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Abstract 

The low-frequency movements of economic variables play a prominent role in policy analysis and 

decision-making. We develop a robust estimation approach for these slow-moving trend processes that is 

guided by a judicious choice of priors and characterized by sparsity. We present novel stylized facts from 

longer-run survey expectations that inform the structure of the estimation procedure. The general version 

of the proposed Bayesian estimator with a spike-and-slab prior accounts explicitly for cyclical dynamics. 

We show that it performs well in simulations against relevant benchmarks and report empirical estimates 

of trend growth for U.S. output and annual mean temperature. 
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1 Introduction

Quantifying and characterizing the low-frequency behavior of time series processes has a

long tradition in economics. The appeal of constructing accurate and robust estimates for

the slow-moving trend component of an economic series for informing policy analysis cannot

be overstated. However, as the true low-frequency component is inherently unobserved, its

extraction and validation for guiding economic policy is fraught with difficulties arising from

substantial underlying uncertainty.

The commonly employed state-space approach essentially assumes a particular paramet-

ric structure about the deterministic and stochastic trend components but it tends to exhibit

fragilities to potential misspecification and imposes strong identification requirements. For

example, it is often the case that even a seemingly innocuous misspecification in the trend

component could induce a severe distortion in the estimated trend-cycle decomposition by

erroneously attributing some of the low-frequency persistence to the cyclical dynamics. On

the other hand, adopting a more agnostic approach by starting from an unrestricted set of

nonparametric estimators may produce highly uncertain estimates that are of little practical

relevance. This suggests that to achieve more informative inference, one may need to impose

discipline on the low-frequency movements via prior information that ensure sparsity.

To inform our approach to trend estimation, we present novel survey evidence on “longer-

run” forecasts – which offer a convenient way to define the low-frequency or trend component

– of key variables of interest in the U.S. In addition to the “slow-moving” nature of these

forecasts, we also provide a new stylized fact, summarized by histograms for the first and

second difference of the forecast, that individual forecasters appear to change their long-run

forecasts only rarely. To accommodate these features – slowly-evolving and infrequently-

changing low-frequency component – we rely on sparsity and shrinkage through our choice

of a spike-and-slab prior. This prior information that we impose on the unobserved trend

process is intuitive and aligns with the beliefs of professional forecasters. To allow for high-

frequency cyclical fluctuations, we employ a stationary autoregressive process. We implement
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these ideas by resorting to the Bayesian counterpart of generalized LASSO estimation with

separate penalties on the long-run and short-run components. Our method thus generalizes

some existing procedures for robust trend estimation (Kim, Koh, Boyd, and Gorinevsky

2009, Tibshirani 2014, and Roualdes 2015) with the aim of capturing the salient features of

economic data.

Prominent contributions to the study of the low-frequency behavior of economic series

include Hodrick and Prescott (1980), Beveridge and Nelson (1981), Baxter and King (1999),

Morley, Nelson, and Zivot (2003), among many others. A primary motivation of this litera-

ture is to isolate the low-frequency, slow-moving component of a series – which reflects the

secular and structural factors that underlie its dynamic behavior – from its high-frequency,

possibly cyclical, variations. Potential output, natural rate of unemployment, neutral real

rate of interest, inflation expectations, and common variation in real activity are only a few

examples of such slow-moving latent processes that are often denoted by and referred to as

“stars.” There are numerous papers that have implemented these methodologies in a wide

range of applications across economics and finance (see, for example, Laubach and Williams

2003, Holston, Laubach, and Williams 2017, Del Negro, Giannone, Giannoni, and Tambalotti

2018, Crump, Eusepi, Giannoni, and Şahin 2019 among many others). There is also a well-

established Bayesian literature tailored to trend estimation, e.g., Koop and Potter (2007),

Harvey, Trimbur, and Van Dijk (2007), Grant and Chan (2017b,a), Kamber, Morley, and

Wong (2018) and this larger agenda continues to evolve with recent work such as Hamilton

(2018), Phillips and Shi (2020), Lee, Liao, Seo, and Shin (2021), and Eo and Morley (2022)

among others (see Hodrick 2020 and Canova 2023 for a comprehensive discussion).

The point of departure of this paper from the existing literature is to operationalize

the “slow-moving” trend assumption through an imposition of sparsity that is informed

by survey evidence of financial market participants. In particular, our contributions can be

summarized as follows. First, we provide novel evidence on individual survey forecasts of the

trend component of key economic variables. We utilize non-public data from the Survey of
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Primary Dealers which is the only survey of professional forecasters which explicitly solicits

longer-run forecasts on a consistent basis. Our matched panel data allows us to characterize

the distribution of adjustments to longer-run forecasts over time. On the methodological side,

we contribute to the literature on Bayesian sparse trend estimation utilizing spike-and-slab

priors and a serially correlated cycle component. The embedded sparsity of our estimator

offers an alternative statistical characterization of a “slow-moving” trend. Furthermore, our

Bayesian setup allows us to incorporate uncertainty around our estimates in an internally

consistent manner.

Our main empirical application focuses on the estimation of the low-frequency trend in

real GDP growth. This is a perennial question in empirical macroeconomics with important

implications for monetary and fiscal policy (for recent contributions, see, e.g., Fernald, Hall,

Stock, and Watson 2017, Coibion, Gorodnichenko, and Ulate 2018 and Müller, Stock, and

Watson 2020). Our estimates for 1947–2019 suggest that trend real GDP growth in the

U.S. has been falling since the 1960s and ends the sample at around 2%. Importantly, our

method produces slow-moving trend estimates which do not systematically co-vary with the

business cycle. We contrast our estimates to those based on recently proposed estimators.

We further provide a detailed analysis of the underlying trend in the contributions to real

GDP growth from its constituent components. Despite the fact that these components

generally exhibit different dynamic properties, we find that the individual trends estimated

for the GDP contributions can be aggregated and match closely the direct trend estimate

from headline real GDP growth. We also explore another empirical application based on

mean temperature changes in the U.S. over the last 140 years. We find strong evidence of a

sustained rise in trend temperatures above the ecological targets over the last 45 years.

This paper is organized as follows. In Section 2, we provide heuristic motivation, based

on long-run survey forecasts, for our general estimation approach which is introduced in

Section 3. Section 4 assesses the finite-sample properties of our method across several sim-

ulation designs. Our main empirical applications, which investigate the trend in U.S. mean
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temperature and the trend in U.S. real GDP growth, are provided in Section 5. Section 6

concludes. Finally, the Appendix provides full details on the implementation of our proposed

methodology and a Supplemental Appendix (hereafter, “SA”) contains additional results.

2 Evidence on Survey-Based Trends

In this section, we present new stylized facts about longer-run survey forecasts of profes-

sional forecasters. This empirical evidence will serve as a motivation for the methodological

approach that we introduce later in the paper. To cement ideas, it is useful to discuss a

convenient mathematical formulation of an underlying trend (Beveridge and Nelson, 1981)

of a variable yt as limh→∞ E[yt+h| Ft] where Ft is the information set available at time t.

Thus, this may be interpreted as a very long-run forecast of the variable yt which aligns

directly with our survey data.

We use non-public data from the Federal Reserve Bank of New York’s Survey of Primary

Dealers (SPD). The SPD is conducted by the Trading Desk of the New York Fed one to two

weeks before each regularly scheduled Federal Open Market Committee (FOMC) meeting

and survey respondents are primary dealers (at the time of the survey) to the Federal Reserve

Bank of New York.1 Starting in July 2012 the survey began asking respondents about their

“longer-run” forecasts for relevant economic variables. To our knowledge, the SPD is the

only survey that explicitly solicits forecasts from private-sector respondents on “longer-run”

values of economic variables.2 This stands in contrast to a number of surveys which request

farther in the future forecasts for economic variables with a specific horizon. The SPD

collects longer-run forecasts of real GDP growth, the unemployment rate, the federal funds

rate, and PCE inflation. We obtain an unbalanced panel of these forecasts for the entire

1See https://www.newyorkfed.org/markets/primarydealer_survey_questions. Further information
is available here: https://www.newyorkfed.org/markets/primarydealers.

2The Survey of Economic Projections (SEP), conducted by the FOMC, also reports longer-run values
for these variables which is then mirrored by the SPD. In the SEP, “[l]onger-run projections represent
each participantÕs assessment of the rate to which each variable would be expected to converge under
appropriate monetary policy and in the absence of further shocks to the economy.” See, for example,
https://www.federalreserve.gov/monetarypolicy/files/fomcprojtabl20220921.pdf.
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available sample starting in mid-2012 which comprises 77 survey observations. Our sample

includes 25 different primary dealers of which 16 primary dealers have forecasts for at least

70 of the 77 survey dates.3

Figure 1 presents the time series of different quantiles of the cross-sectional distribution

of forecasts for real GDP growth, the unemployment rate, the federal funds rate, and the

real federal funds rate. The latter is obtained by subtracting the longer-run PCE infla-

tion forecast from the nominal federal funds rate forecast. First, there appears to be clear

commonality in the movement of these longer-run forecasts with only modest disagreement

across respondents. All four variables exhibit a downward trend over our sample period

reflecting the perceived decline in potential output, the natural rate of unemployment, and

the natural rate of interest (e.g., Crump, Eusepi, and Moench 2018, Holston, Laubach, and

Williams 2017, Del Negro, Giannone, Giannoni, and Tambalotti 2018). Notably, the longer-

run forecasts appear remarkably stable even after the onset of the COVID-19 pandemic.

Importantly, across all four variables, we can observe two key properties of these longer-

run forecasts that will later serve to motivate our theoretical approach. First, the longer-run

values of these economic variables are perceived to move over time but in a slow and deliberate

fashion. Second, there are distinct periods of unchanged forecasts along with periods where

forecasts change at a constant rate. This provides suggestive evidence that differences or

second differences of forecasts for longer-run variables regularly take on values of zero.

We can demonstrate these properties by examining the empirical distribution of changes

in longer-run forecasts. Figure 2 shows histograms of the first- and second-differences of

longer-run forecasts from the SPD. Each chart presents two histograms. The first histogram

pools all forecasts across survey respondents and time periods. The second histogram is an

optimal aggregator of the histograms for each individual survey respondent. The weights

are obtained by minimizing the Hellinger distance between the pooled histogram and the

3All of our empirical results are robust to excluding the 9 primary dealers who have shorter reporting
periods.
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optimal-weighted aggregator.4 The most striking feature of Figure 2 is the disproportionate

peak in each histogram at the bin centered at zero. This pattern holds across all variables

and for both first and second differences.5 Importantly, this behavior is driven by exact

zero values rather than very small values. In particular, all four variables have between

80% and 85% of their first differences equal to zero and 66% to 74% of second differences

equal to zero. As we move away from zero, we tend to observe a relatively wide but flat

spread of observations. These histograms do not appear to be consistent with the behavior

of a standard continuous distribution like the Gaussian distribution. Instead, the disparate

behavior for small values relative to larger values (in magnitude) appears more consistent

with a mixture distribution. This is precisely the methodological approach we undertake in

the next section.

3 Sparse Trend Methodology

We begin with a description of the setup adopted throughout the paper. Suppose that we

observe the time series {yt}Tt=1. We assume that yt may be decomposed as

yt = gt + ct, t = 1, . . . , T, (1)

for some “trend” gt and corresponding deviation from trend ct. Without further assumptions,

we cannot make any progress in separating gt from its deviation. To see this, note that we

can set ĝt = yt and fit the data with no error. To avoid such an outcome, a popular class of

estimators of the trend takes the form:

min
g1,...,gT

T∑
t=1

(yt − gt)
2 + λg

T∑
t=1

ℓ
(
∆kgt

)
, (2)

4For more details and an application of this aggregation approach to asset-pricing models, see Gospodinov
and Maasoumi (2021).

