable, consider the total number of news

circulating in any period: there is an inflow 1 of new content; there is a fraction σU of the

previous-period news cohort that gets passed to the current period without any verification

(a mix of truthful and false content); and also a fraction (1−π)σV of truthful news from the

previous cohort gets passed on because of encounters with users who verify news.

Of this total circulating, only 1 + σU news items can be false, which happens with prob-

ability π. Thus, fake news prevalence reads

ψ =
π + πσU

1 + σU + (1− π)σV
=: Ψ(π, σU , σV ). (1)

The function Ψ : [0, 1]3 → [0, 1] increases with σU (i.e., as more users engage in unverified

sharing), and also with π (i.e., as the inflow of new fake content grows). Meanwhile, it falls

with σV (i.e., as more users verify news before sharing). Also, Ψ(0, ·) ≡ 0 and Ψ(1, ·) ≡ 1.

Note that Ψ(π, σU , σV ) ≤ π, with strict inequality when σV > 0 due to the term (1−π)σV
in the denominator. This drop in prevalence captures the benefits from verification and is the

channel through which the social influence effects will operate: verification by users affects

others’ perceptions of the severity of the fake news problem, thereby influencing their sharing

and verification decisions—a non-trivial fixed point will emerge. Equipped with Ψ, we now

characterize the possible values that (σU , σV ) can take.

The “sharing game” Fix π > 0 in what follows. Given a perceived prevalence ψ, a

necessary condition for users to be willing to verify news is

(1− ψ)b− t ≥ 0. (2)

This is the first margin discussed in our model section: in absolute terms, verified sharing is

profitable when paying the verification cost t up front (i.e., with certainty) is compensated

by sharing truthful news sufficiently often, i.e., when fake news prevalence is not too large.

Conjectures of others’ behavior now matter for verification incentives, through the in-

duced values that ψ can take via the function Ψ. We now examine equilibria of the resulting

sharing game among users when taking as given the production level π—a form of partial

equilibrium analysis regarding the set of stable predictions associated with user behavior.
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Note that, if everyone expects others to skip verification, then ψ = π by virtue of Ψ ≡ π

when setting σV = 0 in (1). Moreover, these expectations are self-fulling when (2) fails with

ψ = π in it. Or equivalently, when production is sufficiently large according to

π > π := 1− t

b
∈ (0, 1). (3)

Above this value π then, there is always an equilibrium in which there is no verification,

so σV = 0. In this case, σU is determined by the mass of individuals who find it profitable to

do unverified sharing, namely, to gamble between b and ℓ when prevalence takes value π, or

(1− π)b− πℓ ≥ 0. (4)

Since these users must experience (relatively low) losses—formally, ℓ ≤ (1−π)b/π—it follows

that fake content will diffuse at rate σU = Σ(π) where

Σ(π) := G

(
(1− π)b

π

)
. (5)

This “no-verification” equilibrium can arise on [π, 1], and users segment into two sets: those

engaged in unverified sharing and those who do not share news at all.

Conversely, when π < π, each user gets a positive payoff from verifying news even if

nobody else does, because Ψ(·) ≤ π < π. Thus, nobody abstains from sharing, and so

σV = 1−σU : users segment into two sets again, but now the split is between doing unverified

and verified sharing. There are two important observations stemming from this finding.

First, users doing unverified sharing must find this option more profitable than doing verified

sharing, so these users must experience relatively low losses:

(1− ψ)b− ψℓ︸ ︷︷ ︸
unverified sharing

> (1− ψ)b− t︸ ︷︷ ︸
verified sharing

⇔ ℓ < t/ψ. (6)

This is the second margin discussed in the model section, encoding a tension at play when

users expect more fellow users to verify news: as ψ falls, more users find it optimal to skip

verification because (6) relaxes. In other words, expectations of others’ behavior and actual

best responses are strategic substitutes through this channel.

From (6), a total mass G(t/ψ) of users engage in unverified sharing, and hence the

following fixed-point condition must hold:

σU = G

(
t

Ψ(π, σU , 1− σU)

)
, (7)
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where we have made explicit that ψ = Ψ(π, σU , σV ) = Ψ(π, σU , 1 − σU). This equation

encodes the feedback loop already discussed, now using the pass-through rate σU as the

main variable. Denote the (unique, as we will show) solution to (7) as π 7→ Σ(π).

Our second observation is that (7) admits a solution over [0, π̄) with π̄ ∈ (π, 1): that is

verification can extend beyond the point at which the no-verification equilibrium emerges

(while vanishing strictly before 1). The reason is the externalities that verification creates:

as verification happens along [0, π], it follows that Ψ < π in this region, which helps sustain

verification to the right of π. We refer to this outcome as the “verification” equilibrium,

which features ψ < π everywhere on [π, π̄) and 1− Σ(π) users verifying news.

The existence of two equilibria over π ∈ [π, π̄] opens the possibility for a third type of

equilibrium, analogous to mixed-strategy equilibria in coordination games when two pure-

strategy equilibria exist. In this equilibrium, only a fraction σV ∈ [0, 1−Σ(π)] verify news so

that prevalence remains constant at π and hence there is indifference between verified sharing

and not sharing at all (i.e., (1−π)b− t = 0 holds), which in turn sustains such partial levels

of verification. Further, a constant mass σU = Σ(π) of users engages in unverified sharing on

[π, π̄]. Users segment into three, the third set being users who never share news. The next

result confirms that these three possibilities are exhaustive.

Proposition 1 (Sharing game equilibria). There exists 0 < π < π̄ < 1 such that

σU =


Σ(π) for π ∈ [0, π)

(Σ(π),Σ(π),Σ(π)) for π ∈ [π, π̄]

Σ(π) for π ∈ [π̄, 1]

(8)

where Σ : [0, 1] → [0, 1] defined by (5) is continuous and decreasing, while Σ : [0, 1] → [0, 1]

is the unique solution to (7), also continuous and decreasing.10 Meanwhile,

σV =


1− Σ(π) for π ∈ [0, π)

(1− Σ(π), α(π), 0) for π ∈ [π, π̄]

0 for π ∈ [π̄, 1]

(9)

where α(π) ∈ [0, 1 − Σ(π)] is continuous, increasing, and satisfies Ψ(π,Σ(π), α(π)) = π for

all π ∈ [π, π̄], whereas the mass of individuals who never share news is 1−σU −σV . Finally,

Σ(π) > Σ(π) for π ∈ [π, π̄] and Σ(π) = Σ(π̄).

We refer to the right-hand side of (8) as the pass-through correspondence, because it

10Note that lim
π→0

Σ(π) = lim
π→0

Σ(π) = 1.
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determines the possible rates at which fake content diffuses through the user population. By

the last part of the proposition, the equilibrium with verification exhibits a pass-through

rate that is higher than that of the no-verification equilibrium (i.e., Σ > Σ on [π, π̄]): this is

because verification reduces the prevalence of fake news—a result we establish in the next

section—which in turn makes unverified sharing less risky. Three properties follow.

First, as π increases and fake news gains prevalence, misinformation necessarily diffuses

less often along each of these two equilibria: Σ and Σ are decreasing, which in particular

means that the extent of verification grows along the verification equilibrium as (9) shows.

Second, the pass-through rate in the “mixed” equilibrium lies in between the other two,

a consequence of its intermediate verification intensity: the latter is denoted by α, which

increases with π because more verification is needed to keep ψ pegged at π as production

grows. Third, the mixed equilibrium meets the verification one at π̄ (the last equality in the

proposition). This is because the mixed equilibrium exhausts the potential mass of users

available to verify news at π̄, after which the verification equilibrium vanishes.

The multiplicity discovered reflects endogenous strategic complementarities: high levels

of verification induce low levels of prevalence that, in turn, sustain high levels of unverified

sharing, and vice-versa. This happens for intermediate levels of production, because verifica-

tion incentives can be activated or shut down for many users there. Concretely, as we enter

π > π, news verification can have a strong extensive margin (our first margin) effect through

the implied drop in prevalence, which can make verified sharing profitable for many users

who were not sharing news at all: these users are enticed to enter the “sharing world.” This

effect can overcome inframarginal effects—our second substitution margin—associated with

some users switching to unverified sharing as prevalence falls. In other words, verification

makes it possible to transition to both higher levels of verified and unverified sharing.

Above π̄, activating the extensive margin would necessitate verification by so many users

that it would require some of those “switchers” to join—things unravel and there is no

verification. On the other hand, below π, verification is active irrespective of what others

do: substitution effects dominate and the outcome is unique. To see that social effects are

still at play in this latter region, we compare our verification equilibrium with one where

verification is prohibitively costly (a counterfactual case t > b): here, the pass-through rate

σU is uniquely determined by Σ, but now defined over the whole interval [0, 1].

Proposition 2 (Verification effects). Consider Σ(·) as (5) and Σ(·) solving (7). There

is a unique π̂ ∈ (0, π) such that Σ(π) > Σ(π) if π ∈ (0, π̂) and Σ(π) > Σ(π) if π ∈ (π̂, π̄].

Consequently, Σ starts above Σ for π close to zero, and then falls under Σ permanently

after a crossing point π̂ < π. Indeed, as verification becomes feasible (i.e., as t falls below
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then given by per-news welfare times the corresponding volume of news in circulation, or

Wx(π)[1 + σxU(π) + (1− π)σxV (π)],

where σxU and σxV denote the x ∈ {ver,¬ver,mix} entry of the correspondences (8) and (9).

Proposition 4 (Welfare comparison). If multiple stationary equilibria exist, the one ex-

hibiting the largest fake news production maximizes both per-news and total user welfare.

Outside the multiplicity region, more fake news lead to lower (per-news and total) welfare.

The proposition highlights the importance of strategic complementarities. When these

arise, both components of user welfare—per-unit user welfare and circulating volume—satisfy

a strong ranking across equilibria: the verification equilibrium generates more user welfare

per news than the mixed uniformly on [π, π̄], and so does the latter equilibrium relative to

the no-verification one. And similarly for circulating volume: the mixed equilibrium reduces

circulation by excluding some users from sharing news and by inducing less unverified sharing,

while the no-verification equilibrium is even more extreme along both metrics. Thus, welfare

increases as we go up along the supply curve reaching higher levels of verification that lower

prevalence; but since more users do unverified sharing, too, fake news production increases.12

This does not happen away from the multiplicity region, where substitution effects dom-

inate. There, higher fake news production increases prevalence despite the increase (if any)

in verification intensity (Proposition 3)—but higher fake news prevalence implies lower per-

unit welfare as we demonstrate in the proof. Thus, per-news user welfare decreases as we

move down along each decreasing branch of the correspondence. Importantly, circulating

volume falls too as π grows: in the verification equilibrium, this is because higher verifi-

cation rates eliminate more news, while in the no-verification equilibrium, this is because

unverified sharing decreases. This explains the last part of the proposition.13

Externalities In the verification equilibrium, σver
U + σver

V ≡ 1, and hence the total volume

of news circulating is 2 − πσver
V . Thus, individual verification choices exert externalities on

other users through two channels. First, by reducing the news volume circulating, which

is a negative ‘quantity’ effect—this channel is rather straightforward in that total volume

is maximized when everyone engages in unverified sharing. Second, by making encounters

with truthful content more likely—a positive ‘quality’ effect driven by prevalence. This latter

12Kranton and McAdams (2024) find conditions under which an exogenous increase in misinformation
leads to higher welfare in a model where welfare per news falls in response, but volume increases. Instead, in
our model, welfare per news can grow across equilibria with more misinformation due to verification effects.

13These properties also hold in the multiplicity region. In the mixed case, per unit welfare is constant,
while total welfare grows due to circulating volume growing as more people enter the (verified) sharing world.
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channel has the potential to uncover important externalities: by reducing fake news preva-

lence, more verification increases the payoff of those originally sharing news (substitution

effects reflecting better alternatives); and among those users originally not sharing news at

all, some of them will find it profitable to do it now (the extensive margin effect).

Henceforth, we focus on the quality channel by considering a planner who maximizes per-

news user welfare at each π ∈ [0, 1] using segmentations (σU , σV ) ∈ [0, 1]2 with σU +σV ≤ 1;

this is an interim measure of user welfare that parallels the fact that our users act in a

sequentially rational fashion (they make choices conditional on having encountered a news

item). We use this measure as our efficiency criterion unless otherwise stated and return to

the case of a planner who maximizes total surplus (i.e., volume included) in Remark 2.

For verification to deliver a positive payoff, however, recall that prevalence has to be

lower than π, in which case verified sharing provides more utility than not sharing at all (as

in Section 3). Thus, we can restrict to σV + σU = 1 when searching for efficient outcomes

featuring verification. Consider then

π̄P := sup{π ∈ [0, 1] : ∃ σU ∈ [0, 1] s.t. Ψ(π, σU , 1− σU) ≤ π},

the maximum level of production that can feasibly sustain verification. Clearly, π̄P is char-

acterized by Ψ(π̄P , 0, 1) = π, because prevalence is minimized when everyone is engaged in

verification. Also, π̄P > π̄, because in the verification equilibrium, a total mass of Σ(π̄) > 0

users engage in unverified sharing, so there is scope for a planner to further lower prevalence

to the right of π̄. And clearly, π̄P < 1 because π ∈ (0, 1).14

Altogether, a planner can induce verification in the region [0, π̄P ] but not elsewhere. Since

the planner can always opt to induce no verification at all (in which case the remaining mass

1− σU of users would never share news), the planner’s value function takes the form

WP (π) := max{Wver
P (π),W¬ver

P (π)}1π∈[0,π̄P ] +W¬ver
P (π)1π∈[π̄P ,1]

where

Wver
P (π) := max

0≤σU≤1
(1−Ψ(π, σU , 1− σU))b− t(1− σU)−Ψ(π, σU , 1− σU)

∫ G−1(σU )

0

ℓdG

s.t. Ψ(π, σU , 1− σU) ≤ π (11)

and

W¬ver
P (π) := max

0≤σU≤1

∫ G−1(σU )

0

[(1− π)b− πℓ]dG. (12)

14By inspection of (1), π̄P = 2π/(1 + π) < 1.
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To understand (11), note that Wver
P (π) requires a mass σU to engage in unverified sharing,

and 1− σU to share only after a news item is verified to be truthful. This means that: since

everyone shares news with some chance, all users bear the benefit b in expectation (first

term); aggregate verification costs amount to t(1 − σU) (second term); and the aggregate

(ex post) loss from unverified sharing equals
∫ G−1(σU )

0
ℓdG (third term), because it is always

more efficient to induce high ℓ types to verify news. On the other hand, (12) captures user

welfare when: no one verifies news (so Ψ = π); low types ℓ engage in unverified sharing; and

higher types (i.e., ℓ > G−1(σU)) do not share news at all (thus getting a payoff of zero).

Let σver
U,P (π) and σ

¬ver
U,P (π) denote the solutions to (11) and (12), respectively.

Proposition 5 (Planner’s solution and market efficiency). The planner’s value func-

tion WP (π) has the following properties:

(i) Region [0, π̄P ]. There exists π̄v ∈ (π̄, π̄P ) such that WP (π) = Wver
P (π) for all π ∈ (0, π̄v].

