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Abstract 

Beta-sorted portfolios—portfolios comprised of assets with similar covariation to selected risk factors—

are a popular tool in empirical finance to analyze models of (conditional) expected returns. Despite their 

widespread use, little is known of their econometric properties in contrast to comparable procedures such 

as two-pass regressions. We formally investigate the properties of beta-sorted portfolio returns by casting 

the procedure as a two-step nonparametric estimator with a nonparametric first step and a beta-adaptive 

portfolios construction. Our framework rationalizes the well-known estimation algorithm with precise 

economic and statistical assumptions on the general data generating process. We provide conditions 

which ensure valid estimation and inference allowing for a range of hypotheses of interest in financial 

applications. We show that the rate of convergence of the estimator changes depending on the value of 

beta. We demonstrate that valid inference depends critically on the object of interest and discuss 

shortcomings of the widely-used Fama-MacBeth variance estimator. To address these limitations, we 

propose a new variance estimator. In an empirical application, we introduce a novel risk factor—a 

measure of the business credit cycle—and show that it is strongly predictive of both the cross-section and 

time-series behavior of U.S. stock returns. 
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1 Introduction

Deconstructing expected returns into idiosyncratic factor loadings and corresponding prices of risk

for interpretable factors is an evergreen pursuit in the empirical finance literature. When factors

are observable, there are two workhorse approaches that continue to enjoy widespread use. The

first approach, Fama-MacBeth two-pass regressions, have been extensively studied in the financial

econometrics literature.1 The second approach, which we refer to as beta-sorted portfolios, has

received scant attention in the econometrics literature despite its empirical popularity.2

The implementation of beta-sorted portfolios entails the following two-step procedure, which

incorporates a beta-adaptive portfolios construction (see, e.g., Bali et al. 2016). In a first step, time-

varying risk factor exposures are estimated through (backward-looking) rolling window time-series

regressions of asset returns on the observed factors. The most popular implementation uses rolling

window regressions, often with a choice of a five-year window. In a second step, the estimated

factor exposures, based on data up to the previous period, are ordered and used to group assets

into portfolios. These portfolios then represent assets with a similar degree of exposure to the risk

factors, and the degree of return differential for differently exposed assets is used to assess the

compensation for bearing this common risk. Most frequently this is achieved by differencing the

portfolio returns from the two most extreme portfolios. Finally, an average over time of these return

differentials is taken to infer whether the risk is priced unconditionally—whether the portfolio earns

systematic (and significant) excess returns. Notwithstanding the simple and intuitive nature of the

methodology, little is known of the formal properties of this estimator and its associated inference

procedures.

We provide a comprehensive framework to study the economic and statistical properties of

beta-sorted portfolios. We first translate the two-step estimation algorithm with beta-adaptive

portfolio construction into a corresponding econometric model. We show that the model has key

features which are important to consider for valid interpretation of the empirical results. Notably,

1See, for example, Jagannathan and Wang (1998), Chen and Kan (2004), Shanken and Zhou (2007), Kleibergen
(2009), Ang et al. (2020), Gospodinov et al. (2014), Adrian et al. (2015), Bai and Zhou (2015), Bryzgalova (2015),
Gagliardini et al. (2016), Chordia et al. (2017), Kleibergen et al. (2019), Raponi et al. (2020), Giglio and Xiu (2021)
and many others. For a recent survey, see Gagliardini et al. (2020).

2The empirical literature using beta-sorted portfolios is extensive. For a textbook treatment, see Bali et al. (2016),
and for a few recent papers see, for example, Boons et al. (2020), Chen et al. (2021b), Eisdorfer et al. (2022), Goldberg
and Nozawa (2021), Fan et al. (2022b), Chen et al. (2023), and Chen et al. (2024).
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no-arbitrage conditions are not imposed and instead imply testable hypotheses. Furthermore, our

framework precisely clarifies how the dynamics of the risk factors relate to the functional form of

conditional expected returns. Within this framework, we introduce general sampling assumptions

allowing for smoothly-varying factor loadings, persistent (possibly nonstationary) factors, and con-

ditional heteroskedasticity across time and assets. We then study the asymptotic properties of the

beta-sorted portfolio estimator and associated test statistics in settings with large cross-sectional,

n, and time-series, T , sample sizes (i.e., n, T →∞).

This paper provides a host of new methodological and theoretical results. First, we introduce

conditions that ensure validity and asymptotic normality of the beta-sorted portfolios estimator.

We characterize precise conditions on the size of the window, H, of the first-stage rolling regression

estimator, and the number of portfolios, J , of the second-stage estimator, relative to the sample

sizes n and T . We show that the rate of convergence of the estimator depends on the value of

beta. For beta values closer to zero the rate of convergence is faster and is slower otherwise; in

fact, for values of beta away from zero we show that the rate of convergence of the estimator

is only
√
T , despite an effective sample size of the order nT , reflecting specific properties of the

setting of interest. However, we also show that certain features of expected returns such as the

discrete second derivative—which represents a butterfly spread trade—can be estimated with higher

precision through faster rates of convergence for all values of beta, namely,
√
nT/J for a single risk

factor. This result also accommodates more powerful tests of the null hypothesis of no-arbitrage.

In addition, we uncover some limitations along with layers of nuance in the current empirical

practice employing the beta-sorted portfolios methodology. First, as with all nonparametric es-

timators, the choice of tuning parameters, H and J , are key to successful performance and are

dependent on the sample sizes n and T . In contrast, empirical practice often chooses window

length in the first step and total portfolios in the second step irrespective of the sample size at

hand. Second, we show how valid inference depends critically on the object of interest. Using

our framework, we distinguish between the population and sample average of conditional expected

returns and argue that the latter object should be the estimand of interest. Moreover, when the

focus is on the sample average of conditional expected returns, we show that the widely-used Fama

and MacBeth (1973) variance estimator is not consistent, in general, but instead is upward biased.

However, we show that the Fama-MacBeth variance estimator still leads to valid, albeit possibly
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conservative, inference.

To address this limitation, we propose a new variance estimator and provide an empirical

implementation which also produces valid, albeit possibly conservative, inference. That said, in our

empirical application we show that our new variance estimator provides much sharper inference

than the Fama-MacBeth variance estimator. Finally, we also provide results on the limitations of

the beta-sorted portfolio estimator for a fixed time period. We show that differential returns for

each period, often used as inputs for assessing the time-series properties of conditional expected

returns, are contaminated by an additional term when risk factors are serially correlated. However,

we demonstrate that some features of conditional expected returns for a single time period can be

illuminated by utilizing butterfly spread trades.

From a theoretical perspective, beta-sorted portfolios present a number of technical challenges

originating from the two-step estimation algorithm with beta-adaptive portfolio construction, since

it relies on two nested nonparametric estimation steps together with a portfolio construction based

on a first-step nonparametric generated regressor. More precisely, the first-stage nonparametrically

estimated factor loadings enter directly into the non-smooth partitioning scheme further compli-

cating the analysis.3 To our knowledge, we are the first to prove validity of such an approach.

This paper is most related to the large literature studying asset pricing models with observable

factors.4 Given our focus on conditional asset pricing models with large panels in both the cross-

section and time-series dimension, this paper is most closely related to Gagliardini et al. (2016)

(see also Gagliardini et al., 2020). The authors introduce a general framework and econometric

methodology for inference in large-dimensional conditional factors under no-arbitrage restrictions.

They allow for risk exposures, which are parametric functions of observable variables and provide

conditions to consistently estimate, and conduct inference on the prices of risk. Although the

statistical model under study shares important similarities with the setup of Gagliardini et al.

(2016), there are substantial differences, and the models explored previously in the literature do not

3For analysis of partitioning-based nonparametric estimators see Cattaneo et al. (2020b) and references therein.
Partitioning-based estimators with random basis functions have been recently studied in Cattaneo et al. (2020a)
and Cattaneo et al. (2024), but in those papers the conditioning variables are observed, while here the conditioning
variable is generated using a preliminary time-series smoothly-varying coefficients nonparametric regression, and
therefore prior results are not applicable to the settings considered herein.

4See, for example, Goyal (2012), Nagel (2013), Gospodinov and Robotti (2013), or Gagliardini et al. (2020) for
surveys. A related literature endeavors to jointly estimate factor loadings and latent risk factors. See, for example,
Connor and Linton (2007), Connor et al. (2012), Fan et al. (2016), Kelly et al. (2019), Connor et al. (2021), Fan et al.
(2022a), and Borri et al. (2024).
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nest our setup. For example, the classical beta-sorted portfolio estimator implies a data-generating

process that does not (necessarily) exclude arbitrage opportunities and supposes risk exposures

which are smoothly-varying. Furthermore, we show that valid estimation and inference can be

achieved without requiring an assumption of the functional form of the conditional expectation of

the risk factors. This is in contrast to the existing literature (e.g., Adrian et al. 2015, Gagliardini

et al. 2016) where such an assumption is utilized.

Our paper is also related to the financial econometrics literature on nonparametric estimation

and inference. In particular, the two steps of the beta-sorted portfolio algorithm align individually

with Ang and Kristensen (2012), who study kernel regression estimators of time-varying alphas

and betas, and Cattaneo et al. (2020a) who study portfolio sorting estimators given observed

individual characteristic variables. However, the individual results from each of these papers cannot

be applied in our multi-step setting. Furthermore, the linkage between the two steps, through the

role of the generated (nonparametrically estimated) regressor in the second-stage nonparametric

partitioning estimator, represents a substantial technical challenge and has not been studied before.

Furthermore, we offer a host of new results characterizing the properties of beta-sorted portfolios.

We demonstrate the practical usefulness of our estimation and inference results for beta-sorted

portfolios in a substantive empirical application with a novel methodological contribution. More

precisely, we introduce a new risk factor—a measure of the business credit cycle—and show that it

is strongly predictive of both the cross-section and time-series behavior of U.S. stock returns. We

also show the effectiveness of our new variance estimator as inference is much more informative

relative to inference employing the widely used Fama-MacBeth variance estimator.

In summary, this paper makes a number of contributions to understanding the underlying

foundational properties and practical use of beta-sorted portfolios: we introduce an econometric

framework to study the beta-sorted portfolio estimator and clarify its properties (Section 2); we pro-

vide asymptotic theory for the estimator accommodating the nonparametric first and second steps

(Sections 3 and 4); we characterize the properties of the commonly-used Fama-MacBeth variance

estimator along with a new plug-in variance estimator (Section 4.3); we provide results for joint

inference across multiple values of beta, including a new test of no-arbitrage restrictions in Section

5; and we introduce a novel risk factor and demonstrate its desirable properties in an empirical

application (Section 6). Proofs of our theoretical results are relegated to a Supplemental Appendix
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(hereafter, SA) to streamline the exposition, and may be of independent technical interest.

