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Abstract 

We propose a new, computationally-efficient way to approximate the “grouped fixed-effects” (GFE) 

estimator of Bonhomme and Manresa (2015), which estimates grouped patterns of unobserved 

heterogeneity. To do so, we generalize the fuzzy C-means objective to regression settings. As the 

regularization parameter m approaches 1, the fuzzy clustering objective converges to the GFE objective; 

moreover, we recast this objective as a standard Generalized Method of Moments problem. We replicate 

the empirical results of Bonhomme and Manresa (2015) and show that our estimator delivers almost 

identical estimates. In simulations, we show that our approach delivers improvements in terms of bias, 

classification accuracy, and computational speed. 
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1 Introduction

In a recent paper, Bonhomme and Manresa (2015) (henceforth BM) propose the “grouped fixed-

effects estimator,” a form of K-means regression, to study grouped patterns of heterogeneity in

panel data settings. In particular, the authors study the linear model:

yi =
G

∑
g=1

γigθgxi + νi, (1)

where yi ∈ RT, xi ∈ RK, (xi, yi) are independently distributed across i (and identically distributed

conditional on group membership, g̃i), γig = 1 [g̃i = g] and E [νi|xi, g̃i = g] = 0. θg is a T × K

matrix of group-specific coefficients on the covariates x, for g = 1, . . . , G.1 The indicators γig are

equal to 1 if observation i belongs to group g, and zero otherwise. Equation (1) postulates that the

outcomes y are generated linearly from x, with parameters depending on observation i’s group

membership, which is unobservable to the econometrician. BM are concerned with estimating θg

for all G groups in addition to group membership indicators γig = 1 [i ∈ g], where xi may simply

be a constant term, hence the “grouped fixed-effects” (GFE) estimator.

In this paper, we provide a method to approximate the GFE objective function that incorpo-

rates a degree of regularization of the membership function, allowing for computationally more

efficient estimation and delivering more precise estimates. Our approach is particularly valuable

with large data sets, which are increasingly the norm in applied economics, as well as when the

specified number of groups G becomes large.

BM consider the population GFE least-squares criterion

(
θ̃, γ̃
)
= arg min

θ,γ
E

[
G

∑
g=1

γig
∥∥yi − θgxi

∥∥2

]
, (2)

where the minimum is taken over all possible group membership assignments, g̃ = {g̃1, ..., g̃N} of

the N observed entities, and the group-specific effects
(
θg
)
, which collectively form θ. Instead, we

study (
θ̃FCR

m , µ̃
)
= arg min

θ,µ

[
G

∑
g=1

µm
ig
∥∥yi − θgxi

∥∥2

]
, (3)

where the minimum is taken over the weights µig and the group-specific effects θg, given some

user-specified regularization parameter m > 1. Mean clustering problems of the form in Equation

(3) are known as “fuzzy C-means” algorithms, due to the fact that m > 1 induces continuous

weights and thus “fuzzy” group assignments, rather than the binary assignments of “hard” K-

means as in Equation (2). We thus refer to the model in Equation (3) as “fuzzy C-regression,” or

1As we will discuss later, this notation is general enough to allow for common coefficients both across groups and
time.
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FCR.

We show that in the limit as m → 1, the “fuzzy” objective in Equation (3) is equivalent to the

K-means objective in Equation (2). However, by writing the optimal weights µig as a function of m

and θ, FCR can be reframed as a Generalized Method of Moments (GMM) problem. It is then easy

to show that for a fixed m, a sample estimator θ̂FCR
m is consistent for θ̃FCR

m , with an asymptotically

normal limiting distribution.

Why is this a useful representation of the original problem in Equation (2)? First, as noted

above, as m approaches 1, the “fuzzy” objective function converges to the original GFE objective

function, providing a convenient approximation. We find in both simulations and BM’s empirical

application that for m = 1.001, say, the quality of the approximation is excellent, as evidenced

by the performance of θ̂FCR
m relative to either the true parameters and group assignment, or BM’s

empirical estimates. Second, because the objective in Equation (3) is continuous for m > 1 (but

potentially close to 1), it is natural to estimate θ̃FCR
m not through an iterative procedure, alternat-

ing between choosing a set of discrete group membership functions and conditionally optimizing

the model parameters, as is conventional for clustering problems, but rather through direct min-

imization of the objective function, as in any other GMM problem. This means the problem can

be solved in a single step using any built-in minimization routine, without the need to explicitly

code the specialized algorithms described in BM. Indeed, the preferred solution method of BM in-

volves searching over essentially all possible group assignments of the N entities, which is a very

computationally intensive task as N and G grow. Perhaps due to resulting numerical challenges

of searching over the binary group assignments, we find that the ability of our approximating

estimator to recover the truth (in terms of both parameter estimates and group assignment) is

superior to the original GFE estimator, in spite of the lesser computation time noted above.

In summary, we find that in simulations our approximating estimator yields more reliable

parameter estimates, lower misclassification rates, and far shorter computation time, particularly

as N, T, and G grow. We thus think of the fuzzy clustering approach as a fast and easy way to

estimate grouped fixed-effects.

The paper proceeds as follows. In Section 2, we formally introduce the fuzzy clustering prob-

lem and show that the objective converges to the GFE objective as m → 1 and that it can be recast

as a standard GMM problem. Section 3 replicates the results of BM’s income and democracy em-

pirical application, reports the analogous estimates using FCR, and compares the two estimators

in an extension of BM’s simulation exercise. Section 4 concludes.