Further, user verification satisfies 1−σver
U,P (π) > 1−Σ(π) in [0, π̄], while 1−σver

U,P (π) > 0

in [π̄, π̄v]. Thus, equilibrium outcomes are inefficient in [0, π̄v].

(ii) Region [π̄P , 1]. The maximizer σ¬ver
U,P (π) that attains W¬ver

P (π) is such that σ¬ver
U,P = Σ(π).

Thus, the no-verification equilibrium is always efficient in [π̄P , 1].

Part (ii) states that when verification is not implementable from a social perspective, the

market outcome is obviously efficient. Part (i) in turn speaks to the inefficiencies that can

arise when verification is implementable. First, the planner prefers that verification happens

strictly beyond π̄ at which the verification equilibrium ceases to exist. Second, whenever the

verification equilibrium exists, the planner would have preferred more verification to take

place (1−σver
U,P (π) > 1−Σ(π)). Intuitively, requiring verification by some types to the left of

t/Ψ(π,Σ(π), 1−Σ(π))—the lowest type that verifies news in the verification equilibrium (see

(4))—can generate a large increase in welfare due to truthful news being more frequently

encountered—this is the term (1−Ψ)b in (11), which applies to all users (and thus ensures

that those additional users who verify news continue having positive utility).

This additional verification is profitable for a planner only up to a level of production

which we call π̄v < π̄P . This is because an exceedingly large volume of fake content created

would require too many users to bear verification costs in order to obtain a meaningful

reduction in prevalence: the planner would have to exchange too many mild losses ℓ for high

costs t. Slightly to the right of π̄v then, W¬ver
P (π) >Wver

P (π), as Figure 3 below shows—there,

the market outcome is efficient despite verification being implementable.

Remark 1. The planner can implement the desired level of verification by subsidizing veri-

fication costs. Indeed, write the planner’s solution as σver
U,P (π; t). Then, using (7), the subsidy
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5.1 Verification Costs

Social media platforms have begun to offer more and better fact-checking services to users,

while still allowing them to decide whether to share: in our model, this is a decrease in the

verification cost t. Thus, we consider reductions in this variable while remaining strictly

positive, as fully eliminating these costs is likely infeasible in practice.

Notice that π and π are decreasing in t: with more affordable verification, the verification

equilibrium exists over a longer range [0, π̄]; the no-verification equilibrium exists over a

smaller range [π, 1]; and any conclusion regarding the mixed equilibrium will depend on how

the multiplicity region responds. But if a reduction in t decreases π̄ − π, then the set of

equilibria of this game is refined in favor of selecting the verification equilibrium.

The next result explores this latter topic while also examining how σU , ψ, and user

welfare in the sharing game change. We study these changes in regions of π where these

variables continue to be defined after the change in t—we refer to any such region as a

“common domain,” which will depend on the type of equilibrium of the sharing game at

hand.15 Recall also that in the verification equilibrium σV = 1− σU .

Proposition 6 (Lowering verification costs). Consider a small drop in verification costs

from t ∈ (0, b) to t′ < t such that all equilibria of the sharing game continue to exist.

(i) For any fixed value of π in the corresponding common domain:

(i.1) Verification equilibrium: σU and ψ fall, while user welfare rises.

(i.2) Mixed equilibrium: σU and σV fall, ψ rises, and user welfare falls.

(i.3) No-verification equilibrium: σU , ψ, and user welfare do not change.

(ii) Refining effects. Both π and π̄ are decreasing in t. Also, the wedge π̄ − π:

(ii.1) rises when 0 < t′ < t are sufficiently close to b;

(ii.2) falls when 0 < t′ < t are sufficiently low.

For part (i), note that as t falls and more people verify news, misinformation diffuses

more slowly in the verification equilibrium (Σ(·) falls), so fake news prevalence falls; in

turn, user welfare must increase. Now, recall that in the mixed equilibrium prevalence is

pegged at π while the (constant) pass-through rate satisfies Σ(π) = G(t/ψ) = G(t/π),

which is increasing in t. Thus, lowering verification costs reduces unverified sharing, so to

15Clearly, given t ̸= t′ and induced values {π(t), π̄(t), π(t′), π̄(t′)}, these common domains are
[0,min{π̄(t), π̄(t′)}], [max{π(t), π(t′)}, 1] and [max{π(t), π(t′)},min{π̄(t), π̄(t′)}].
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induce indifference (between verifying news and not sharing at all) prevalence must increase—

as a byproduct, user welfare and verification both fall. Finally, since the no-verification

equilibrium does not explicitly depend on t, it does not change in the common domain

induced by the policy change: it only emerges at higher levels of production, consistent

with the lower pass-through rate of the mixed equilibrium. (Extrapolating to stationary

equilibria—π endogenous—is straightforward given our upward sloping supply: the new

crossing points on the verification and mixed branches exhibit less unverified sharing and

less production, while nothing happens in the common domain of the no-verification branch.)

Part (ii) is also intuitive. Consider as a starting point the extreme case t ≥ b (referenced

in Proposition 2) in which only the no-verification equilibrium can emerge. As we begin

lowering verification costs, the other two equilibria necessarily emerge at some point. But

as we further continue this process, things are reversed: verification becomes so attractive

that it starts having refining effects, selecting the verification equilibrium.

Lowering verification costs can be a powerful tool because it affects user welfare directly by

increasing the payoffs of those verifying news, and indirectly by lowering fake news prevalence

for those doing unverified sharing. However, the fact that reductions in pass-through rates

and in fake news inflows can be simultaneously accompanied by an increase in prevalence

and drops in user welfare and verification rates—as the mixed equilibrium demonstrates—is

an important warning sign to consider.

5.2 Algorithmic Filters

We now enrich the model to allow for detection algorithms. A key concern regarding such

filters has been their potential use for removing content, which some studies document can

be perceived as a form of censorship (e.g., Lazer et al., 2018). Our focus is different: we look

at how these technologies affect users’ inferences and their incentives to verify news.

We consider an algorithm that assesses news articles as they first enter the platform and

before they reach consumers—a form of pre-screening that happens only once, a proxy for

filtering for novel content in its early stages in a platform. Clearly, eliminating truthful news

articles carries social costs. Thus, we focus on the more interesting case in which truthful

news articles always pass the filter, but fake news articles are detected with probability

ϕ ∈ [0, 1]. Because of the public announcements that platforms have made on this topic,

we assume that ϕ—which measures the filter’s quality—is observable to both users and

producers: in this way, changes in ϕ have the potential to affect all equilibrium variables.

In the sharing game, ϕ affects users only through prevalence (i.e., it does not affect payoffs

23



directly as the verification cost t did), which now takes the form

Ψϕ(π, σU , σV ) :=

originally π(1+σU )︷ ︸︸ ︷
(1− ϕ)π(1 + σU)

(1− ϕπ)(1 + σU)︸ ︷︷ ︸
originally 1+σU

+(1− π)σV
. (13)

To understand (13), note that only 1− ϕπ news items are able to enter the platform in any

period—the term highlighted in the denominator—of which only (1 − ϕ)π news items are

false, the term appearing in the numerator; both are multiplied by (1 + σU) due to the two

possible vintages of news in any period. Finally, because the filter makes no mistakes with

truthful content, the last term in the denominator is unchanged.

The introduction of a filter leads to a fall in prevalence all else equal. Indeed,

Ψϕ(π, σU , σV ) = Ψ(ζ(π;ϕ), σU , σV ), where ζ(π;ϕ) =
(1− ϕ)π

1− ϕπ
(14)

is the fraction of fake content among those fresh items that passed the filter, and Ψ is our

prevalence function (1). Since ζ < π, prevalence falls (pointwise in π > 0): in other words,

the presence of a filter naturally creates an “implied truth effect” (Pennycook et al., 2020).

Operationally, (14) implies that our entire analysis from Section 3—both towards ob-

taining the pass-through correspondence and characterizing stationary equilibria—admits a

direct adaptation to this case, after two simple modifications are made. First, the thresholds

π and π̄ obviously change. More generally, we let π(ϕ) denote the production level at which

both the mixed and no-verification equilibria emerge in the presence of a filter with quality

ϕ ∈ [0, 1], while π̄(ϕ) is the corresponding value at which the verification equilibrium ceases

to exist—the values π(0) and π̄(0) are those in our baseline model (Proposition 1). Second, a

producer’s per-item expected payoff now reads (1− ϕ)σU because passing a filter is required

for misinformation to diffuse—thus, a filter contracts the supply of fake content.16

Proposition 7 (Algorithmic filters). Consider a filter as above, with quality ϕ ∈ (0, 1).

(i) In the sharing game, as ϕ increases over a common domain:

(i.1) Verification equilibrium: σU rises, ψ falls, and welfare rises.

(i.2) Mixed equilibrium: σV falls while σU , ψ and welfare all remain constant.

(i.3) No-verification equilibrium: σU rises, ψ falls, and welfare rises

16If we had not normalized the producers’ payoffs, expected revenue per news item produced would read
(1− ϕ)[1 + σU ], and the same contraction takes place.
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(ii) Refining effects. The functions ϕ 7→ π(ϕ) and ϕ 7→ π̄(ϕ) are increasing. Also, if

t < b/2, ϕ 7→ π̄(ϕ)− π(ϕ) is decreasing at all ϕ ∈ (0, 1).

(iii) Stationary equilibria. On the verification branch, equilibrium π rises as ϕ grows marginally

if and only if |∂Σ
∂π
| ζ
Σ
> 1

1−ζ at that point; meanwhile, σU and welfare unequivocally rise,

while ψ always falls. The same conclusions hold in the no-verification equilibrium

(which uses Σ). In the mixed case, π falls, and the rest is unchanged.

Regarding part (i.1), σU and ψ move in a different direction (unlike in Proposition 6):

as ϕ increases and prevalence ψ falls all else equal, users find it more profitable to engage

in unverified sharing because ϕ does not directly affect payoffs as t does. While verification

rates drop, the direct effect of a better filter dominates, leading to lower fake news prevalence

which enhances welfare. The same conclusions hold in the no-verification equilibrium, simply

because the (countervailing) effect of reduced user verification is absent.

Consider the first part of (ii) now. Since prevalence falls pointwise in π > 0 due to

ζ < π, verification can be supported beyond π̄(0). Also, as fake news prevalence is given

by ζ(π;ϕ) < π in the absence of verification, π(ϕ) satisfying ζ(π(ϕ);ϕ) = π(0) implies

π(ϕ) > π(0)—i.e., the no-verification and mixed equilibria must emerge at higher production

levels. But since at π(ϕ), prevalence continues to take value 1− t/b, the mixed equilibrium

remains unchanged over a common domain, explaining (i.2). Finally, the last part of (ii)

states that as long as verification costs are not too high, improving the filter’s quality refines

the set of equilibria: in other words, lowering verification costs and introducing algorithmic

filters can complement each other in selecting the equilibrium with verification.

Lastly, part (iii) states what happens when we also incorporate supply effects to make π

endogenous. With an expansion in the pass-through correspondence along the verification

and no-verification branches, and a contraction in the supply of fake content, the impact on

π depends on the elasticity of the relevant branch—the condition obtained is standard. But

since σU necessarily increases as a byproduct, equilibrium prevalence must fall (implying

that welfare must increase); this can be easily seen in the verification branch, wherein σU =

G(t/ψ).17 In turn, in an equilibrium along the mixed branch, production necessarily falls

after the supply contraction, while the rest of the variables remain fixed; this is possible

because, as ϕ increases, π(ϕ) adjusts to keep ζ(π(ϕ);ϕ) pegged at π(0) = 1− t/b.

The relationship between user and algorithmic verification is subtle: they can behave

as substitutes, reflected in user verification (weakly) falling as a filter is introduced; but

they can also act as complements, in that a filter expands the region over which human

17Recall that in our baseline model, if there is no verification then σU = G((1 − π)b/π) (see (5)). The
corresponding expression in the presence of a filter then is σU = G((1− ζ)b/ζ), from where ζ must fall.
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verification can arise. An advantage of filters is that they do not create unintended welfare

effects through the mixed equilibria, while lower verification costs have the upside that,

because users’ payoffs are directly affected, any positive effects are more pronounced. Both

policies, however, reinforce each other in selecting the equilibrium with verification if such

costs are not too high, in which case prevalence falls and user welfare increases.

5.3 Certifying Verified News

Part of the identification problem faced by users is that they are uncertain whether a

news item was encountered because someone verified it to be truthful in the past. News

certification—whereby news items that users have verified receive a “stamp” by the plat-

form that certifies their status—likely alleviates this problem. Naturally, news certification

is not a frictionless endeavor, as it requires communication from users to the platform (re-

porting that content was verified to be truthful) and subsequent efforts by the platform itself

(fact-checking sources, reviewing evidence etc.).

To account for these issues, we introduce a variable β ∈ [0, 1] capturing the fraction of

verified news items that get certified. This means that from the original (1−π)σV volume of

truthful items that were shared after a successful verification, a fraction (1− π)βσV will be

known to be truthful by the users who encounter them. Hence, this volume can be removed

from the pool of news of unknown quality, which now has prevalence given by

Ψβ(π, σU , σV ) =
π(1 + σU)

1 + σU + (1− π)(1− β)σV︸ ︷︷ ︸
originally (1−π)σV

, (15)

where the last term in the denominator captures the contribution of uncertified, but verified-

to-be-truthful content. Two observations are in order. First, since all news items are differ-

ent, and items verified to be false are discarded, tagging verified fake content has no impact

on prevalence: otherwise, if multiple replica circulate, there are obvious benefits from tag-

ging fake news. Second, this policy enables us to examine the one term that the algorithmic

filters studied in Section 5.3 did not affect (cf. Ψϕ in (13)).

If β = 0 in (15), no verified items are certified, and we recover the baseline model. As

β grows, users exclude more and more truthful items from the pool of dubious news; the

composition of the latter pool worsens—Ψβ is increasing in β (pointwise in π)—in a form of

“implied fake effect” associated with untagged content. Finally, if β = 1, all verified-truthful

content is certified, so prevalence Ψβ ≡ π, as fake items within young and old vintages come

in equal proportions in all periods.
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As in the previous sections, a pass-through correspondence also emerges here. The old

threshold π continues to remain fixed at 1−t/b for all β ∈ [0, 1], as shutting down verification

(i.e., setting σV = 0) eliminates the contribution of β to Ψβ in (15). On the other hand,

the threshold π̄(β)—at which the verification equilibrium ceases to exist—is decreasing in

β: as certification grows and more truthful content gets separated out, verifying news is less

attractive because the pool’s composition becomes worse. We state these findings, among

others, in the next proposition—observe that the measures of welfare discussed below pertain

to the pool of news of unknown quality (not news items that were certified to be true).

Proposition 8 (Certifying verified content). (i) In the sharing game, as β grows and

there is more certification, over a common domain:

(i.1) Verification equilibrium: σU falls, ψ rises, and welfare falls.

(i.2) Mixed equilibrium: σV rises, while σU , ψ and welfare all remain constant.

(i.3) No-verification equilibrium: σU , ψ and welfare remain all constant.

(ii) Refining effects. The wedge π̄(β)−π is decreasing in β. Also, π̄(β)−π → 0 as β → 1.

In this case, Ψβ ≡ π and the pass-through correspondence is the continuous function

σU =

G(t/π) for π ∈ [0, π)

Σ(π) for π ∈ [π, 1]

with Σ(π) given by (5); this equilibrium is efficient from the users’ perspective.