1.1 Notation and conventions

For a constant k ∈ N and a vector v = (v1, . . . , vd)
> ∈ Rd, we denote |v|k = (

∑d
i=1 |vi|k)1/k, and

|v|∞ = max1≤i≤d |vi|. For a random variable V , let ‖V ‖q = (E[|V |q])1/q. We set (an : n ≥ 1)

and (bn : n ≥ 1) to be positive number sequences. We write an = O(bn) or an . bn (resp.

an � bn) if there exists a positive constant C such that an/bn ≤ C (resp. 1/C ≤ an/bn ≤ C)

for all large n, and we denote an = o(bn) (resp. an ∼ bn), if an/bn → 0 (resp. an/bn → C).

plimn→∞Xn = X means that Xn →P X. →L denotes convergence in law. Define Xn = OP(an) :

∃Nε > 0, δε > 0 such that P(|Xn| ≥ δε) ≤ ε ∀n > Nε. Define Xn = oP(an) : ∀ε, δ > 0 ∃Nε,δ >

0 such that P(|Xn| ≥ δ) ≤ ε ∀n > Nε,δ. We also let Xn .P an to mean Xn = OP(an);

furthermore, if Xn .P an and an .P Xn then we write Xn �P an. Limits are taken as n, T, J,H →

∞ unless otherwise stated explicitly. Set a ∨ b = max(a, b) and a ∧ b = min(a, b).

Following Wu (2005), Chen et al. (2021a), and Han and Wu (2023), we consider the following

measure of time-series dependence throughout.

Definition 1.1. The (n, T )-varying time series Y•,n,T := (Yt,n,T : t ∈ Z, n ≥ 1) is said to be a

nonlinear time series system (NTSS) if Yt,n,T = gt,n,T (· · · , ξt−2, ξt−1, ξt), where the (ξt : t ∈ Z) are

independent and identically distributed (i.i.d.) random vectors.

Let Y ∗•,n,T (`) be a NTSS with Y ∗t,n,T (`) a random variable with ξt−` replaced by ξ∗t−`, where ξ∗t

is an i.i.d. copy of ξt for each t ∈ Z. Then, the dependence adjusted norm of Y•,n,T is

Θn,T (Y•,n,T ; q, v) := sup
m≥0

(m+ 1)v
∞∑
`=m

max
1≤t≤T

(E[|Yt,n,T − Y ∗t,n,T (`)|q])1/q,

with v ≥ 0 and q ≥ 1. When the Y•,n,T does not depend on n and T , we simplify the notation to

ΘT (Y•; q, v) for the possibly nonstationary NTSS Y• := (Yt : t ∈ Z), where Yt = gt(· · · , ξt−2, ξt−1, ξt)

with the function gt(·) no longer a function of n and T . Furthermore, if gt(·) is not a function of t,

then Y• is a stationary NTSS and we write Θ(Y•; q, v).
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2 Model setup

We introduce a general econometric model of asset returns, and show how it aligns with the two

steps that comprise the beta-sorted portfolio algorithm. We discuss the relevant properties of the

model with respect to the potential presence of arbitrage opportunities.

2.1 Modeling returns

Let Rit denote the return of asset i at time t, and ft a vector of observable risk factors with ft ∈ Rd.

We assume that asset returns are generated by the linear stochastic coefficient model,

Rit = αit + β>it ft + εit, E [εit| Ft−1, ft] = 0,

i = 1, · · · , nt, t = 1, · · · , T, (2.1)

where αit and βit are smoothly-varying, random coefficients with αit, βit ∈ Ft−1, εit is an idiosyn-

cratic error term, and Ft is the information set up to time t. To be more precise, we define the

sigma field,

Ft = σ
(
{fs}ts=1, {εit}

nt,t
i=1,s=1, {ℵ1,i}nt

i=1, {ℵ2,s}ts=1, {ℵ3,is}nt,t
i=1,s=1

)
, (2.2)

where ℵ1,i, ℵ2,t, and ℵ3,it are vectors of auxiliary random variables, which are possibly observed, and

will be discussed further in later sections. Since αit and βit are both Ft−1-measurable we have that

E[Rit| Ft−1, ft] = αit+β
>
it ft. The sigma field Ft will, in general, depend on n and T but we suppress

this dependence for notational convenience. Finally, notice that equation (2.1) accommodates an

unbalanced panel. Although each nt may be different, we assume that they all grow at the same

rate which ensures that each cross-section contributes to the asymptotic properties of the estimator

(i.e., nt � n for t = 1, · · · , T ). For an alternative example of a random coefficient model tailored

to a financial application, see Barras et al. (2022).

To obtain the structural form of our model, we assume that there exists a non-random function

µ0(·) such that

E(Rit|Ft−1) = µ0(βit;Gt−1) =: µt(βit), Gt = σ({fs}ts=1, {ℵ2,s}ts=1). (2.3)
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Equation (2.3) restricts conditional expected returns to be a function of βit only, but it allows the

functional form to be random and to vary with past realizations of i-invariant random variables.

This restriction captures the notion that nonzero expected returns must reflect the compensation

investors require for exposure (as measured by βit) to the risk factors, ft. We will make precise

assumptions on µt(·) in later sections but, loosely, one can think of µt(·) as being a sufficiently

smooth random function of βit.

Using equations (2.1) and (2.3) we obtain,

αit = µt(βit)− β>itE(ft|Ft−1), (2.4)

which clarifies the restriction on αit implied by equation (2.3). Equation (2.3) is a nonparametric

analog to a reduced-rank restriction in parametric models as it imposes cross-equation restrictions

between the linear coefficients in equation (2.1).

Finally, combining equations (2.1) and (2.4), we arrive at the structural form

Rit = µt(βit) + β>it (ft − E[ft|Ft−1]) + εit. (2.5)

We assume throughout that Rit represents excess returns, but µt(0) may be interpreted as the zero-

beta rate at time t in the case when Rit represents raw returns. Equation (2.5) may be compared

to the standard beta pricing model (e.g., Cochrane, 2005, Chapter 12) and generalizations thereof

(e.g., Cochrane, 1996; Adrian et al., 2015; Gagliardini et al., 2016). The most noteworthy difference

is the presence of the (possibly) nonlinear, time-varying function µt (βit) in equation (2.5). When

Rit represents excess returns then the no-arbitrage restriction implies that µt (βit) = β>itλt for some

λt (Gagliardini et al., 2016). Our model nests, but does not require, the imposition of the absence

of arbitrage opportunities so that

Rit = µt(βit) + β>it (ft − E[ft|Ft−1]) + εit,

= (µt(βit)− β>itλt)︸ ︷︷ ︸
deviation from no-arbitrage

+ β>itλt + β>it (ft − E[ft|Ft−1]) + εit.

The presence of this additional term representing the deviation from no-arbitrage restrictions can be
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motivated by appealing to structural models which feature violations of the law of one price. Such

a setup as in equation (2.5) could arise, for example, in the margin-constraints model of Garleanu

and Pedersen (2011) under the assumption that the security’s margin is a nonlinear function of its

(past) beta.

2.2 Relation to the two-step estimator

Throughout the paper we set d = 1 to simplify the notation and the exposition. All results can

be generalized to the d > 1 case. To see why equation (2.5) rationalizes the beta-sorted portfolio

algorithm, let us revisit the standard two steps:

Step 1: Estimation of αit and βit. For each individual asset, we calculate the rolling window

(local constant) regression estimator for αit and βit as,

(
α̂it0 , β̂it0

)>
=
( H∑
s=1

Xt0−sX
>
t0−s

)−1( H∑
s=1

Xt0−sRi(t0−s)

)
, (2.6)

where Xt = (1, ft)
> and H is the window length. This construction purposely does not have

“look-ahead bias”, as neither the estimators of α̂it0 or β̂it0 use data from time t0 (or after) in their

construction (a “leave-one-out” estimator). For each cross-sectional unit, this estimation of the

time-varying random coefficients can be interpreted as a leave-one-out kernel regression of equation

(2.1) using a uniform kernel and a choice of bandwidth h which satisfies H = bThc, where b.c

denotes the floor function. In the SA we provide all proofs for an arbitrary one-sided kernel which

generalizes the results we present in the following sections. �

Step 2: Sorting portfolios using estimated βit. To see that this step comprises a cross-

sectional nonparametric estimation, observe that, for fixed t, equation (2.3) is the conditional mean

of interest. Now, to cement intuition, assume (temporarily) that βit is observed and takes on a

finite number of values, one of which is b̄. Then, to estimate E[Rit|βit = b̄] we need only calculate

the sample mean of returns for assets i for which βit = b̄:

1

#{i : βit = b̄}
∑
i:βit=b̄

Rit. (2.7)
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When βit can take on a continuum of values, we can estimate E[Rit|βit = b̄] by averaging returns

for those assets i such that βit is “near” b̄. Forming portfolios is one way to operationalize this

local averaging approach. Then, the portfolio return representing assets with values of βit closest

to b̄ is our estimate for this conditional expectation.

We define B = [βl, βu], with βl and βu fixed constants, as the support of the possible realizations

of βit across i and t. Since, in practice, βit is unobserved, we may obtain estimates β̂it from Step 1

and, for each t = 1, . . . , T , we can define the beta-adaptive partition of B as

P̂jt = [β̂(bnt(j−1)/Jtc)t, β̂(bntj/Jtc)t), j = 0, . . . Jt − 1

P̂jt = [β̂(bnt(J−1)/Jc)t, β̂(nt)t], j = Jt,

where β̂(`)t denotes the `th order statistic of the estimated betas in the first step, across i for fixed

t, i.e., the order statistics of {β̂it : i = 1, . . . , nt}, and where we set β̂(0)t = βl and β̂(nt)t = βu for

simplicity. The intervals, P̂jt, allow us to partition assets into portfolios based on their estimated

beta, β̂it. The number of portfolios Jt, and their random structure (i.e., breakpoint positions based

on estimated βit), vary for each time period but we assume that Jt � J . Finally, we can construct

portfolio returns by averaging the returns of the assets in each portfolio. �

Given the two-step construction outlined above, suppose we would like to estimate E[Rit|βit =

βl]. The estimator is simply the portfolio return for the first portfolio, P̂1t, which we write as µ̂t(βl).

Similarly, we can estimate E[Rit|βit = βu] with the portfolio return for the last portfolio, P̂Jtt, as

µ̂t(βu). We can then average the differential portfolio returns for these two extreme portfolios

across all available time periods as,

µ̂(βu)− µ̂(βl) =
1

T −H

T∑
t=H+1

[µ̂t(βu)− µ̂t(βl)] . (2.8)

This is exactly the estimator that is used in practice.