2 Fuzzy Clustering Regression

In this section we describe the fuzzy clustering regression (FCR) objective and methodology. We

first show that it converges to the “hard” K-means objective of BM, justifying the use of m close
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to 1 to approximate GFE estimators. Next, we argue that the FCR problem can be rewritten as a

standard GMM problem, providing asymptotic results.

2.1 FCR approximates GFE

Consider the linear model introduced in Equation (2),

yi =
G

∑
g=1

γigθgxi + νi, (4)

where yi ∈ RT, xi ∈ RK, (xi, yi) are independently distributed across i (and identically distributed

conditional on group membership, g̃i), γig = 1 [g̃i = g] and E [νi|xi, g̃i = g] = 0. θg is a T × K

matrix representing the group-specific coefficients on the covariates x. The t−dimension allows

for a panel structure, with repeated observations of each entity i over time, or simply multiple

observed outcomes for each entity. The “hard” K-means (HKM), or in the terminology of BM,

GFE, objective function is:

JHKM (θ) = E
[

min
g

∥∥y − θgx
∥∥2
]

, (5)

Alternatively, the objective above can be rewritten as a weighted sum replacing minimization with

the resulting binary group membership function,

LHKM (θ) = E

[
G

∑
g=1

γ∗
g (y, x; θ)

∥∥y − θgx
∥∥2

]
, (6)

where γ∗
g (y, x; θ) = 1

[∥∥y − θgx
∥∥2 ≤ ∥y − θhx∥2 ∀ h ̸= g

]
.

The FCR objective function introduces regularization for the estimated group membership

function (previously γ∗
g(·)), so that it is no longer binary. In particular, the objective function is

instead

LFCR
m (θ, µ) = E

[
G

∑
g=1

µm
g
∥∥y − θgx

∥∥2

]
(7)

where m > 1 is the regularization parameter and µg represent group weights. Bezdek (1981)

derives the MSE optimal weights µg, given m and θ, µg(y, x; θ, m), in the cluster means case (i.e.,

a single constant regressor in x). Analogously, the optimal weights in the present regression case

are found by taking the derivative of Equation (7) with respect to µg subject to the constraint that

the weights µg (y, x; θ, m) sum to unity:

µg (y, x; θ, m) =

(
G

∑
h=1

∥∥y − θgx
∥∥2/(m−1)

∥y − θhx∥2/(m−1)

)−1

, g = 1, . . . , G, (8)
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Yang and Yu (1992) show that in the cluster means case the objective in Equation (7) can be

rewritten subsuming the optimal parameter-dependent weights in Equation (8) into the objective

function itself. For fixed m, define µ (y, x; θ, m) = (µ1 (y, x; θ, m) , . . . , µG (y, x; θ, m)). Then, Equa-

tion (7) can be rewritten as

LFCR
m (θ, µ) = LFCR

m (θ, µ (y, x; θ, m))

= E

 G

∑
g=1

(
G

∑
h=1

∥∥y − θgx
∥∥2/(m−1)

∥y − θhx∥2/(m−1)

)−m ∥∥y − θgx
∥∥2


= E

( G

∑
g=1

∥∥y − θgx
∥∥−2/(m−1)

)1−m


≡ JFCR
m (θ) (9)

Significantly, JFCR
m (θ) has replaced an objective function with weights linked to the parameters

with a nonlinear function in (the norm of) the group-specific errors
∥∥y − θgx

∥∥, since the weights

themselves are simply a function of those errors.

We introduce standard conditions in Assumption 1 to argue that JFCR
m (θ) approximates JHKM(θ).

Assumption 1. E
[
∥y∥2

]
< ∞, E

[
∥x∥2

]
< ∞, and θ ∈ Θ, which is compact.

Proposition 1. Under Assumption 1,

lim
m→1+

JFCR
m (θ) = JHKM(θ),

Proposition 1 shows that the FCR objective function converges to the HKM (or GFE) objec-

tive function as m → 1 from above. Thus, setting the regularization parameter close to 1 allows

the econometrician to approximate the GFE clustering problem using the FCR objective function.

However, for m > 1, she retains the continuity of the FCR membership function, ensured by the

regularization, and the benefits we describe below.

It is natural to ask what conclusions can be drawn about the minimizers of the FCR objective

function. In the limit, it is true that

θ̃FCR
1 = arg min lim

m→1+
JFCR
m (θ) = θ̃. (10)

However, since the convergence in Proposition 1 is not uniform in θ, y, x, it is not in general the

case that limm→1+ θ̃FCR
m = θ̃, so we view θ̃FCR

m as a regularized approximation to θ̃, as opposed to

a convergent estimand. Nevertheless, we are able to characterize the limiting distribution of θ̃FCR
m

for fixed m, which we consider below.

4



2.2 FCR as GMM

The FCR objective in Equation (9) is differentiable for fixed m, and the first order conditions, stated

in Proposition 2, constitute a set of just-identifying moment conditions, as described in Proposition

2.

Proposition 2. The solution θ̃FCR
m satisfies the moment conditions

E

( G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

∥yi − θhxi∥2/(m−1)

)−m (
yit − θg(t)xi

)
xi

 = 0 for g = 1, . . . , G and t = 1, . . . , T, (11)

where t indexes dimensions of yi and (t) rows of θg; FCR is a GMM problem.