The logic should be familiar. As fake news prevalence increases when certification β rises,

doing verified sharing is more attractive than its unverified counterpart, and σU falls in the

verification equilibrium of the sharing game (part (i.1)). Meanwhile, the mixed equilibrium

is mostly unchanged because its implied prevalence π is independent of β; but to keep

prevalence pegged at that level, σV must grow. In turn, the no-verification also remains the

same because certification loses all its power in the absence of verification. And as before,

user welfare (associated with uncertified news) and prevalence move in opposite directions.

The refining effects are strong here, as only one threshold can be affected. In the ex-

treme case of complete certification (β = 1), the social-influence channel—news verification

non-trivially affecting the prevalence of fake content among items of unknown quality—

disappears: only one equilibrium emerges, which exhibits verification for moderately low

levels of production (π < π). Further, since certification eliminates all the externalities

associated with dubious news, this equilibrium maximizes user welfare—but unlike with a

perfect filter (ϕ = 1), this efficient outcome features fake content circulating in the platform.
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We conclude this section with two observations. First, since the pass-through correspon-

dence (weakly) contracts when β increases, while the supply is unaffected, such a change

(weakly) lowers π and σU in a stationary equilibrium; from here, prevalence increases and

welfare falls. Second, related to this latter point, the fact that welfare can fall should not be

taken as an argument against this policy, as (i) users only care about sharing content in our

model and (ii) news items that have been certified are already in their last period of exis-

tence. Instead, if there were direct benefits from seeing truthful content, or news items lived

for more periods, certification would bring additional tangible benefits to be considered.18

6 Extensions

6.1 Costly Truthful Content

As argued, our supply side is motivated by malicious suppliers for whom truthful content

is simply not an option; hence their opportunity costs are linked to other alternatives. But

one could also envision less-established news outlets who face a non-trivial trade off between

producing truthful and fake content. In this case, truthful content can be more costly because

it requires efforts devoted to accurate reporting. For simplicity then, suppose that producers

vary in their costs of producing truthful content according to c ∼ F (·) with support in [0, 1],

while producing fake content is costless. Note that the benefit of producing truthful content

is that it diffuses at a rate σU + σV , which creates a non-trivial trade off.

Because σV is an additional variable of consideration for a producer, it turns out that it

is easier to obtain a supply curve in terms of this variable instead of σU . Indeed, a producer

will choose to create truthful content if and only if

σU + σV − c ≥ σU ⇐⇒ σV ≥ c,

so the corresponding supply of trustworthy content is 1− π = F (σV ). Stationary equilibria

are then found by intersecting the decreasing (in the π-axis) inverse supply F−1(1 − π)

with the verification correspondence (9) for σV determined in Proposition 1, whose branches

are weakly increasing—Figure 4 features an example where the multiplicity arises again.19

Equipped with the intersection points, one can determine the extent of unverified sharing

by turning to the pass-through correspondence (8).

18We can always interpret b as an intrinsic benefit from sharing news (i.e., accrued irrespective of the news
vintage), in which case welfare would be positively affected by the news that were certified to be true.

19There is always an equilibrium with π = 1 and σV = 0, despite producers not being completely malicious.
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case, the following fixed point must hold:

σU = G

(
min

{
(1− π)b

π
,
tn(σU)

π

})
.

Indeed, someone engaging in unverified sharing must find it more profitable than both not

sharing at all (i.e., ℓ ≤ (1− π)b/π) and doing verified sharing (i.e., ℓ ≤ tn(σU)/π).
21

The next figure depicts the solutions σU that can arise for each π (the discontinuity

only a result of the grid used). The main difference is that the resulting pass-through cor-

respondence can have increasing portions: higher prevalence can be consistent with larger

unverified sharing rates because users’ expectations of high unverified sharing behavior weak-

ens verification incentives, thereby making those expectations self-fulfilling.

Figure 5: t = 0.1, b = 5, n(σU ) = exp(3.5σU ), and ℓ ∼ U([0, 5]).

6.3 Other Distributions for Losses

Bounded support We have assumed that losses have unbounded support. Suppose in-

stead that losses are distributed over [0, ℓ̄], with t < ℓ̄ < +∞ (otherwise, no one will ever

verify news). In this case, min{ψℓ̄, t} = ψℓ̄ for sufficiently small ψ, hence everyone prefers

to do unverified sharing. This means that a third threshold π˜ < π may emerge such that

the pass-through correspondence takes the value 1 over [0, π˜]; since no one verifies news at

that threshold, it follows that ψ = π˜ there, so π˜ = t/ℓ̄.

Proposition 9 (Pass-through correspondence with bounded losses). Suppose that the

users’ losses ℓ take values in [0, ℓ̄] and ℓ̄ > t. Then, if t < b/(1+b/ℓ̄), σU = 1 for all π ∈ [0, π˜],
while for all π > π˜, it takes values according to the pass-through correspondence (8). Con-

versely, if t ≥ b/(1 + b/ℓ̄), σU = 1 for all π ∈ [0, π], while σU = Σ(π) otherwise.

21The actual inequalities are (1− π)b/n(σU )− πℓ/n(σU ) ≥ 0 and (1− π)b− πℓ/n(σU ) ≥ (1− π)b− t.
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The possibility of π˜ playing an active role depends on verification costs: t can no longer

be arbitrarily close to b to induce verification in an equilibrium of the sharing game. Indeed,

it is easy to see that π˜ < π is equivalent to t < b/(1 + b/ℓ̄)—which is tighter than t < b—so

if this condition is violated, it is not possible to induce verification precisely where it is most

profitable: namely, for low levels of production, or π ≤ π. Since it is not possible to induce

verification for low values of π, it is not possible to induce it beyond π, so the equilibrium

does not exhibit verification—as the last part of the proposition confirms.

Otherwise, verification can be an equilibrium outcome of the sharing game; but as π falls,

it will vanish at π˜, i.e., strictly before reaching π = 0. Further, as ℓ̄ grows, verification is

more likely to arise because the bound on t relaxes and π˜ falls: in the limit as ℓ̄ → ∞, we

recover the original pass-through correspondence (8) when t < b.

Concentrated losses One may also wonder what happens when instead we allow for

concentrated losses rather than benefits. We explore two cases. First, a mirror image of our

baseline model where ℓ is a scalar such that t < ℓ (otherwise nobody would verify), while b is

a random variable distributed over [0,∞) via a cdf G. Second, our baseline model modified

to have both benefits and losses that are concentrated.

Proposition 10 (Pass-through function with concentrated losses). Suppose that G

is continuously differentiable and that supz≥0 zG
′(z) ≤ 1. Then, there are production cutoffs

π˜ := t/ℓ and π̄ ∈ (0, 1) with π˜ < π̄ such that the pass-through and verification rates are

determined by the following functions:

(σU , σV ) =


(
1−G

(
πℓ
1−π

)
, 0
)

for π ∈ [0, π˜)(
α(π), 1−G

(
π˜ℓ
1−π˜
)
− α(π)

)
for π ∈ [π˜, π̄]

(0, ν(π)) for π ∈ [π̄, 1]

(16)

where α(π) uniquely solves Ψ(π, α, 1 − G
(
π˜ℓ/(1− π˜)) − α) = π˜, and ν(π) uniquely solves

t/G−1(1 − ν) = (1 − π)ν/(1 + (1 − π)ν).22 On the other hand, if G is degenerate at b > 0

and t < b/(1 + b/ℓ), σU is a weakly decreasing continuous function as well.

The proposition states that the pass-through correspondence can become a function when

losses are concentrated: while the technical condition on G guarantees this property when

benefits vary smoothly, this always happens when benefits are concentrated.23 The logic is

again linked to the two margins discussed: substitution effects gain strength when losses

become concentrated, while extensive margin effects weaken if benefits vary too smoothly.

22π̄ uniquely solves Ψ(π̄, 0, 1−G(π˜ℓ/(1− π˜))) = π˜.23If t > b/(b/ℓ+ 1), σU is a step function, so uniqueness of equilibria in the sharing game is generic.

31



Interestingly, the pass-through function that arises in the mirror image case features

three equilibria akin to those we studied before, but each appearing in different regions of

the production domain. Indeed, with losses that are fixed, a sufficiently low prevalence makes

unverified sharing more attractive: this is the no-verification outcome in the first segment

[0, π˜), where only high-benefit users do unverified sharing (i.e., those b ≥ πℓ/(1− π)). After

that, only a fraction α(π) ∈ [0, 1−G(π˜ℓ/(1− π̃))] do unverified sharing, while 1−G(π˜ℓ/(1−
π̃))−α(π) verify news (which means that the latter users come from the set b ≥ π˜ℓ/(1− π˜),
as low-benefit users do not share news at all). This pegs prevalence at π˜ as in the equilibrium

with indifference in the baseline model; in turn, this sustains verification with a mass of users

that ranges from zero at π̃ to 1 − G(π˜ℓ/(1 − π˜)) at π̄, the point where the set of potential

“news-checkers” that are available to maintain this peg is fully utilized.

Beyond π̄, unverified sharing is strictly dominated and an equilibrium with higher levels

of verification emerges (third line in (16)), analogous to the upper branch of our original

pass-through correspondence. The last equation for the mass of users who verify news, ν(π),

is another way of writing that high-benefit types b find this profitable (i.e., (1−ψ)b− t > 0)

when nobody does unverified sharing (so ψ = Ψ(π, 0, ν)).

6.4 Heterogeneous Benefits and Losses

A model incorporating both heterogeneous benefits and losses is considerably less tractable

due to σU and σV satisfying integral expressions, which can also present discontinuities if

the distribution of benefits concentrates around specific points as in the main model. To

accommodate bidimensional heterogeneity, Appendix A.12 derives the resulting expressions

for (σU , σV , ψ) when b and ℓ are independent and the distribution of benefits is non-trivial,

exhibiting a single atom of size p ∈ [0, 1). Our main analytical result is next.

Proposition 11. Suppose that p > 0. In the sharing game, there exist production levels

0 < π1 < π2 < 1 such that there exists an equilibrium with constant prevalence over the

interval [π1, π2]. Moreover, π2 − π1 → 0 as p→ 0.

The possibility of clusters around specific levels of benefits guarantees the existence of

an equilibrium analogous to our mixed one, as a large mass of users can be split into verified

sharing and not sharing at all. Whether this equilibrium—which is easier to establish due to

the indifference conditions between the previous two options—ensures the existence two other

equilibria (exhibiting more and less verification) is more complicated, due to the fixed-point

equation becoming considerably more involved.
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But we can explore this question numerically. Concretely, we refer the reader to Figure 6

in Appendix A.12, which plots the two sides of the fixed-point equation on

ψ =
π(1 + σU(ψ))

1 + σU(ψ) + (1− π)σV (ψ)

for the case of exponential distributions for benefits and losses.24 (A fixed point on ψ is easier

given all the constraints present with a two-dimensional domain.) In line with our intuition,

there is a single crossing point if there is no atom, and three crossing points otherwise: be-

cause benefits have an unbounded domain, all these equilibria exhibit non-trivial verification.

In the same section, we derive a sufficient condition (on endogenous variables, and hence

that can always be verified ex-post) such that one can confirm analytically that multiple

equilibria can exist in [π1, π2] from Proposition 11 as long as this interval is non-trivial.

7 Concluding Remarks

A common theme in the response of social media platforms to misinformation has been

empowering users: facilitating people’s ability to determine the veracity of content without

taking away their choice to share. As fake news prevalence is actively affected by users’

choices, our model explains how prevalence-driven feedback loops can emerge: prevalence

shapes fake news diffusion through verification and sharing choices; diffusion in turn affects

producers’ incentives; and production ultimately feeds back into prevalence jointly with

users’ choices. Further, as verification is costly, such feedback loops can lead to social-

influence effects whereby users who verify news make it more attractive for other to join the

“social cause,” which can make high levels of fake news production compatible with high

welfare. More generally, our model provides a broad picture regarding the set of possibilities

for variables such as fake news production, diffusion, and prevalence, which is a first step

towards assessing the consequences of misinformation. It also informs how different policies

used nowadays may affect these variables.

We have examined these questions through a flexible framework that incorporates both

competitive and strategic elements, and that makes it salient why the market for misinfor-

mation is different from other traditional markets. There are two natural extensions that

can be explored. First, users derive utility from sharing news in our model, and the possibil-

ity of sharing when content is fake hurts them. While this is a reasonable first step—users

may still fear sharing fake content despite not having full clarity about its consequences—it

24Benefits take value b̂ with chance p, or are drawn from an exponential distribution with chance 1− p.
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would be natural to augment the model to incorporate a final action, ideally in the context

of a concrete threat to society. Second, it would be interesting to reevaluate the indepen-

dence assumption between benefits and losses by examining how these variables correlate

in practice, and to possibly include more layers of exposure. One could then obtain more

precise predictions regarding the variables studied that can also account for the possibility

of producers directly targeting populations based on specific observable characteristics.

A Proofs

A.1 Proof of Proposition 1: Sharing game equilibria

The next two lemmata respectively characterize Σ(·), the solution to equation (7), and α(·),
the solution to Ψ(π,Σ(π), α) = π, where Ψ is given in (1), π in (3) and Σ in (5).

Lemma A.1. Σ : [0, 1] → [0, 1] is well-defined, continuous, and strictly decreasing with

Σ(0) = 1 and Σ(1) = G(t).

Proof: Step 1: Equation (7) has a unique solution. Fix π ∈ (0, 1). Notice that

function σU 7→ Ψ(π, σU , 1− σU) is strictly increasing, as differentiating (1) yields:

∂Ψ(π, σU , 1− σU)

∂σU
=

2(1− π)π

(1 + σU + (1− π)(1− σU))2
> 0.

Thus, function σU 7→ G(t/Ψ(π, σU , 1−σU)) is strictly decreasing. Moreover, Ψ(π, 1, 0) = π by

(1), and so G(t/π) < 1. Hence, by the Intermediate Value Theorem (IVT), there is a unique

solution on (0, 1) to the equation, G(t/Ψ(π, σU , 1− σU))− σU = 0. This proves that Σ(π) is

well-defined for π ∈ (0, 1). Next, take a sequence πn → 0. Clearly, G(t/Ψ(πn, σU , 1−σU)) →
1, and thus Σ(πn) → 1. So we can extend Σ, defining Σ(0) := limπn→0Σ(πn). Conversely,

if π = 1 then Ψ(π, σU , 1 − σU) ≡ 1 and so Σ(1) = G(t) < 1. We conclude that Σ(π) is

well-defined for all π ∈ [0, 1]. Finally, since G(·) and Ψ(·) are continuously differentiable in

their respective domains, the Implicit Function Theorem ensures the continuity of Σ.