A few comments are in order. First, the above two steps are completely in line with the empirical

finance literature. Importantly, at no point in the two-step algorithm is there a requirement to

estimate the conditional expectation of the risk factors, E[ft|Ft−1], and so the researcher remains

agnostic about the dynamics of these risk factors. We will revisit this issue in later sections. Second,
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the practice of using moving-window regressions to accommodate time variation in βit suggests a

slowly-varying coefficient model as previously used in finance applications such as in Ang and

Kristensen (2012) and Adrian et al. (2015). However, in contrast to these previous formulations,

we do not condition on the realizations of the random processes αit and βit. Instead, we retain the

randomness in these objects so that the second-stage beta-sorted portfolio estimator can have a well-

defined limit as n, T → ∞. Third, an alternative to the smoothly-varying coefficients approach is

to specify βit as a function of individual characteristics and possibly also of economy-wide variables

(see, for example, Gagliardini et al., 2020, and references therein). Our approach can accommodate

such settings by modifying the rolling window regressions (kernel regressions) appropriately.

Although we are motivated by empirical practice, which has been replicated exactly in equation

(2.8), we introduce and work with the more general estimation approach,

µ̂(β) =
1

T −H

T∑
t=H+1

µ̂t(β). (2.9)

Let P̂j?t t be the portfolio that contains the value β at time t. Then, µ̂t(β) is simply the return of P̂j?t t.

Importantly, the value of j?t will generally change over time. For example, it may be that assets

with values of β near 1/2 fall in the sixth portfolio at times and the fifth portfolio at other times

and so on. Thus, this more general estimation approach does not constitute spurious generality.

The conventional implementation of beta-sorted portfolios relies on a constant choice of Jt = J ∀t

and so averages J portfolios across all time periods. However, if the cross-sectional distribution of

the βit are changing over time then there is no guarantee that a chosen portfolio represents assets

with sufficiently similar betas. Therefore, the conventional estimator will be, in general, both more

biased and more variable than the estimator given in equation (2.9), all else equal. This is of special

importance when we are interested in expected returns for intermediate values of betas and also in

situations where tests of monotonicity or shape restrictions are of interest. We discuss these issues

further in later sections.
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3 First step: rolling regressions

The first step in the estimation procedure involves a sequence of rolling window time-series regres-

sions. To establish consistency (and, in the SA, asymptotic normality) of β̂it we require technical,

but relatively standard, assumptions on the underlying data generating process. We first restrict

the behavior of the idiosyncratic error terms, εit, in equation (2.1).

Assumption 1 (Idiosyncratic errors). For each i, εi• is a NTSS satisfying equation (2.1) with

E[εit|Ft−1, ft] = 0, max1≤t≤T max1≤i≤nt E[|εit|q|Ft−1, ft] . 1 for q > 8, and

min1≤t≤T min1≤i≤nt E[ε2
it|Ft−1, ft] & 1. In addition, ΘT (εi•; q, v) . 1 for some 2v > 1/2− 2/q.

Assumption 1 imposes moment conditions on the idiosyncratic error term, εit along with regular-

ity conditions controlling the rate of decay of the time-series dependence. We define E[ε2
it|Ft−1, ft] =

σ2
t which Assumption 1 ensures is bounded and bounded away from zero. It is important to em-

phasize that for the first step we need only impose that equation (2.1) holds (without imposing

equation (2.3)). We now characterize the behavior of the risk factors, ft.

Assumption 2 (Factors). ft = τ(t/T ) + zt, where τ(·) is twice differentiable on [0, 1], and z•

is a stationary NTSS, where E[zt] = 0, E[|zt|q] . 1 with q > 8, max1≤t≤T Var[zt|Ft−1] . 1, and

min1≤t≤T Var[zt|Ft−1] & 1. In addition, Θ(z•; q, v) . 1 for some v > 1/2− 2/q.

Assumption 2 imposes some structure on the time series properties of the factor ft but is quite

general and allows for certain forms of nonstationary behavior. We could relax some of these

assumptions to allow for even more complex time-series properties at the expense of more detailed

notations and proofs. We next restrict the behavior of αit and βit.

Assumption 3 (Varying coefficients). Let αit = αi(t/T ;Ft−1) and βit = βi(t/T ;Ft−1) where αi(·)

and βi(·) are nonrandom functions which are bounded for all i and satisfy, for any t, t′ ∈ [H+1, T ],

|αit−αit′ | ≤ Cα|t− t′|/T and |βit−βit′ | ≤ Cβ|t− t′|/T , where Cα, Cβ are two nonrandom, positive,

and bounded constants uniformly in i, t, and t′. Further, Let h = (H + 1)/T , where H = H(n, T ).

Assumption 3 ensures that the alphas and betas, although random, are sufficiently smooth over

time (i.e., satisfying a Lipschitz-type condition). This is the formal assumption which justifies the

common empirical approach of using rolling window regressions.
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To provide intuition for our proof approach recall that Xt = (1, ft)
> so that for a fixed time

period t0 ∈ [H + 1, T ] we can rewrite equation (2.1) as

Rit0 = X>t0(αit0 , βit0) + εit0 .

Then, by Assumption (1) and since αit and βit are measurable with respect to Ft−1, αit0 and βit0

can be identified as

E(Xt0X
>
t0 |Ft0−1)−1E(Xt0Rit0 |Ft0−1).

We can use the estimator from equation (2.6) to obtain (α̂it0 , β̂it0). In order to accommodate the

random coefficients we exploit the fact that
∑H

s=1Xt0−sX
>
t0−s and

∑H
s=1Xt0−sRi(t0−s) are close, in

the appropriate sense, to
∑H

s=1 E[Xt0−sX
>
t0−s|Ft0−1] and

∑H
s=1 E[Xt0−sRi(t0−s)|Ft0−1]. This follows

because their difference are summands of martingale difference sequences.

We first provide a (uniform) consistency result of our estimator β̂it0 over i and t0. This result

generalizes the time varying coefficient analyses in Zhang and Wu (2012). We require this result

to precisely control the effect of estimating βit in the first step when entering the second-step

estimator. We establish this consistency on a compact interval of a trimmed support [H + 1, T ].

Theorem 3.1 (First-step estimator). Suppose Assumptions 1–3 hold, and max1≤t≤T nt . n. If

log(nT )/(Th)→ 0 and T 2/q−1n2/q/h→ 0, then

sup
bThc≤t0≤T

max
1≤i≤nt0

∣∣β̂it0 − βit0∣∣ .P

√
log(nT )

Th
+ h =: RnT .

Theorem 3.1 provides uniform (over t and i) rates of convergence for the first-stage rolling-

window (kernel) estimators of the betas. Naturally, these rates depend on n, T , and H but are

also directly dependent on q which represents the number of bounded moments of the idiosyncratic

error term and the observed factors. For sufficiently large q, consistency of the rolling regression

estimator can attain the usual nonparametric (optimal) convergence rate. In the SA we also provide

conditions that ensure asymptotic normality of β̂it, which may be of independent interest.
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4 Second step: beta sorts

The second step of the estimation procedure is to sort assets into portfolios based on their value of

β̂it, which is obtained from the procedure described in the previous section. Then, returns for each

portfolio are constructed and used to assess the relation between exposure to the risk factors and

subsequent asset returns. In this section, we formalize the properties of this estimator and provide

conditions for its validity. We also discuss the importance of the cross-sectional restrictions implied

by equation (2.4) for our main results. Before proceeding, however, we will first introduce two

different objects of interest which will be useful for clarifying our results, and discussing empirical

practice more broadly.

Let us first define the sample average conditional expected returns (SACER) as:

µ̄T (β;H) =
1

T −H

T∑
t=H+1

µt(β). (4.1)

We can compare the SACER directly to equation (2.9) to observe that this would, at first glance, be

the natural candidate for our “estimand”. However, it is important to point out that the SACER

is a sample average of random quantities and, hence, is random itself. The randomness arises from

the presence of µt(·) which depends on the i-invariant sigma field Gt−1. We can contrast SACER

to its population counterpart. To do so we need the following assumption:

Assumption P (PACER). There exists a non-random function µ(·) such that supβ∈B |T−1
∑T

t=1 µt(β)−

µ(β)| = oP(1).

Assumption P imposes an ergodicity condition on the sample average of conditional expected

returns. When H/T = o(1) (as we impose) then Assumption P also implies that supβ∈B |µ̄T (β;H)−

µ(β)| = oP(1) so that the PACER can be thought of as the probability limit of the SACER. In the

special case where µt(·) = µ(·) ∀t, then the SACER and PACER are equal.

The SACER and the PACER represent two distinct objects of interest. To make things concrete,

suppose that µt(·) is random only through a finite collection of strictly stationary state variables

for the economy, say, St−1 ∈ Gt−1. Then, when we study the SACER we are learning about average

conditional expected returns for the realizations of these state variables over a specific time period

only. Equation (2.3) allows for more generality; however, we form our discussion around a finite
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set of state variables governing the economy for simplicity of exposition and to cement intuition.

Consequently, for any particular sample, it may be that the SACER and PACER are “far away”

from each other.

We recommend that empirical researchers focus on the SACER rather than the PACER for a

few reasons. First, even if Assumption P fails to hold, the SACER is well-defined under our remain-

ing assumptions. The PACER may not exist if, for example, some state variables driving µt are not

stationary. Second, and more importantly, the SACER is a more intuitive and interpretable object

of interest as we have a wealth of data summarizing what occurred over our sample. For example,

we observe the behavior of macroeconomic aggregates, changes in the legal and regulatory land-

scape, and the presence of unusual events (e.g., financial crises or natural disasters). Conversely,

interpretation of the PACER will generally hinge on the ergodic distribution for µt(·) which itself

depends on how the (subset of) economy-wide state variables drive conditional expected returns.

Characterizing the properties of this distribution would be challenging (e.g., assessing the proba-

bility of recessions or financial crises) and the appeal of the approach herein is that we can avoid

making specific assumptions about the functional form of µt(·). Third, inference on the PACER is

necessarily at least as challenging as inference on the SACER since, in practice, we only observe a

finite sample. We formalize this intuition in Theorem 4.3. Despite our preference for the SACER,

in Section 4.4 we provide a further discussion of issues related to inference on the PACER.

4.1 Cross-sectional restrictions

We impose the following assumption to justify the second step of the standard empirical approach.

Assumption 4 (Cross-sectional restrictions). Equation (2.3) holds, and E[ft|Ft−1] = E[ft|Gt−1]

for t = 1, 2, . . . , T .