5In unreported results, we confirm that the same patterns hold at the individual forecaster level. These
results are omitted to comply with data confidentiality restrictions of the SPD.
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where ∆k denotes the k-th order difference operator for k ≥ 1 and ℓ(·) is a penalty function

with penalty parameter λg. When ℓ(z) = z2 and k = 2, we obtain the HP filter (Hodrick

and Prescott 1980). Similarly, for ℓ(z) = |z| and a fixed k we obtain the trend filter of

Tibshirani (2014).6 Finally, when ct is an independent white noise process, ℓ(z) = z2, and

k = 1, then this is the Gaussian log-likelihood function of the local level model, where

∆gt = vt for some white noise process {vt}Tt=1. This latter case demonstrates clearly the

direct link between the “nonparametric” formulation of the trend-estimation problem and

the class of unobserved components models often cast in state-space form. In this example,

the observation equation is equation (1) and the state equation is gt = gt−1 + vt, where

equation (2) nests the log-likelihood function.7

To make further progress, we appeal to the common assumption of a “slow moving”

trend. This assumption is implemented, in practice, almost exclusively by modeling the trend

component as non-stationary with a “small” innovation variance. Our approach, instead,

aims to induce the desired low-frequency behavior through sparsity in the changes in the

estimated trend component. As a convenient way to model the slow-moving trend and its

associated estimation uncertainty, we develop our methods within a Bayesian framework.

We impose sparsity by utilizing a spike-and-slab prior on the kth difference in the trend

component, ∆kgt. A spike-and-slab distribution is a mixture of one tightly concentrated

density (the “spike”) and a more diffuse density (the “slab”) which weakens the link between

small movements and large movements in the random variable. This accommodates slow-

moving dynamics without compromising some occasional swiftness of movement in the series.

In Appendix A.1, we provide further details and discuss the linkage with existing approaches.

Following a long tradition in economics, we assume that the deviation from trend (the

“cycle”) is serially correlated over time with degree of persistence determined by a parameter

6For a Bayesian approach to the trend filter, see Roualdes (2015).
7Grant and Chan (2017b) show that the HP filter can be obtained as the posterior mean of a Bayesian

state-space model under the assumption of uncorrelated trend and white-noise cycle components, and the
penalty parameter equal to the inverse of the signal-to-noise ratio.
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vector γ. For parsimony, we assume ct = yt − gt follows an AR(q) with8

ct = γ1ct−1 + · · ·+ γqct−q + ϵt, (3)

where γ = (γ1, . . . , γq)
′. This approach for the cycle component leads to a more general form

of equation (2),

min
γ,g1,...,gT

T∑
t=1

ϵ2t + λg

T∑
t=1

ℓ
(
∆kgt

)
+ λγ

q∑
i=1

|hi(γ)|, (4)

where hi(γ) represents a transformation of the autoregressive parameters and λγ is the

associated penalty parameter. Two natural choices for hi(·) are hi(γ) = γi and hi(γ) = φi,

where φi is the i-th partial autocorrelation coefficient (see Schmidt and Makalic 2013 for

regularization of partial autocorrelation coefficients when gt is constant over time).

We assume that the observed data y = (y1, . . . , yT )
′ satisfies

y | g, γ, σ2 ∼ N (g, σ2 · Vγ), (5)

where Vγ denotes the variance-covariance matrix of a strictly stationary AR(q) process with

unit innovation variance. We propose the following prior (and hyperprior) distributions on

the parameters. First, we assume that the trend, g = (g1, . . . , gT )
′, satisfies

g | σ2, ω, γ ∼ N (0, σ2Vγ,11 · Σg), Σ−1
g = D′

kdiag(ω1, . . . , ωT−k)
−1Dk, (6)

where Vγ,11 is the (1, 1) element of Vγ. This additional factor ensures that our approach is

scale invariant to yt.
9 Here, Dk is the (T − k)× T , k-difference matrix which maps a vector

8The focus here is on the low-frequency behavior of the observed process. Instead, if estimation of the
cyclical component was the primary interest, then incorporating features such as outlier-augmented stochastic
volatility may be appropriate (e.g., Stock and Watson 2016, Carriero, Clark, Marcellino, and Mertens 2022).

9In some contexts, an alternative that does not scale Σg may be preferred (Moran, Ročková, and George
2019).
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(x1, . . . , xT )
′ to (∆kxk+1, . . . ,∆

kxT )
′.10 The ωj are the mixing variables for the Laplace

distribution with mixing weights for g, {ωj : j = 1, . . . , T − k}, which are conditionally

independent with corresponding density

p (ωj | λg, λ0, θj) = (1− θj)
λ20
2
exp

{
−λ20ωj

2

}
+ θj

λ2g
2
exp

{−λ2gωj

2

}
, (7)

where λ0 is fixed at a large number such that λ0 >> λg and θj is a dichotomous variable.

This corresponds to the continuous spike-and-slab setup (see Ročková and George 2018),

where θj can take on the value 0 (the “spike”) or the value of 1 (the “slab”), governed by

λg. The parameter λg has the interpretation of representing a signal-to-noise ratio, where

the “signal” corresponds to the underlying trend, gt. The combination of equations (6) and

(7) correspond to the placement of a spike-and-slab prior on the kth difference of gt.

Further, it is assumed that θj are distributed as

θj ∼ Bernoulli(ξ) (8)

with common parameter ξ, where

ξ ∼ Beta(a, b). (9)

Here, a and b are hyperparameters. In our implementation, we choose a = b = 1 which corre-

sponds to a uniform prior.11 Next, as in Park and Casella (2008), we place an uninformative

prior on σ2 as

p(σ2) = 1/σ2. (10)

10The matrix Σ−1
g is sparse. Drawing upon the insights from Chan and Jeliazkov (2009), Chan (2013),

and Grant and Chan (2017a) we can exploit this sparsity for computational advantages. See the Appendix
for full details.

11In some situations, one may want to place much more informative priors on ξ. Here, we choose an
uninformative prior to be as conservative as possible to demonstrate that our results are not driven by the
specific prior.
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Finally, λg is distributed as λg ∼ Γ(rg, δg) with hyperparameters rg and δg, where rg is

the shape parameter, and δg is the rate parameter. In principle, we could estimate λg via

an empirical Bayes approach; however, we have found that a diffuse gamma prior gives

similar posterior median estimates but is more computationally efficient and also allows us

to accommodate the uncertainty from this parameter.

For the cycle component, c = (c1, . . . , cT )
′ we assume that c ∼ N (0, σ2Vγ). Next,

following a similar approach as for the trend, we impose12

γ | τ ∼ N (0,Σγ), Σγ = diag(τ1, . . . , τq), (11)

and the mixing weights τj are conditionally independent for j = 1, . . . , q with density

p (τj | λγ) =
(λγ)

2
j

2
exp

{−(λγ)
2
jτj

2

}
. (12)

Finally, the additional penalty parameter λγ is distributed as,

λγ ∼ Γ(rγ, δγ), (13)

with hyperparameters rγ and δγ, where rγ is the shape parameter, and δγ is the rate pa-

rameter. In our empirical implementation, we choose rγ and δγ that result in a relatively

tight prior distribution for λγ around a small value. As we have discussed, our motivation

is to have a cyclical component around a slow-moving trend which corresponds to little to

no prior penalization on this term. To implement our Bayesian approach we rely on a Gibbs

sampling algorithm with a Metropolis-Hastings step for the cycle component. Appendix A.2

provides full operational details along with the choices for the hyperparameters. The pro-

posed method can also be implemented when the cycle component is assumed to be white

noise (see Section SA.1 in the SA).

12The formulation using partial autocorrelation coefficients is omitted to conserve space and is available
upon request from the authors.
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4 Simulation Evidence

Before we move to our empirical applications, it is useful to assess the performance of our

proposed procedure in a controlled environment. In this section we demonstrate the posi-

tive qualities of our proposed procedure as compared to common alternatives in a series of

simulation experiments. Even though our model is motivated by slow-moving trends, we

will explore different data generating processes to assess the performance of our estimator

in more general settings. In the first design, we generate simulated data in levels to mimic

the real GDP application in Section 5. This design is based on the unobserved components

model of Morley, Nelson, and Zivot (2003) given by,

yt = gt + ct,

gt = gt−1 + µ+ ϵgt , ct = γ1ct−1 + γ2ct−2 + ϵt.

Here y1 = 724.60, µ = 0.81, (γ1, γ2) = (1.53,−0.61), and ϵgt ∼i.i.d. N (0, 0.692) and ϵt ∼i.i.d.

N (0, 0.622) and are mutually independent (see Table 1 in Morley, Nelson, and Zivot 2003).

We refer to this data-generating process (DGP) as the “Level Model.”

The remaining designs are meant to mimic the properties of growth rate data. All of the

designs have the following general structure,

yt = µ+ gt + ct,

gt = gt−1 + ϵgt , ct = γ1ct−1 +
√

(1− γ21) exp(ht/2)ϵt,

where µ = 3, ϵgt and ϵt are i.i.d. and mutually independent. We choose either ϵt as standard

normal or distributed as a chi-square with 3 degrees of freedom (centered and scaled to

have mean zero and variance one). Under homoskedasticity, we set ht = 0 ∀t and otherwise

use the following stochastic volatility process: ht is an AR(1) (ht = 0.98ht−1 + ϵht ), where

ϵht is independent of all other variables and ϵht ∼ N (0, 0.12). We use the designs featuring
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stochastic volatility and non-Gaussian errors to assess the sensitivity of all of the procedures

to the presence of outliers and time-varying variances. Finally, we consider the following

choices of ϵgt :

• Smooth Trend Model. For this model ϵgt ∼ N (0, 0.062). This choice is based on the

commonly-used “shifting endpoint” random walk trend (e.g., Stock and Watson 1989).

• Small Structural Break Trend Model. For this model ϵgt ∼ N (0, 0.052) with

probability p1 and ϵgt ∼ N (0, 0.052 + 0.152) with probability 1 − p1. We set p1 to 5%

for a trend which features infrequent, modest in magnitude, and discontinuous moves.

• Large Structural Break Trend Model. Here, we set ϵgt ∼ N (0, 0.8) with prob-

ability p1 and ϵgt ∼ N (0, 0.0012) with probability 1 − p1. We set p1 = 0.02 so that

structural breaks are rare but likely to be dramatic when they occur. This design

allows for sharper movements in the underlying trend – violating the “slow moving”

assumption – with a random timing and magnitude of the breakpoints.

We also consider a number of competing estimation procedures. The first alternative is

the HP boosting procedure of Phillips and Shi (2020) which iterates the HP filter based on

L2-boosting as a data-driven approach to adapt the degree of smoothness. All results are

based on a maximum of 100 iterations using an initial smoothing parameter of either 100,

1, 600 or 14, 400. In addition, we consider two wavelet-based estimators: the biorthogonal

17/11 wavelet filter used in Yogo (2008) and the reflected one-sided Haar wavelet filter of

Lubik, Matthes, and Verona (2020) (see also Canova 2023). To implement our procedures,

we follow the same approach as we do later in all of our empirical applications which is

summarized in Appendices A.2.1 and SA.1 (in the SA). For specifications with a serially

correlated cycle component, we choose q = 4. Finally, all simulations are based on 1,000

Monte Carlo simulations with a sample size of T = 250.

To evaluate performance, we use the root mean-square error (RMSE) between the es-

timate and the true trend. In each table we report the minimum and maximum of these
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metrics along with the mean and the 10th, 25th, 50th, 75th, and 90th percentiles of the

realized RMSE across simulations.

Table 1 reports results for the level model. We only consider k = 2 in this case as the

smooth (essentially) monotonic behavior of stock variables is inconsistent with recurrent

periods of zero change. The RMSE values in the table and all other tables are reported as

ratios relative to the benchmark of k = 2 with a serially correlated cycle. The benefit of

including a cycle is demonstrated clearly in the first row when comparing to the case of k = 2

with a white noise cycle. As compared to HP boosting and the two wavelet approaches, we

outperform in the vast majority of the cases with only slight underperformance in the worst

case RMSE. We also make comparisons to the standard state-space model (the restricted

model of Morley, Nelson, and Zivot 2003) which is correctly specified in this design. Our

method outperforms the one-sided estimate uniformly but is dominated by the two-sided

estimate, which is the MLE in this model, for about half of the simulations; however, the

two-sided estimate can sometimes have very large RMSEs which our procedure avoids.