Step 2: Σ(π) is strictly decreasing. Notice that Ψ(·, σU , 1−σU) is strictly increasing:

∂Ψ(π, σU , 1− σU)

∂π
=

2(1 + σU)

(1 + σU + (1− π)(1− σU))2
> 0

Thus, for any π2 > π1, we have G(t/Ψ(π1, σU , 1− σU))− σU > G(t/Ψ(π2, σU , 1− σU))− σU
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for all σU ∈ [0, 1]. Evaluating at σU = Σ(π2) and using the definition of Σ(·):

G

(
t

Ψ(π1,Σ(π2), 1− Σ(π2))

)
− Σ(π2) > G

(
t

Ψ(π1,Σ(π1), 1− Σ(π1))

)
− Σ(π1)

Since the map σU 7→ G(t/Ψ(π1, σU , 1 − σU)) − σU is strictly decreasing (Step 1), we must

have Σ(π1) > Σ(π2). This proves the lemma. □

Lemma A.2. α : [π, π̄] → [0, 1 − Σ(π̄)] is well-defined, continuous, and strictly increasing.

Also, α(π) = 0, α(π̄) = 1− Σ(π̄) and α(π) ∈ (0, 1− Σ(π)) for π ∈ (π, π̄).

Proof: First, since Ψ(π, σU , σV ) is decreasing in σV and, by the definition of π̄ in Proposi-

tion 1—i.e., Ψ(π̄,Σ(π̄), 1−Σ(π̄)) = π—for each π ∈ [π, π̄] there is a unique α ∈ [0, 1−Σ(π̄)]

solving Ψ(π,Σ(π̄), α) = π. Also, for π > π, we have α(π) > 0, as Ψ(π, σU , 0) = π given (1).

Second, we show that α(π) is increasing and continuous. The former holds because

Ψ(π, σU , σV ) is increasing in π but decreasing in σV ; thus, an increase in π must elicit an

increase in α to keep prevalence Ψ fixed at π. The latter follows from the continuity of Ψ(·).
Finally, take π ∈ (π, π̄) and recall that Ψ(π,Σ(π), 1−Σ(π)) < π. Since Σ(π) is decreasing

(Lemma A.1), and Ψ(π, σU , σV ) is increasing in σU , the next inequality holds:

Ψ(π,Σ(π̄), 1− Σ(π)) < Ψ(π,Σ(π), 1− Σ(π)) < π = Ψ(π,Σ(π̄), α(π)).

Hence, Ψ(π,Σ(π̄), 1−Σ(π)) < Ψ(π,Σ(π̄), α(π)), and thus α(π) < 1−Σ(π) since Ψ(π, σU , σV )

is decreasing in σV . □

Proof of Proposition 1: We breakdown the equilibrium analysis in three exhaustive cases:

Ψ(π, σU , σV ) > π̄; Ψ(π, σU , σV ) < π̄; and Ψ(π, σU , σV ) = π̄.

(i) High prevalence: Ψ(π, σU , σV ) > π. If users anticipate high prevalence, then

all strictly prefer not sharing to verified sharing. Thus, in any “high prevalence”

equilibrium, σV = 0, and so Ψ(π, σU , σV ) = π by (1). Hence, a high prevalence

equilibrium emerges, provided π > π, with π defined in (3). The pass-through rate σU

is given by (4) for prevalence Ψ(π, σU , σV ) = π. Solving (4) for ℓ and integrating yields

σU = Σ(π), where Σ(·) is defined in (5). Σ(·) is decreasing and continuous on (0, 1],

and can be continuously extended by defining Σ(0) := 1 = limπ→0Σ(π). Altogether,

when π > π̄, σV = 0, σU = Σ(π) is an equilibrium in the sharing game. We next show

that this is not the only equilibrium that can arise for π > π̄.

(ii) Low Prevalence: Ψ(π, σU , σV ) < π. If users anticipate low prevalence, then verified

sharing is strictly preferred to not sharing. Thus, in any “low prevalence” equilibrium,
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σV = 1 − σU . The pass-through rate σU is now determined by (6) for prevalence

Ψ(π, σU , 1 − σU). Integrating over types ℓ for which (6) holds implies that, in equi-

librium, σU must solve equation (7). Lemma A.1 shows that, for each π ∈ [0, 1],

equation (7) has a unique solution, σU = Σ(π). This solution is strictly monotone.

Thus, the low prevalence equilibrium arises when Ψ(π,Σ(π), 1 − Σ(π)) < π. Since G

is strictly increasing, we have Ψ(π,Σ(π), 1 − Σ(π)) = t/G−1(Σ(π)) by (7). Therefore,

Ψ(π,Σ(π), 1− Σ(π)) < π if and only if

t/G−1(Σ(π)) < π̄ ⇐⇒ Σ(π) > G(t/π) = Σ(π).

Since Σ(π) is continuous and strictly decreasing (Lemma A.1) and Σ(0) = 1 > G(t/π)

and Σ(1) = G(t) < G(t/π), the IVT implies that there exists a unique π̄ ∈ (0, 1) such

that Ψ(π, σU , 1− σU) < π̄ for all π < π̄, where π̄ solves:

ΣU(π̄) = G(t/π) = Σ(π).

Finally, π̄ > π since Σ(π) < 1 (as π > 0), and so Ψ(π,Σ(π), 1− Σ(π)) < π by (1).

Altogether, for π ∈ [0, π̄), σU = Σ(π) and σV = 1 − σU constitute an equilibrium

in the sharing game. It is the only equilibrium for π ∈ [0, π): if there were another

equilibrium (σ̃U , σ̃V ), then σ̃V > 0 as Ψ(π, σ̃U , σ̃V ) ≤ π < π by (1); thus, σ̃V = 1− σ̃U

and the same construction would follow.

(iii) Constant prevalence: Ψ(π, σU , σV ) = π. If users conjecture prevalence to be

equal to π, then all types are indifferent between verified sharing and not sharing.

The pass-through rate then obeys σU = Σ(π) = Σ(π̄). For this to be an equilibrium,

a mass individuals σV ∈ [0, 1 − Σ(π)] must choose to verify news so that prevalence

Ψ(π, σU , σV ) remains equal to π. Notice that this cannot happen in the region (0, π̄),

because Ψ < π̄ always in that region by (1). Likewise, prevalence cannot remain

constant for π ∈ (π̄, 1] as σV cannot exceed 1 − Σ(π̄). Hence, this equilibrium arises

only if π ∈ [π, π̄]. Let α(π) be implicitly defined as Ψ(π,Σ(π̄), α(π)) ≡ π. Lemma A.2

characterizes α(·), showing that it is continuous and strictly increasing. All in all, for

π ∈ [π, π̄], σU = Σ(π) and σV = α(π) is an equilibrium in the sharing game.

We have shown that there is a unique equilibrium when π ∈ [0, π) ∪ (π̄, 1]. We now

argue that our previous case analyses exhaust all equilibria that can arise when π ∈ [π, π̄].

Indeed, suppose that π̃ ∈ [π, π̄] and (σ̃U , σ̃V ) is an equilibrium in the sharing game, given π̃. If

Ψ(π̃, σ̃U , σ̃V ) < π then all users strictly prefer verified sharing to not sharing; hence, σ̃V = 1−
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σ̃U and so we are back to case (ii) where we showed that σ̃U = Σ(π̃). If Ψ(π̃, σ̃U , σ̃V ) > π then

all users strictly prefer not sharing to verified sharing; thus, σ̃V = 0 and Ψ(π̃, σ̃U , σ̃V ) = π̃.

This leads to case (i), where the unique possibility for σ̃U is Σ(π̃). Finally, if Ψ(π̃, σ̃U , σ̃V ) = π,

then the unique possibility for σ̃U is Σ(π), and thus σ̃V must equal α(π̃) by case (iii).

Finally, we show that Σ(π) > Σ(π) for π ∈ [π, π̄). To see this, recall that for π < π̄, we

have Ψ(π,Σ(π), 1− Σ(π)) < π. Thus, using (3) and that Σ is strictly decreasing:

Σ(π) = G

(
t

Ψ(π,Σ(π), 1− Σ(π))

)
> G

(
t

π

)
= G

(
(1− π)b

π

)
= Σ(π) > Σ(π).

This concludes the proof. □

A.2 Proof of Proposition 2: Verification effects

We will show that there exists a unique pair (σ̂U , π̂) ∈ (0, 1)× (0, π) such that σ̂U = Σ(π̂) =

Σ(π̂). To this end, we first characterize all pairs (σU , π) such that

G

(
t

Ψ(π, σU , 1− σU)

)
= G

(
(1− π)b

π

)
.

Since G is strictly increasing, this reduces to Ψ(π, σU , 1 − σU) = πt/((1 − π)b). Using (1),

we solve for σU to get

σU =
b(1− π)− t(2− π)

t− (b+ t)(1− π)
=: K(π)

Note that K(π) is continuous and strictly increasing: K ′(π) = 2t2/(t− (b+ t)(1− π))2 > 0.

Moreover, using (3), K(π) = 1 and so K(π) < 1 for all π < π.

Next, we show that curve σU = K(π) intersects curve σU = Σ(π) uniquely. This is

straightforward becauseK(0) < 1 = Σ(0) andK(π) = 1 > Σ(π). Hence, by the Intermediate

Value Theorem, there exists a unique value π̂ ∈ (0, π) such that Σ(π̂) = K(π̂). Now, let

σ̂U = Σ(π̂). By definition, σ̂U = K(π̂); thus, Ψ(π̂, σ̂U , 1− σ̂U) = π̂t/((1− π̂)b), and so

G

(
t

Ψ(π̂, σ̂U , 1− σ̂U)

)
= G

(
(1− π̂)b

π̂

)
= σ̂U .

Hence, σ̂U = Σ(π̂) = Σ(π̂).

To conclude, take π < π̂ and σU = Σ(π). Then, σU > K(π), which is equivalent to

Ψ(π, σU , 1− σU) > πt/((1− π)b), as z 7→ Ψ(π, z, 1− z) is strictly increasing. Thus,

G

(
t

Ψ(π, σU , 1− σU)

)
< σU = G

(
(1− π)b

π

)
.
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Therefore, Σ(π) < σU = Σ(π) for π < π̂. The case π ∈ (π̂, π) is analogous. □

A.3 Proof of Corollary 1: Stationary equilibria

Any stationary equilibrium gives rise to a triplet (π, σU , σV ), reflecting all players best

responses. That is, π = F (σU) (producers optimize given σU) and, by Proposition 1,

(σU , σV ) ∈ {(Σ(π), 0), (Σ(π), α(π)), (Σ(π), 1 − Σ(π))} (users optimize given π). As for

existence, let π and π̄ as in Proposition 1, such that Σ(π) = Σ(π̄). If inverse supply

F−1(π̄) ≥ Σ(π̄), then existence is ensured by IVT applied to F−1(·) and Σ(·) on [0, π̄].

If F−1(π̄) < Σ(π̄), then F−1(π) < Σ(π), existence follows from IVT applied to F−1(·) and
Σ(·) on [π, 1]. Since π < π̄, we have shown that an equilibrium always exists. □

A.4 Proof of Proposition 3: Equilibrium prevalence

The prevalence ψ characterization follows directly from Proposition 1, as ψ = Ψ(π, σU , σV )

where (σU , σV ) is an equilibrium of the sharing game, given π. Let Σ : [0, π̄] → [0, 1] as

defined in Proposition 1. To see why π 7→ ψ = Ψ(π,Σ(π), 1 − Σ(π)) is strictly increasing,

recall that, by definition, Σ ≡ G(t/ψ). Since G is strictly increasing, ψ = t/G−1(Σ). Thus,

ψ must be strictly increasing in π since Σ strictly decreasing in π (Lemma A.1).

Next, by the proof of Proposition 1-(ii), ψ = Ψ(π,Σ(π), 1− Σ(π)) < π for all π ∈ [0, π̄).

Meanwhile, by the properties of Ψ (equation (1)), Ψ(π,Σ(π), 1 − Σ(π)) ≤ π with strict

inequality for π ∈ (0, π̄). Consequently, ψ ≤ min{π, π} with strict inequality for π ∈ (0, π̄).

Finally, the proof of Proposition 1 shows that π̄ is the unique value of π that solves

ΣU(π̄) = Σ(π). Therefore, for π = π̄, we have G((1 − π)b/π) = G(t/ψ) and thus ψ = π

since, by definition, (1− π)b = t, and G is strictly increasing. □

A.5 Proof of Proposition 4: Welfare comparison

In Lemma A.3, we characterize the welfare per news functions in terms of prevalence only.

This allows us to show in Lemma A.4 a strong ranking of equilibria in terms of welfare

per news. We next show in Lemma A.5 that a similar ranking applies to the amount of

circulating news across equilibria. Finally, we use these results to prove Proposition 4.

Lemma A.3. Welfare per news functions Wver(π),Wmix(π), and W¬ver(π) are given by:

(i) Wver(π) = (1− ψ)b− t+ ψ
∫ t/ψ
0

G(ℓ)dℓ, with ψ = Ψ(π,Σ(π), 1− Σ(π));

(ii) Wmix(π) = π
∫ (1−π)b/π
0

G(ℓ)dℓ;
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(iii) W¬ver(π) = π
∫ (1−π)b/π
0

G(ℓ)dℓ.

Proof-(i): Let ψ = Ψ(π,Σ(π), 1 − Σ(π)). Recall that, in this equilibrium, users with type

ℓ ≤ t/ψ find it optimal to engage in unverified sharing, while the rest verifies before sharing.

Hence, the total user welfare is given by:

Wver(π) =

∫ t/ψ

0

[(1− ψ)b− ψℓ]dG+

∫ ∞

t/ψ

[(1− ψ)b− t]dG

= (1− ψ)b− t− ψ

∫ t/ψ

0

ℓdG+ tG(t/ψ)

Integrating the middle term by parts yields the desired results.

Proof-(ii): In this equilibrium, prevalence is constant and equal to ψ = π. Hence, (1−ψ)b−
t = 0 and so total user welfare reflects the welfare of those who engage in unverified sharing,

namely, types ℓ for which (1− ψ)b− ψℓ ≥ 0. Thus,

Wmix(π) =

∫ (1−ψ)b/ψ

0

[(1− ψ)b− ψℓ]dG = (1− ψ)bG((1− ψ)b/ψ)− ψ

∫ (1−ψ)b/ψ

0

ℓdG.

Integrating by parts the last term, using that ψ = π yields the result.

Proof-(iii): Finally, in the no verification equilibrium, prevalence ψ = π and users’ welfare

coincides with the welfare of those who engage in unverified sharing:

W¬ver(π) =

∫ (1−π)b/π

0

[(1− π)b− πℓ]dG

Integrating by parts yields the desired result. □

Lemma A.4. Wver(π) and W¬ver(π) are strictly decreasing, while Wmix(π) is constant.

Moreover, min
π∈[0,π̄]

Wver(π) = Wmix(π) = max
π∈[π,1]

W¬ver(π).

Proof: First, Wver(π) is strictly decreasing. To see this, observe that 0 < z 7→ (1− z)b− t+

z
∫ t/z
0

G(ℓ)dℓ is strictly decreasing in z, since its derivative −b +
∫ t/z
0

[G(ℓ)− G(t/z)]dℓ < 0,

as G is strictly increasing. Thus, by Lemma A.3-(i), Wver(π) = (1− ψ)b− t+ ψ
∫ t/ψ
0

G(ℓ)dℓ

must be strictly decreasing in π, since ψ = Ψ(π,Σ(π), 1−Σ(π)) is strictly increasing (Propo-

sition 3). Next, by Lemma A.3-(iii), for π < 1:

dW¬ver(π)

dπ
=

∫ ℓ̄

0

G(ℓ)dℓ−G(ℓ̄)
b

π
<

∫ ℓ̄

0

G(ℓ)dℓ−G(ℓ̄)ℓ̄ =

∫ ℓ̄

0

[G(ℓ)−G(ℓ̄)]dℓ < 0,

where ℓ̄ = (1− π)b/π < b/π. Also, Wmix(π) is clearly constant by Lemma A.3-(ii).
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Finally, notice that Wver(π̄) = W¬ver(π), since ψ = π and so t/ψ = t/π = (1 − π)b/π.