This result has two main implications. First, θ̃FCR
m can be estimated via direct minimization of

the FCR objective function. This is a standard non-linear minimization problem. Typically, cluster-

ing problems are solved iteratively, alternating between assigning entities to the best-fitting group

(or computing their fuzzy or probabilistic weights for each group), then re-estimating model pa-

rameters. The econometrician is required to search over many possible group assignments, par-

ticularly in the case of binary weights, as in the GFE estimator. Such algorithms, where individual

observations or subsets of observations are systematically reallocated between groups from one

iteration to the next, are prone to local minima. Unfortunately, they are not well-suited to paral-

lelization, since the search over possible groupings is usually conducted sequentially. While the

direct minimization required by FCR may also be prone to local minima, it is straightforward to

parallelize across start values to mitigate such concerns, and the computation is fast enough to

facilitate many start values.

Second, the asymptotic properties of both HKM (or GFE) and FCM problems have previously

proven difficult to establish, requiring extensive technical arguments (e.g., Pollard (1981, 1982);

Yang and Yu (1992); Yang (1994); Bonhomme and Manresa (2015)). However, Proposition 2 shows

that the FCR clustering problem is simply a GMM problem, and the asymptotic properties of the

estimator (for fixed m) follow by standard arguments.

We now present the asymptotic properties of the sample analog of θ̃FCR
m . Define

SN (θ) =
1
N

N

∑
i=1

η (θ, yi, xi)
′

N

∑
i=1

η (θ, yi, xi) , (12)

where the (G × T × K)× 1 vector-valued moment function η (θ, yi, xi) stacks( G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

∥yi − θhxi∥2/(m−1)

)−m (
yit − θg(t)xi

)
xi

 = 0
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for g = 1, . . . , G and t = 1, . . . , T. The FCR estimator is

θ̂FCR
m = arg min

θ

SN(θ). (13)

Assumption 2 presents standard assumptions for the GMM estimator’s asymptotic properties,

which are presented in Proposition 3. We present assumptions and results in a large-N, fixed-T

framework, which we believe is a better representation of typical datasets, particularly in macroe-

conomic settings, than a large-N, T framework.

Assumption 2. (Consistency and asymptotic normality)

1. The observations i = 1, . . . , N are independently (and identically, within groups) sampled,

2. G is finite,

3. θ̃FCR
m is the unique solution to E [η (θ, yi, xi)] = 0 (up to ordering of the groups).

4. θ̃FCR
m is in the interior of Θ,

5. H = E
[

∂η(θ,yi,,xi)
∂θ′

]
is full rank,

6. E
[
supθ∈N

∥∥∥ ∂η(θ,yi ,xi)
∂θ′

∥∥∥] < ∞ in a neighborhood N of θ̃FCR
m ,

7. V = E
[
η
(
θ̃FCR

m , yi,, xi
)

η
(
θ̃FCR

m , yi,, xi
)′] is positive definite.

Assumption 2.1 assumes that the entities are sampled independently, but makes no assump-

tion about the dependence properties of possible repeated observations of each entity. While con-

ditional on group membership observations come from different distributions (since at least θg

varies), viewing group membership as a latent variable, the data is unconditionally i.i.d. Assump-

tion 2.2 ensures that the number of groups does not increase at the same rate as the sample size.

Assumption 2.3 stipulates that the population solution to the FCR problem is unique. For non-

linear problems like this, primitive conditions for the identification assumption are challenging to

provide, but in the limit (as m → 1+), the identification condition becomes the same as that of GFE,

which simply requires that for a given group, θg is identified in the regression yi = θgxi + vi, g̃i = g.

The remaining conditions are standard technical assumptions.

Proposition 3.

1. Under Assumptions 1 and 2.1-2.3, θ̂FCR
m

p→ θ̃FCR
m ,

2. Under Assumptions 1 and 2,
√

N
(
θ̂FCR

m − θ̃FCR
m
) d→ N

(
0, H−1VH−1).
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Proposition 3 shows that for fixed m, the estimator θ̂FCR
m is consistent for θ̃FCR

m , the population

minimizer, with an asymptotically normal limiting distribution. As discussed above, in the limit

(as m → 1+), θ̃FCR
m is equal to θ̃. We provide expressions for the Hessian in Appendix C.

As previously noted, we consider large-N, fixed-T asymptotics, since we believe they are a

better representation of the data structure and uncertainty in typical datasets of interest. How-

ever, with straightforward modifications to the assumptions (e.g., weak dependence over T), it is

possible to also establish large-T limiting distributions with convergence at a faster
√

NT rate. In

contrast, BM focus on the large-N, T framework, with analogous fixed-T results in their appendix.

Importantly, under the fixed-T framework, estimated group membership is subject to uncertainty,

while under large-T it can be recovered with certainty, assuming weak dependence. Therefore,

the fixed-T distributions that we present are conservative relative to large-T distributions.

Additionally, the moment conditions in Proposition 2 can easily accommodate regressors with

common coefficients across groups, θgtk = θhtk, or across dimensions of yi or periods, θgtk = θhsk.2

In the former case, it is straightforward to show that the corresponding moment condition is

E

[(
G

∑
h=1

∥∥yi − θgxi
∥∥−2/(m−1)

)−m G

∑
g=1

∥∥yi − θgxi
∥∥−2m/(m−1)

(
yit − θg(t)xi

)
xik

]
= 0

and in the latter,

E

[(
G

∑
h=1

∥∥yi − θgxi
∥∥−2/(m−1)

)−m T

∑
t=1

G

∑
g=1

∥∥yi − θgxi
∥∥−2m/(m−1)

(
yit − θg(t)xi

)
xik

]
= 0.

To summarize, we have argued that for suitably chosen m close to 1, the FCR objective func-

tion approximates the GFE objective function, with equality in the limit. The FCR problem facil-

itates a GMM implementation with direct minimization, unlike the iterative procedures used to

implement most clustering algorithms. For fixed m, the corresponding finite sample estimator is

consistent for its population counterpart, which, in the limit, is equal to the GFE solution. The esti-

mator is also asymptotically normal, and analytical standard errors are available for the parameter

estimates.