We next consider the smooth trend case which is the most common specification in the

literature. Table 2 shows that our procedures for both k = 1 and k = 2 consistently out-

perform HP boosting and wavelets.13 Even the closest competitor in this design – the Haar

wavelet – exhibits an increase in RMSE of over 30%. Furthermore, allowing for stochastic

volatility in the cycle component does not materially alter these conclusions.14

Table 3 presents results for the small structural break model. Again, we find that our

method (both k = 1 and k = 2) dominates the competing alternatives. Perhaps unsurpris-

ingly, the k = 1 estimator, which is better suited to the true trend process in this case, tends

to perform best although its performance deteriorates under stochastic volatility and/or non-

Gaussian innovations (Table 4). The robustness of the k = 2 estimator relative to all other

13Here and throughout we always apply the HP boosting procedure to the level of the series and then, if
necessary, translate to an estimate of the trend of the growth rate. We do so to ensure that the HP boosting
procedure does not simply return the HP filter using the initialized smoothing parameter.

14To conserve space, we report the design with chi-square innovations to the cycle component in Table
SA.1 of the SA.
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methods is clear from both of these tables. For example, in the case of stochastic volatility

and chi-square errors, the rise in RMSEs of the alternative methods varies from about 25%

to well over 100%.

Finally, Table 5, presents results for the large break trend model with chi-square in-

novations to the cycle component. Because this design allows for sharp structural breaks

in the trend, it is inherently disadvantageous to our procedures which are predicated on

a slow-moving trend. However, Table 5 demonstrates the appealing robustness properties

of our procedure with k = 2 as it still outperforms the competitors and especially reduces

worst-case RMSE.

In the SA, we report additional simulation results for a number of different designs

including the case where the true cycle is white noise. Importantly, we find that allowing

for a serially-correlated cycle leads to very little deterioration in performance. This suggests

that the cost of being more agnostic about the true DGP is relatively low. More generally, all

of the simulation results in the SA are qualitatively similar to those presented in this section

and underscore the appealing properties of our procedure. In sum, we find that our procedure

performs well as compared to common alternatives for both k = 1 and k = 2. Between the

two options, k = 2 may be preferred due to its demonstrated robustness properties. However,

the procedure using k = 1 offers some advantages depending on the underlying nature of the

process of interest.

5 Empirical Applications

We explore two main empirical applications. The first example considers the trend in the

annual mean temperature change in the United States. The second application provides a

comprehensive investigation of the underlying trend in real GDP and its components. In the

SA we present an additional empirical example studying the underlying trend in total factor

productivity (TFP) growth.
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5.1 Temperature Change in the United States

We first apply our estimator to data of the annual mean temperature change in the United

States obtained from NASA, which cover the sample period 1880-2023.15 The data are

expressed as a deviation from the average temperature (in Celsius) over 1951–1980. Figure

3 presents these results. The top row shows the estimated underlying trend for both k = 1

and k = 2 using the approach introduced in Section 3. When k = 1, we observe that

the underlying trend displays more pronounced local movements whereas for k = 2, the

results are much smoother. Nevertheless, both trend estimates display a clear and strong

upward trend since around 1980. Each of the charts in the top row also show the estimated

underlying trend under the assumption that the cycle is white noise. The similarity in the

estimated trends, with and without a serially correlated cycle, highlights that the flexibility

of a a serially correlated cycle does not appear to be costly in practice (as was also discussed

in the previous section).

To assess the uncertainty around these estimates, the bottom left chart presents the

estimated trend for k = 2 along with a 90% pointwise posterior coverage interval. We can

observe that the estimated trend is precisely estimated. For example, the deviation from

the mean rose from 0.08 ◦C in 1979 (with 90% coverage interval of [−0.06, 0.24]) to 1.17 ◦C

in 2023 (with 90% coverage interval of [0.93, 1.41]). We can draw even stronger conclusions

by constructing uniform confidence bands as described by Olea and Plagborg-Møller (2019).

To obtain the 90% uniform coverage interval, we construct a symmetric pointwise posterior

coverage interval and increase the coverage rate until 90% of the posterior draws lay entirely

within the band. The bottom right chart shows the corresponding uniform coverage interval.

We first observe that it is much wider than its pointwise counterpart as would be expected.

Second, and more importantly, we can clearly rule out that the current levels of the trend

are consistent with the prevailing trend up to 1980. More specifically, no horizontal line

(or monotonically decreasing function) resides entirely within the band implying that the

15Data are available at https://data.giss.nasa.gov/gistemp/graphs_v4/.
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underlying trend has indeed shifted upward.

5.2 Real GDP Growth

As our main empirical application, we study the underlying trend in real GDP in the United

States in the post-war era. The estimate of the unobserved trend component in real GDP

growth, which is stripped of cyclical fluctuations, can inform policymakers of the long-run

potential of the U.S. economy. The data is quarterly real GDP over the sample period of

1947:Q1–2023:Q4. We estimate the underlying trend in both the (log) level of real GDP

and in its quarterly, annualized growth rate. As an additional exercise, we also construct

a “bottom-up” estimate of the trend using the individual component contributions to real

GDP growth.

We first estimate the trend in the log level of real GDP using k = 2 and q = 4 lags in

the cycle component. Figure 4 presents the results from the estimation exercise. The left

chart shows the log level of real GDP along with the estimated trend. Broadly speaking,

we can observe that the trend is steeper in the first half of the sample than in the second

half. Moreover, the trend flattened noticeably starting at around the Great Financial Crisis

(GFC). Finally, despite the substantial drop in real output during the pandemic, the trend

estimate does not appear to have been affected. In the right chart, we show the corresponding

output gap estimate. We want to highlight a few additional noteworthy points. First, the

output gap in the Great Recession does not appear to be unusually deep but it remains

persistently negative for longer than any other post-war U.S. recession. The depth of the

output gap in this episode is modulated by an appreciable estimated slowdown in trend

growth in the 2000s with a strong positive output gap prior to the GFC. The output gap

was closed by about mid-2019 before becoming deeply negative during the pandemic. As of

2023:Q4 the output gap appears to be essentially closed.

Based on the results shown in Figure 4, we can estimate trend real GDP growth which

is also of key importance to policymakers. This is shown in the top left chart of Figure 5
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along with 90% posterior coverage intervals against the backdrop of realized (annualized)

real GDP growth.16 As is well known, the first half of the sample period is characterized by

more frequent recessions (denoted by the shaded areas) and higher output growth volatility.

Despite this heterogeneous behavior, the estimated trend is smooth and slow-moving. The

estimated trend has been declining over the sample and stands at 2.16% in the last quarter

of 2023. This is lower than the CBO’s estimate of potential growth (2.26% in 2023Q4) but

above the median respondent from the SPD (1.9% in December 2023).

In the top right chart of Figure 5 we show the estimated trend when our procedure is

applied directly to real GDP growth (rather than the level). We find a similar pattern in the

estimated trend growth – broadly decreasing over the sample – but the degree of uncertainty

is substantially larger especially at the endpoints. As such, we use the estimated trend

obtained from the level of real GDP growth as our baseline. It is worthwhile to note that

both of these trend estimates appear to be unaffected by the extreme volatility in real GDP

observed during the pandemic.

For comparison, we consider several alternative approaches commonly used in the eco-

nomic literature for decomposing economic series into trend and cycle. The workhorse models

for estimating the trend and the cyclical component are the unobserved components (UC)

models. The closest UC model to our approach is the Bayesian UC (BUC) of Grant and

Chan (2017b) which specifies a random walk trend in the growth rate of real GDP along

with an additive ARMA cyclical component. The bottom left chart of Figure 5 presents our

trend estimate along with that of Grant and Chan (2017b) with a choice of an AR(2) cycle.

Although the estimated trends broadly co-move, we can observe that the BUC trend esti-

mate is more volatile and displays residual cyclical behavior, tending to achieve local minima

in NBER recessions. This demonstrates the advantages of our sparse modeling framework

which produces trend estimates that do not systematically co-vary with the cycle.

The literature has highlighted some fragilities in the estimation of UC models and, as a

16The y-axis has been truncated because of the extreme observations in real GDP growth that occurred
during 2020.
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result, flexible trend estimation approaches may be preferred due to their ostensible robust-

ness properties. We consider the same alternative trend estimation methods that we explored

in the simulation experiments. In the bottom-left chart we present the trend estimate from

the Haar wavelet which is based on moving averages with different windows (Lubik, Matthes,

and Verona 2020). As with the BUC, this estimate exhibits residual cyclical behavior and

more substantial volatility than our trend estimate.

By far, the most common technique for estimating low-frequency trends in economic

time series is the HP filter (Hodrick and Prescott 1980). Recently, Phillips and Shi (2020)

have refined the original HP filter to produce a data-driven implementation with desirable

theoretical properties. In the bottom right chart of Figure 5, we present the estimated trend

for real GDP growth rate, based on an application of the original HP filter and the boosted

HP filter. We apply these procedures to the level of log real GDP as is the standard approach

in practice. We can see immediately that the estimated trend growth rate is far more volatile

than that of our procedure. Moreover, the recession shading illuminates that the variability

of the two trend estimates appear to be governed by the state of the business cycle. In

particular, trend real GDP growth is adjudged to be at its local minimum around recessions

throughout the sample. Furthermore, during the Great Recession, the HP-boosted estimate

of trend growth falls below zero which would have suggested far less slack in the economy.

In contrast, our trend estimates do not exhibit any cyclical behavior which is more akin to

an HP filter with a very large choice of the penalty parameter (see, for example, Coibion,

Gorodnichenko, and Ulate 2018). Finally, we also include results based on the biorthogonal

17/11 wavelet filter (Yogo 2008). Similar to the HP filter, this approach also produces an

estimate which is more variable and cyclical than our method.

There is a natural commonality in all of the approaches to low frequency estimation as

they can accommodate different behavior with different choices for the tuning parameter.

All of these approaches, for a specific choice of tuning parameter, would produce trend

estimates that are similar to our method. However, it is important to emphasize that our
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tuning parameter selection is conducted in a data-driven way and obviates the need for “rules

of thumb” based on the frequency of the data.

Although trend estimates of real output are relatively common in the literature, the

underlying components generally receive scant attention. A bottom-up approach to trend

estimation may reveal differential properties than using aggregate output as the target series.

In Figure 6, we apply our methodology to the underlying contributions to real GDP growth

from personal consumption expenditures, residential investment, business fixed investment,

federal government expenditures, state and local government expenditures, net exports and

the change in inventories.17 The charts in Figure 6 show the realized series along with our

trend estimate.

Several features of the data are worth noting. A few series display outsized volatility at

the beginning of the sample, likely representing the transition into a post-war economy. The

so-called Great Moderation – a decline in the variability in real GDP growth starting in the

mid 1980s – is only reflected in the underlying behavior of a subset of series. In particu-

lar, residential investment, federal government expenditures, and the change in inventories

exhibit pronounced reductions in volatility in the second half of the sample. Finally, the

different sub-components of real GDP growth appear to display different serial correlation

properties around a time-varying central tendency.

Figure 6 shows that across all of the components, we estimate relatively slow-moving

trends. For example, the trend growth rate of personal consumption expenditures (which

represents the dominant component of U.S. GDP) largely follows similar dynamics as for real

GDP growth with a global peak in the mid-1960s at about 2.5% (k = 2) and a sharp drop

from 2.3% in the late 1990s to a local trough of 1.3% in 2011 before recovering to about 2%

at the end of the sample. Another notable series which exhibits interesting trend dynamics

is the state and local government contribution to real GDP growth. Our estimates suggest

17All series are available from https://fred.stlouisfed.org/: Real GDP (GDPC1); Personal
Consumption Expenditures (DPCERY2Q224SBEA); Change in Inventories (A014RY2Q224SBEA); Residential
Investment (A011RY2Q224SBEA); Business Fixed Investment (A008RY2Q224SBEA); Federal Government
(A823RY2Q224SBEA); State & Local Government (A829RY2Q224SBEA); Net Exports (A019RY2Q224SBEA).
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that the trend growth has been broadly declining and fell to about zero in the aftermath of

the Great Recession but has recovered steadily since then.