Moreover, Wmix(π) = W¬ver(π). By the monotonicity properties of Wver,Wmix, and W¬ver,

it easily follows that minπ∈[0,π̄] Wver(π) = Wmix(π) = maxπ∈[π,1]W¬ver(π). □

Let τver(π), τmix(π), and τ¬ver(π) denote the total news volume in the verification, mixed,

and no-verification equilibria of the sharing game, for fixed π whenever they exist.

Lemma A.5. τ ver(π) and τ¬ver(π) are strictly decreasing, while τmix(π) is strictly increasing.

Moreover, min
π∈[π,π̄]

τ ver(π) = max
π∈[π,π̄]

τmix(π) and min
π∈[π,π̄]

τmix = max
π∈[π,π̄]

τ¬ver(π).

Proof: First, consider the verification equilibrium. Then, τver(π) = 1−π(1−Σ(π)). Since 1−
Σ(·) is strictly increasing (Proposition 1), τ ver(π) must be strictly decreasing in π. Similarly,

τ¬ver(π) = 1+Σ(π) and Σ(·) is strictly decreasing (Proposition 1). In the mixed equilibrium,

τmix(π) = 1 + Σ(π) + (1− π)α(π), where α is the unique solution to Ψ(π,Σ(π), α) = π (see

Proposition 1). Let us show that (1 − π)α(π) is strictly increasing. To this end, use (1) to

solve α(π) in closed form:

α(π) =
(π − π)(1 + Σ(π))

π(1− π)
=⇒ (1− π)α(π) =

(π − π)(1 + Σ(π))

π

Notice that (1− π)α(π) increases linearly in π, implying the same holds for τmix(π).

Next, by the aforementioned monotonicity properties, minπ∈[π,π̄] τ
ver(π) = τver(π̄) = 1 +

Σ(π̄) + (1− π̄)(1− Σ(π̄)). Also, maxπ∈[π,π̄] τ
mix(π) = τmix(π̄) = 1 + Σ(π) + (1− π̄)α(π̄). By

Proposition 1 , Σ(π) = Σ(π̄) and α(π̄) = 1 − Σ(π̄), and thus τmix(π̄) = τver(π̄). Finally,

minπ∈[π,π̄] τ
mix(π) = τmix(π) = 1 + Σ(π), while maxπ∈[π,π̄] τ

¬ver(π) = τ¬ver(π) = 1 + Σ(π). □

Proof of Proposition 4: Suppose multiple stationary equilibria exist, and let π∗
ver, π

∗
mix, and π

∗
¬ver

denote the equilibrium production of fake news in the verification, mixed, and no-verification

stationary equilibria. By Proposition 1, we know that all these levels must belong to [π, π̄].

Moreover, since the supply curve is strictly increasing, and Σ(·) > Σ(·) on [π, π̄], it follows

that π∗
ver ≥ π∗

mix ≥ π∗
¬ver (with at least one strict inequality). Hence, Lemma A.4 implies

that Wver(π∗
ver) ≥ Wmix(π∗

mix) ≥ W¬ver(π∗
¬ver) (with at least one strict inequality). Moreover,

Lemma A.5 implies τver(π∗
ver) ≥ τmix(π∗

mix) ≥ τ¬ver(π∗
¬ver) (with at least one strict inequality).

Thus, Wver(π∗
ver)τ

ver(π∗
ver) ≥ Wmix(π∗

mix)τ
mix(π∗

mix) ≥ W¬ver(π∗
¬ver)τ

¬ver(π∗
¬ver).

Finally, the last claim in the proposition holds, since Lemma A.4 and Lemma A.5 imply

that Wver(π)τver(π) and W¬ver(π)τ¬ver(π) are each strictly decreasing in π. □
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A.6 Proof of Proposition 5: Planner’s solution and efficiency

We begin with some preliminary observations. First, as explained in the main text, it is

straightforward to see that σU = Σ(π) solves problem (12); therefore, W¬ver
P (π) = W¬ver(π).

Next, we also know that, for any π ≤ π̄, the equilibrium sharing σU = Σ(π) is feasible in the

planner’s problem (see Proposition 3). Thus, Wver
P (π) ≥ Wver(π) for all π ≤ π̄. Finally, by

Proposition 4, we obtain Wver
P (π) ≥ Wver(π) ≥ W¬ver(π) = W¬ver

P for all π ∈ [π, π̄]. In the

next lemma, we show that this ranking extends to π ∈ (0, π).

Lemma A.6. Wver(π) >W¬ver(π) for all π ∈ (0, π).

Proof: Fix π ∈ (0, π) and let ψ = Ψ(π,Σ(π), 1− Σ(π)). Then,

W¬ver(π) =

∫ (1−π)b/π

0

[(1− π)b− πℓ]dG+

∫ ∞

(1−π)b/π
0dG

<

∫ (1−π)b/π

0

[(1− π)b− πℓ]dG+

∫ ∞

(1−π)b/π
[(1− π)b− t]dG

<

∫ (1−π)b/π

0

[(1− ψ)b− ψℓ]dG+

∫ ∞

(1−π)b/π
[(1− ψ)b− t]dG

<

∫ t/ψ

0

[(1− ψ)b− ψℓ]dG+

∫ ∞

t/ψ

[(1− ψ)b− t]dG = Wver(π).

The first inequality holds since π < π̄, and thus (1− π)b− t > 0, given (3). The second one

holds because ψ < π by Proposition 3. The third inequality obtains since (1 − ψ)b − ψℓ ≥
(1− ψ)b− t for all ℓ ≤ t/ψ. □

Proof of Proposition 5: First, using the observations above and Lemma A.6, we conclude

that Wver
P (π) ≥ Wver(π) >W¬ver(π) = W¬ver

P for all π ∈ (0, π̄].

Second, we show that W¬ver
P (π) > Wver

P (π) at π = π̄P . To see this, recall that, by

definition of π̄P , equation Ψ(π̄P , σU , 1 − σU) = π is uniquely solved by σU = 0. Thus,

Wver
P (π̄P ) = 0. On the other hand, W¬ver

P (π̄P ) = W¬ver(π̄P ) > 0, since π̄P < 1. Let us define

π̄v := inf{π > 0 : Wver
P (π) = W¬ver

P (π)}. By continuity of Wver
P and W¬ver

P , this cutoff exists

by the Intermediate Value Theorem. Thus, Wver
P (π) ≥ W¬ver

P (π) for all π ≤ π̄v.

Third, we’ll show that 1−σver
U,P (π) > 1−Σ(π) in [0, π̄]. This trivially holds if σver

U,P (π) = 0.

If σver
U,P (π) > 0 then it must satisfy the first order condition:

t−Ψ(π, σver
U,P , 1− σver

U,P )G
−1(σver

U,P ) ≥
∂Ψ

∂σU

∣∣∣
σU=σ

ver
U,P

×

(
b+

∫ G−1(σver
U,P )

0

ℓdG

)
,
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with equality if Ψ(π, σver
U,P , 1−σver

U,P ) < π. Since Ψ(π, σU , 1−σU) is strictly increasing in σU , we

must have t−Ψ(π, σver
U,P , 1−σver

U,P )G
−1(σver

U,P ) > 0. Also, since Σ(π) solves (7) (Proposition 1),

we have t = Ψ(π,Σ, 1− Σ)G−1(Σ). Thus,

Ψ(π, σver
U,P , 1− σver

U,P )G
−1(σver

U,P ) < Ψ(π,Σ, 1− Σ)G−1(Σ).

But then σver
U,P < Σ, since the mapping σU 7→ Ψ(π, σU , 1− σU)G

−1(σU) is strictly increasing.

Altogether, 1− σver
U,P (π) > 1− Σ(π).

Finally, 1 − σver
U,P (π) > 0 in [π̄, π̄v]. Otherwise, Wver

P (π) < W¬ver
P (π), which contradicts

the definition of π̄v. Part (ii) of the proposition is proved in the main text. □

A.7 Proof of Proposition 6: Lowering verification costs

Proof-(i.1): Consider the verification equilibrium. Given Proposition 1, σU = Σ(π; t) is the

unique solution to σU = G(t/Ψ(π, σU , 1 − σU)). Since G(·) is strictly increasing, we have

G(t/Ψ(π, σU , 1− σU))− σU > G(t′/Ψ(π, σU , 1− σU))− σU for all σU ∈ [0, 1]. Evaluating at

σU = Σ(π; t′) and using the definition of Σ(π; t):

G

(
t

Ψ(π,Σ(π; t′), 1− Σ(π; t′))

)
− Σ(π; t′) > G

(
t

Ψ(π,Σ(π; t), 1− Σ(π; t))

)
− Σ(π; t).

As shown in the proof of Proposition 1 (Step 1), the mapping σU 7→ G(t/Ψ(π1, σU , 1 −
σU))−σU is strictly decreasing; thus, Σ(π; t′) < Σ(π; t). This proves that, in the verification

equilibrium, the unverified sharing rate σU falls if verification cost t falls.

The effect on prevalence is direct as σU 7→ Ψ(π, σU , 1 − σU) is strictly increasing, and

ψ(t) = Ψ(π,Σ(π; t), 1 − Σ(π; t)). Since Σ(π; t) falls in t, prevalence ψ must also fall in t.

Finally, by Lemma A.3-(i), welfare can be written as Wver(z; t) = (1− z)b− t+ z
∫ t/z
0

G(ℓ)dℓ

for z > 0. Since Wver(z; t) is decreasing in z (Proposition 4) and is also clearly decreasing

in t, it follows that Wver(ψ(t); t) must be decreasing in t. □

Proof-(i.2): In the mixed equilibrium, ψ = π(t) = 1−t/b (Proposition 3). Hence, equilibrium

prevalence ψ rises as verification cost t falls. The effect on σU is direct since σU = Σ(π(t)),

and Σ(·) is decreasing (Proposition 1). As for σV , note that since σU falls and π rises, σV

must fall to keep Ψ(π, σU , σV ) = π, given (1). Finally, by Lemma A.3, welfare is given by

Wmix(π) = W¬ver(π). Since W¬ver(π) is decreasing in π (Proposition 4), W¬ver(π(t)) must

rise in t. Hence, welfare in the mixed equilibrium must also fall as t falls. □

Proof-(i.3): This is direct as σU = Σ(π), where Σ(·) is given by (5) and is independent of

t. Also, by Proposition 3, in a no-verification equilibrium, ψ = π. Since prevalence ψ is
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unaffected by t in this equilibrium, so is welfare W¬ver(π) = π
∫ (1−π)b/π
0

G(ℓ)dℓ (Lemma A.3-

(iii)). This concludes part-(i) of the lemma. □

Proof-(ii.1): Let us define ∆ : [0, 1]2 → [0, 1] as

∆(π, σU) :=
π(1− π)(1− σU)

1 + π + σU(1− π)
,

and let γ(t) := π̄(t) − π(t), where π, π̄ are characterized in Proposition 1. We’ll show that

there exists t∗ ∈ (0, b) such that for all t ≥ t∗, we have ∂γ/∂t < 0. First, recall that π̄

is the unique solution to Ψ(π̄,Σ(π̄), 1 − Σ(π̄)) = π (Proposition 1). Using (1) and that

Σ(π̄) = Σ(π), we obtain

π̄ =
2π

1 + π + (1− π)Σ(π)
. (17)

Next, using (3), (5), and (17), we can express γ as γ(t) = ∆(π(t),Σ(π(t))), where Σ(π(t)) =

G(t/π(t)). Thus,
∂γ

∂t
=
∂∆

∂π
× ∂π

∂t
+
∂∆

∂σU
× ∂Σ

∂t
.

Notice that ∂π/∂t < 0, as π = 1 − t/b. Similarly, ∂Σ(π)/∂t > 0, since Σ(·) is strictly

decreasing. Also, ∆(π, σU) is clearly decreasing in σU for each π. The effect of π on ∆ is

non-monotone: ∆(π, σU) is strictly concave in π for each σU , since:

∂∆

∂π
=

(1− σU)(1 + σU(1− π)2 − π2 − 2π)

(1 + π + σU(1− π))2
and

∂2∆

∂π2
=

−4(1− σ2
U)

(1 + π + σU(1− π))3
< 0

Moreover, ∂∆/∂π = 0 if and only if (σU , π) solves the first-order condition:

σU =
π(2 + π)− 1

(1− π)2
.

Define π∗(t) ∈ (0, 1) as the value of π that uniquely solves:

G(t/π)︸ ︷︷ ︸
LHS

=
π(2 + π)− 1

(1− π)2︸ ︷︷ ︸
RHS

Notice that π∗(t) is well-defined by the Intermediate Value Theorem: LHS is strictly de-

creasing in π, while RHS is strictly increasing in it.25 Moreover, π∗(t) is increasing in t,

since t raises LHS but leaves RHS unaffected. Now, define t∗ as the unique solution to

π(t) = π∗(t). Again, this expression is well-defined by IVT since π(t) is strictly decreasing

25Moreover, for RHS < LHS for π = 0 and RHS > LHS for π close enough to 1.
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in t, while π∗(t) is increasing in it. Further, π(0) = 1 > π∗(0) and π(b) = 0 < π∗(b).

Finally, take t ≥ t∗. Then, π(t) ≤ π∗(t) and thus

Σ(π(t)) = G(t/π(t)) ≥ π(t)(2 + π(t))− 1

(1− π(t))2

This implies that ∂∆(π(t),Σ(π(t)))/∂π ≥ 0. Consequently,

∂γ

∂t
=

∂∆

∂π̄︸︷︷︸
≥0

× ∂π̄

∂t︸︷︷︸
<0

+
∂∆

∂σ̄U︸︷︷︸
<0

× ∂σ̄U
∂t︸︷︷︸
>0

< 0

This completes the proof. □

Proof-(ii.2): Fix t < b. First, note that ∆(π, σU) is continuously differentiable, as its

partial derivatives ∂∆/∂π and ∂∆/∂σU both exist for all (π, σU) ∈ [0, 1]2 and are continuous.

Next, consider π̄(t) = 1 − t/b and Σ((t)) = G(t/π̄(t)), and observe that both functions are

continuously differentiable in t. Thus, the composition t 7→ γ(t) ≡ ∆(π(t),ΣU((t))) is

continuously differentiable. Let us compute γ′(t) and evaluate the resulting expression at

t = 0, leveraging that π(0) = 1 and Σ(1) = 0:

γ′(0) =
∂∆(1, 0)

∂π
× π̄′(0) +

∂∆(1, 0)

∂σU
× Σ′(1) =

1

2b
> 0

Since γ′ is continuous, there exists t > 0 such that γ′(t) > 0 for all t ≤ t. □

A.8 Proof of Proposition 7: Algorithmic filters

Prevalence computation: To find the misinformation prevalence Ψϕ(π, σU , σV ), consider pro-

duction π and sharing rates (σU , σV ). Notice that the mass of newly produced news items

that pass the filter is 1− ϕπ ≤ 1. This mass of news is allocated to a unit mass of users at

random. This means that a fraction σU of these news items is shared without verification,

while a fraction σV is first verified and then shared if truthful. By Bayes’ rule, the chance

of the latter event is:
1− π

1− ϕπ
.