In this paper, we focus on FCR as a tool to approximate GFE. However, the results above hold

for any m > 1. Completely separately, FCR with larger m may also be a valuable tool in its own

right in many economic applications. Indeed, “fuzzy C-means” algorithms, which FCR general-

izes, were introduced as a form of ”possibilistic” clustering that could better accommodate the

uncertainty of group membership in realistic datasets, where noise means that cluster member-

ship cannot be ascertained with certainty. Setting a higher value of the regularization parameter

2For example, in the forthcoming application, the parameter set θ encompasses both group-specific time-varying
constants αg(t), as well as group- and time-invariant coefficients on the common covariates democracyit−1 and
logGDPpcit−1.
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m flattens the group membership function, increasing the inherent uncertainty of the assignment.

Thus, FCR can also be used as a non-parametric alternative to finite mixture models, such as the

Gaussian Mixture Model considered in Lewis, Melcangi and Pilossoph (2022).

3 Application and Simulations

We first replicate the empirical results of BM using their estimator and replication code. Then,

to illustrate our approach, we implement the FCR estimator using the same specifications, and

extend BM’s simulations calibrated to that application to include our proposed estimator. Doing

so allows us to directly compare the performance of the two methods in terms of accuracy, effi-

ciency, and computational speed. In particular, following BM, we consider the panel of countries

from Acemoglu, Johnson, Robinson and Yared (2008), who study the coevolution of income and

democracy from 1970–2000.3 Our specification takes the following form, where we regress an in-

dex of democracy (the Freedom House indicator) on its lagged value, lagged log GDP per capita,

and the group-time effect αgt:

democracyit = β1democracyit−1 + β2logGDPpcit−1 + αgit + νit, (14)

where gi denotes the group membership of country i.

3.1 Computational Details

As discussed in Section 2, the “fuzziness” of the FCR membership function is governed by the

regularization parameter m, where group assignment becomes binary as m → 1+. After some

experimentation, we set m = 1.001 in order to replicate the BM estimates. In practice, this gener-

ates group weights equal to either 0 or 1 to 6 decimal places. In our main results, we supply the

algorithm with 1,000 starting values and select the set of objective-minimizing coefficients across

iterations.4

To mitigate concerns over possible local minima, we run FCR using multiple starting values.

Table B1 shows the performance of our estimator for a varying number of starting values; in our

main results we choose 1,000 starting values, which we find offers the best mix of performance

and computational speed. Importantly, our algorithm can be parallelized across starting values,

and our main estimation is run with 250 parallel cores.

3We use the balanced panel from Acemoglu et al. (2008), which includes 90 countries observed over seven five-year
periods. All data files are available for download at: http://economics.mit.edu/files/5000.

4We have also estimated the model using 100 (Appendix B) and 10,000 (unreported) starting values.
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Table 1: Simulation Performance

G = 3 G = 5 G = 10

FCR GFE FCR GFE FCR GFE

Bias
Average lagged democracy bias 0.035 0.084 0.042 0.056 0.051 0.054
Average lagged democracy RMSE 0.043 0.094 0.056 0.070 0.067 0.075
Average lagged income bias 0.013 0.032 0.010 0.007 0.009 0.013
Average lagged income RMSE 0.016 0.035 0.012 0.017 0.012 0.015

Group Misclassification
Average misclassification rate 9.37% 9.50% 7.69% 9.68% 16.11% 44.73%

Inference
Median lagged democracy standard errors 0.051 0.051 0.050 0.068 0.056 0.048
Coverage rate for lagged democracy 0.894 0.790 0.911 0.840 0.937 0.940
Median lagged income standard errors 0.011 0.013 0.010 0.014 0.014 0.010
Coverage rate for lagged income 0.885 0.840 0.938 0.960 0.939 0.930

Computation Time
Total time (seconds) 17.5 24.8 27.6 26.5 127.4 78.2

Notes: This table compares the performance of the FCR and GFE estimators on a simulated panel with
N = 90 and T = 7. GFE results come from Tables S3 and S4 in their paper. While BM estimate the model
with their preferred specification (Algorithm 2, with 10 starting values, 10 neighbors, and maximum
steps of 10), they use only 5 starting values and 5 maximum steps in simulations, since their baseline
specification “resulted in prohibitive computation times”. For consistency within this table, we compute
computation times ourselves under this specification. Table S1 and S2 in BM report computation times
for their baseline algorithm: 38.4 and 228.4 seconds for 3 and 10 groups, respectively. The GFE standard
errors and coverage use the Pollard (1982) fixed-T formula, reported in columns (2) of BM Table S7. Bias,
misclassification, computation time, and non-rejection probability are means across 1,000 simulations,
while the standard errors are medians (to match the reported estimates in BM). For FCR, we use 1,000
starting values and 250 parallel cores; the reported computation time is the total across these starting
values, not the time per starting value.

recommended tuning parameters, compared which FCR proves universally faster.7 In terms of

inference, the median standard errors for the common coefficients, a measure reported by BM, are

closely comparable across the two estimators. On the other hand, the coverage rate of the 95%

confidence intervals is generally much closer to its nominal level using the analytical standard

errors we derive than those proposed by BM under the fixed-T asymptotic framework.