Assumption 4 formally imposes the economic restrictions on conditional expected returns dis-

cussed in Section 2. We restrict the conditional expectation of the factors to be a function of random

variables in the smaller sigma field Gt. Taken together, Assumption 4 provides the foundation for

the validity of the beta-sorted portfolio estimator. Let us first define systematic realized returns as

Mt(βit) = αit + βitft = µt(βit) + βit(ft − E[ft|Gt−1]), (4.2)
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where the second equality follows by Assumption 4. Next, to provide intuition, temporarily assume

that the βit are observed. Then, using equation (4.2), our model can be written as

Rit = µt(βit) + βit(ft − E[ft|Gt−1]) + εit = Mt(βit) + εit, (4.3)

and, under Assumption 1, we have that E(εit|Ft−1, ft) = 0 (recall that βit ∈ Ft−1). The second

equality in equation (4.3) makes clear that, for a fixed time period, we can only nonparametrically

estimate the unknown function Mt(·) rather than the direct object of interest µt(·). However,

1

T −H

T∑
t=H+1

Mt(β) =
1

T −H

T∑
t=H+1

µt(β) +
1

T −H

T∑
t=H+1

β(ft − E[ft|Gt−1]). (4.4)

The second term has summands, β(ft − E[ft|Gt−1]), which are a martingale difference sequence

with respect to Gt and so we would expect this sample average to converge to zero in probability;

consequently, this would ensure that (T −H)−1
∑T

t=H+1Mt(β) and (T −H)−1
∑T

t=H+1 µt(β) are

close in probability for large T . A further complication, of course, is introduced by using an

estimated βit in the second-stage nonparametric regression. Nevertheless, later in this section, we

will make these arguments rigorous and provide appropriate conditions for valid estimation and

inference methods based on the beta-sorted portfolio estimator.

Assumption 4 allows us to highlight another important issue. As discussed in Section 3, the

first-stage estimator requires smoothly-varying random coefficients αit and βit. However, the cross-

sectional restrictions in Assumption 4 impose additional structure on these random coefficients.

The combination then implies restrictions on the functional form of conditional expected returns.

For example, if E[ft|Gt−1] is constant for all t, then, for αit to be smooth over time, we could

have µt(·) be constant over time or, alternatively, a smooth random function over time. However,

consider a more realistic example. Let St ∈ Gt again be a vector of strictly stationary state variables,

but further assume E[ft|Gt−1] = ζ + ΛSt−1, Λ 6= 0 (as in, e.g., Adrian et al. 2015 or Gagliardini

et al. 2016). Then, since equation (2.4) holds by Assumption 4, we must have that µt(·) varies

over time or else we violate Assumption 3 and the first-stage estimator of βit will not be consistent

in general. Moreover, when µt(·) varies over time, the SACER and PACER will not be equal,

and this directly affects the interpretation of the estimation and inference results in any particular
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empirical application; see Theorem 4.3 and associated discussion. Results such as these underscore

the importance of providing a formal framework for interpreting the beta-sorted portfolio estimator.

4.2 Estimation and inference

The remainder of this section presents our main results, culminating in the asymptotic normality

of the beta-sorted portfolio estimator under appropriate conditions. We first restrict the cross-

sectional behavior of the idiosyncratic error term, εit.

Assumption 5 (Idiosyncratic errors). For each t = 1, . . . , T , conditional on (Ft−1, ft), {εit : i =

1, . . . , nt} are independent and identically distributed, where n . min1≤t≤T nt ≤ max1≤t≤T nt . n.

This type of sampling assumption was introduced in Andrews (2005) and has been utilized in

the financial econometrics literature by Gagliardini et al. (2016) and Cattaneo et al. (2020a). The

assumption is quite general and allows for higher-order dependence in the distribution of εit; for

example, it accommodates conditional heteroskedasticity in the innovations over time as a function

of the factors ft and the variables in ℵ2,t.

We next impose restrictions on the βit, which serve as the covariates in the second-stage non-

parametric regression.

Assumption 6 (Cross-sectional betas). For each t = 1, . . . , T , conditional on Gt−1, {βit : i =

1, . . . , nt} are independent and identically distributed. Fβ,t(b) = P[βit ≤ b|Gt−1] is twice continuously

differentiable on its support B = [βl, βu], where fβ,t(b) = d
dbFβ,t(b) is bounded away from zero

uniformly on b ∈ B and t = 1, 2, . . . , T . Further, J . min1≤t≤T Jt ≤ max1≤t≤T Jt . J , where

Jt = Jt(nt, T ).

Assumption 6 imposes regularity conditions on the conditional distribution of the βit ensur-

ing that it is sufficiently well behaved. Specifically, the assumption ensures that the partitioning

estimator is well defined with the probability of empty portfolios vanishing asymptotically. Fur-

thermore, if we define Φi,j,t = 1(F−1
β,t ((j − 1)/Jt) ≤ βit < F−1

β,t (j/Jt)) then qjt = E[Φi,j,t|Gt−1] is

of the order J−1. The conditional i.i.d. assumption in Assumption 6 is similar to that of As-

sumption 5 and is quite general allowing, for example, a nonlinear factor structure in βit. As

a concrete example, let ℵ̃1,i and ℵ̃3,i(t−1) be selected i.i.d. variables from ℵ1,i and ℵ3,i(t−1), re-

16



spectively. Then, βit = gβ,0( tT ; gβ,1(ℵ̃1,i, ℵ̃3,i(t−1))
>gβ,2(ℵ2,t−1, . . . ,ℵ2,t−kℵ , ft−2, . . . , ft−kf )) for suf-

ficiently smooth gβ,0(·), measurable (non-constant) gβ,1(·) and gβ,2(·), and fixed lag lengths kℵ and

kf , satisfies Assumption 6.

Finally, the last assumption we require is that our object of interest, µt(β), is sufficiently smooth

in β to accommodate nonparametric estimation.

Assumption 7 (Smoothness). µt(β) is differentiable with bounded derivative uniformly in β ∈ B

and t = 1, 2, . . . , T .

This assumption is standard in the nonparametric literature and rules out discontinuities and

other pathologies that would invalidate standard nonparametric estimation approaches. As dis-

cussed in Section 2, portfolio sorting can be interpreted as a nonparametric estimator of a condi-

tional mean. In order to operationalize the estimator let us define F
β̂,n,t

(·) = 1
nt

∑nt
i=1 1(β̂it ≤ ·)

and F−1

β̂,n,t
as the empirical CDF and empirical quantile function for the estimates of the βit (recall

that β̂(s)t = F−1

β̂,n,t
(s/nt) for s = 1, . . . , nt), respectively. Then we can define

Φ̂i,j,t = 1
(
F−1

β̂,n,t
((j − 1)/Jt) ≤ β̂it < F−1

β̂,n,t
(j/Jt)

)
. (4.5)

In words, Φ̂i,j,t is a binary variable which takes on the value of one when asset i is in portfolio j

at time t, and zero otherwise. We can stack these binary variables into the Jt × nt matrix Φ̂t and

obtain

µ̂t(β) = p̂t(β)>ât =

Jt∑
j=1

p̂jt(β)âjt, (4.6)

where p̂t(β) = (p̂1t(β), . . . , p̂Jtt(β))> with p̂jt(β) = 1(β ∈ P̂jt), ât = (Φ̂tΦ̂
>
t )−1Φ̂tRt = (â1t, · · · , âJtt)>,

and Rt = (R1t, . . . , Rntt)
>. Equation (4.6) shows that µ̂t(β) requires two inputs. The first input is

which (unique) portfolio the evaluation point, β, resides in. In equation (4.6) this translates to the

choice of j? which gives p̂j?t(β) = 1. The second input is the return on the j?th portfolio. This is

simply given by the j?th element of ât.

In small samples there is always the possibility that some portfolios are empty so that the

inverse of
(
Φ̂tΦ̂

>
t

/
nt
)

may not exist. However, under our assumptions, the results in the SA show

that
(
Φ̂tΦ̂

>
t

/
nt
)

exists and is finite with probability approaching one. Throughout, we assume we

are on the event that this inverse exists but we suppress this from the notation and main results for
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simplicity of exposition. The following theorem characterizes the leading terms of the beta-sorted

estimator.

Lemma 4.1 (Leading term linearization). Suppose Assumptions 1–7 and the conditions in Theorem

3.1 hold. In addition, assume that R2
nT log(nT )→ 0 and J2 log(nT )/n→ 0. Then,

µ̂(β)− µ̄T (β;H) =
1

T −H

T∑
t=H+1

p̂t(β)>Q−1
t

1

nt

nt∑
i=1

Φi,tεit (4.7)

+
1

T −H

T∑
t=H+1

p̂t(β)>Q−1
t

1

nt

nt∑
i=1

Φi,tβit(ft − E[ft|Gt−1]) (4.8)

+ B(β) + R(β),

where Φi,t = (Φi,1,t, . . . ,Φi,Jt,t)
>, Qt is a diagonal matrix with elements {qjt = E[Φi,j,t|Gt−1] : j =

1, . . . , Jt}, the bias satisfies

B(β) =
1

T −H

T∑
t=H+1

Bt(β), Bt(β) = p̂t(β)>(Φ̂tΦ̂
>
t )−1

nt∑
i=1

Φ̂i,t

(
µt(βit)− µt(β)

)
.P J

−1,

where Φ̂i,t = (Φ̂i,1,t, . . . , Φ̂i,Jt,t)
>, and the remainder satisfies

R(β) =


oP

(
1√
T

)
if β 6= 0

oP

(√
J
nT + 1

TJ2

)
if β = 0

,

with R(β) defined explicitly in the SA.

Lemma 4.1 introduces some key properties of the grand mean estimator, µ̂(β). First, under

our assumptions, we may ignore the generated errors of the first-stage estimation of the βit when

analyzing the second stage portfolio sorting estimator. Second, the theorem shows that when

estimating the SACER the leading term is comprised of two elements: the first term, equation

(4.7), would appear in any generic nonparametric problem whereas the second term, equation

(4.8), is specific to the asset pricing setup. Importantly, the second term is of the order OP(T−1/2)

representing the summation of the product of the conditional beta and the deviation of the factor

from its conditional mean, (ft − E[ft|Gt−1]). Thus, despite an approximate sample size of nT in

concert with a nonparametric procedure with tuning parameter J , the grand mean estimator, for

18



all values of β except zero, achieves only a
√
T rate of convergence. That said, for β evaluated at

zero, there is a discontinuity and the second term becomes degenerate and the first term dominates

leading to a faster rate of convergence, namely, OP
(√

J
nT + 1

TJ2

)
.5 This is reflected in the remainder

term, R(β), in Lemma 4.1. Finally, we see that the bias of the estimator at time t, Bt(β), and

also for the grand mean, B(β), are of the order OP(J−1). In words, the sample average across time

does not alter the order of the bias since µ̂(β) is a sample average of nonparametric estimates taken

one cross-section at a time.

Remark 4.2. As discussed above, for fixed t we can only consistently estimate Mt(β) not µt(β).

However, we can affect the asymptotic properties by focusing on specific features of the unknown

function, µt(β). By taking a discrete second derivative we can simplify the asymptotic properties

since

Bflyt(β1, β2, β3;Mt) = Mt (β1)− 2Mt (β2) +Mt (β3) = µt (β1)− 2µt (β2) + µt (β3) , (4.9)

whenever β1−β2 = β2−β3 with three distinct points β1, β2, β3 ∈ B. This object can be interpreted

as a “butterfly” trade where one goes long one unit of each of two assets (one with β1 and one with

β3) and short two units of an asset (with β2). By results provided in the SA, we can show that

Bflyt(β1, β2, β3; µ̂t)−Bflyt(β1, β2, β3;µt) = oP(1), (4.10)

and

1

T −H

T∑
t=H+1

(Bflyt(β1, β2, β3; µ̂t)−Bflyt(β1, β2, β3;µt)) = oP(1). (4.11)

Moreover, both of these estimators achieve the faster rate of convergence, OP(
√
J/nT ). This

imposes the additional rate restriction nT
/
J3 → 0 which ensures sufficient undersmoothing for

the “butterfly” estimator. Under the assumption of the absence of arbitrage opportunities, the

expression in equation (4.9) is equal to zero for all β1, β2, and β3 satisfying β1 − β2 = β2 − β3.