Thus, the total number of shared news is

(1− ϕπ)× σU + (1− ϕπ)× 1− π

1− ϕπ
× σV = (1− ϕπ)σU + (1− π)σV ,
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while total number of fake news is:

(1− ϕ)π + (1− ϕπ)× (1− ϕ)π

1− ϕπ
× σU = (1− ϕ)π(1 + σU).

Thus, the misinformation prevalence Ψϕ(π, σU , σV ) (ratio of fake news to total) is (13).

Proof-(i.1): Consider the verification equilibrium and π ∈ (0, 1). First, given (14) and

Proposition 1, σU = Σ(ζ(π;ϕ)). Since ζ(π; ·) is strictly decreasing, an increase in ϕ raises

σU , as Σ(·) is strictly decreasing. Next, equilibrium prevalence ψ(ϕ) must decrease in ϕ,

since by (7): ψ(ϕ) = t/G−1(Σ(ζ(π;ϕ))) and Σ(ζ(π;ϕ)) rises in ϕ. Finally, welfare increases

in ϕ because prevalence ψ falls in ϕ and Wver falls in ψ (Proposition 4). □

Proof-(i.2): To sustain the mixed equilibrium, prevalence ψ = 1−t/b (Proposition 3) so that

users are indifferent between verified sharing and not sharing. Hence, equilibrium prevalence

ψ is constant in ϕ, and so are σU and welfare Wmix. As for σV , observe that since σU is

unaffected by ϕ, σV must fall in ϕ to keep Ψ(ζ(π;ϕ), σU , σV ) = 1− t/b. □

Proof-(i.3): Consider the no-verification equilibrium and π ∈ (0, 1). By (14), prevalence ψ

must equal to ζ(π;ϕ); thus, σU = Σ(ζ(π;ϕ)). As in the proof of (i.1), σU rises in ϕ because

ζ falls in ϕ and Σ is decreasing. Prevalence ψ = ζ(π;ϕ) clearly falls, and thus welfare rises

as W¬ver is decreasing in prevalence (Proposition 4). □

Proof-(ii): Let ϕ < 1. Recall that π̄(ϕ) ∈ (0, 1) is determined by ζ(π̄(ϕ);ϕ) = π̄(0), where

ζ(π;ϕ) is given by (13) and π̄(0) ∈ (0, 1) is the π value that solves Σ(π) = Σ(1− t/b). Hence,

∂π̄(ϕ)

∂ϕ
= −ζϕ(π̄(ϕ);ϕ)

ζπ(π̄(ϕ);ϕ)
=

(1− π̄(ϕ))π̄(ϕ)

1− ϕ
> 0,

where ζϕ ≡ ∂ζ/∂ϕ and ζπ ≡ ∂ζ/∂π. Similarly, π(ϕ) ∈ (0, 1) is given by ζ(π(ϕ);ϕ) = π(0),

where π(0) = 1− t/b ∈ (0, 1). Thus,

∂π(ϕ)

∂ϕ
= −ζϕ(π(ϕ);ϕ)

ζπ(π(ϕ);ϕ)
=

(1− π(ϕ))π(ϕ)

1− ϕ
> 0.

Now, suppose that t < b/2. Since π(ϕ) and π̄(ϕ) are strictly increasing, with π̄(ϕ) > π(ϕ),

it follows that π̄(ϕ) > π(ϕ) > π(0) ≥ 1/2 for all ϕ ∈ (0, 1). Thus, wedge π̄(ϕ) − π(ϕ) must

be strictly decreasing, since:

∂π̂(ϕ)

∂ϕ
− ∂π̄(ϕ)

∂ϕ
=

(1− π̄(ϕ))π̄(ϕ)− (1− π(ϕ))π(ϕ)

1− ϕ
< 0,

where the inequality holds because the mapping z 7→ (1− z)z is decreasing for z ≥ 1/2. □
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Proof-(iii): As shown in (i.1) and (i.3), an increase in ϕ shifts up the respective curves

σU = Σ(ζ(π;ϕ)) and σU = Σ(ζ(π;ϕ)), while the curve π = F ((1 − ϕ)σU) shifts left. Thus,

the new stationary equilibrium in the respective verification and no verification branches

unambiguously exhibits a higher pass-through rate. The effect on prevalence is immediate

because prevalence and pass-through are negatively related. In the verification branch,

σU = G(t/ψ), while in the no verification one, σU = G((1 − ψ)b/ψ). Hence, welfare Wver

and W¬ver must increase, as these functions are decreasing in prevalence.

The effect on equilibrium production π is, in general, ambiguous. If the pass-through

curve shifts more than supply does, then an increase in ϕ leads to an increase in production

of fake content. Otherwise, equilibrium production falls. Ultimately, this depends on the

elasticities of the pass-through curves σU = Σ(ζ(π;ϕ)) and σU = Σ(ζ(π;ϕ)). To fix ideas,

consider the no-verification branch (the analysis for the verification branch is analogous). In

a stationary equilibrium, (π, σU) must solve:

σU = Σ(ζ(π;ϕ)) and π = F ((1− ϕ)σU).

Since F is strictly increasing, this system can be rewritten as:

(1− ϕ)Σ(ζ(π;ϕ)) = F−1(π).

Let π′ := dπ/dϕ. Implicitly differentiating the above equality with respect to ϕ, we get:

π′ =
−Σ + (1− ϕ)Σ′∂ζ/∂ϕ

[F−1]′ − (1− ϕ)Σ′∂ζ/∂π

Since [F−1]′ > 0 > Σ′ and ∂ζ/∂π > 0, the sign of π′ is fully determined by the sign of the

numerator. Therefore, using (14), easy algebra shows that π′ > 0 if and only

∣∣∣ζΣ′(ζ)

Σ(ζ)

∣∣∣× (1− ζ) > 1.

Finally, in the mixed equilibrium, the pass-through curve is inelastic at σU = Σ(1 − t/b).

Thus, the production of fake content π = F [(1 − ϕ)Σ(1 − t/b)] falls as ϕ rises. However,

prevalence must remain constant at 1− t/b to sustain the equilibrium, leaving welfare Wmix

unaffected. This concludes the proof. □
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A.9 Proof of Proposition 8: Certifying verified content

Proof-(i.1): First, notice that Ψβ(π, σU , σV ) ≡ Ψ(π, σU , (1 − β)σV ). Thus, an increase in β

increases Ψβ (ceteris paribus), given (1). Hence, σU = Σ(π; β) must decrease in β because σU

solves σU = G(t/Ψ(π, σU , (1− β)(1− σU))) and (σU , β) 7→ G(t/Ψ(π, σU , (1− β)(1− σU))) is

decreasing in σU and decreasing in β. Next, prevalence ψ must increase since ψ = t/G−1(σU)

and σU decreases with β. Finally, welfare must decrease as Wver is decreasing in ψ. □

Proof-(i.2): By the same reasons given in the proof of Proposition 7-(i.2), equilibrium preva-

lence ψ, pass-through σU , and welfare are all unaffected by β. That said, σV must rise in β

to keep prevalence Ψ(π, σU , (1− β)σV ) = 1− t/b. □

Proof-(i.3): This is straightforward because in the no-verification equilibrium, σV = 0 and

thus prevalence Ψβ ≡ π for all β ∈ [0, 1]. Since prevalence is unaffected by β, it follows that

σU and welfare are unaffected by it. □

Proof-(ii): First, the no-verification equilibrium emerges when prevalence Ψβ = π ≥ 1 −
t/b; hence π = 1 − t/b. Second, the verification-equilibrium can be sustained, provided

Ψβ(π, σU , 1 − σU) ≤ π with σU = Σ(π; β). As in the proof of Proposition 1, this condition

reduces to Σ(π; β) ≥ Σ(π). Since Σ(π; β) is decreasing in π, this condition is satisfied when

π ≤ π̄(β), where π̄(β) is the π value that solves Σ(π; β) = Σ(π). Since Σ(π; β) decreases

in β, cutoff π̄(β) must also decrease in β to keep Σ(π̄(β); β) constant. As a result, wedge

π̄(β)− π is decreasing in β.

Now, as β → 1, Ψβ → π and thus by continuity of G and Ψ, Σ(π; β) → G(t/π). Let

π̄1 = limβ→1 π̄(β). We’ll show that π̄1 = π. To see this, notice that by continuity of Σ, we

have Σ(π̄1; 0) = Σ(π). But, Σ(π̄1; 0) = G(t/π̄1) and Σ(π) = G((1 − π)b/π). Moreover, by

definition of π, (1− π)b = t, and thus π̄1 = π, as G is strictly increasing.

Finally, for β = 1, it is easy to see that for π ≤ π, Wver
P in (11) obeys Wver

P (π) =

(1− π)b− t(1−G(t/π))− π
∫ t/π
0

ℓdG = Wver(π). On the other hand, W¬ver
P in (12) is given

by W¬ver
P (π) = (1− π)bG((1− π)b/π)− π

∫ (1−π)b/π
0

ℓdG = W¬ver(π). Thus, by Lemma A.6,

Wver
P (π) >W¬ver

P (π) for π ∈ (0, π). Hence, the equilibrium solves the planner’s problem. □

A.10 Proof of Proposition 9: Pass-through correspondence with

bounded losses

Case 1: Let t < b/(1 + b/ℓ̄) so that π˜ < π. We identify four cases to analyze.

(i) Let π ∈ [0, π˜]. Then, by (1), it follows that Ψ(π, σU , σV ) ≤ π˜ < π. Thus, all types prefer

verified sharing to not sharing; hence σU + σV = 1. Likewise, since Ψ(π, σU , σV ) ≤ π˜,
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all types ℓ < ℓ̄ strictly prefer unverified sharing to verified sharing. Since G is atomless,

we have σV = 0. Consequently, Ψ(π, σU , σV ) = π and σU = 1.

(ii) Let π ∈ (π˜, π). By (1), we have Ψ(π, σU , σV ) < π, and so again all types prefer verified

sharing to not sharing: σV = 1−σU . If Ψ(π, σU , σV ) ≤ π˜, then σV = 0 and σU = 1, but

then Ψ(π, σU , σV ) = Ψ(π, 1, 0) = π > π˜, a contradiction. Thus, Ψ(π, σU , σV ) ∈ (π˜, π)
and so σU solving fixed-point equation (7), i.e., σU = Σ(π) ∈ (0, 1). For this to be an

equilibrium, we must verify that Ψ > π˜. Notice that ΣU(π) < G(t/π˜) = 1, implying

that prevalence Ψ(π,Σ(π), 1−Σ(π)) = t/G−1(Σ(π)) > π˜. Moreover, Ψ(π,Σ, 1−Σ) = π˜
if and only if Σ(π) = 1, which happens only at π = π˜, by (1).

(iii) Let π = π. Then, in any equilibrium, Ψ(π, σU , σV ) > π˜ (same logic as in case (ii)).

Next, we have two possible cases to consider. If Ψ(π, σU , σV ) = π, then σV = 0 by (1).

Hence, σU = Σ(π), where Σ is given in (5). Conversely, if Ψ(π, σU , σV ) < π, then all

types prefer verified sharing to not sharing. Hence, σU = Σ(π) solves (7).

(iv) Finally, let π > π. Again, in any equilibrium, Ψ(π, σU , σV ) > π˜ (same logic as in

case (ii)). As in case (iii), we have two possible subcases: Ψ(π, σU , σV ) = π and

Ψ(π, σU , σV ) < π. The analysis of these subcases is identical to the case in which the

support of ℓ is unbounded. There is multiplicity of equilibria for π ∈ (π, π̄] where

Σ(π̄) = Σ(π). For π > π̄, there is a unique equilibrium: σU = Σ(π) and σV = 0.

Case 2: Let t ≥ b/(1+ b/ℓ̄). In this case, π˜ ≥ π. We identify three relevant cases to analyze.

(i) Let π ∈ [0, π). Then, by (1), Ψ(π, σU , σV ) ≤ π < π, and so all types prefer verified

sharing to not sharing. Also, since π ≤ π˜, Ψ(π, σU , σV ) ≤ π < π˜; thus, all types prefer
unverified sharing to verified sharing. Altogether, σU = 1, σV = 0, and Ψ = π.

(ii) Let π ∈ [π, π˜). Then, by (1), Ψ(π, σU , σV ) ≤ π < π˜, implying that all types prefer

unverified sharing to verified sharing. Hence, Ψ(π, σU , σV ) = π ≥ π, implying that all

types prefer not sharing to verified sharing. Thus, the relevant trade off is between

unverified sharing and not sharing, resulting in σU = Σ(π) with Σ given by (5).

(iii) Let π ≥ π˜. We analyze two possibilities. 1) If σV = 0 then Ψ(π, σU , σV ) = π > π˜ ≥ π,

and so all types prefer not sharing to verified sharing, leading to σV = 0. In this

equilibrium, σU = Σ(π). 2) If σV > 0 then Ψ(π, σU , σV ) < π. If Ψ(π, σU , σV ) ≤ π˜,
then almost all types prefer unverified sharing to verified sharing, hence σV = 0 which

contradicts σV > 0. Conversely, if Ψ(π, σU , σV ) > π˜ ≥ π̄, then all types prefer not

sharing to verified sharing, hence σV = 0, which again contradicts σV > 0. Altogether,

when π ≥ π˜, there is a unique equilibrium: σV = 0 and σU = Σ(π).
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This concludes the proof. □

A.11 Proof of Proposition 10: Pass-through function with con-

centrated losses

Case 1: G is continuously differentiable with supz≥0 zg(z) ≤ 1.

(i) High prevalence: Ψ > t/ℓ. In this case, no user finds it optimal to engage in

unverified sharing, since (1−Ψ)b−Ψℓ < (1−Ψ)b−t. Thus, σU = 0 and so prevalence (1)

turns to:

Ψ(π, σU , σV ) =
π

1 + (1− π)σV
.

The user population splits between those who verify and those who choose not to

share. Given prevalence ψ < 1, the mass of users engaged in verified sharing equals

σV = ΣV (ψ), where

ΣV (ψ) := 1−G

(
t

1− ψ

)
.

Let us define ΣV (1) := limψ→1ΣV (ψ) = 1 so that ΣV is well-defined on [0, 1].

A high prevalence equilibrium can be sustained iff Ψ(π, 0,ΣV (ψ)) = ψ > t/ℓ, or:

ψ =
π

1 + (1− π)ΣV (ψ)
and ψ > t/ℓ

Notice that ΣV : [0, 1] → [0, 1) is continuous and strictly decreasing. Thus, the right

hand side of the fixed-point equation above Q(ψ, π) := Ψ(π, 0,ΣV (ψ)) is continuous on

[0, 1]2 and strictly increasing in ψ and in π. Moreover, Q(ψ, π) ≤ π and Q(0, π) ≥ 0.