The underlying components of real GDP growth can be used as a pseudo “out-of-sample”

metric to investigate the robustness properties of our approach. The underlying contributions

display heterogeneous dynamics such as different volatility regimes, changes in persistence,

and more pronounced non-Gaussian features. In this respect, we exploit the richness of

the GDP data to assess the robustness properties of our trend estimation procedure. The

bottom right chart in Figure 6 compares the “top-down” and “bottom-up” trend estimates

using our methodology. By “top-down” we refer to trend estimation based on aggregate real

GDP growth as reported in Figure 5 and “bottom-up” refers to adding up the trend estimates

of the sub-components. We can observe that there is essentially no difference between the

two approaches with an average absolute deviation of 6 basis points.

6 Conclusion

Many variables of interest in economics and finance are obtained by decomposing observable

processes into unobserved components. This is innately a challenging problem as assumptions

are necessary to reliably separate the contributions from each component. In this paper,

we adopt an approach motivated by the frequently used notion that the economic trend of

interest is “slow-moving.” Using novel survey data, we show that perceptions of slow-moving

trends are characterized by sparse adjustments. We incorporate this observation to inform

the priors in a general Bayesian framework for trend estimation. We combine spike-and-

slab priors on changes in the underlying trend with a setup where the deviation from trend

is allowed to be serially correlated. This ensures that our estimated trend features sparse

adjustments and that it can capture the dynamics of commonly used series in economics.

We illustrate in simulations that our method performs well.

We apply our method in two empirical settings: mean temperature changes in the U.S.
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over the last 140 years, and post-war real GDP growth and its sub-components. In our

climate application, we estimate a clearly upward underlying trend with an inflection point

around 1980. Based on the trend estimates at the end of our sample, one would anticipate

a rise in temperatures of between 0.2 and 0.3 ◦C over the next ten years. In our primary

application, we estimate that trend real GDP growth in the U.S. has been falling since the

1960s and now stands slightly above 2%. While we show that trend estimates from other

popular procedures appear to inherit some residual business cycle cyclicality, our method

produces slow-moving trend estimates which do not systematically co-vary with the cycle.

Our method can be readily extended to a multivariate setting. We saw in the SPD

data that the longer-run forecasts appear to co-move across different economic variables,

suggesting that they could be modeled jointly. Moreover, this could be beneficial as using

external information or a multivariate model to impose economic restrictions (e.g., Phillips

curve, Okun’s law, etc.) is likely to sharpen identification and inference (e.g., see Müller,

Stock, and Watson 2020). Our method is also applicable in settings – for example, impulse

responses in local projection models – that may require flexible de-trending of the data prior

to the analysis. These extensions are currently under investigation by the authors.

References

Baxter, M., and R. G. King (1999): “Measuring Business Cycles: Approximate Band-
Pass Filters For Economic Time Series,” Review of Economics and Statistics, 81(4), 575–
593.

Beveridge, S., and C. Nelson (1981): “A New Approach to Decomposition of Economic
Time Series into Permanent and Transitory Components with Particular Attention to
Measurement of the ‘Business Cycle’,” Journal of Monetary Economics, 7(2), 151–174.

Canova, F. (2023): “FAQ: How Do I Measure the Output Gap?,” Working paper.

Carriero, A., T. E. Clark, M. Marcellino, and E. Mertens (2022): “Address-
ing COVID-19 Outliers in BVARs with Stochastic Volatility,” Review of Economics and
Statistics, pp. 1–38.

Chan, J. C., and I. Jeliazkov (2009): “Efficient Simulation and Integrated Likelihood
Estimation in State Space Models,” International Journal of Mathematical Modelling and
Numerical Optimisation, 1(1-2), 101–120.

21



Chan, J. C. C. (2013): “Moving Average Stochastic Volatility Models with Application to
Inflation Forecast,” Journal of Econometrics, 176(2), 162–172.

Coibion, O., Y. Gorodnichenko, and M. Ulate (2018): “The Cyclical Sensitivity in
Estimates of Potential Output,” Brookings Papers on Economic Activity, 49(2), 343–411.

Crump, R. K., S. Eusepi, M. Giannoni, and A. Şahin (2019): “A Unified Approach
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Appendix

A.1 Discussion of Slab and Spike Prior

In the frequentist case, a popular way to induce sparsity is to cast the estimator as a solution

to a generalized LASSO problem. From a Bayesian perspective, the trend filter can be

motivated following Park and Casella (2008). Park and Casella (2008) study the standard

linear regression setting, where Y |X, β, σ2 ∼ N (Xβ, σ2IT ) and

p(β1, . . . , βp|σ2) =

p∏
j=1

1

2
√
σ2

exp

{
−λ |βj|√

σ2

}
. (A.1)

In its hierarchical form,18

β1, . . . , βp
∣∣σ2,κ1, . . . ,κp ∼ N

(
0, σ2 · diag (κ1, . . . ,κp)

)
, (A.2)

p
(
κ1, . . . ,κp|σ2, λ

)
=

p∏
i=1

(
λ2

2

)
exp

{
−λ2κi

2

}
(A.3)

with p(σ2) = 1/σ2.

18The hierarchical form uses the representation of the Laplace distribution as a scale mixture of normals
(with an exponential mixing density). See Park and Casella (2008) for further discussion.
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The Bayesian trend filter can then be obtained setting p = T , X = IT , gt = βt and

the priors applied to each of the ∆kgt (Roualdes 2015). We instead utilize a spike-and-slab

prior which weakens the link between small movements and larger movements in the ran-

dom variable. It is instructive to compare the prior assumptions underpinning the Bayesian

LASSO above to our spike-and-slab formulation. In the Bayesian LASSO, sampling is per-

formed from a single Laplace density. In contrast, Figure A.1 provides an example of the

two Laplace densities that comprise the the continuous spike-and-slab setup.19 The blue line

represents the “spike” and the red line represents the “slab”. We observe clear similarities

in the implied mixture distribution of Figure A.1 and the survey data presented in Figure 2.

Figure A.1: Spike and Slab Densities. This figure illustrates the roles of the two
densities in the continuous spike and slab setup.
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Although our focus is on the “slow-moving” trend assumption, there is a closely related

literature that endeavors to impose sparsity but with the allowance of much larger, occasional

movements – primarily with respect to time-varying parameter models. Two notable strands

of this literature are Bayesian change point models (e.g., Koop and Potter 2007, Dufays

and Rombouts 2020, and Dufays, Li, Rombouts, and Song 2021) and Bayesian shrinkage for

time-varying parameters (e.g., Florian Huber and Onorante 2021 or Prüser 2021). While this

literature is related to our approach, these procedures are motivated by different assumptions,

19In practice, when we implement the spike-and-slab formulation, the difference between the two densities
is even more extreme but we diminish the differences in Figure A.1 for presentation purposes.
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and so we do not consider them further in this paper.

A.2 Description of Gibbs Sampling Algorithm

This Appendix provides detailed steps on how to implement the estimation procedure intro-

duced in Section 3. Section A.2.1 provides the steps for the Gibbs sampler whereas further

details underlying each individual step are given in Appendix A.2.2. Finally, Section SA.1

in the Supplemental Appendix provides steps for the case of a white-noise cycle.

A.2.1 Implementation Steps

Throughout, we use the same notation as in Section 3. In addition, define S :=
∑T−k

j=1 θj.

For convenience, we partition the density of the cycle component, c = (c1, . . . , cT )
′, as,

p
(
c| γ, σ2

)
= p
(
cq+1:T | c1:q, γ, σ2

)
p
(
c1:q | γ, σ2

)
, (A.4)

where c1:q are the first q observations of ct, cq+1:T are the last T − q observations, and

p
(
cq+1:T | c1:q, γ, σ2

)
∝ 1

σ(T−q)
exp

{
−(c−Bc,qγ)

′(c−Bc,qγ)

2σ2

}
(A.5)

with Bc,q denoting a (T − q)× q matrix with i-th row equal to (ci+q−1, ci+q−2 . . . , ci). For the

initial conditions we have,

p
(
c1:q | γ, σ2

)
∝ 1

det(σ2Vγ)1/2
exp

{
−
c′1:qV−1

γ c1:q

2σ2

}
. (A.6)

In addition, define vsc(γ) = σ2 ·Vγ,11. Note that the Metropolis-Hastings step (Step 8 below)

is required to draw γ in the Gibbs sampler because (1) we assume a strictly stationary

autoregressive process and (2) the prior variance of the trend g is a function of Vγ. However,

we follow the approach of Del Negro, Giannone, Giannoni, and Tambalotti (2019), tailored

to our setting, and use the conditional distribution of the LASSO estimator (conditional on
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the q initial conditions of c = y − g) as our candidate distribution. This results in a simple

accept-reject rule which performs well in practice. Consequently, our Gibbs sampler remains

computationally efficient with standard software implementation.20 The steps of the Gibbs

sampler are as follows:

1. Draw (λg | g, γ, σ2, θ, rg, δg) ∼ Γ

(
S + rg, δg +

∑T−k
j=1

θj |(Dkg)j |√
vsc(γ)

)
.

2. Draw (σ2 | y, g, γ) ∼ Inverse-Gamma
(
T − k

2
, 1

2

(
(y − g)′V−1

γ (y − g) + 1
Vγ,11

g′Σ−1
g g
))

.

3. Draw (ξ | θ) ∼ Beta(S + a, T − k − S + b).

4. Draw each (θj | g, γ, σ2, λg, λ0, ξ) as an independent Bernoulli random variable with

P (θj = 0) =
(1− ξ)λ0e

−
√

λ2
0(Dkg)

2
j/vsc(γ)

(1− ξ)λ0e
−
√

λ2
0(Dkg)

2
j/vsc(γ) + ξλge

−
√

λ2
g(Dkg)

2
j/vsc(γ)

,

P (θj = 1) =
ξλge

−
√

λ2
g(Dkg)

2
j/vsc(γ)

(1− ξ)λ0e
−
√

λ2
0(Dkg)

2
j/vsc(γ) + ξλge

−
√

λ2
g(Dkg)

2
j/vsc(γ)

.

for j = 1, . . . , T − k.

5. Draw each ( 1
ωj

| g, γ, θj, λg) ∼ Inverse-Gaussian

(√(
(1−θj)λ2

0+θjλ2
g

)
vsc(γ)

|(Dkg)j |2
, (1− θj)λ

2
0 + θjλ

2
g

)
independently for j = 1, . . . , T − k.

6. Draw (g | y, σ2, γ, ω) ∼ N
((

V−1
γ + σ2

vsc(γ)
Σ−1

g

)−1

V−1
γ y, σ2

(
V−1
γ + σ2

vsc(γ)
Σ−1

g

)−1
)
. See

Remark 1 below.

7. Draw (λγ | γ, rγ, δγ) ∼ Γ
(
q + rγ, δγ +

∑q
j=1 |γj|

)
.

8. Given the values in Steps 1–7, jointly draw (γ,Σγ) through the following steps:

20In our simulations and empirical exercises, we use MATLAB. As a reference, the estimation of the trend
in real GDP (T = 308) takes less than 35 seconds based on 100,000 posterior draws, 50,000 of which we
discard as burn-in draws.
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(a) Draw each ( 1
τoj
) ∼ Inverse-Gaussian

(∣∣∣λγ

γj

∣∣∣ , λ2γ) independently for j = 1, . . . , q.

Set Σo
γ = diag(τ o1 , . . . , τ

o
q ).

(b) Draw γo ∼ N
(
CB′

c,qcq+1:T , σ
2C
)
, where C = (B′

c,qBc,q +σ2
(
Σo

γ

)−1
)−1 and cq+1:T

is the vector comprised of the last T − q elements of c.

(c) Let γ(t) denote the previous Gibbs draw of γ. If γo implies a stationary cycle

component, set (γ,Σγ) = (γo,Σo
γ) with probability

min


(
(Vγ(t),11)

T−k|Vγ(t) |
(Vγo,11)T−k|Vγo|

)1/2

exp

c
′
1:q

(
V−1
γ(t) − V−1

γo

)
c1:q

2σ2
+
g′Σ−1

g g

2σ2

(
1

Vγ(t),11

− 1

Vγo,11

) , 1


and set (γ,Σγ) =

(
γ(t),Σ

(t)
γ

)
otherwise.