Thus, this statistic can serve as the foundation to conduct inference on whether the no-arbitrage

restriction holds (see Section 5.3 below).

5To see that this rate of convergence is faster, note that J/n→ 0 is required to ensure that the probability of an
empty portfolio is vanishing asymptotically.
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Next we provide a central limit theorem for µ̂(β) which allows us to conduct inference on the

estimator of the SACER. Our result employs a martingale central limit theorem (Hall and Heyde,

2014) combined with the dependence structure introduced earlier.

Theorem 4.3 (Central limit theorem). Suppose Assumptions 1-7 hold along with the rate restric-

tions on h and T given in Theorem 3.1. In addition, assume that

min{J−1, J2/n}T−1/2 max
1≤t≤T

max
1≤i≤nt

Θn,T ((p̂•(β)>Q−1
• Φi,•εi•)

2; q, v)→ 0

min{n/J, J2}T−1/2Θn,T ((p̂•(β)>Q−1
• E[Φi,•βi•|Gt−1]f•)

2; q, v)→ 0

for 2v > 1/2− 1/q. Then,

µ̂(β)− µ̄T (β;H)−B(β)√
E[σ2

ε(β) + σ2
f (β)]

→L N(0, 1), (4.12)

where

σ2
ε(β) =

1

(T −H)2

T∑
t=H+1

Jt∑
j=1

n−2
t

nt∑
i=1

p̂j,t(β)q−2
jt E(Φi,j,tε

2
it|Gt−1) �P

J

nT
,

σ2
f (β) =

1

(T −H)2

T∑
t=H+1

Jt∑
j=1

p̂j,t(β)q−2
jt E(Φi,j,tβit|Gt−1)2(ft − E[ft|Gt−1])2 �P


1
T if β 6= 0

1
TJ2 if β = 0

.

Theorem 4.3 characterizes the limiting distribution of the beta-sorted portfolio estimator when

centered at the SACER (plus the smoothing bias, B(β)). A few remarks are in order. First, despite

the differential rates of convergence in the numerator depending on the value of β shown in Lemma

4.1, once properly scaled, the limiting distribution is unaffected. This comes about because the

denominator adapts to the appropriate rate of convergence. Second, Theorem 4.3 provides the basis

of a feasible inference procedure based on a new plug-in variance estimator, discussed in Section

4.3. Third, we require restrictions on the dependence properties of the data, using our concept of

time-series dependence introduced in Section 1.1, to ensure the convergence in distribution holds.

Finally, to provide some intuition for the rate conditions given in Theorem 4.3 we give the

following example for β 6= 0. Let n = T γ1 , h = T−γ2 and J = T γ3 , for γ1, γ2, γ3 > 0, γ2 < 1 and
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γ3 < γ1. If we ignore log terms, the rate conditions in the above theorem require that 2γ1 + qγ2 <

q − 2 and 1 < 2γ3 < γ1. Thus, even for large γ1 (e.g., γ1 = 2), our rate requirements conform with

a choice of bandwidth that produces meaningful undersmoothing in the first step relative to, for

example, the MSE optimal rate of T−1/3. Intuitively, this comes about because variation in the

first-stage estimates is beneficial for estimating µt(·) since βit are the regressors in the second-stage

nonparametric estimation problem. As a consequence the trade-off between bias and variance that

would arise if the first stage was considered in isolation is no longer the case in the combined

procedure: the cost of bias relative to variance rises.

Remark 4.4 (De-biasing the Small Exposure Portfolio). The results presented in Lemma 4.1

and Theorem 4.3 make clear that the portfolio which includes the value β = 0 is special relative

to all other portfolios. The rate of convergence accelerates to
√

J
nT + 1

TJ2 which amplifies the

smoothing bias in relative terms. By Theorem 4.3, the rate condition
√
TJ−1 → 0 enables sufficient

undersmoothing when β 6= 0. However, when β = 0, this rate condition is insufficient and the bias

of the estimator must be further reduced to employ the asymptotic normality results in Theorem

4.3. In our empirical application in Section 6 we de-bias this portolio by fitting a linear regression

of returns on betas within the bin rather than a constant fit.

4.3 Feasible inference on the SACER

We have established conditions which ensure asymptotic normality of the beta-sorted portfolio

estimator when centered at the SACER. In this section, we investigate the properties of two feasible

inference procedures. The first is the so-called Fama-MacBeth (FM) variance estimator which is

ubiquitous in existing applications of beta-sorted portfolios. The FM variance estimator can be

motivated by the classical sample variance estimator, and is constructed as

σ̂2
FM(β) =

1

(T −H)2

T∑
t=H+1

(
µ̂t(β)− µ̂(β)

)2
. (4.13)

Thus, µ̂t(β) for t = H+ 1, . . . , T serves as the sample “observations” and µ̂(β) serves as the sample

“mean.”

The second feasible inference procedure is based on a new plug-in (PI) variance estimator

which can be constructed using the results in Lemma 4.1 and Theorem 4.3. To see the logic of our
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approach, first consider the (unrealistic) case where we observe εit and E[ft|Gt−1]. We can exploit

the fact that the two leading terms shown in Theorem 4.1 are uncorrelated and so the natural

plug-in variance estimator is

σ̃2
PI(β) = σ̃2

f,PI(β) + σ̃2
ε,PI(β),

where

σ̃2
f,PI(β) =

1

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2
t q̂

2
jt

(
nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)β̂it

)2

(ft − E[ft|Gt−1])2,

σ̃2
ε,PI(β) =

1

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2
t q̂

2
jt

nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)ε
2
it,

and q̂jt = n−1
t

∑nt
i=1 Φ̂i,j,t. Of course, σ̃2

PI(β) is infeasible. As a feasible alternative, consider

σ̂2
PI(β) = σ̂2

f,PI(β) + σ̂2
ε,PI(β), (4.14)

where

σ̂2
f,PI(β) =

1

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2
t q̂

2
jt

(
nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)β̂it

)2

(ft − ̂E[ft|Gt−1])2 (4.15)

σ̂2
ε,PI(β) =

1

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2
t q̂

2
jt

nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)ε̂
2
it. (4.16)

Here ε̂it = Rit − µ̂t(βit) and ̂E[ft|Gt−1] is a feasible estimator of E[ft|Gt−1] using only information

contained in Gt−1. For example a parametric approach would lead to ̂E[ft|Gt−1] = ht−1(ϑ̂) for some

ht−1(ϑ) with ht−1(ϑ̂) a corresponding feasible estimate. As a simple example, in the case of an

AR(1) we would obtain ht−1(ϑ) = ϑ0 + ϑ1ft−1, and we would estimate the parameters, (ϑ0, ϑ1),

recursively. The estimator, ̂E[ft|Gt−1], may not be correctly specified but we will demonstrate in

Theorem 4.3 below that we can still conduct valid, albeit possibly conservative, inference.

Finally, it is important to emphasize that, just as for the beta-sorted portfolio estimator itself

(see Section 2), both the FM and PI variance estimators require an accounting, at each time t, of
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which portfolio β resides in.

Before stating the pertinent properties of the two variance estimators, it will be useful to define

the following object

σ2
µ(β) =

1

(T −H)2

T∑
t=H+1

(µt(β)− µ̄T (β;H))2 , (4.17)

which is the sample variance of the SACER. In addition, define the following (infeasible) version of

the FM variance estimator where the individual elements have had their smoothing bias removed,

σ̃2
FM(β) =

1

(T −H)2

T∑
t=H+1

(
µ̂t(β)−Bt(β)−

(
µ̂(β)−B(β)

))2
. (4.18)

We then have the following result.

Theorem 4.5 (Variance estimation). Suppose Assumptions 1–7 hold along with the rate restrictions

on h and T given in Theorem 4.3. Then,

(i) if β 6= 0 ∣∣σ̂2
FM(β)− σ2

ε(β)− σ2
f (β)− σ2

µ(β)
∣∣ = oP

( 1

T

)
,

and, if E[σ2
µ(β)] = o

(
J
nT + 1

TJ2

)
, then for β = 0

∣∣σ̃2
FM(β)− σ2

ε(β)− σ2
f (β)− σ2

µ(β)
∣∣ = oP

( J

Tn
+

1

TJ2

)
;

(ii) Assume maxH+1≤t≤T E
[
(E[ft|Gt−1]− ̂E[ft|Gt−1])2

]
is o(T ) if β 6= 0 and o

(
J2T
n2 + T

J4

)
if β = 0.

Then, for β ∈ B,

|σ̂2
ε,PI(β)− σ2

ε(β)|+ |σ̂2
f,PI(β)− σ2

f (β)− snT (β)| =


oP

(
1
T

)
if β 6= 0

oP

(
J
nT + 1

TJ2

)
if β = 0

,

where snT (β) ≥ 0 is defined in Section SA-2.5 of the SA.

Theorem 4.5 characterizes the (differential) asymptotic properties of the PI and the FM vari-

ance estimators. The intuition behind these results is specific to each of the variance estimators.

For the PI variance estimator, consistency can be achieved when the specification of ̂E[ft|Gt−1] is

correct. However, even if this estimator is misspecified σ̂PI(β) will be biased upward only. This
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conservativeness arises by the standard minimum mean-square error property of the conditional

expectation with sNT representing the contribution arising from the misspecification. For the FM

variance estimator, we can understand the result from the following decomposition of the summands

of the estimator:

µ̂t(β)− 1

T

T∑
t=1

µ̂t(β) = (µ̂t(β)− µt(β)) + [µt(β)− 1

T

T∑
t=1

µt(β)]− 1

T

T∑
t=1

(
µ̂t(β)− µt(β)

)
.

It is the first term that plays the role of capturing the contribution of the variance from σ2
f (·)+σ2

ε(·),

while the second term captures the contribution of σ2
µ(·). The third term, instead, is asymptotically

negligible. When β = 0, in order to use the FM variance estimator, the bias from each µ̂t(β) must

be removed. This is why we replace σ̂2
FM(β) by σ̃2

FM(β). As discussed in Remark 4.4, in practice for

σ̂2
FM(β) we de-bias the portfolio which contains β = 0, so the associated FM variance estimator will

inherit this adjustment.

We can use the results of Theorem 4.5 as the basis for our feasible inference procedures.