Thus, by the Intermediate Value Theorem, there exists ψ∗ ∈ [0, 1] such that Q(ψ∗, π) =

ψ∗. Next, we show that this fixed point is unique. To avoid trivialities, let π ∈
(0, 1) so that ψ∗ ∈ (0, 1). We’ll show that if ψ∗ solves the fixed-point equation, then

∂Q(ψ∗, π)/∂ψ < 1. Using the expression for ΣV and that ψ∗ is a fixed-point:

∂Q(ψ∗, π)

∂ψ
=

(
ψ∗

1− ψ∗

)2

× 1− π

π
t× g

(
t

1− ψ∗

)
Since ψ∗ < π as ΣV (ψ

∗) > 0, it follows that,

∂Q(ψ∗, π)

∂ψ
<

(
ψ∗

1− ψ∗

)
tg

(
t

1− ψ∗

)
<

(
t

1− ψ∗

)
g

(
t

1− ψ∗

)
≤ sup

z≥0
zg(z) ≤ 1

Thus, ∂Q(ψ∗, π)/∂ψ < 1, as desired.
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Finally, we show that ψ∗ > t/ℓ provided π is high enough. To see this, note that

Q : (0, 1)2 → (0, 1) is continuously differentiable, and ∂Q(ψ∗, π)/∂ψ < 1 for (ψ∗, π)

satisfying Q(ψ∗, π) = ψ∗. Thus, by the Implicit Function Theorem, we can express ψ∗

as continuous function of π ∈ (0, 1) 7→ ψ∗ ∈ (0, 1) (slightly abusing notation). That

said, since ∂Q(ψ∗, π)/∂ψ < 1, fixed-point ψ∗(π) must strictly increase in π. Moreover,

limπ→1 ψ
∗(π) = 1 > t/ℓ and limπ→0 ψ

∗(π) = 0. Hence, by the Intermediate Value

Theorem, there exists a unique value π̄ ∈ (0, 1) such that ψ∗(π̄) = t/ℓ. In other words,

π̄ satisfies Ψ(π̄, 0,ΣV (t/ℓ)) = t/ℓ. Thus, ψ∗ > t/ℓ if and only if π > π̄. To conclude,

notice that π̄ > t/ℓ, since Ψ(π̄, 0,ΣV (t/ℓ)) < π̄ as ΣV (t/ℓ) > 0.

We have found that for π ∈ (π̄, 1), there exists a unique pair (σV , ψ) ∈ (0, 1)2 that

solves ψ = Ψ(π, 0, σV ) > t/ℓ and σV = ΣV (ψ). Letting ψ = Σ−1
V (σV ), we must have

that σV is the unique value ν that solves Σ−1
V (σV ) = Ψ(π, 0, σV ), namely:

1− t

G−1(1− ν)
=

π

1 + (1− π)ν
.

Moreover, by continuity of G, ν → 0 as π → 1.

(ii) Low prevalence: Ψ < t/ℓ. In this case, nobody engages in verified sharing, as

(1 − Ψ)b − Ψℓ > (1 − Ψ)b − t. Thus, σV = 0 and so prevalence Ψ(π, σU , σV ) = π.

The population splits between those who engage in unverified sharing and those who

choose not to share. Thus, σU = Σ̃U(π), where:

Σ̃U(π) = 1−G

(
πℓ

1− π

)
Notice that Σ̃U : [0, 1) → (0, 1] is continuous and decreasing in π. Also, this equilibrium

can be sustained if π < t/ℓ =: π˜.
(iii) Constant prevalence: Ψ = t/ℓ. In this case, users are indifferent between verified

sharing and unverified sharing. Since prevalence is constant, the mass of users who

find it optimal to share equals σ̃U := Σ̃U(t/ℓ). Suppose αU of those users break the

indifference in favor of unverified (and thus σ̄U − αU breaks it in favor of verified

sharing). Then, an equilibrium with constant prevalence can be sustained as long as

Ψ(π, αU , σ̃U − αU) = t/ℓ, or:

(1 + αU)π

1 + αU + (1− π)(σ̃U − αU)
= t/ℓ,
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where 0 ≤ αU ≤ σ̃U .

Since Ψ(π, αU , σ̃U − αU) is continuous strictly increasing in αU , and αU = ΣU(t/ℓ)

when π = t/ℓ; and αU = 0 when π = π̄, it follows by IVT that for each π ∈ (t/ℓ, π̄)

there exists a unique αU that solves Ψ(π, αU , σ̃U − αU) = t/ℓ. □

Case 2: G is degenerate at b > 0. In this case, notice that a user prefers unverified sharing

to not sharing if (1 − Ψ)b − Ψℓ ≥ 0, or Ψ ≤ b/(b + ℓ) ∈ (0, 1). That said, we examine two

cases, depending on verification cost t.

1. Low verification cost: t/ℓ < b/(b+ ℓ). Here, the parameters satisfy:

t/ℓ < b/(b+ ℓ) < 1− t/b.

We identify five types of equilibria:

(i) No sharing equilibrium: Ψ > 1 − t/b. Here, both verified and unverified

sharing are strictly dominated by not sharing at all; hence, σU = σV = 0 and

Ψ(π, σU , σV ) = π. This equilibrium can be sustained, provided π > 1− t/b.

(ii) No verification equilibrium: Ψ < t/ℓ. Verified sharing is dominated by

unverified sharing; thus, σV = 0 and Ψ ≡ π by (1). Also, Ψ < t/ℓ < b/(b+ ℓ) and

so unverified sharing strictly dominates not sharing σU = 1. This equilibrium can

be sustained if π < t/ℓ.

(iii) Full verification equilibrium: Ψ ∈ (t/ℓ, 1 − t/b). Here, verified sharing

strictly dominates both unverified sharing and not sharing. Thus, σU = 0 and

σV = 1. Hence, Ψ(π, σU , σV ) ≡ π/(2 − π) by (1). Let π := 2t/(t + ℓ) and

π̄ := 2(b−t)/(2b−t) so that Ψ(π, 0, 1) = t/ℓ and Ψ(π̄, 0, 1) = 1−t/b. As Ψ(·, 0, 1)
is strictly increasing, this equilibrium can be sustained provided π ∈ (π, π̄).

(iv) Mixed equilibrium with full sharing: Ψ = t/ℓ. Any type of sharing strictly

dominates not sharing; thus, σU + σV = 1. Also, all users are indifferent between

verified and unverified sharing. This equilibrium can be sustained provided π ∈
[t/ℓ, π] and Ψ(π, σU , 1− σU) = t/ℓ, where π is defined in case (iii).

(v) Mixed equilibrium with verified sharing only: Ψ = 1 − t/b. Here,

unverified sharing is strictly dominated, σU = 0, while all users are indifferent

between verified sharing and not sharing. Thus, by (1), prevalence Ψ(π, σU , σV ) ≡
π/(1 + (1 − π)σV ), with σV ∈ [0, 1]. This equilibrium can be sustained provided

π ∈ [1− t/b, π̄] and Ψ(π, 0, σV ) = 1− t/b, where π̄ is defined in case (iii). □
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2. High verification cost: t/ℓ ≥ b/(b + ℓ). Suppose the inequality is strict. Then,

the parameters satisfy:

1− t/b < b/(b+ ℓ) < t/ℓ.

Thus, an equilibrium with verification cannot arise because it would require Ψ ≤ 1−t/b
(i.e., verified sharing is preferred to not sharing) and Ψ ≥ t/ℓ (i.e., verified sharing is

preferred to unverified sharing), which cannot happen given the ranking above. Thus,

in any equilibrium, σV = 0 and thus Ψ(π, σU , σV ) ≡ π, given (1). Thus, σU = 1 for

π < b/(b+ ℓ); σU ∈ [0, 1] for π = b/(b+ ℓ); and σU = 0 otherwise.

Finally, if t/ℓ = b/(b+ℓ) then 1−t/b = b/(b+ℓ). Hence, an equilibrium with verification

needs Ψ = t/ℓ which, by our previous logic, can be sustained for π ∈ [t/ℓ, π] where

Ψ(π, 0, 1) = t/ℓ. Otherwise, σV = 0, and σU = 1 if π < t/ℓ, and σU = 0 if π > t/ℓ. □

A.12 Heterogeneous Benefits and Losses

Outline. To find equilibria in the sharing game, it is convenient to work on the “prevalence

space,” treating prevalence ψ as the main equilibrium variable. That is, we characterize

optimal sharing behavior, given ψ, and then we require that, in equilibrium, prevalence ψ

is consistent with production π and sharing rates σU , σV . To this end, we first introduce

the heterogeneity in benefits and losses, allowing for a mass point in the benefit distribu-

tion. Second, we derive the optimal sharing rates (unverified and verified, respectively) given

prevalence ψ ∈ (0, 1). Third, we introduce the fixed-point equation that prevalence must

solve. We then show in Proposition A.1 that an equilibrium with constant prevalence can

be sustained, provided the benefit distribution has a non-trivial mass point. Next, in Propo-

sition A.2, we provide conditions under which multiplicity of equilibria can emerge in this

general setting. Finally, we illustrate our findings using exponential distributions.

Suppose that with probability p ∈ (0, 1), benefit b = b̂ > t; and with probability (1− p),

benefit b is drawn from an atomless, and continuously differentiable cdf H supported on

[0,∞). Also, suppose loss ℓ is drawn from an atomless, and continuously differentiable cdf

G supported on [0,∞). Finally, assume that b and ℓ are independent.

Given prevalence ψ ∈ (0, 1), user with type (b, ℓ) finds it optimal to engage in unverified

sharing if and only if the following conditions hold:

(1− ψ)b− ψℓ ≥ 0 and (1− ψ)b− ψℓ ≥ (1− ψ)b− t,

i.e., ℓ ≤ min{(1 − ψ)b/ψ, t/ψ}. So, the mass of users engaged in unverified sharing is
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σU = ΣU(ψ), where:

ΣU(ψ) = (1− p)

∫ ∞

0

G

(
min

{
t

ψ
,
(1− ψ)b

ψ

})
dH(b) + pG

(
min

{
t

ψ
,
(1− ψ)b̂

ψ

})
(18)

Likewise, user (b, ℓ) finds it optimal to engage in verified sharing if and only if:

(1− ψ)b− t ≥ 0 and (1− ψ)b− t ≥ (1− ψ)b−Ψℓ,

namely b ≥ t/(1− ψ) and ℓ ≥ t/ψ. Let ψ̂ := 1− t/b̂ and define functions

ΣV (ψ) := (1− p)

(
1−H

(
t

1− ψ

))[
1−G

(
t

ψ

)]
(19)

ΣV (ψ) :=

[
(1− p)

(
1−H

(
t

1− ψ

))
+ p

] [
1−G

(
t

ψ

)]
(20)

The mass of users engaged in verified sharing is given by a correspondence σV ∈ ΣV (ψ):

ΣV (ψ) =


ΣV (ψ) for ψ ∈ (0, ψ̂)

[σV , σV ] for ψ = ψ̂

ΣV (ψ) for ψ ∈ (ψ̂, 1)

where σV := ΣV (ψ̂) and σV := ΣV (ψ̂).

A triplet (σU , σV , ψ) is an equilibrium in the sharing game, given π, if σU = ΣU(ψ),

σV ∈ ΣV (ψ), and ψ satisfies:

Ψ(π, σU , σV ) = ψ,

where Ψ(π, σU , σV ) is given by (1). Proposition 11 can be restated as follows.

Proposition A.1. There exists 0 < π1 < π2 < 1 solving Ψ(π1,ΣU(ψ̂),ΣV (ψ̂)) = ψ̂ and

Ψ(π2,ΣU(ψ̂),ΣV (ψ̂)) = ψ̂, respectively, such that for each π ∈ [π1, π2], there exists an equi-

librium in the sharing game in which prevalence equals ψ̂ = 1− t/b̂. Moreover, π2 − π1 → 0

as the size of the atom p→ 0.

Proof: Consider ϵ1, ϵ2 > 0 small. Since Ψ(·, σU , σV ) is strictly increasing and continuous,

with Ψ(0, σU , σV ) = 0 and Ψ(1, σU , σV ) = 1, the Intermediate Value Theorem ensures the

existence and uniqueness of production thresholds πϵ11 , π
ϵ2
2 ∈ (0, 1) such that

Ψ(πϵ11 ,ΣU(ψ̂ + ϵ1),ΣV (ψ̂ + ϵ1)) = ψ̂ + ϵ1

Ψ(πϵ22 ,ΣU(ψ̂ − ϵ2),ΣV (ψ̂ − ϵ2)) = ψ̂ − ϵ2
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Since ΣV (ψ̂ + ϵ1) = ΣV (ψ̂ + ϵ1) and ΣV (ψ̂ − ϵ2) = ΣV (ψ̂ − ϵ2), the above system turns to:

Ψ(πϵ11 ,ΣU(ψ̂ + ϵ1),ΣV (ψ̂ + ϵ1)) = ψ̂ + ϵ1

Ψ(πϵ22 ,ΣU(ψ̂ − ϵ2),ΣV (ψ̂ − ϵ2)) = ψ̂ − ϵ2

Take ϵ1, ϵ2 → 0. Since Ψ,ΣU ,ΣV ,ΣV are continuous, we have πϵ22 → π2 and π
ϵ1
1 → π1, where

Ψ(π1,ΣU(ψ̂),ΣV (ψ̂)) = ψ̂

Ψ(π2,ΣU(ψ̂),ΣV (ψ̂)) = ψ̂

Since Ψ(π, σU , ·) is strictly decreasing and ΣV (ψ̂) > ΣV (ψ̂), we obtain π2 > π1. Moreover,

(ΣU(ψ̂),ΣV (ψ̂), ψ̂) is an equilibrium of the sharing game, given π1, while (ΣU(ψ̂),ΣV (ψ̂), ψ̂)

is an equilibrium, given π2.

Now, let αV ∈ [ΣV (ψ̂),ΣV (ψ̂)]. Because Ψ(·, σU , σV ) is strictly increasing, we can find

a unique π̃(αV ) ∈ (π1, π2) such that Ψ(π̃(αV ),ΣU(ψ̂), αV ) = ψ̂. Moreover, π̃(αV ) must

be strictly increasing in αV in order to keep prevalence at ψ̂. Thus, we can define α̃V :=

π̃−1 : [π1, π2] → [ΣV (ψ̂),ΣV (ψ̂)] such that, for each π ∈ [π1, π2] there exists a unique value

αV = α̃V (π) such that

Ψ(π,ΣU(ψ̂), αV ) = ψ̂.

That is, (ΣU(ψ̂), α̃V (π), ψ̂) is an equilibrium of the sharing game, given π. This proves that

an equilibrium with prevalence equal to ψ̂ exists for each π ∈ [π1, π2]. Intuitively, in this

equilibrium, types b = b̂ are indifferent between verified sharing and not sharing, with some

breaking the indifference in favor of verified sharing as π rises from π1.

To conclude the proof, let p→ 0. Then, by continuity, ΣV (ψ̂) → ΣV (ψ̂), and so

ψ̂ = lim
p→0

Ψ(π2,ΣU(ψ̂),ΣV (ψ̂)) = Ψ(π2,ΣU(ψ̂),ΣV (ψ̂))

Thus, Ψ(π2,ΣU(ψ̂),ΣV (ψ̂)) = Ψ(π1,ΣU(ψ̂),ΣV (ψ̂)) and so π2 = π1, since prevalence function

Ψ(·, σU , σV ) is strictly increasing. □

Proposition A.2. Consider π1 and π2 from Proposition A.1. Suppose that function ψ 7→
Ψ(π2,ΣU(ψ),ΣV (ψ)) − ψ or ψ 7→ Ψ(π1,ΣU(ψ),ΣV (ψ)) − ψ is strictly decreasing near ψ̂.