The fuzzy clustering approximation is particularly valuable in settings with large panels, which

are increasingly common in empirical work. Specifically, the regularization incorporated in the

FCR objective permits direct minimization in a single step, which is substantially faster than pre-

viously implemented approaches, even after parallelization across many start values. To illustrate

7In line with BM, GFE simulation results are presented with a faster Algorithm 2 (see note to the table) than their
preferred specification. BM reports that computation time for their preferred algorithm is 38.4 and 228.4 seconds for 3
and 10 groups, respectively, thus slower than FCR. We also present a more thorough analysis of computation time in
the next exercise, revealing that FCR is considerably faster on larger datasets).
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do so, we generalized the fuzzy C-means objective to regression settings, and showed that as the

regularization parameter m approaches 1, the fuzzy clustering objective converges to the GFE ob-

jective. The fuzzy clustering formulation allows us to recast the problem as a standard GMM

problem, instead of an iterative group assignment and minimization problem, and to derive a

standard limiting distribution. We replicate the empirical results of BM using their estimator, and

show that our approach produces very similar estimates. In simulations, we show that our estima-

tor exhibits a smaller bias than previously suggested approaches and achieves substantially more

accurate classification of individual observations as the number of groups increases. Moreover,

our approach delivers a dramatic reduction in computation time as the sample size increases.
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A Proofs

Proof of Proposition 1

Proof. Consider the limit of the intermediate formulation of the FCR objective,

lim
m→1+

E

 G

∑
g=1

(
G

∑
h=1

∥∥y − θgx
∥∥2/(m−1)

∥y − θhx∥2/(m−1)

)−m ∥∥y − θgx
∥∥2

 . (15)

First, we can move the limit inside the expectation by the dominated convergence theorem; this

follows since for all y, x, θ, µ(y, x; θ, m), the only part of the integrand that depends on m, is

bounded above by 1 (and below by zero), and E
[∥∥y − θgx

∥∥2
]

is finite by Assumption 1.

We next take logs and evaluate the limit for a given group, g, and arbitrary y, x, θ:

lim
m→1+

log

(
G

∑
h=1

∥∥y − θgx
∥∥2/(m−1)

∥y − θhx∥2/(m−1)

)−m ∥∥y − θgx
∥∥2 (16)

= lim
m→1+

−m log
G

∑
h=1

∥∥y − θgx
∥∥2/(m−1)

∥y − θhx∥2/(m−1)
+ log

∥∥y − θgx
∥∥2 . (17)

To conserve space, denote ϵg = y − θgx. We first focus on the weights, working term by term in

the summation over h. There are three cases to consider:

lim
m→1+

∥∥ϵg
∥∥2/(m−1)

∥ϵh∥2/(m−1)
=


∞, ∥ϵh∥ <

∥∥ϵg
∥∥

0, ∥ϵh∥ >
∥∥ϵg
∥∥

1, ∥ϵh∥ =
∥∥ϵg
∥∥ .

(18)

Putting together the summation over h, these intermediate limits imply the following three cases:

lim
m→1+

G

∑
h=1

∥∥ϵg
∥∥2/(m−1)

∥ϵh∥2/(m−1)
=


1,

∥∥ϵg
∥∥ < ∥ϵh∥ ∀h ̸= g

∞, ∃h :
∥∥ϵg
∥∥ > ∥ϵh∥

n∗, otherwise,

(19)

where the final case applies when n∗ > 1 group assignments yield the identical minimum norm

residual, ∥ϵ∥∗.
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Then, using the fact that the limit of a log equals the log of the limit, we have

lim
m→1+

−m log
G

∑
h=1

∥∥ϵg
∥∥2/(m−1)

∥ϵh∥2/(m−1)
=


0,

∥∥ϵg
∥∥ < ∥ϵh∥ ∀h ̸= g

−∞, ∃h :
∥∥ϵg
∥∥ > ∥ϵh∥

− log n∗, otherwise.

(20)

Finally, exponentiating, since the log of the desired limit equals the limit of the logs we have

computed, yields

lim
m→1+

(
G

∑
h=1

∥∥ϵg
∥∥2/(m−1)

∥ϵh∥2/(m−1)

)−m ∥∥ϵg
∥∥2

=


∥∥ϵg
∥∥2 ,

∥∥ϵg
∥∥ < ∥ϵh∥ ∀h ̸= g

0, ∃h :
∥∥ϵg
∥∥ > ∥ϵh∥

1/n∗ ∥∥ϵg
∥∥2 , otherwise.

(21)

Therefore, in the first two cases, each term in the outer summation over g converges to their

GFE counterparts, with binary indicators equal to 1 if
∥∥ϵg
∥∥ is a unique minimum, and zero if it is

larger than the minimum, so the summation itself converges to that for GFE, for any y, x, θ. In the

final, knife-edge, case, where multiple assignments yield the same minimum residual, GFE and

other HKM estimators typically impose a fixed membership rule (i.e., set the indicator equal to 1

for the group with the lowest index for which the minimum value of the objective is obtained, and

zero for the others) in order to prevent the algorithm from perpetually permuting the membership

amongst equivalent groups. However, while the limit of the summand for each g may not equal

that under the arbitrary decision rule of GFE in this case, the limit of the summation over g is still

identical to that of GFE, since for all such groups, j,
∥∥ ϵj

∥∥ = ∥ ϵ∥∗, and

lim
m→1+

(
G

∑
h=1

∥∥ϵg
∥∥2/(m−1)

∥ϵh∥2/(m−1)

)−m ∥∥ϵg
∥∥2

= n∗ × 1
n∗ ∥ϵ∥∗2 = ∥ϵ∥∗2 ,

as for GFE. Finally, since we argued above that limit and expectation were interchangeable, we

have

lim
m→1+

E

 G

∑
g=1

(
G

∑
h=1

∥∥y − θgx
∥∥2/(m−1)