Corollary 4.5.1. Let the Assumptions of Theorem 4.5 hold. Define L̂T (β, σ̂) = µ̂(β)−σ̂(β)qN1−α/
√
T ,

and ÛT (β, σ̂) = µ̂(β)+ σ̂(β)qN1−α/
√
T where qN1−α is the 1−α quantile of a standard Gaussian vari-

able. Then, for fixed β ∈ B and a pre-specified nominal level 2α,

lim inf
N,T→∞

P
(
µ̄T (β;H) ∈ [L̂T (β, σ̂PI), ÛT (β, σ̂PI)]

)
≥ 1− 2α, (4.19)

lim inf
N,T→∞

P
(
µ̄T (β;H) ∈ [L̂T (β, σ̂FM), ÛT (β, σ̂FM)]

)
≥ 1− 2α. (4.20)

Since the SACER is a random object, we can use the results in Corollary 4.5.1 to form prediction

intervals for µ̄T (β;H). With either choice of variance estimator, inference is asymptotically valid

but may be conservative. When using the PI variance estimator we obtain asymptotic coverage of

exactly 1− 2α when the conditional expectation is specified correctly, whereas for the FM variance

estimator this occurs when µt(β) does not vary over time.

Remark 4.6. Theorem 4.5 also implies that we can construct an asymptotic lower bound for the

sample variance of conditional expected returns, σ2
µ(β), by taking the difference between σ̂2

FM(β)

24



and σ̂2
PI(β). Under the assumptions in Theorem 4.5, we have that for β ∈ B,

σ̂2
FM(β)− σ̂2

PI(β) = σ2
µ(β)− snT (β) + oP

( 1

T

)
. (4.21)

Thus, through the medium of the two alternative variance estimators we can learn about other

features of conditional expected returns. Although this only provides an estimate of a lower bound

on σ2
µ(β), in our empirical application, we find that this difference is relatively large and so this

bound can be informative.

Remark 4.7. Theorem 4.5 also implies that valid inference on the SACER can be achieved without

the need to stipulate the form of the conditional expectation of the risk factors, E[ft|Gt−1]. This

stands in contrast to existing approaches, for example, Adrian et al. (2015) and Gagliardini et al.

(2016), where a (first-order) Markovian structure is imposed. In practice, specifying the correct

functional form including the appropriate conditioning variables for the risk factor dynamics is a

challenge. This is an advantage of the estimation approach we study.

4.4 Feasible inference on the PACER

Although we have argued that the SACER should be the preferred estimand for the beta-sorted

portfolio estimator, it is illuminating to compare the conditions required to obtain results for

this alternative estimand. First note that the beta-sorted portfolio estimator is consistent for the

PACER so long as Assumption P holds (i.e., the PACER exists):

µ̂(β)− µ(β) =
(
µ̂(β)− µ̄T (β;H)

)
+
(
µ̄T (β;H)− µ(β)

)
. (4.22)

The first term is oP(1) under the assumptions given in Section 4 and the second term is oP(1) if

Assumption P also holds.

Although consistency is ensured with only a mild strengthening of the assumptions necessary

for our results for the SACER, asymptotic normality requires substantially more structure on the

properties of the data. This is because, for the PACER, the martingale difference property no long

holds and so our previous approach to obtaining asymptotic results cannot be used. By equation

(4.22) it follows that the variance when estimating the SACER is smaller (by the magnitude σ2
µ(β);
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see Theorem 4.3) than when estimating the PACER with equality only when µt(β) is constant

over time. Furthermore, by Theorem 4.5 the FM variance estimator will consistently estimate this

larger variance under appropriate regularity conditions.

Establishing asymptotic theory and feasible inference procedures for the PACER is challenging

because of the highly nonlinear time series dependence and complicated nonparametric structure

of the beta-sorted portfolio estimator, and therefore we leave this task for future work.

5 Joint Inference

In our main results we have laid a foundational framework and associated assumptions which ensure

consistency, asymptotic normality, and feasible inference for the beta-sorted portfolios estimator

of the SACER. These results immediately imply valid procedures for joint inference over finitely

many values of β. In this section we discuss how to conduct joint inference for the SACER over

multiple beta values along with how to formally test for the presence of profitable high-low and

“butterfly” trading strategies.

In order to construct joint intervals for multiple values of β we require estimators of the covari-

ance of µ̂(β1) and µ̂(β2) for β1, β2 ∈ B. For the FM variance estimator we have,

σ̂FM(β1, β2) =
1

(T −H)2

T∑
t=H+1

(
µ̂t(β1)− µ̂(β1)

)(
µ̂t(β2)− µ̂(β2)

)
,

whereas for the PI variance estimator we can use,

σ̂PI(β1, β2)

=
1

T −H

T∑
t=H+1

Jt∑
j1=1

Jt∑
j2=1

n−2
t q̂−1

j1t
q̂−1
j2t

(
nt∑
i=1

p̂j1,t(β1)p̂j2,t(β2)p̂j1,t(β̂it)p̂j2,t(β̂it)β̂
2
it

)
(ft − ̂E(ft|Gt−1))2

+
1

T −H

T∑
t=H+1

Jt∑
j1=1

Jt∑
j2=1

n−2
t q̂−1

j1t
q̂−1
j2t

nt∑
i=1

p̂j1,t(β1)p̂j2,t(β2)p̂j1,t(β̂it)p̂j2,t(β̂it)ε̂
2
it.

The results we present are valid for either the FM or PI approaches and so for simplicity we

present the results with the generic notation σ̂(β1, β2) as a stand-in for either estimator with

σ̂(β, β) = σ̂2(β).

26



Finally, the following notation will be used throughout this section. Let BG = {b1, b2, . . . , bG} ⊂

B be a finite collection ofG evaluation points of β. Our theoretical results imply the existence of aG-

variate Gaussian limiting distribution with the covariance matrix, ΣG, following from Theorem 4.3.

More precisely, let µ̂G = (µ̂(b1), . . . , µ̂(bG))> and µG = (µ(b1), . . . , µ(bG))>, so that (µ̂G − µG) ∼a

Σ
1/2
G Z where Z ∼ N (0, IG).

5.1 Joint inference for the SACER

A valid joint prediction interval for SACER can be constructed via [L̂T (β), ÛT (β)] where L̂T (β) =

µ̂(β)− σ̂(β)q1−α/
√
T , and ÛT (β) = µ̂(β) + σ̂(β)q1−α/

√
T , and q1−α is obtained as the 1−α quan-

tile of the distribution of
∣∣Σ1/2

G,corrZ
∣∣
∞ where ΣG,corr = diag(ΣG)−1/2ΣGdiag(ΣG)−1/2 and diag(A)

denotes a diagonal matrix with diagonal entries the same as the diagonal entries of A. In practice,

we replace ΣG with Σ̂G using either the FM or PI covariance estimator introduced above. Then,

with a pre-specified coverage level 1 > 2α > 0,

lim inf
N,T→∞

P
(
µ̄T (β;H) ∈ [L̂T (β), ÛT (β)], for all β ∈ BG

)
≥ 1− 2α.

Intuitively, if 0 is not contained in this joint prediction interval then we can reject the null that

there exists values of β ∈ G which do not earn (expected) returns for the exposure to the factor.

We provide an algorithm to implement the joint inference procedure below.

Algorithm 1 Joint inference for the SACER.

Require: nt, T ≥ 0

1: Obtain (i, k) elements of Σ̂G as σ̂(bi, bk) using the G grid points in BG.

2: Simulate standard normal random variables Z(s) of G × 1 dimension for s = 1, · · · , S times,

where S is the number of draws.

3: Construct Z̃(s) = Σ̂
1/2
G,corrZ

(s), where Σ̂G,corr = diag(Σ̂G)−1/2Σ̂G diag(Σ̂G)−1/2 and Σ̂
1/2
G,corr is the

symmetric square root of Σ̂G,corr.

4: Obtain the 1− α quantile of |Z̃|∞ from the S simulated draws and denote as q̂1−α.

5: Create the joint prediction interval by [L̂T (bi), ÛT (bi)], where L̂T (bi) = µ̂(bi) − σ̂(bi)q̂1−α/
√
T

and ÛT (bi) = µ̂(bi)− σ̂(bi)q̂1−α/
√
T for i = 1, . . . , G.
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5.2 The generalized high-minus-low strategy

The most popular object of interest in the empirical finance literature is to compare the time-

average of returns from the two extreme portfolios (i.e., the portfolios which encompass the eval-

uation points βl and βu) as discussed in Section 2. The goal is to assess whether a long-short

portfolio trading strategy earns statistically significant returns, i.e., has a nonzero unconditional

risk premium. However, we can use our general framework and new theoretical results to formulate

a more effective inference procedure to assess the properties of expected returns. Rather than focus

on |µ(βu)−µ(βl)| we instead consider maxβ∈BG µ(β)−minβ∈BG µ(β). In words, we study the most

profitable long-short strategy available. We refer to this as the generalized high-minus low strategy.

In the special case when µ(β) is monotonic (and the grid BG includes βl and βu), then the two

expressions are equivalent. Thus, we nest the popular high minus low portfolio inference approach

as we test for the presence of any profitable long-short strategy in BG.

This class of high-minus-low statistics can be re-expressed in the following form,

max
β∈BG

µ̂(β)− min
β∈BG

µ̂(β) = max
β∈BG

µ̂(β) + max
β∈BG

(
− µ̂(β)

)
= max

β∈BG

( 1

T

T∑
t=1

Jt∑
j=1

p̂j,t(β)âjt

)
+ max
β∈BG

(
− 1

T

T∑
t=1

Jt∑
j=1

p̂j,t(β)âjt)
)
,

where we denote βmax as the point attaining maxβ∈BG( 1
T

∑T
t=1

∑Jt
j=1 p̂j,t(β)âjt) and βmin as the

point attaining maxβ∈BG(− 1
T

∑T
t=1

∑Jt
j=1 p̂j,t(β)âjt)). Algorithm 2 below shows how to construct

a joint prediction interval [L̂T , ÛT ]. Intuitively, if 0 is outside of this interval then there exists at

least one profitable long-short strategy across a pair of values in BG.

5.3 The “butterfly” strategy

We introduce one final joint inference procedure which is motivated by a “butterfly” trading strategy

corresponding to a discrete second derivative (see Remark 4.2; the long-short trading strategy of

the previous subsection can be thought of as a discrete first derivative). Furthermore, under the

assumption of the absence of arbitrage opportunities, then the “butterfly” trading strategy we

formulate should have zero (conditional) expected returns. Thus, we can also directly conduct

inference on whether the data are consistent with a no-arbitrage assumption. In words, under
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Algorithm 2 Inference for the generalized high-minus-low strategy.

Require: nt, T ≥ 0

1: Obtain (i, k) elements of Σ̂G as σ̂(bi, bk) using the G grid points in BG.

2: Simulate standard normal random variables Z(s) of G × 1 dimension for s = 1, · · · , S times,

where S is the number of draws.