In our empirical implementations, we choose λ0 = 100, (rg, δg) = (0.25, 2.5) for k = 1, and

λ0 = 4, 000, (rg, δg) = (0.0075, 2.25) for k = 2. We also choose (rγ, δγ) = (0.5, 0.25). The

empirical applications (simulation exercises) are based on 100,000 (40,000) posterior draws,

50,000 (20,000) of which we discard as burn-in draws.

Remark 1. In Step 6, we follow Chan and Jeliazkov (2009), Chan (2013), and Grant and

Chan (2017a). We define all banded matrices as sparse matrices (using the speye, spdiags,

and sparse commands inMatlab). We need to draw, (g | y, σ2, γ, ω) ∼ N
(
B−1V−1

γ y, σ2B−1
)
,

where B = V−1
γ + σ2

vsc(γ)
Σ−1

g . To do so, we obtain the Cholesky factor C of B, convert the

banded C matrix into a sparse matrix, and solve C ′Cµ = V−1
γ y for the conditional mean µ

(using C\(C’\B) in MATLAB). After drawing u from the standard normal distribution and

solving Cg̃ = u, we obtain g = µ+ σg̃ that follows the desired distribution.

□

A.2.2 Details of Gibbs Sampler Steps

In this section, we provide some additional detail on the derivation of the Gibbs sampler

for the trend plus cycle specification introduced in the previous section. The results apply
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readily to the simpler trend plus noise specification given in the SA.

Detail for Steps 1–3 of Appendix A.2.1

Drawing λg : In the paper, we utilize the representation of the Laplace distribution as a

scale mixture of normals with an exponential mixing density as in Park and Casella (2008)

(i.e., equations (6) and (7)). We may write the conditional density of (Dkg)i directly as,

p
(
(Dkg)i | γ, σ2, θi, λg, λ0

)
= (1−θj)

λ0

2
√
vsc(γ)

exp

{
−λ0

|(Dkg)i|√
vsc(γ)

}
+θj

λg

2
√
vsc(γ)

exp

{
−λg

|(Dkg)i|√
vsc(γ)

}
.

The conditional distribution of λg is then

p
(
λg | g, γ, σ2, θ, rg, δg

)
∝ p

(
g | γ, σ2, λg, θ, rg, δg

)
· p (λg | rg, δg)

∝

 ∏
j|θj=1

λg

2
√
vsc(γ)

exp

{
−λg

|(Dkg)j|√
vsc(γ)

} · (λg)rg−1 exp{−δgλg}.

Thus, as in Step 1, we have (λg | g, γ, σ2, θ, rg, δg) ∼ Γ

(
S + rg, δg +

∑ θj |(Dkg)j |√
vsc(γ)

)
.

Drawing σ2 : Using the joint density and the prior for σ2 in equation (10), we obtain

p(y, g, ω, λg, γ, τ, λγ, σ
2) ∝ 1

σT
exp

{
−
(y − g)′V−1

γ (y − g)

2σ2

}
1

σT−k
exp

{
−
g′Σ−1

g g

2vsc(γ)

}
1

σ2

∝ 1

σ2T+2−k
exp

{
−
(y − g)′V−1

γ (y − g) + 1
Vγ,11

g′Σ−1
g g

2σ2

}
.

Thus, as in Step 2, we obtain

(
σ2 | y, g, γ

)
∼Inverse-Gamma

(
T − k

2
,
1

2

(
(y − g)′V−1

γ (y − g) +
1

Vγ,11

g′Σ−1
g g

))
.
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Drawing ξ : Using the priors introduced in equations (8) and (9) we obtain,

p(ξ | θ, a, b) ∝ p(θ | ξ) · p(ξ | a, b) ∝ (1− ξ)T−k−S+b−1ξS+a−1.

Thus, as in Step 3, we obtain (ξ | θ, a, b) ∼ Beta(S + a, T − k − S + b).

Detail for Steps 4–5 of Appendix A.2.1

Our method for sampling from the joint distribution of ωj and θj is to first sample θj from

its marginal distribution and then sample ωj from its corresponding conditional distribution.

We first derive the joint distribution of ωj and θj:

p(ωj, θj | g, γ, σ2, λg, λ0, ξ) ∝ p(g | ωj, θj, γ, σ
2) · p(ωj | λg, λ0, θj) · p(θj | ξ)

∝

(
(1− θj)(1− ξ)

λ20
2
exp

{
−λ20ωj

2

}
+ θjξ

λ2g
2
exp

{−λ2gωj

2

})

× 1

ω
1/2
j

exp

{
−
ω−1
j (Dkg)

2
j

2vsc(γ)

}
.

This last equation can be rewritten as:

p(ωj, θj | g, γ, σ2, λg, λ0, ξ) ∝ (1− θj)
(1− ξ)λ20

ω
1/2
j

exp

{
−
ω−1
j (Dkg)

2
j

2vsc(γ)
− λ20ωj

2

}

+ θj
ξλ2g

ω
1/2
j

exp

{
−
ω−1
j (Dkg)

2
j

2vsc(γ)
−
λ2gωj

2

}
. (A.7)

Drawing θj : We first rewrite equation (A.7) as

p(ωj, θj | g, γ, σ2, λg, λ0, ξ) ∝ (1− θj)
C0
ω
1/2
j

exp
{
−Aω−1

j − B0ωj

}
+ θj

C1
ω
1/2
j

exp
{
−Aω−1

j − B1ωj

}
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with A =
(Dkg)

2
j

2vsc(γ)
, B0 =

λ2
0

2
, B1 =

λ2
g

2
, C0 = (1− ξ)λ20, C1 = ξλ2g. We now can integrate over ωj

to get the marginal distribution of θj

p(θj | g, γ, σ2, λg, λ0, ξ)

=

∫ ∞

0

p(ωj, θj | g, γ, σ2, λg, λ0, ξ) dωj

∝
∫ ∞

0

[
(1− θj)

C0
ω
1/2
j

exp
{
−Aω−1

j − B0ωj

}
+ θj

C1
ω
1/2
j

exp
{
−Aω−1

j − B1ωj

}]
dωj

∝ (1− θj)(1− ξ)λ0e
−
√

λ2
0(Dkg)

2
j/vsc(γ) + θjξλge

−
√

λ2
g(Dkg)

2
j/vsc(γ).

The last step follows since the antiderivative of

∫ ∞

0

C
ω
1/2
j

exp

{
−A
ωj

− Bωj

}
dωj

is

C
√
π

2
√
B

(
e2

√
ABerf

(√
A+

√
Bωj√

ωj

)
− e−2

√
ABerf

(√
A−

√
Bωj√

ωj

))
,

where erf(x) is defined as erf(x) = 2√
π

∫ x

0
e−t2 dt. Consequently,

∫ ∞

0

C
ω
1/2
j

exp

{
−A
ωj

− Bωj

}
dωj =

C
√
π√
B
e−2

√
AB.

Consequently, θj is a Bernoulli Random variable with

P (θj = 1) =
ξλge

−
√

λ2
g(Dkg)

2
j/vsc(γ)

(1− ξ)λ0e
−
√

λ2
0(Dkg)

2
j/vsc(γ) + ξλge

−
√

λ2
g(Dkg)

2
j/vsc(γ)

.

Drawing ωj : We now derive the conditional distribution of ωj given θj:

p(ωj | g, γ, σ2, λg, λ0, θj)
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∝ p(g | ωj, γ, σ
2) · p(ωj | λg, λ0, θj)

∝ 1

|Σg|1/2
exp

{
−
g′Σ−1

g g

2vsc(γ)

}(
(1− θj)

λ20
2
exp

{
−λ20ωj

2

}
+ θj

λ2g
2
exp

{−λ2gωj

2

})
∝ 1

|Σg|1/2
exp

{
−(Dkg)

′diag(ω1, . . . , ωT−k)Dkg

2vsc(γ)

}
exp

{
−
(
(1− θj)λ

2
0 + θjλ

2
g

)
ωj

2

}
.

The last step follows because θj only takes on the values of 0 or 1; in particular, only for

these two values will the last two lines be proportional as a function of ωj (their quotient is

independent of ωj, but dependent upon θj and λ0, λg). Thus,

p(ωj | g, γ, σ2, λg, λ0, θj) ∝
1

ω
1/2
j

exp

{
−
∑T−k

i=1 ω
−1
i (Dkg)

2
i

2vsc(γ)

}
exp

{
−
(
(1− θj)λ

2
0 + θjλ

2
g

)
ωj

2

}
.

Using the change of variables, ηj =
1
ωj
, we obtain

p(ηj | g, γ, σ2, λg, λ0, θj) ∝
1

η
3/2
j

exp


−ηj(Dkg)

2
j −

(
(1−θj)λ

2
0+θjλ

2
g

)
vsc(γ)

ηj

2vsc(γ)

 .

Thus, as in Step 5, we obtain,

1/ωj ∼ Inverse-Gaussian

√((1− θj)λ20 + θjλ2g
)
vsc(γ)

|(Dkg)j|2
, (1− θj)λ

2
0 + θjλ

2
g

 .

Detail for Steps 6–7 of Appendix A.2.1

Drawing g : This follows directly from equations (5) and (6) as

p(g | y, σ2, γ, ω) ∝ p
(
y | g, σ2, γ

)
· p
(
g | σ2, γ, ω

)
∝ exp

{
−
(y − g)′V−1

γ (y − g)

2σ2

}
exp

{
−
g′Σ−1

g g

2vsc(γ)

}
.

Thus, as in Step 6, we obtain that

(
g | y, σ2, γ, ω

)
∼ N

((
V−1
γ +

σ2

vsc(γ)
Σ−1

g

)−1

V−1
γ y, σ2

(
V−1
γ +

σ2

vsc(γ)
Σ−1

g

)−1
)
.
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Drawing λγ : We will make use of equations (12) and (13) along with

p(γ,Σγ) ∝ 1γ · det(Σγ)
− 1

2 exp

{
−1

2
γ′Σ−1

γ γ

}
p(Σγ), (A.8)

where 1γ = 1 indicates a strictly stationary cycle. Assuming 1γ = 1, integrating out Σγ

simplifies the prior for γ to

p
(
γ | λγ

)
=

q∏
j=1

(
λγ
2

exp {−λγ|γj|}
)
,

so that

p (λγ | γ, rγ, δγ) ∝ p (γ | λγ, rγ, δγ) · p (λγ | r, δ)

∝

(
q∏

j=1

λγ
2

exp {−λγ|γj|}

)
· λrγ−1

γ exp{−δγλγ}.

Thus, as in Step 7, we obtain (λγ | γ, rγ, δγ) ∼ Γ
(
q + rγ, δγ +

∑q
j=1 |γj|

)
.

Detail for Step 8 of Appendix A.2.1

Drawing Σo
γ | γo : This step consists of jointly drawing all τj and follows by similar steps

as for ωj. We have,

p(τj | γ) ∝ det(Σγ)
− 1

2 exp

{
−1

2
γ′Σ−1

γ γ

}
p(Σγ).

Using the change of variables, ψj =
1
τj
, we obtain

p(ψj | γ) ∝
1

ψ
3/2
j

exp

{
−
ψjγ

2
j − (λγ)

2
jψ

−1
j

2

}
.

Thus, we obtain 1/τ oj ∼ Inverse-Gaussian
(∣∣∣ (λγ)j

γj

∣∣∣ , (λγ)2j) .

33



Drawing γo | Σo
γ : Equations (A.5) and (A.6) imply that

p(γ | c, g,Σ−1
g ,Σ−1

γ , σ2) ∝ p
(
c | γ, g, σ2

)
· p
(
γ | g,Σ−1

g ,Σ−1
γ , σ2

)
∝ p

(
cq+1:T | c1:q, γ, σ2

)
· p
(
c1:q | γ, σ2

)
· p
(
g | γ,Σ−1

g , σ2
)
· p
(
γ | Σ−1

γ

)
∝ exp

{
−
(CB′

c,qcq+1:T − γ)′C−1(CB′
c,qcq+1:T − γ)

2σ2

}
× 1

(Vγ,11)(T−k)/2|Vγ|1/2
exp

{
−
c′1:qV−1

γ c1:q

2σ2

}
exp

{
−
g′Σ−1

g g

2vsc(γ)

}
.