∥y − θhx∥2/(m−1)

)−m ∥∥y − θgx
∥∥2

 = lim
m→1+

JFCR
m (θ) = JHKM(θ) (22)
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Proof of Proposition 2

Proof. We start by differentiating the argument of the expectation in JFCR
m (θ) with respect to θgtk:

∂

∂θgtk

(
G

∑
h=1

∥y − θhx∥−2/(m−1)

)1−m

= (1 − m)

(
G

∑
h=1

∥y − θhx∥−2/(m−1)

)−m
∂

∂θgtk

G

∑
g=1

∥∥y − θgx
∥∥−2/(m−1)

= (1 − m)

(
G

∑
h=1

∥y − θhx∥−2/(m−1)

)−m
−2

m − 1

∥∥y − θgx
∥∥(1+m)/(1−m) ∂

∂θgtk

∥∥y − θgx
∥∥

= 2

(
G

∑
h=1

∥y − θhx∥−2/(m−1)

)−m ∥∥y − θgx
∥∥−(1+m)/(m−1) yt − θg(t)x∥∥y − θgx

∥∥ (−xk)

= −2

(
G

∑
h=1

∥y − θhx∥−2/(m−1)

)−m ∥∥y − θgx
∥∥−2m/(m−1)

(
yt − θg(t)x

)
xk

= −2

(
G

∑
h=1

∥∥y − θgx
∥∥2/(m−1)

∥y − θhx∥2/(m−1)

)−m (
yt − θg(t)x

)
xk,

where θg(t) denotes the row of θg corresponding to outcome yt. Note that since these partial deriva-

tives are continuous in θ (by inspection; see also Yang (1994) Lemma 2), the function is (continu-

ously) differentiable in θ (Spivak (1971) Theorem 2.8). Moreover,
(

∑G
h=1 ∥y − θhx∥−2/(m−1)

)1−m
is

Lebesgue-integrable for each θ as

(
G

∑
h=1

∥y − θhx∥−2/(m−1)

)1−m

≤
G

∑
h=1

∥y − θhx∥−2(1−m)/(m−1) =
G

∑
h=1

∥y − θhx∥2

since 1 − m < 0 and

G

∑
h=1

∥y − θhx∥2 ≤
G

∑
h=1

(∥y∥+ ∥θhx∥)2

≤
G

∑
h=1

(∥y∥+ ∥θh∥ ∥x∥)2

=
G

∑
h=1

∥y∥2 + 2 ∥θh∥ ∥x∥ ∥y∥+ ∥θh∥2 ∥x∥2 , (23)

which is integrable by Assumption 1. Moreover, (23) establishes a bounding function for the

integrand in terms of θ. From these conditions, the dominated convergence theorem allows the

interchange of differentiation and integration:
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∂JFCR
m (θ)

∂θgtk
=

∂

∂θgtk
E

( G

∑
g=1

∥∥y − θgx
∥∥−2/(m−1)

)1−m


= E

( ∂

∂θgtk

G

∑
g=1

∥∥y − θgx
∥∥−2/(m−1)

)1−m


= E

( ∂

∂θgtk

G

∑
g=1

∥∥yi − θgxi
∥∥−2/(m−1)

)1−m


= E

−2

(
G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

∥yi − θhxi∥2/(m−1)

)−m (
yit − θg(t)xi

)
xik

 .

Stacking the conditions vertically for row t of θg yields the k × 1 vector

∂JFCR
m

∂θ′g(t)
= E

−2

(
G

∑
h=1

∥∥y − θgx
∥∥2/(m−1)

∥y − θhx∥2/(m−1)

)−m (
yt − θg(t)x

)
x

 .

Proceeding likewise across t = 1, . . . , T and for g = 1, . . . , G yields G × T × k conditions which θ∗

must satisfy,

E

( G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

∥yi − θhxi∥2/(m−1)

)−m (
yit − θg(t)xi

)
xi

 = 0, for g = 1, . . . , G, t = 1, . . . , T,

since θ∗ minimizes JFCR
m (θ) . These G × T ×K equations constitute continuous moment conditions

for the G × T × K free parameters in θ. Thus, the system of equations constitutes a just-identified

GMM problem.

Proof of Proposition 3.1

Proof. By Assumption 2.1, (yi, xi) are independently (and identically, given group membership)

distributed. Viewing group membership, g̃i, as a latent state variable that is drawn alongside the

observed variables and innovations (and of which yi and potentially xi and vi are functions), the

full vector of observed and unobserved variables is unconditionally i.i.d. (although the distribu-

tion of yi is clearly group-dependent, conditional on the state variable g̃i). By Assumption 2.3,

θ∗ uniquely satisfies η (θ, yi, xi). As noted in the proof of Proposition 2, the moment conditions

η (θ, yi, xi) are continuous for all θ ∈ Θ, so the objective function is also. Next, we show that

the moments are bounded in expectation for all θ ∈ Θ (the dominance condition). Observe that(
∑G

h=1
∥y−θgx∥2/(m−1)

∥y−θhx∥2/(m−1)

)−m

is bounded between zero and one (the supremum of the summation is
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infinity as the residuals y − θhx, h ̸= g go to zero and the infimum is 1 as y − θhx, h ̸= g go to

infinity). So

E

[
sup
θ∈Θ

∥η (θ, yi, xi)∥
]
≤ E

[
sup
θ∈Θ

sup
g

∥∥(yi − θgxi
)

x′i
∥∥]