3: Obtain µ̂(βmax) = maxβ∈BG T
−1
∑T

t=1 µ̂t(β) and µ̂(βmin) = minβ∈BG T
−1
∑T

t=1 µ̂t(β). Let

µ̂GHL = µ̂(βmax)− µ̂(βmin).

4: Construct Z̃(s) = Σ̂
1/2
G Z(s), where Σ̂

1/2
G is the symmetric square root of Σ̂G, and obtain Z̃

(s)
βmax
−

Z̃
(s)
βmin

using the evaluation points corresponding to βmax and βmin.

5: Obtain the 1 − α quantile of
∣∣Z̃(s)

βmax
− Z̃(s)

βmin

∣∣ from the simulated draws, and denote as q̂1−α.

(note: Z̃
(s)
βmin

, Z̃
(s)
βmax

are the Gaussian limits corresponding to βmax and βmin, respectively.)

6: Create the prediction interval [L̂T , ÛT ], where L̂T = µ̂GHL − q̂1−α/
√
T and ÛT = µ̂GHL +

q̂1−α/
√
T .

no-arbitrage, there does not exist an ex-ante profitable trade where one goes long one unit of each

of two assets (one with β1 and one with β3) and short two units of an asset (with β2). Naturally,

we will focus on the estimator:

max
β1+β3=2β2

Bfly(β1, β2, β3; µ̂) = max
β1+β3=2β2

1

T

T∑
t=1

Bflyt(β1, β2, β3; µ̂t).

To construct asymptotically valid prediction intervals we can utilize the results of Lemma 4.1

which yields the following leading term expansion,

Bfly(β1, β2, β3; µ̂)−Bfly(β1, β2, β3;µ)

=
1

T

T∑
t=1

1

nt

nt∑
i=1

Jt∑
jt=1

Bflyt(β1, β2, β3; p̂jt)q
−1
jt Φi,j,tεit +OP(J−1).

As we discussed in Remark 4.2, the “butterfly” estimator enjoys a better rate of convergence

for all values of β, namely,
√
nT/
√
J and so we require an alternative variance estimator to form

prediction intervals. The asymptotic variance of T−1
∑T

t=1

√
Tnt/Jt · Bflyt(β1, β2, β3; µ̂) may be
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estimated by

σ̂2
DiD(β1,β2, β3) =

1

T

T∑
t=1

σ̂2
DiD,t(β1,β2, β3),

where

σ̂2
DiD,t(β1, β2, β3) =

1

ntJt

nt∑
i=1

Jt∑
j=1

Bflyt(β1, β2, β3; p̂jt)
2q̂−2
jt Φ̂i,j,tε̂

2
it.

Let β1,2,3 be an abbreviation for β1, β2, β3 and β′1,2,3(6= β1,2,3) as an abbreviation for β′1, β
′
2, β
′
3. We

define the corresponding covariance estimator as

σ̂DiD(β1,2,3, β
′
1,2,3) =

1

T

T∑
t=1

σ̂DiD,t(β1,2,3, β
′
1,2,3),

where

σ̂DiD,t(β1,2,3, β
′
1,2,3) =

1

ntJt

nt∑
i=1

Jt∑
j=1

Bflyt(β1, β2, β3; p̂jt)Bflyt(β
′
1, β
′
2, β
′
3; p̂jt)q̂

−2
jt Φ̂i,j,tε̂

2
it.

For an equal-spaced choice of gridpoints, BG, we can then collect all ordered triplets (b1, b2, b3)

which satisfy 2b2 = b1 + b3 (b1 6= b3). Then, we can construct the G? × G? estimated variance-

covariance matrix Σ̂DiD by using σ̂2
DiD(b1, b2, b3) for the diagonal elements and σ̂DiD(b1,2,3, b

′
1,2,3) for

the off-diagonal elements.6

Using Algorithm 3 below we can construct the appropriate prediction interval. Intuitively, if

zero is outside the prediction interval, then there exists at least one “butterfly” strategy based on

BG which earns nonzero expected returns. Furthermore, if zero is outside of the interval then we

cannot reject the hypothesis that the no-arbitrage condition holds in the data.

Remark 5.1. The grand mean allows for inference on unconditional risk premia but we would

also like to accommodate inference on conditional risk premia. For example, a risk factor may be

associated with a significant risk premium only in certain time periods. Conversely, the conditional

risk premium may be zero under some conditions but not unconditionally. Drawing inferences about

6When G is even, then G? = G(G− 2)
/

4 and when G is odd, then G? = (G− 1)2
/

4.
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Algorithm 3 Inference for the “butterfly” strategy.

Require: nt, T ≥ 0

1: Choose an equally spaced grid, BG. Obtain Σ̂DiD using σ̂2
DiD(b1, b2, b3) and σ̂DiD(b1,2,3, b

′
1,2,3).

2: Simulate standard normal random variables Z(s) of G? × 1 dimension for s = 1, · · · , S times,

where S is the number of draws.

3: Obtain µ̂(bi) for all G gridpoints bi ∈ BG. Find βmax
1,2,3 which satisfies βmax

1,2,3 =

maxb1,b2,b3∈BG,2b2=b1+b3 Bfly(b1, b2, b3; µ̂).

4: Construct Z̃(s) = Σ̂
1/2
DiD,corrZ

(s), where Σ̂DiD,corr = diag(Σ̂DiD)−1/2Σ̂DiD diag(Σ̂DiD)−1/2 and

Σ̂
1/2
DiD,corr is the symmetric square root of Σ̂DiD,corr.

5: Obtain the 1− α quantile of |Z̃|∞ from the S simulated draws and denote as q̂1−α.

6: Create the prediction interval [L̂T , ÛT ], where L̂T = Bfly(βmax
1 , βmax

2 , βmax
3 ; µ̂) −

σ̂DiD(βmax
1 , βmax

2 , βmax
3 )q̂1−αT

−3/2
∑T

t=1

√
Jt/nt and ÛT = Bfly(βmax

1 , βmax
2 , βmax

3 ; µ̂) +

σ̂DiD(βmax
1 , βmax

2 , βmax
3 )q̂1−αT

−3/2
∑T

t=1

√
Jt/nt.

conditional risk premia can provide additional information to understand the economic mechanisms

underpinning the risk-return trade-off. Without assuming a functional form for the conditional

mean of the risk factors, there are limitations about what we can infer about µt(β). But we can

characterize some features of conditional expected returns at time t.

For a given time period t, consider maxβ1+β3=2β2 Bflyt(β1, β2, β3; µ̂t). We can interpret the

prediction interval for this object in two ways. First, if zero is outside of the interval then we find

evidence in favor of arbitrage opportunities at time t. Second, if zero is outside of the interval,

then we find evidence that the risk factor has nonzero conditional expected returns at time t, even

though we cannot consistently estimate µ̂t(β). We can follow similar steps as in Algorithm 3 to

construct the associated time t prediction interval (see Algorithm 4 below).

6 Empirical Application

In this section, we introduce a novel risk factor and show that it is strongly predictive of both

the cross-section and time-series behavior of U.S. stock returns. We also utilize this application to

illustrate the practical advantages of the novel theoretical results presented earlier in the paper.

Our risk factor is a new measure of the business credit cycle. The business credit cycle is

commonly evaluated by means of ratios of credit aggregates to measures of output. Although
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Algorithm 4 Inference for the fixed-t “butterfly” strategy.

Require: nt, T ≥ 0

1: Choose an equally spaced grid, BG. Obtain Σ̂DiD,t using σ̂2
DiD,t(b1, b2, b3) and σ̂DiD,t(b1,2,3, b

′
1,2,3)

using the G gridpoints in BG.

2: Simulate standard normal random variables Z(s) of G? × 1 dimension for s = 1, · · · , S times,

where S is the number of draws.

3: Obtain µ̂t(bi) for all G gridpoints bi ∈ BG. Find βmax,t
1,2,3 which satisfies βmax,t

1,2,3 =

maxb1,b2,b3∈BG,2b2=b1+b3 Bflyt(b1, b2, b3; µ̂t).

4: Construct Z̃(s) = Σ̂
1/2
DiD,t,corrZ

(s), where Σ̂DiD,t,corr = diag(Σ̂DiD,t)
−1/2Σ̂DiD,t diag(Σ̂DiD,t)

−1/2

and Σ̂
1/2
DiD,t,corr is the symmetric square root of Σ̂DiD,t,corr.

5: Obtain the 1− α quantile of |Z̃|∞ from the S simulated draws and denote as q̂1−α.

6: Create the prediction interval [L̂t, Ût], where L̂t = Bflyt(β
max,t
1 , βmax,t

2 , βmax,t
3 ; µ̂t) −

σ̂DiD,t(β
max,t
1 , βmax,t

2 , βmax,t
3 )q̂1−α

√
Jt/nt and Ût = Bflyt(β

max,t
1 , βmax,t

2 , βmax,t
3 ; µ̂) +

σ̂DiD,t(β
max,t
1 , βmax,t

2 , βmax,t
3 )q̂1−α

√
Jt/nt.

theoretically appealing, a drawback to these approaches is that it is difficult to parse out movements

in credit ratios that are arising from composition changes in the aggregates as compared to all

other movements. Here we take a different approach. We rely on the Federal Reserve’s Senior

Loan Officer Opinion Survey7 (SLOOS) as our proxy for the “credit” portion of the ratio and

the ISM Manufacturing Index as our measure of the “output” portion. This has three distinct

advantages. First, as the SLOOS and ISM are both diffusion indices, they have uniform behavior

across their history even in the face of changes in the structure of the economy. Second, they are

much more timely than credit aggregates and national accounts data which tend to be released

with a substantial lag. Third, they are not subject to revision. Thus we have a timely factor which

we can evaluate in real time with no look-ahead bias.

Our factor is simply constructed as

CCWt =

(
1

2
· SLOOSt + 50

)
+ ISMt, (6.1)

where SLOOSt is the net percentage of large domestic banks tightening standards for commercial

and industrial loans to all firms and ISMt is the ISM index.8 Although both the SLOOS and the

7The properties of the SLOOS were first studied in Schreft and Owens (1991), Lown et al. (2000), and Lown and
Morgan (2002, 2006). See also Crump and Luck (2023).

8The Senior Loan Officer Opinion Survey is currently conducted on a quarterly basis. To construct a monthly
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ISM are diffusion indices, they are scaled differently and so the affine transformation of the SLOOS

is implemented so that they are both on the same scale (between 0 and 100). To understand why

this is (the inverse of) a credit-to-output type measure note that a fall in the SLOOS corresponds to

easier lending standards (higher credit growth) and a fall in the ISM to less output. Thus, when the

CCW variable is low, credit-to-output is high. A similar logic applies for when the CCW variable

is high. Our factor is available starting in January 1965 when the first SLOOS was implemented.