We cannot directly sample from this equation. However, following Del Negro, Giannone, Gi-

annoni, and Tambalotti (2019), we can use a Metropolis-Hastings step utilizingN
(
CB′

c,qcq+1:T , σ
2C
)

as the candidate distribution. Let p̃(γ, c, g,Σ−1
g ,Σ−1

γ , σ2) be its corresponding pdf. Starting

at γ(t), we draw a candidate γo from the candidate distribution and calculate the acceptance

probability α equal to

min

{
p
(
γo|c(t+1), . . . , (σ2)(t+1)

)
p (γ(t)|c(t+1), . . . , (σ2)(t+1))

p̃
(
γ(t), c(t+1), . . . , (σ2)(t+1)

)
p̃ (γo, c(t+1), . . . , (σ2)(t+1))

, 1

}

=min


√
vsc(γ(t))T−k|Vγ(t)|
vsc(γo)T−k|Vγo|

exp

c
′
1:q

(
V−1
γ(t) − V−1

γo

)
c1:q

2σ2
+
g′Σ−1

g g

2σ2

(
1

(vsc(γ(t))
− 1

vsc(γo)

) , 1


Our second accept-reject step is to take our candidate draw of (γo,Σo

γ) (drawn using the

above procedure) and accept with probability α = 1γo , where 1γo is an indicator for whether

γo produces a stationary cycle.
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Table 1: Level Model. This table reports relative root mean-square error (RMSE) between the
estimated and true trend for the level model. The benchmark model (with RMSE normalized to
one) is the procedure introduced in Section 3 with q = 4 and k = 2. Values above 1 represent a
larger RMSE as compared to the benchmark model. Each column reports a summary statistic of
the RMSE across simulations: minimum, maximum, mean and the 10th, 25th, 50th, 75th, and
90th percentiles. The results are based on a sample size of T = 250 and 1, 000 simulations.

Min. 5% 10% 50% Mean 90% 95% Max.
k=2 (no cycle) 1.56 1.48 1.44 1.35 1.32 1.23 1.20 1.09
HP Boost. (100) 1.41 1.37 1.34 1.27 1.25 1.17 1.14 1.05
HP Boost. (1600) 1.32 1.28 1.26 1.20 1.18 1.11 1.09 1.01
HP Boost. (14400) 1.18 1.20 1.19 1.14 1.12 1.06 1.05 0.99
Bior. Wavelet 1.25 1.20 1.17 1.13 1.12 1.07 1.06 0.99
Haar Wavelet 1.22 1.51 1.58 1.99 2.09 2.50 2.76 3.39
SSM Filter 1.05 1.07 1.04 1.06 1.09 1.13 1.22 1.56
SSM Smoother 0.93 0.92 0.92 0.96 1.04 1.18 1.30 2.34
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Table 2: Smooth Trend Model (Gaussian Cycle Innovations). This table reports relative
root mean-square error (RMSE) between the estimated and true trend for the smooth trend
model with Gaussian cycle innovations. The benchmark model (with RMSE normalized to one) is
the procedure introduced in Section 3 with q = 4 and k = 2. Values above 1 represent a larger
RMSE as compared to the benchmark model. Each column reports a summary statistic of the
RMSE across simulations: minimum, maximum, mean and the 10th, 25th, 50th, 75th, and 90th
percentiles. The top panel reports results with homoskedastic cycle innovations. The bottom
panel allows for stochastic volatility in the cycle innovations. The results are based on a sample
size of T = 250 and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.13 1.33 1.36 1.55 1.58 1.76 1.77 1.68
k=1 (with cycle) 0.99 0.97 0.96 0.96 0.96 0.95 0.96 0.95
k=2 (no cycle) 1.08 1.09 1.08 1.10 1.11 1.12 1.15 1.30
HP Boost. (100) 2.84 2.66 2.55 2.24 2.20 1.96 1.87 1.57
HP Boost. (1600) 2.34 2.20 2.12 1.91 1.87 1.68 1.62 1.40
HP Boost. (14400) 1.82 1.87 1.81 1.67 1.64 1.52 1.46 1.27
Bior. Wavelet 1.78 1.78 1.74 1.65 1.62 1.52 1.47 1.30
Haar Wavelet 1.20 1.25 1.28 1.36 1.35 1.40 1.42 1.36

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.00 1.30 1.36 1.66 1.69 1.91 1.94 1.86
k=1 (with cycle) 0.95 0.97 0.97 0.96 0.96 0.96 0.95 1.50
k=2 (no cycle) 1.01 1.07 1.09 1.11 1.12 1.15 1.14 1.46
HP Boost. (100) 2.23 2.48 2.43 2.27 2.23 2.09 2.02 2.03
HP Boost. (1600) 1.95 2.05 2.03 1.92 1.89 1.79 1.72 1.86
HP Boost. (14400) 1.47 1.74 1.75 1.70 1.66 1.59 1.53 1.69
Bior. Wavelet 1.53 1.67 1.70 1.66 1.64 1.58 1.52 1.83
Haar Wavelet 1.15 1.26 1.30 1.35 1.34 1.34 1.34 1.22
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Table 3: Small Structural Break Trend Model (Gaussian Cycle Innovations). This
table reports relative root mean-square error (RMSE) between the estimated and true trend for
the small structural break trend model with Gaussian cycle innovations. The benchmark model
(with RMSE normalized to one) is the procedure introduced in Section 3 with q = 4 and k = 2.
Values above 1 represent a larger RMSE as compared to the benchmark model. Each column
reports a summary statistic of the RMSE across simulations: minimum, maximum, mean and the
10th, 25th, 50th, 75th, and 90th percentiles. The top panel reports results with homoskedastic
cycle innovations. The bottom panel allows for stochastic volatility in the cycle innovations. The
results are based on a sample size of T = 250 and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.31 1.25 1.28 1.49 1.57 1.80 1.83 2.02
k=1 (with cycle) 1.02 0.98 0.96 0.95 0.96 0.98 0.98 1.00
k=2 (no cycle) 1.08 1.08 1.05 1.09 1.10 1.11 1.16 1.40
HP Boost. (100) 2.79 2.63 2.51 2.20 2.18 1.98 1.93 1.95
HP Boost. (1600) 2.30 2.15 2.08 1.87 1.86 1.71 1.67 1.73
HP Boost. (14400) 1.98 1.79 1.78 1.65 1.63 1.52 1.50 1.54
Bior. Wavelet 1.83 1.79 1.73 1.62 1.61 1.52 1.51 1.58
Haar Wavelet 1.36 1.29 1.29 1.32 1.35 1.39 1.42 1.54

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.20 1.25 1.29 1.61 1.68 1.97 1.98 2.28
k=1 (with cycle) 1.03 0.97 0.96 0.95 0.96 0.97 0.97 1.21
k=2 (no cycle) 1.14 1.07 1.06 1.10 1.12 1.15 1.20 1.49
HP Boost. (100) 3.02 2.46 2.45 2.24 2.21 2.10 2.03 1.92
HP Boost. (1600) 2.43 2.07 2.02 1.92 1.88 1.81 1.75 1.66
HP Boost. (14400) 1.88 1.73 1.73 1.68 1.66 1.62 1.57 1.49
Bior. Wavelet 1.97 1.70 1.70 1.63 1.63 1.58 1.57 1.56
Haar Wavelet 1.43 1.31 1.30 1.33 1.32 1.34 1.33 1.33
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Table 4: Small Structural Break Trend Model (Chi-Square Cycle Innovations). This
table reports relative root mean-square error (RMSE) between the estimated and true trend for
the small structural break trend model with chi-square cycle innovations. The benchmark model
(with RMSE normalized to one) is the procedure introduced in Section 3 with q = 4 and k = 2.
Values above 1 represent a larger RMSE as compared to the benchmark model. Each column
reports a summary statistic of the RMSE across simulations: minimum, maximum, mean and the
10th, 25th, 50th, 75th, and 90th percentiles. The top panel reports results with homoskedastic
cycle innovations. The bottom panel allows for stochastic volatility in the cycle innovations. The
results are based on a sample size of T = 250 and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.31 1.29 1.33 1.67 1.83 2.27 2.31 2.09
k=1 (with cycle) 1.05 0.98 0.97 0.96 1.01 1.03 1.13 1.70
k=2 (no cycle) 0.99 1.07 1.08 1.09 1.10 1.11 1.13 1.13
HP Boost. (100) 2.74 2.49 2.42 2.17 2.15 1.95 1.94 1.56
HP Boost. (1600) 2.29 2.06 2.03 1.85 1.83 1.69 1.64 1.38
HP Boost. (14400) 1.87 1.78 1.75 1.64 1.61 1.51 1.48 1.28
Bior. Wavelet 1.83 1.73 1.71 1.62 1.60 1.51 1.49 1.26
Haar Wavelet 1.17 1.22 1.24 1.30 1.32 1.39 1.41 1.47

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.29 1.32 1.38 1.90 2.04 2.52 2.63 2.07
k=1 (with cycle) 1.04 1.01 0.97 0.98 1.12 1.29 1.83 2.03
k=2 (no cycle) 0.98 1.09 1.07 1.10 1.11 1.13 1.18 1.13
HP Boost. (100) 2.86 2.38 2.34 2.20 2.18 2.09 2.11 1.47
HP Boost. (1600) 2.22 1.99 1.96 1.87 1.86 1.79 1.77 1.34
HP Boost. (14400) 1.96 1.70 1.70 1.64 1.64 1.58 1.59 1.22
Bior. Wavelet 1.92 1.66 1.65 1.64 1.62 1.58 1.58 1.22
Haar Wavelet 1.21 1.24 1.25 1.30 1.31 1.36 1.36 1.09
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Table 5: Large Structural Break Trend Model (Chi-Square Cycle Innovations). This
table reports relative root mean-square error (RMSE) between the estimated and true trend for
the large structural break trend model with chi-square cycle innovations. The benchmark model
(with RMSE normalized to one) is the procedure introduced in Section 3 with q = 4 and k = 2.
Values above 1 represent a larger RMSE as compared to the benchmark model. Each column
reports a summary statistic of the RMSE across simulations: minimum, maximum, mean and the
10th, 25th, 50th, 75th, and 90th percentiles. The top panel reports results with homoskedastic
cycle innovations. The bottom panel allows for stochastic volatility in the cycle innovations. The
results are based on a sample size of T = 250 and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 0.92 1.35 1.34 1.55 1.58 1.74 1.78 1.74
k=1 (with cycle) 0.53 0.88 0.93 0.98 1.00 1.03 1.15 1.53
k=2 (no cycle) 1.18 1.10 1.07 1.04 1.03 1.00 1.00 0.94
HP Boost. (100) 2.91 2.26 2.06 1.75 1.71 1.47 1.47 1.23
HP Boost. (1600) 2.40 1.89 1.74 1.50 1.46 1.28 1.26 1.09
HP Boost. (14400) 2.02 1.66 1.51 1.34 1.30 1.16 1.14 1.00
Bior. Wavelet 2.01 1.63 1.52 1.35 1.32 1.19 1.18 1.01
Haar Wavelet 1.10 1.16 1.26 1.56 1.63 1.86 1.99 2.31

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.02 1.34 1.40 1.69 1.75 2.01 2.06 2.09
k=1 (with cycle) 0.69 0.90 0.92 1.02 1.10 1.30 1.57 2.07
k=2 (no cycle) 1.19 1.07 1.07 1.04 1.04 1.03 1.07 1.17
HP Boost. (100) 2.94 2.10 2.00 1.76 1.75 1.61 1.63 1.49
HP Boost. (1600) 2.57 1.78 1.72 1.51 1.50 1.39 1.38 1.35
HP Boost. (14400) 2.10 1.53 1.49 1.35 1.33 1.24 1.23 1.27
Bior. Wavelet 2.15 1.54 1.48 1.36 1.34 1.26 1.25 1.23
Haar Wavelet 1.16 1.16 1.25 1.54 1.60 1.84 1.93 2.14
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Figure 1: Time Series Properties of the Cross-Sectional Distribution of
Forecasts. This figure shows the cross-sectional median (solid line) and first and third
quartiles (dashed lines) for the longer-run forecasts from the Survey of Primary Dealers
(SPD). The real federal funds rate longer-run forecast is constructed by subtracting the
individual longer-run PCE inflation forecast from the corresponding longer-run federal
funds rate forecast. The sample period is 2012m7–2022m3.
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Figure 3: Trend Estimates of the Annual Mean Temperature Change (◦C) in the
United States. This figure presents trend estimates of the annual mean temperature
change in the United States (expressed as a deviation from the average temperature over
1951–1980). The charts in the top row displays the annual mean temperature change along
with the estimated trend for k = 1 and k = 2 based on the methodology introduced in
Section 3. Each chart displays the estimated trend with and without a (possibly) serially
correlated cycle. The bottom row displays the estimated trend (posterior median) for k = 2
along with the corresponding 90% pointwise posterior coverage interval (left chart) and
90% uniform posterior coverage interval (right chart). The sample period is 1880–2023.
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Figure 6: Trend Estimates of Component Contributions to Real GDP Growth. This figure presents trend estimates
of component contributions to real GDP growth: personal consumption expenditures (PCE), residential investment, business
fixed investment, federal government expenditures, state and local government expenditures, net exports and the change in
inventories. All charts display the estimated trend (red line) and realized contributions (black line). The bottom right chart
compares the top-down estimate (blue line) with the bottom-up estimate (red line) based on the sum of the individual
components’ trends. The sample period is 1947Q2–2023Q4.
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Supplemental Appendix:

“Sparse Trend Estimation”

Richard K. Crump Nikolay Gospodinov Hunter Wieman

(New York Fed) (Atlanta Fed) (Princeton University)



SA.1 Gibbs Sampler: Trend Plus Noise

Throughout, we use the same notation as introduced in Section 3. In addition, define S :=
∑T−k

j=1 θj .