= E

[
sup
θ∈Θ

sup
g

∥∥yix′i − θgxix′i
∥∥]

≤ E

[
sup
θ∈Θ

sup
g

∥∥yix′i
∥∥+ ∥∥θgxix′i

∥∥]

≤ E

[
sup
θ∈Θ

sup
g

∥yi∥ ∥xi∥+
∥∥θg
∥∥ ∥xi∥ ∥xi∥

]
< ∞,

where the third inequality follows from the triangle inequality, the fourth from Cauchy-Schwarz,

and the final follows from Assumption 1. These points jointly satisfy the requirements of standard

GMM arguments, (e.g., Newey and McFadden (1994), p. 2121—2, Hayashi (2011) Proposition 7.7),

so θ̂FCR
m

p→ θ̃FCR
m .

Proof of Proposition 3.2

Proof. First, we provide expressions for H to establish the continuous differentiability of η (θ, yi, xi)

in θ. We focus on the cross-sectional case here (T = 1) for the sake of simplicity, but provide ex-

pressions for panel data corresponding to the setting of our empirical application and simulation

study in Section C.2. Partition the blocks of H as

H =



H11 · · · H1g · · · H1G
...

. . .
...

Hg1 Hgg HgG
...

. . .
...

HG1 · · · HGg · · · HGG


,

where Hgh = ∂2 JFCR
m

∂θg∂θ′h
with Hgh = H′

hg by symmetry of the Hessian. For the case where all coefficients

are group-specific, it can be shown that

Hgg = E
[

xix′i

{
−2m
m − 1

A−m−1
i

(
egi
)2 C2

gi +
m + 1
m − 1

A−m
i Cgi

}]
Hgh = E

[
xix′i

{
−2m
m − 1

A−m−1
i ChiehiegiCgi

}]
, h ̸= g,
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where egi = yi − θgxi, Ai = ΣG
g=1

∥∥egi
∥∥−2/(m−1), Cgi =

∥∥egi
∥∥−2m/(m−1). We also provide expressions

for additional elements of the Hessian when there are covariates with common coefficients across

groups, such that θgk = θhk ≡ θ⋆k, h ̸= g. In this case,

∂2 JFCR
m

∂θ⋆k∂θ⋆k
E

[
x2

ik

{
−2m
m − 1

A−m−1
i B2

i +
m + 1
m − 1

A−m
i

G

∑
g=1

Cgi

}]
∂2 JFCR

m
∂θ⋆k∂θ⋆l

= E

[
xikxi,l

{
−2m
m − 1

A−m−1
i B2

i +
m + 1
m − 1

A−m
i

G

∑
g=1

Cgi

}]
∂2 JFCR

m
∂θ⋆k∂θgl

= E
[

xikxi,l

{
−2m
m − 1

A−m−1
i CgiegiBi +

m + 1
m − 1

A−m
i Cgi

}]
,

where Bi = ∑G
g=1
[
egiCgi

]
. By inspection, all elements of these Hessians are continuous in θ, since

egi, A−m
i , A−m−1

i , Cgi, Bi are continuous in θ, and all elements of H are continuous functions of these

objects.

Next, the asymptotic normality of 1√
N ∑N

i=1 η (θ, yi, xi) follows by Lindeberg-Lévy Central Limit

Theorem by Assumptions 1 and 2.1,

1√
N

N

∑
i=1

η (θ∗, yi, xi)
d→ N (0, V) ,

where V = E
[
η (θ, yi, xi) η (θ, yi, xi)

′] is assumed to be positive definite in Assumption 2.7.

Combining these two results with the remaining conditions of Assumption 2, the standard

conditions for asymptotic normality of a GMM estimator are satisfied (e.g., Hayashi (2011) Propo-

sition 7.10). Since the weighting matrix is the identity (the problem is just-identified),

√
N
(

θ̂FCR
m − θ̃FCR

m

)
d→ N

(
0, H−1VH−1

)
.

B Additional Results
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Table B1: FCR Performance for Varying Number of Starting Values

G = 3 G = 5 G = 10

Starting Values 1 10 50 100 1,000 1 10 50 100 1,000 1 10 50 100 1,000

Bias

Average lagged democracy bias 0.129 0.039 0.035 0.035 0.035 0.114 0.117 0.111 0.078 0.042 0.128 0.116 0.114 0.114 0.051

Average lagged democracy RMSE 0.254 0.112 0.098 0.055 0.094 0.381 0.224 0.129 0.089 0.056 0.255 0.166 0.148 0.141 0.067

Average lagged income bias 0.014 0.014 0.013 0.013 0.013 0.018 0.019 0.017 0.017 0.010 0.016 0.016 0.015 0.015 0.009

Average lagged income RMSE 0.033 0.034 0.022 0.021 0.016 0.038 0.034 0.027 0.025 0.012 0.039 0.038 0.034 0.022 0.012

Group Misclassification

Average misclassification rate 14.95% 11.31% 9.37% 9.37% 9.37% 18.44% 17.87% 14.12% 9.31% 7.69% 48.25% 34.64% 25.77% 18.36% 16.11%

Computation Time

Total time (seconds) 1.9 5.7 9.3 12.1 17.5 2.67 12.3 18.1 21.2 27.6 12.34 28.1 58.5 78.5 127.4

Notes: This table shows FCR performance and computation time for 1, 10, 50, 100, and 1,000 starting values. The results for 1 starting value are run with a
single core, while the rest are run with the full 250 parallel workers for best comparison (the overhead time could be further optimized by using a tailored
number of parallel workers depending on the number of starting values).
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C Gradient and Hessian of Objective Function

In this section, we provide explicit expressions for the gradient and Hessian of the objective

function, LFCR
m (θ), which is equivalent to the moment function exploited by the GMM estimator,

specialized to the case considered in our empirical application and simulation study, with time-

varying group-specific intercepts, αgt, and other coefficients constant across groups and time. Let

s index such additional common covariates, and denote the corresponding coefficients as ψs. For

the purposes of this discussion, instead of denoting repeated observations of some regressor s for

observation i as different generic elements k of the vector xi, we instead refer to them directly by

the it subscript (e.g., xits), to be consistent with BM.