Then, there exists a production region R such that for each π ∈ R, the sharing game has

multiple equilibria.

Proof: Let Υ(π, ψ) := Ψ(π,ΣU(ψ),ΣV (ψ))− ψ. Suppose that Υ(π2, ·) is strictly decreasing

near ψ̂ (the other case is analogous and thus omitted). By Proposition A.1, (π2, ψ̂) satisfies
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Υ(π2, ψ̂) = 0. Since Υ(π, ψ) is continuously differentiable, as Ψ, G,H are continuously

differentiable functions on their respective domains, the Implicit Function Theorem ensures

the existence of open sets U ∋ π2 and V ∋ ψ̂ and a continuously differentiable function

ς : U → V such that Υ(π, ς(π)) = 0 for π ∈ U . Moreover,

ς ′(π2) =
−∂Υ(π2, ψ̂)/∂π

∂Υ(π2, ψ̂)/∂ψ
> 0,

where the inequality holds since ∂Υ(π2, ψ̂)/∂π > 0 > ∂Υ(π2, ψ̂)/∂ψ. Thus, ς is strictly

increasing near π2. Therefore, for each π
∗ ∈ (π1, π2)∩U , ψ∗ = ς(π∗) < ψ̂ and Υ(π∗, ψ∗) = 0,

i.e., Ψ(π∗,ΣU(ψ
∗),ΣV (ψ

∗)) = ψ∗. Moreover, since ψ∗ < ψ̂, ΣV (ψ
∗) = ΣV (ψ

∗), and thus

ψ∗ solves Ψ(π∗,ΣU(ψ
∗),ΣV (ψ

∗)) = ψ∗, namely, (ΣU(ψ
∗),ΣV (ψ

∗)ψ∗) is an equilibrium of the

sharing game, given π∗ ∈ (π1, π2)∩U . Thus, we have found another equilibrium in addition

to the one described in Proposition A.1. □

Example: Suppose H(b) = 1− e−b and G(ℓ) = 1− e−ℓ. Then, (18), (19), (20) turn to:

ΣU(ψ) = (1− p)(1− ψ)
(
1− e−

t
ψ(1−ψ)

)
+ p

(
1− e

−min
{
t
ψ
,
(1−ψ)b̂
ψ

})
ΣV (ψ) = (1− p)e−

t
ψ(1−ψ) + pe−

t
ψ

ΣV (ψ) = (1− p)e−
t

ψ(1−ψ)

In Figure 6, the increasing dashed line depicts the 45o line, while the non-monotone solid

locus plots Ψ(π, σU , σV ) with σU = ΣU(ψ) and σV ∈ ΣV (ψ). In the left panel, the benefit

distribution is atomless, as opposed to the right one.

B Total User Welfare Maximization

Let us define the following functions

W ver(σU ; π) := (1−Ψ(π, σU , 1− σU))b− t(1− σU)−Ψ(π, σU , 1− σU)

∫ G−1(σU )

0

ℓdG

T (σU ; π) := 2− π(1− σU)

W̃ ver(σU ; π) := W ver(σU ; π)× T (σU ; π)

Given fake news production π, the first function determines the total user welfare per news,

provided types with low losses ℓ ≤ G−1(σU) engage in unverified sharing, while the rest

verifies before sharing. The second function determines the total news volume circulating in
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Step 1: σ̃ver
U,P ≥ σver

U,P , with strict inequality if Ψ(π, σver
U,P , 1 − σver

U,P ) < π. To see this,

suppose σver
U,P > 0 (the result is trivial otherwise). If Ψ(π, σver

U,P , 1 − σver
U,P ) = π, then the

first-order condition for (21) implies that ∂W ver(σver
U,P )/∂σU ≥ 0. Consequently,

∂W̃ ver(σver
U,P )

∂σU
=
∂W ver(σver

U,P )

∂σU
× T (σver

U,P ) +W ver(σver
U,P )× T ′(σver

U,P ) ≥ 0,

where the inequality holds as T, T ′ > 0. So σ̃ver
U,P = σver

U,P since W̃ ver is strictly quasi-concave.

Now, suppose Ψ(π, σver
U,P , 1− σver

U,P ) < π. The FOC implies, ∂W ver(σver
U,P )/∂σU = 0. So,

∂W̃ ver(σver
U,P )

∂σU
=
∂W ver(σver

U,P )

∂σU
×T (σver

U,P )+W
ver(σver

U,P )×T ′(σver
U,P ) = W ver(σver

U,P )×T ′(σver
U,P ) > 0

Again, since W̃ ver is strictly quasi-concave in σU , we must have σ̃ver
U,P > σver

U,P . Finally, observe

that for any π < π, we have Ψ(π, σU , 1− σU) ≤ π; hence, the same conclusion applies. □

Step 2: σ̃ver
U,P < σver

U . To see this, first use W̃ ver and T to write W̃ ver as:

W̃ ver(σU) = 2(1− π)b− t(1− σU)T (σU)− π(1 + σU)

∫ G−1(σU )

0

ℓdG

Next, differentiate the above expression, using that T ′ = π, to get:

∂W̃ ver(σU)

∂σU
= tT (σU)− t(1− σU)π − π

∫ G−1(σU )

0

ℓdG− (1 + σU)πG
−1(σU)

Now divide both sides by volume T (σU) and recall that Ψ(π, σU , 1−σU) = (1+σU)π/T (σU):

1

T

∂W̃ ver(σU ; π)

∂σU
= t−Ψ(π, σU , 1− σU)G

−1(σU)−
π

T

(
t(1− σU) +

∫ G−1(σU )

0

ℓdG

)
(23)

Finally, observe that if σ̃ver
U,P > 0 (the result is trivial otherwise), the FOC for (22) implies

∂W̃ ver(σ̃ver
U,P )/∂σU ≥ 0 (with equality if Ψ(π, σ̃ver

U,P , 1− σ̃ver
U,P ) < π). Thus, by expression (23):

t−Ψ(π, σ̃ver
U,P , 1− σ̃ver

U,P )G
−1(σ̃ver

U,P ) > 0.

Meanwhile, in the verification equilibrium, t − Ψ(π, σver
U , 1 − σver

U )G−1(σver
U ) = 0 (Proposi-

tion 1). Since σU 7→ Ψ(π, σU , 1− σU)G
−1(σU) is strictly increasing, σ̃ver

U,P < σver
U . □

Step 3: If supz≥0 g(z) ≤ 1/b then W̃ ver is strictly quasi-concave. To prove this

claim, we will show that the condition on primitives ensures that W ver is strictly concave
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(Lemma B.1), which, in turn, ensures that W̃ ver is strictly quasi-concave (Lemma B.2).

Lemma B.1. If supz≥0 g(z) ≤ 1/b and π > 0 then W ver is strictly concave in σU .

Proof: Let us begin with some preliminary steps. First, rewrite W ver as follows:

W ver(σU) = b− t(1− σU)−Ψ(π, σU , 1− σU)

(∫ G−1(σU )

0

ℓdG+ b

)

= b− t(1− σU) + Ψ(π, σU , 1− σU)

[∫ G−1(σU )

0

G(ℓ)dℓ− σUG
−1(σU)− b

]
,

where the second equality holds by integration by parts. Define

ξ(σU) :=

∫ G−1(σU )

0

G(ℓ)dℓ− σUG
−1(σU)− b.

Notice that ξ < 0, ξ′ = −G−1(σU) < 0 and ξ′′ = −1/g(G−1(σU)) < 0.

Therefore, W ver(σU) is strictly concave if and only if Ψ× ξ is strictly concave. The latter

is trivially true if π = 1 as in such a case Ψ ≡ 1, and so Ψ× ξ is strictly concave as ξ′′ < 0.

In what follows, let π ∈ (0, 1) and define Ξ := Ψ× ξ/π (we divide by π because is treated

as a constant in the remaining of the analysis, and it also leads to cleaner algebra). We

will show that Ξ is strictly concave in σU . To this end, first recall that Ψ(π, σU , 1 − σU) =

(1 + σU)π/T (σU). Hence,

Ξ(σU) =
(1 + σU)ξ

T
=⇒ Ξ′ =

2(1− π)ξ + (1 + σU)ξ
′T

T 2
,

where we used that T ′ = π and T = 2− π + πσU to compute Ξ′. Next,

Ξ′′ =
[2(1− π)ξ′ + (ξ′ + (1 + σU)ξ

′′)T + (1 + σU)ξ
′π)]T − [2(1− π)ξ + (1 + σU)ξ

′T ]2π

T 3
,

where we used again that T ′ = π. Since T > 0, we want to show that the numerator of Ξ′′

is strictly negative. In other words, we want to show that

2(1− π)ξ′T + (ξ′ + (1 + σU)ξ
′′)T 2 + π(1 + σU)ξ

′T − 2π(1 + σU)ξ
′T < 4π(1− π)ξ

⇐⇒ 2(1− π)ξ′T + (ξ′ + (1 + σU)ξ
′′)T 2 − π(1 + σU)ξ

′T < 4π(1− π)ξ (24)

Now use that T = 2− π + πσU to see that

2(1− π)ξ′T + ξ′T 2 − π(1 + σU)ξ
′T = 4(1− π)ξ′T.
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Using this observation, inequality (24) can be written as:

4(1− π)ξ′T + (1 + σU)ξ
′′T 2 < 4π(1− π)ξ

⇐⇒ 4(1− π)(ξ′T − πξ) + (1 + σU)ξ
′′T 2︸ ︷︷ ︸

Ω(σU ):=

< 0.

Now use the expressions for T and for ξ, recalling that ξ′ = −G−1(σU). Then,

4(1− π)(ξ′T − πξ) = −4(1− π)

(
G−1(σU)(2− π) + π

∫ G−1(σU )

0

G(ℓ)dℓ

)
+ 4(1− π)πb

< 4(1− π)πb ≤ b, (25)

where the last inequality holds, since π(1 − π) ≤ maxz∈[0,1] z(1 − z) = 1/4. On the other

hand, (1 + σU)T
2 > 1 since T > 1. Thus, since ξ′′ = −1/g(G−1(σU)), it follows that

(1 + σU)ξ
′′T 2 <

−1

g(G−1(σU))
≤ −1

supz≥0 g(z)
(26)

Therefore, using inequalities (25) and (26):

Ω(σU) < b− 1

supz≥0 g(z)
≤ 0,

as desired. We conclude that the numerator of Ξ′′ is strictly negative, and thus Ξ is strictly

concave. Hence, W ver(σU) = b− t(1− σU) + πΞ(σU) is strictly concave in σU . □

Lemma B.2. If W ver(σU) is strictly concave, then W̃ ver(σU) is strictly quasi-concave.

Proof: We will show that, (W̃ ver(σU))
′ = 0 implies (W̃ ver(σU))

′′ < 0. Suppose σU satisfies

(W̃ ver(σU))
′ = 0. Then, since W̃ ver = W ver × T , we obtain:

(W ver(σU))
′ T (σU)︸ ︷︷ ︸

>0

+W ver(σU)T
′(σU)︸ ︷︷ ︸

≥0

= 0 =⇒ W ver′(σU) < 0

=⇒ (W ver(σU)T (σU))
′′ = (W ver(σU))

′′T (σU) + 2(W ver(σU))
′T ′(σU) < 0.

The equality holds as T ′′ = 0, while the inequality follows from: (W ver)′′ < 0 < T ′; and

(W ver)′ < 0 whenever (W̃ ver)′ = 0. This concludes the proof. □
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C Total Volume of News: Changes Across Policies

We will compute total news volume for each of the policy exercises from Section 5.

Lowering verification cost (t) Given (π, σU , σV ), the total news volume is

τ = 1 + σU + (1− π)σV

• Verification equilibrium: Here, σU + σV = 1 and so τ = 2 − πσV . Proposition 6-(i.1)

shows that σU falls, so σV must rise; hence, τ must fall.

• Mixed equilibrium: Here, τ cannot simplify further since, generically, σU + σV < 1.

Still, Proposition 6-(i.2) shows that both σU , σV fall; hence, τ must fall too.

• No-verification equilibrium: Here, σV = 0 and τ = 1 + σU . Proposition 6-(i.3) shows

that σU is unchanged, and thus τ must be unchanged too.

Better algorithmic filters (ϕ) Given (π, σU , σV , ϕ), the total news volume is

τ = (1− ϕπ)(1 + σU) + (1− π)σV

Notice that news volume is directly affected by the policy variable ϕ.

• Verification equilibrium: Here, σU + σV = 1 and so τ = 2− π[ϕ+ (1− ϕ)σV ]. Proposi-

tion 7-(i.1) shows that σU rises, so σV must fall; hence, the effect on τ ver is, in general,

ambiguous. Using that σV = 1− Σ(ζ), where ζ is given in (14), it is easy to see that:

∂τ

∂ϕ
> 0 ⇐⇒

∣∣∣∂Σ
∂ζ

∣∣∣× ζ

Σ
>

1

1− ζ
.

Thus, volume increases if the pass-through curve is “sufficiently” elastic (in absolute

terms), given the current amount of newly produced fake news in circulation (i.e., ζ).

• Mixed equilibrium: Here, τ = (1− ϕπ)(1 + σU) + (1− π)σV . Proposition 7-(i.2) shows

that σU is unchanged but σV falls; hence, τ must fall too.

• No-verification equilibrium: Here, σV = 0 and so τ = (1−ϕπ)(1+ σU). Proposition 7-

(i.3) shows that σU rises; thus, the effect on τ is ambiguous. In this equilibrium,

σU = Σ(ζ), and so using (14) it is straightforward to see that:

∂τ

∂ϕ
> 0 ⇐⇒

∣∣∣∂(1 + Σ)

∂ζ

∣∣∣× ζ

1 + Σ
>

ζ

1− ζ
.
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In other words, 1 + Σ must be “sufficiently” elastic (in absolute terms), given the

current amount of newly produced fake news in circulation (i.e., ζ).

Increasing news certification (β) Given (π, σU , σV , β), the total news volume is

τ = 1 + σU + (1− π)(1− β)σV

Notice that news volume is directly affected by the policy variable β.

• Verification equilibrium: Here, σU + σV = 1 and so τ = 2 − [1 − (1 − π)(1 − β)]σV .

Proposition 8-(i.1) shows that σU falls, so σV must rise; thus, τ must fall.

• Mixed equilibrium: Here, τ = 1+σU +(1−π)(1−β)σV . Proposition 8-(i.2) shows that

σU is unchanged but σV rises. Since in this equilibrium σV solves Ψ(π, σU , σV ) = π

(Proposition 1), we can use (1) to solve for σV in closed form to get:

(1− β)σV =
(π − π)(1 + σU)

π(1− π)
.

Observe that the right hand side is unaffected by β. So, τ is unaffected by the policy.

• No-verification equilibrium: Here, σV = 0 and τ = 1 + σU . Proposition 8-(i.3) shows

that σU is unchanged; thus, τ is unchanged too.
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