The steps of the Gibbs sampler are as follows:

1. Draw (λg | g, θ) ∼ Γ
(
S + rg, δg +

∑ θj |(Dkg)j |√
σ2

)
.

2. Draw (σ2 | y, g, γ) ∼ Inverse-Gamma
(
T − k

2 ,
1
2

(
(y − g)′(y − g) + g′Σ−1

g g
))
.

3. Draw (g | y, σ2, γ, ω) ∼ N
((

IT +Σ−1
g

)−1
y, σ2

(
I−1
T +Σ−1

g

)−1
)
.

4. Draw (ξ | θ) ∼ Beta(S + a, T − k − S + b).

5. Draw each (θj | g, σ2, λg, λ0, ξ) as an independent Bernoulli random variable with

P (θj = 0) =
(1− ξ)λ0e

−
√

λ2
0(Dkg)

2
j/σ

2

(1− ξ)λ0e
−
√

λ2
0(Dkg)

2
j/σ

2

+ ξλge
−
√

λ2
g(Dkg)

2
j/σ

2
,

P (θj = 1) =
ξλge

−
√

λ2
g(Dkg)

2
j/σ

2

(1− ξ)λ0e
−
√

λ2
0(Dkg)

2
j/σ

2

+ ξλge
−
√

λ2
g(Dkg)

2
j/σ

2
,

for j = 1, . . . , T − k.

6. Draw each ( 1
ωj

| g, θj , λg) ∼ Inverse-Gaussian

(√(
(1−θj)λ2

0+θjλ2
g

)
σ2

|(Dkg)j |2
, (1− θj)λ

2
0 + θjλ

2
g

)
independently for j = 1, . . . , T − k.

We use the same choice of hyperparameters as in the case with a serially correlated cycle.
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SA.2 Additional Simulations

In this section we report additional simulation results to further assess the robustness of our pro-

cedure to non-Gaussian errors, the presence of stochastic volatility, and to different degrees of

persistence in the cycle component. Tables SA.1–SA.8 show that, across all of these simulation

designs, the new procedure we introduce in Section 3 outperforms the comparable alternatives.
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Table SA.1: Smooth Trend Model (Chi-Square Cycle Innovations). This table reports
relative root mean-square error (RMSE) between the estimated and true trend for the smooth
trend model with chi-square cycle innovations. The benchmark model (with RMSE normalized to
one) is the procedure introduced in Section 3 with q = 4 and k = 2. Values above 1 represent a
larger RMSE as compared to the benchmark model. Each column reports a summary statistic of
the RMSE across simulations: minimum, maximum, mean and the 10th, 25th, 50th, 75th, and
90th percentiles. The top panel reports results with homoskedastic cycle innovations. The bottom
panel allows for stochastic volatility in the cycle innovations. The results are based on a sample
size of T = 250 and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.26 1.30 1.36 1.80 1.87 2.28 2.35 2.19
k=1 (with cycle) 0.92 0.98 0.95 0.96 1.04 1.03 1.26 1.79
k=2 (no cycle) 1.09 1.06 1.08 1.10 1.12 1.15 1.18 1.36
HP Boost. (100) 2.89 2.54 2.45 2.19 2.17 1.98 1.92 1.79
HP Boost. (1600) 2.14 2.15 2.06 1.86 1.85 1.73 1.67 1.60
HP Boost. (14400) 1.69 1.86 1.79 1.65 1.63 1.53 1.49 1.45
Bior. Wavelet 1.72 1.76 1.70 1.62 1.61 1.54 1.51 1.45
Haar Wavelet 1.20 1.27 1.26 1.33 1.34 1.38 1.39 1.33

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.38 1.28 1.34 2.06 2.08 2.51 2.52 2.47
k=1 (with cycle) 0.93 0.95 0.98 0.99 1.17 1.51 1.92 2.42
k=2 (no cycle) 1.11 1.08 1.06 1.11 1.12 1.13 1.17 1.75
HP Boost. (100) 3.03 2.37 2.33 2.25 2.19 2.05 1.99 2.00
HP Boost. (1600) 2.13 1.97 1.97 1.91 1.87 1.77 1.73 1.80
HP Boost. (14400) 1.74 1.73 1.71 1.69 1.65 1.58 1.54 1.66
Bior. Wavelet 1.60 1.67 1.64 1.66 1.63 1.57 1.56 1.67
Haar Wavelet 1.37 1.25 1.27 1.33 1.32 1.33 1.30 1.26
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Table SA.2: Small Structural Break Trend Model (White-Noise Cycle, Gaussian
Cycle Innovations). This table reports relative root mean-square error (RMSE) between the
estimated and true trend for the small structural break trend model with a white-noise cycle and
Gaussian cycle innovations. The benchmark model (with RMSE normalized to one) is the
procedure introduced in Section 3 with q = 4 and k = 2. Values above 1 represent a larger RMSE
as compared to the benchmark model. Each column reports a summary statistic of the RMSE
across simulations: minimum, maximum, mean and the 10th, 25th, 50th, 75th, and 90th
percentiles. The top panel reports results with homoskedastic cycle innovations. The bottom
panel allows for stochastic volatility in the cycle innovations. The results are based on a sample
size of T = 250 and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.00 0.97 0.98 0.97 0.98 0.99 0.98 1.05
k=1 (with cycle) 1.02 0.97 0.98 0.97 0.98 0.99 0.98 0.99
k=2 (no cycle) 0.97 1.00 1.00 1.00 1.00 1.00 1.01 0.99
HP Boost. (100) 1.87 1.85 1.85 1.81 1.79 1.72 1.69 1.84
HP Boost. (1600) 1.69 1.60 1.61 1.57 1.56 1.52 1.48 1.58
HP Boost. (14400) 1.46 1.39 1.41 1.40 1.38 1.36 1.35 1.42
Bior. Wavelet 1.51 1.44 1.45 1.42 1.41 1.38 1.38 1.49
Haar Wavelet 1.35 1.39 1.39 1.51 1.54 1.66 1.72 2.02

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.03 0.98 0.99 0.98 0.98 0.98 1.00 1.02
k=1 (with cycle) 1.01 0.98 1.00 0.98 0.98 0.99 0.98 1.08
k=2 (no cycle) 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.02
HP Boost. (100) 1.93 1.77 1.80 1.82 1.82 1.86 1.81 1.72
HP Boost. (1600) 1.63 1.56 1.56 1.60 1.58 1.62 1.58 1.52
HP Boost. (14400) 1.38 1.35 1.38 1.42 1.41 1.45 1.43 1.37
Bior. Wavelet 1.52 1.40 1.41 1.43 1.43 1.45 1.46 1.47
Haar Wavelet 1.32 1.40 1.42 1.52 1.51 1.59 1.61 1.70
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Table SA.3: Small Structural Break Trend Model (White-Noise Cycle, Chi-Square
Innovations). This table reports relative root mean-square error (RMSE) between the estimated
and true trend for the small structural break trend model with a white-noise cycle and chi-square
cycle innovations. The benchmark model (with RMSE normalized to one) is the procedure
introduced in Section 3 with q = 4 and k = 2. Values above 1 represent a larger RMSE as
compared to the benchmark model. Each column reports a summary statistic of the RMSE across
simulations: minimum, maximum, mean and the 10th, 25th, 50th, 75th, and 90th percentiles.
The top panel reports results with homoskedastic cycle innovations. The bottom panel allows for
stochastic volatility in the cycle innovations. The results are based on a sample size of T = 250
and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.06 0.98 0.97 0.98 1.01 1.00 1.02 2.27
k=1 (with cycle) 1.08 0.98 0.98 0.98 1.01 1.02 1.03 2.23
k=2 (no cycle) 1.03 1.00 0.99 1.00 1.00 1.00 1.00 1.00
HP Boost. (100) 1.87 1.79 1.81 1.79 1.77 1.72 1.73 1.50
HP Boost. (1600) 1.63 1.60 1.59 1.55 1.54 1.49 1.48 1.33
HP Boost. (14400) 1.39 1.40 1.39 1.39 1.37 1.35 1.35 1.25
Bior. Wavelet 1.53 1.44 1.44 1.41 1.41 1.39 1.37 1.28
Haar Wavelet 1.16 1.33 1.34 1.50 1.53 1.65 1.73 1.98

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.03 0.99 0.97 0.98 1.09 1.08 1.70 2.60
k=1 (with cycle) 1.07 0.99 0.98 0.99 1.08 1.07 1.64 2.65
k=2 (no cycle) 1.00 1.00 1.00 1.00 1.00 1.00 1.01 0.98
HP Boost. (100) 1.84 1.72 1.76 1.81 1.80 1.83 1.84 1.44
HP Boost. (1600) 1.68 1.52 1.55 1.57 1.57 1.58 1.57 1.27
HP Boost. (14400) 1.46 1.32 1.34 1.40 1.40 1.42 1.43 1.18
Bior. Wavelet 1.60 1.38 1.39 1.45 1.43 1.45 1.47 1.21
Haar Wavelet 1.15 1.33 1.36 1.49 1.50 1.62 1.66 1.45
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Table SA.4: Smooth Trend Model (White-Noise Cycle, Gaussian Cycle Innovations).
This table reports relative root mean-square error (RMSE) between the estimated and true trend
for the smooth trend model with a white-noise cycle and Gaussian cycle innovations. The
benchmark model (with RMSE normalized to one) is the procedure introduced in Section 3 with
q = 4 and k = 2. Values above 1 represent a larger RMSE as compared to the benchmark model.
Each column reports a summary statistic of the RMSE across simulations: minimum, maximum,
mean and the 10th, 25th, 50th, 75th, and 90th percentiles. The top panel reports results with
homoskedastic cycle innovations. The bottom panel allows for stochastic volatility in the cycle
innovations. The results are based on a sample size of T = 250 and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.00 0.97 0.98 0.97 0.98 0.99 0.98 1.05
k=1 (with cycle) 1.02 0.97 0.98 0.97 0.98 0.99 0.98 0.99
k=2 (no cycle) 0.97 1.00 1.00 1.00 1.00 1.00 1.01 0.99
HP Boost. (100) 1.87 1.85 1.85 1.81 1.79 1.72 1.69 1.84
HP Boost. (1600) 1.69 1.60 1.61 1.57 1.56 1.52 1.48 1.58
HP Boost. (14400) 1.46 1.39 1.41 1.40 1.38 1.36 1.35 1.42
Bior. Wavelet 1.51 1.44 1.45 1.42 1.41 1.38 1.38 1.49
Haar Wavelet 1.35 1.39 1.39 1.51 1.54 1.66 1.72 2.02