C.1 Gradient

Define egit = yit − αgt − ∑S
s=1 θsxits. The sample gradient of the objective with respect to αgt is

∂L̂FCR
m (θ)

∂αgt
= −2

N

∑
i=1

 G

∑
h=1

{
∑t
(
egit
)2
} 1

m−1

{
∑t (ehit)

2
} 1

m−1


−m

egit.

For a common coefficient, ψs, the gradient is

∂L̂FCR
m (θ)

∂ψs
= −2

N

∑
i=1

 G

∑
h=1

1{
∑T

t=1 (ehit)
2
} 1

m−1


−m

G

∑
g=1


{

T

∑
t=1

(
egit
)2

} −m
m−1 T

∑
t=1

egitxits


Define ai = ∑G

g=1
1{

∑T
t=1(egit)

2} 1
m−1

. Then L̂FCR
m (θ) = ∑N

i=1 a1−m
i . Then simplifying the notation,

the gradient for a group-specific time-varying fixed effect is

Dαgt =
∂L̂FCR

m (θ)

∂αgt
= −2

N

∑
i=1

a−m
i

{
T

∑
t=1

(
egit
)2

} −m
m−1

egit

and the gradient for a common coefficient is

Dψs =
∂L̂FCR

m (ψs)

∂θs
= −2

N

∑
i=1

a−m
i

G

∑
g=1


{

T

∑
t=1

(
egit
)2

} −m
m−1 T

∑
t=1

egitxits


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∇L =
[

D′
α11

. . . D′
α1T

D′
α21

. . . D′
α2T

. . . D′
αgt

D′
ψ1

. . . D′
ψS

]′
C.2 Hessian

We now provide explicit expressions for the Hessian corresponding to our empirical application

and simulation study. We start by partitioning the Hessian as

H =



Hα11,α11 · · · Hα11,α1T · · · Hα11,αG1 · · · Hα11,αGT · · · Hα11,ψ1 · · · Hα11,ψS

...
. . .

...

Hα1T ,α11 · · · Hα1T ,α1T · · · Hα1T ,αG1 · · · Hα1T ,αGT · · · Hα1T ,ψ1 · · · Hα1T ,ψS

...
. . .

...

HαG1,α11 · · · HαG1,α1T · · · HαG1,αG1 · · · HαG1,αGT · · · HαG1,ψ1 · · · HαG1,ψS

...
. . .

...

HαGT ,α11 · · · HαGT ,α1T · · · HαGT ,αG1 · · · HαGT ,αGT · · · HαGT ,ψ1 · · · HαGT ,ψS

...
. . .

...

Hψ1,α11 · · · Hψ1,α1T · · · Hψ1,αG1 · · · Hψ1,αGT · · · Hψ1,ψ1 · · · Hψ1,ψS

...
. . .

...

HψS,α11 · · · HψS,α1T · · · HψS,αG1 · · · HψS,αGT · · · HψS,ψ1 · · · HψS,ψS


where Hα11,α1t =

∂Dα11
∂α1t

, and so on.

We first characterize the diagonal elements, corresponding to the group-specific intercepts,

which take the form

Hαgt,αgt = 4
N

∑
i=1

m
m − 1

a−m−1
i

(
T

∑
t=1

(
egit
)2

)−2m
m−1

e2
git

+4
N

∑
i=1

a−m
i

−m
m − 1

{
T

∑
t=1

(
egit
)2

} −m
m−1−1

e2
git

+2
N

∑
i=1

a−m
i

{
T

∑
t=1

(
egit
)2

} −m
m−1

.

Next, entries corresponding to intercepts for the same group, g, but different time periods, t

are given by
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Hαgt,αgt′ = 4
N

∑
i=1

m
m − 1

a−m−1
i

(
T

∑
t=1

(
egit
)2

)−2m
m−1 (

egit′
)

egit

+4
N

∑
i=1

a−m
i

−m
m − 1

{
T

∑
t=1

(
egit
)2

} −m
m−1−1

egit′egit

and conversely, for the same t, but different g,

Hαgt,αg′ t = 4
N

∑
i=1

m
m − 1

a−m−1
i

(
T

∑
t=1

(
eg′it
)2

) −1
m−1−1 (

eg′it
) { T

∑
t=1

(
egit
)2

} −m
m−1

egit.

Entries corresponding to a pair of intercepts from different groups and time periods are given by

Hαgt,αg′ t′ = 4
N

∑
i=1

m
m − 1

a−m−1
i

(
T

∑
t=1

(
eg′it
)2

) −1
m−1−1 (

eg′it′
) { T

∑
t=1

(
egit
)2

} −m
m−1

egit.

Entries corresponding to a group-specific intercept and a common coefficient have the form

Hαgt,ψs =
4m

m − 1

N

∑
i=1
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Finally, diagonal entries corresponding to common coefficients are
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and off-diagonal entries corresponding to a pair of two different common coefficients are given by
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