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.03 0.98 0.99 0.98 0.98 0.98 1.00 1.02
k=1 (with cycle) 1.01 0.98 1.00 0.98 0.98 0.99 0.98 1.08
k=2 (no cycle) 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.02
HP Boost. (100) 1.93 1.77 1.80 1.82 1.82 1.86 1.81 1.72
HP Boost. (1600) 1.63 1.56 1.56 1.60 1.58 1.62 1.58 1.52
HP Boost. (14400) 1.38 1.35 1.38 1.42 1.41 1.45 1.43 1.37
Bior. Wavelet 1.52 1.40 1.41 1.43 1.43 1.45 1.46 1.47
Haar Wavelet 1.32 1.40 1.42 1.52 1.51 1.59 1.61 1.70
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Table SA.5: Smooth Trend Model (White-Noise Cycle, Chi-Square Cycle
Innovations). This table reports relative root mean-square error (RMSE) between the estimated
and true trend for the smooth trend model with a white-noise cycle and chi-square cycle
innovations. The benchmark model (with RMSE normalized to one) is the procedure introduced
in Section 3 with q = 4 and k = 2. Values above 1 represent a larger RMSE as compared to the
benchmark model. Each column reports a summary statistic of the RMSE across simulations:
minimum, maximum, mean and the 10th, 25th, 50th, 75th, and 90th percentiles. The top panel
reports results with homoskedastic cycle innovations. The bottom panel allows for stochastic
volatility in the cycle innovations. The results are based on a sample size of T = 250 and 1, 000
simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.06 0.98 0.97 0.98 1.01 1.00 1.02 2.27
k=1 (with cycle) 1.08 0.98 0.98 0.98 1.01 1.02 1.03 2.23
k=2 (no cycle) 1.03 1.00 0.99 1.00 1.00 1.00 1.00 1.00
HP Boost. (100) 1.87 1.79 1.81 1.79 1.77 1.72 1.73 1.50
HP Boost. (1600) 1.63 1.60 1.59 1.55 1.54 1.49 1.48 1.33
HP Boost. (14400) 1.39 1.40 1.39 1.39 1.37 1.35 1.35 1.25
Bior. Wavelet 1.53 1.44 1.44 1.41 1.41 1.39 1.37 1.28
Haar Wavelet 1.16 1.33 1.34 1.50 1.53 1.65 1.73 1.98

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 1.03 0.99 0.97 0.98 1.09 1.08 1.70 2.60
k=1 (with cycle) 1.07 0.99 0.98 0.99 1.08 1.07 1.64 2.65
k=2 (no cycle) 1.00 1.00 1.00 1.00 1.00 1.00 1.01 0.98
HP Boost. (100) 1.84 1.72 1.76 1.81 1.80 1.83 1.84 1.44
HP Boost. (1600) 1.68 1.52 1.55 1.57 1.57 1.58 1.57 1.27
HP Boost. (14400) 1.46 1.32 1.34 1.40 1.40 1.42 1.43 1.18
Bior. Wavelet 1.60 1.38 1.39 1.45 1.43 1.45 1.47 1.21
Haar Wavelet 1.15 1.33 1.36 1.49 1.50 1.62 1.66 1.45
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Table SA.6: Large Structural Break Trend Model (Gaussian Cycle Innovations). This
table reports relative root mean-square error (RMSE) between the estimated and true trend for
the large structural break trend model with Gaussian cycle innovations. The benchmark model
(with RMSE normalized to one) is the procedure introduced in Section 3 with q = 4 and k = 2.
Values above 1 represent a larger RMSE as compared to the benchmark model. Each column
reports a summary statistic of the RMSE across simulations: minimum, maximum, mean and the
10th, 25th, 50th, 75th, and 90th percentiles. The top panel reports results with homoskedastic
cycle innovations. The bottom panel allows for stochastic volatility in the cycle innovations. The
results are based on a sample size of T = 250 and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 0.91 1.25 1.28 1.37 1.37 1.41 1.43 1.31
k=1 (with cycle) 0.42 0.87 0.92 0.94 0.94 0.94 0.93 0.88
k=2 (no cycle) 1.15 1.06 1.06 1.02 1.03 1.01 1.01 0.96
HP Boost. (100) 3.67 2.33 2.11 1.74 1.72 1.49 1.45 1.28
HP Boost. (1600) 3.04 1.92 1.77 1.49 1.48 1.30 1.26 1.14
HP Boost. (14400) 2.58 1.64 1.53 1.33 1.31 1.17 1.15 1.02
Bior. Wavelet 2.60 1.65 1.53 1.33 1.33 1.20 1.18 1.05
Haar Wavelet 0.99 1.19 1.27 1.55 1.63 1.85 2.01 2.30

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 0.84 1.27 1.30 1.42 1.47 1.57 1.56 1.79
k=1 (with cycle) 0.69 0.88 0.91 0.96 0.95 0.97 0.98 1.08
k=2 (no cycle) 1.21 1.08 1.06 1.03 1.04 1.03 1.06 1.20
HP Boost. (100) 4.34 2.16 2.01 1.75 1.76 1.63 1.59 1.51
HP Boost. (1600) 3.52 1.81 1.68 1.50 1.51 1.41 1.38 1.29
HP Boost. (14400) 2.71 1.57 1.46 1.33 1.34 1.26 1.23 1.19
Bior. Wavelet 2.84 1.58 1.50 1.33 1.35 1.27 1.25 1.24
Haar Wavelet 1.03 1.20 1.27 1.51 1.61 1.81 1.93 2.28
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Table SA.7: Large Structural Break Trend Model (White-Noise Cycle, Gaussian
Cycle Innovations). This table reports relative root mean-square error (RMSE) between the
estimated and true trend for the large structural break trend model with a white-noise cycle and
Gaussian cycle innovations. The benchmark model (with RMSE normalized to one) is the
procedure introduced in Section 3 with q = 4 and k = 2. Values above 1 represent a larger RMSE
as compared to the benchmark model. Each column reports a summary statistic of the RMSE
across simulations: minimum, maximum, mean and the 10th, 25th, 50th, 75th, and 90th
percentiles. The top panel reports results with homoskedastic cycle innovations. The bottom
panel allows for stochastic volatility in the cycle innovations. The results are based on a sample
size of T = 250 and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 0.52 0.85 0.86 0.89 0.87 0.84 0.83 0.69
k=1 (with cycle) 0.44 0.87 0.86 0.90 0.87 0.85 0.84 0.71
k=2 (no cycle) 0.93 1.00 1.00 1.00 0.98 0.96 0.94 0.74
HP Boost. (100) 2.81 1.85 1.67 1.39 1.36 1.16 1.12 0.92
HP Boost. (1600) 2.58 1.59 1.47 1.24 1.21 1.04 1.01 0.84
HP Boost. (14400) 2.14 1.41 1.31 1.12 1.10 0.97 0.96 0.77
Bior. Wavelet 2.25 1.48 1.34 1.17 1.15 1.01 1.01 0.79
Haar Wavelet 0.90 1.21 1.36 1.80 1.88 2.14 2.31 2.45

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 0.54 0.85 0.84 0.89 0.88 0.86 0.86 0.80
k=1 (with cycle) 0.66 0.87 0.86 0.90 0.88 0.86 0.88 0.85
k=2 (no cycle) 0.91 1.00 1.00 0.99 0.98 0.95 0.95 0.84
HP Boost. (100) 3.21 1.72 1.59 1.40 1.40 1.27 1.25 1.05
HP Boost. (1600) 2.85 1.53 1.38 1.24 1.23 1.12 1.11 0.91
HP Boost. (14400) 2.29 1.36 1.26 1.13 1.12 1.02 1.02 0.86
Bior. Wavelet 2.43 1.41 1.31 1.18 1.17 1.06 1.08 0.91
Haar Wavelet 0.88 1.27 1.35 1.77 1.85 2.09 2.27 2.40
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Table SA.8: Large Structural Break Trend Model (White-Noise Cycle, Chi-Square
Cycle Innovations). This table reports relative root mean-square error (RMSE) between the
estimated and true trend for the large structural break trend model with a white-noise cycle and
chi-square cycle innovations. The benchmark model (with RMSE normalized to one) is the
procedure introduced in Section 3 with q = 4 and k = 2. Values above 1 represent a larger RMSE
as compared to the benchmark model. Each column reports a summary statistic of the RMSE
across simulations: minimum, maximum, mean and the 10th, 25th, 50th, 75th, and 90th
percentiles. The top panel reports results with homoskedastic cycle innovations. The bottom
panel allows for stochastic volatility in the cycle innovations. The results are based on a sample
size of T = 250 and 1, 000 simulations.

Homoskedasticity

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 0.46 0.86 0.89 0.90 0.91 0.88 0.93 1.39
k=1 (with cycle) 0.53 0.85 0.88 0.91 0.92 0.89 0.94 1.36
k=2 (no cycle) 0.98 1.00 1.00 1.00 0.98 0.97 0.96 0.88
HP Boost. (100) 2.20 1.80 1.67 1.40 1.35 1.17 1.14 0.93
HP Boost. (1600) 2.05 1.57 1.47 1.23 1.20 1.04 1.01 0.83
HP Boost. (14400) 1.76 1.41 1.30 1.13 1.10 0.98 0.94 0.83
Bior. Wavelet 1.96 1.45 1.36 1.18 1.15 1.03 1.01 0.90
Haar Wavelet 0.96 1.21 1.30 1.80 1.88 2.16 2.30 2.65

Stochastic Volatility

Min. 5% 10% 50% Mean 90% 95% Max.
k=1 (no cycle) 0.61 0.85 0.90 0.93 0.99 1.02 1.30 2.21
k=1 (with cycle) 0.64 0.85 0.90 0.93 1.00 1.06 1.31 2.24
k=2 (no cycle) 1.00 1.00 1.01 0.99 0.98 0.97 0.97 1.00
HP Boost. (100) 2.42 1.70 1.63 1.40 1.39 1.27 1.25 1.22
HP Boost. (1600) 2.11 1.48 1.45 1.24 1.22 1.12 1.10 1.08
HP Boost. (14400) 1.93 1.33 1.29 1.13 1.12 1.03 1.01 1.01
Bior. Wavelet 2.02 1.38 1.34 1.18 1.17 1.09 1.07 1.01
Haar Wavelet 1.03 1.17 1.36 1.78 1.85 2.13 2.25 2.60
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SA.3 Additional Empirical Application: Total Factor

Productivity (TFP) Growth

To gain further intuition for our approach, Figure SA.1 shows the trend estimate g of U.S. total

factor productivity (TFP). Quarterly data for the period 1947:Q2–2023:Q4 are obtained from the

Federal Reserve Bank of San Francisco1 for business sector TFP, defined as output growth less the

contribution of capital and labor (see, for example, Fernald (2014)). The TFP series is constructed

as a percent change at an annual rate. The first row presents estimates using k = 1 and k = 2,

respectively, along with the observed data series. For each chart we also display the estimate

assuming a cycle component with no serial correlation (see Section SA.1). For both k = 1 and

k = 2, the estimates with and without a serially correlated cycle are nearly indistinguishable. This

is comforting as assuming the generality of a serially correlated cycle does not appear to be costly.

In the bottom left chart we show the trend estimate for either choice of k along with their

associated 90% posterior coverage interval. We can observe that both the trend estimates and the

uncertainty around them are similar for either choice. The median estimate of trend TFP growth

hovers around 2% through the 1960s before a steep decline, falling to about 1.0% in 1980. In the

1980s and 1990s trend TFP growth partially reversed this fall before declining again in the last

part of the sample. At the end of 2023, the estimated trend is about 0.5% although the uncertainty

band is fairly wide.

1https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/
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Figure SA.1: Trend Estimates of Total Factor Productivity Growth. This figure
presents trend estimates of total factor productivity (TFP). The first row displays TFP
growth along with the estimated trend for k = 1 and k = 2, respectively, based on the
methodology introduced in Section 3. The bottom left chart displays the estimated trend
for k = 1 and k = 2 along with the corresponding 90% posterior coverage interval. The
bottom right chart replicates the top right chart along with a 90% posterior coverage
interval. The sample period is 1947Q2–2023Q4.
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