As a preliminary check for the validity of our factor we assess its ability to predict future

market returns. Specifically, an implication of our setup (see equation (2.1)) is that if the factor is

serially correlated then lagged values should be predictive of future equity returns. To show this,

we consider the standard predictive regression setup and run predictive regressions of the form,

rt+h = a+ b · zt + vt. (6.2)

We utilize the standard predictors obtained from Welch and Goyal (2008) as a benchmark compar-

ison along with our risk factor. In Table 1 we present in-sample R2 from predictive regressions for

forecast horizons of 1, 3, 6, and 12 months ahead. The first fourteen rows present the results for

the benchmark predictors investigated in Welch and Goyal (2008). The next row, labeled “CGP”

reports results using only the SLOOS portion of our risk factor as in Chava et al. (2015). Finally,

The last row, labeled “CCW” provides the results for our new risk factor. The results are stark.

The in-sample R2 from our new risk factor far outstrips that of the other predictors considered.

To ensure our results are not a consequence of overfitting, in Table 2 we present out-of-sample R2

results using a training sample up to the end of 1989. Again, the results are stark with our risk

factor outperforming each of the other predictors by a wide margin.

We can now investigate how our risk factor performs in explaining the cross-section of equity

returns. We implement our estimators as described in Sections 3 and 4. We use monthly data

from the Center for Research in Security Prices (CRSP) over the sample period January 1926 to

December 2019. We restrict these data to those firms listed on the New York Stock Exchange

(NYSE), American Stock Exchange (AMEX), or Nasdaq and use only returns on common shares

series we keep the SLOOS value constant until a new value is available. For the period from 1984m1 through 1990m1,
the credit standards question was not included in the SLOOS. For this period we use as a replacement the net
willingness to make consumer installment loans by large domestic banks.
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Table 1: In-sample Predictive Regressions This table reports R2 (in percent) from predictive
regressions of excess stock returns on an individual predictor variables from Welch and Goyal (2008)
for horizons of 1, 3, 6, and 12 months ahead. The row labeled “CGP” reports results for the SLOOS
only portion of our risk factor as studied in Chava et al. (2015). The row labeled “CCW” reports
results for our proposed risk factor. The sample period is 1965m1–2019m12.

h = 1 h = 3 h = 6 h = 12

(log) Dividend Price Ratio 0.09 0.30 0.72 1.41
(log) Dividend Yield 0.11 0.32 0.75 1.44
(log) Earnings Price Ratio 0.03 0.04 0.06 0.26
(log) Dividend Payout Ratio 0.02 0.20 0.57 0.69
Stock Variance 1.06 0.13 0.13 0.66
Book-to-Market Ratio 0.00 0.01 0.06 0.12
Net Equity Expansion 0.14 0.21 0.44 1.24
Treasury Bill Yield 0.40 0.81 1.13 1.58
Long Term Treasury Yield 0.13 0.18 0.17 0.00
Long Term Treasury Return 1.08 0.66 1.82 1.31
Term Spread 0.51 1.39 2.44 7.30
Default Yield Spread 0.25 0.78 2.13 3.06
Default Return Spread 0.30 0.25 0.30 0.03
(lagged) Inflation 0.01 0.48 1.88 2.21

CGP 1.28 3.06 3.65 4.30

CCW 2.87 7.81 10.55 13.21

(i.e., CRSP share code 10 or 11). To deal with delisting returns we follow the procedure described in

Bali et al. (2016). When forming market equity we use quotes when closing prices are not available

and set to missing all observations with 0 shares outstanding. For our risk factor we use a measure

of the business credit cycle described in equation (6.1). We utilize five-year rolling regressions to

estimate betas and we choose the number of portfolios as Jt = J1 · ( nt
max1≤t≤T nt

)
1
2 where J1 = 10.

The latter choice can be motivated by appealing to Cattaneo et al. (2020a) as the optimal choice

of portfolios under the simplifying assumption that all βit were known.

Figure 1 presents our estimate of the grand mean, µ̂(β) in the black line. There is a clear

downward slope in the relationship between β and expected returns – although it does not appear

to be linear. To address the differential behavior of the beta-sorted portfolio estimator for the

portfolio containing β = 0, we fit a linear regression in this portfolio only and use constant fits

for all other portfolios. The grey vertical lines in Figure 1 depict confidence intervals at each

selected point in the support of β. The top chart in Figure 1 uses the PI variance estimator

we introduced in equation (4.16) whereas the bottom chart uses the FM variance estimator. To
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Table 2: Out-of-Sample Predictive Regressions This table reports out-of-sample R2 from
expanding window predictive regressions of excess stock returns on an individual predictor from
Welch and Goyal (2008) for horizons of 1, 3, 6, and 12 months ahead. The row labeled “CGP”
reports results for the SLOOS only portion of our risk factor as studied in Chava et al. (2015). The
row labeled “CCW” reports results for our proposed risk factor. Positive values have been bolded.
The training period is 1965m1–1989m12 and the evaluation sample is 1990m1–2019m12.

h = 1 h = 3 h = 6 h = 12

(log) Dividend Price Ratio -1.75 -3.78 -6.75 -12.77
(log) Dividend Yield -1.83 -3.73 -6.83 -12.27
(log) Earnings Price Ratio -0.96 -1.98 -3.27 -6.91
(log) Dividend Payout Ratio -1.33 -1.23 -0.07 0.82
Stock Variance -0.91 -0.50 -0.52 0.67
Book-to-Market Ratio -0.58 -1.15 -2.07 -5.30
Net Equity Expansion -2.34 -6.43 -13.70 -20.44
Treasury Bill Yield -0.00 0.77 1.72 2.36
Long Term Treasury Yield -0.02 -0.22 -0.65 -4.85
Long Term Treasury Return -1.18 -0.59 -1.08 -1.66
Term Spread -0.88 -1.15 0.49 6.94
Default Yield Spread -2.28 -3.85 -4.12 -3.04
Default Return Spread -1.10 0.70 0.45 0.22
(lagged) Inflation -0.17 1.44 3.88 3.50

CGP 1.77 4.51 5.22 4.75

CCW 3.76 9.62 11.66 8.74

implement our plug-in variance estimator we use an (expanding window) AR(1) specification in

our risk factor. We can clearly see the difference in the precision for drawing inferences from the

data. The confidence intervals based on our new PI variance estimator are substantially shorter

than those of the FM variance estimator. Although we showed in Section 4.3 that both of these

estimators are conservative, in general, for inference on the SACER, the FM is much larger in this

application. By Remark 4.6 we can use the difference between the FM variance estimate and the

PI variance estimate as an estimate of the lower bound on σ2
µ(β). Inspecting Figure 1 we see that

this lower bound can be informative as the length of the 95% confidence interval based on the FM

variance estimator are at least three times as long as that based on the PI variance estimator.

We can see the difference between the two variance estimators even more clearly in Table 3

where we present the point estimate for selected values of β along with lower and upper bounds

for confidence intervals constructed with the two different variance estimators. The results are

striking. Across all values of β and for both nominal coverage rates, the confidence intervals
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Figure 1: Inference on Expected Returns. This figure shows the grand mean estimate, µ̂(β) =
T−1

∑T
t=1 µ̂t(β) (black line) with associated confidence intervals (grey vertical lines). The top chart

constructs confidence intervals using the plug-in variance estimator introduced in equation (4.16)
while the bottom chart uses the Fama-MacBeth variance estimator. The nominal coverage is 95%.
The sample period is 1965m1–2019m12.

(a) Plug-In Variance Estimator
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(b) Fama-MacBeth Variance Estimator
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formed using our plug-in variance estimator are approximately 30% of the length of those using the

FM variance estimator. We can also illustrate the difference by considering confidence intervals on

the high-minus-low estimator, µ̂(βu)− µ̂(βl), which has a point estimate of 0.5. When using the PI
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Table 3: Inference on Expected Returns: This table presents the grand mean estimate,
µ̂(β) = T−1

∑T
t=1 µ̂t(β) along with upper and lower bounds for nominal coverage of 95% and

99%. Confidence intervals constructed using the plug-in variance estimator introduced in equa-
tion (4.16) are denoted by “PI-LB” and “PI-UB” whereas those using the Fama-MacBeth variance
estimator are denoted by “FM-LB” and “FM-UB”.The sample period is 1965m1–2019m12.

90% Coverage 95% Coverage

β µ̂(β) PI-LB PI-UB FM-LB FM-UB PI-LB PI-UB FM-LB FM-UB

-1.00 1.65 1.50 1.81 1.11 2.20 1.47 1.84 1.01 2.30
-0.50 1.69 1.55 1.83 1.16 2.22 1.52 1.86 1.05 2.33
-0.25 1.52 1.41 1.62 1.09 1.94 1.39 1.64 1.01 2.03
0.00 1.26 1.19 1.32 0.89 1.63 1.17 1.34 0.77 1.74
0.25 1.22 1.11 1.32 0.83 1.60 1.09 1.34 0.76 1.68
0.50 1.19 1.06 1.33 0.76 1.62 1.03 1.35 0.68 1.70
1.00 1.15 1.01 1.30 0.70 1.61 0.98 1.33 0.62 1.69

variance estimator the 95% confidence interval is [0.14, 0.86] whereas for the FM variance estimator

it lengthens to [−0.69, 1.69].

7 Conclusion

Beta-sorted portfolios are a commonly used empirical tool in asset pricing. In a first step, time-

varying factor exposures are estimated by weighted regressions of asset returns on an observable risk

factor to ascertain how returns co-move with the variable of interest. In a second step, individual

assets are grouped into portfolios by similar factor exposures and differential returns are assessed

as a function of differential exposures. Yet the simple and intuitively appealing algorithm belies

a more complicated statistical setting involving a two-step estimation procedure where each stage

involves nonparametric estimation.

We provide a comprehensive statistical framework which rationalizes this commonly-used esti-

mator. Armed with this foundation we study the theoretical properties of beta-sorted portfolios

linking directly to the choice of estimation window in the first step and the number of portfolios

in the second step which serves as the tuning parameters for each nonparametric estimator. We

introduce conditions that ensure consistency and asymptotic normality for a single cross-section

and for the grand mean estimator. We also introduce a new variance estimator and characterize

the properties of the ubiquitous FM variance estimator. We provide joint inference procedures for
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Figure 2: Joint Inference on Expected Returns. This figure shows the grand mean estimate,
µ̂(β) = T−1

∑T
t=1 µ̂t(β) (black line) with associated joint prediction intervals (shaded area). The

top chart constructs prediction intervals using the plug-in variance estimator introduced in equation
(4.16) while the bottom chart uses the Fama-MacBeth variance estimator. The nominal coverage
is 95%. The sample period is 1965m1–2019m12.

(a) Plug-In Variance Estimator
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(b) Fama-MacBeth Variance Estimator
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different hypotheses of interest in financial applications including tests of the no-arbitrage assump-

tion. Finally, we also discover some limitations of current practices and provide new guidance on

appropriate implementation and interpretation of empirical results.

38



References

Adrian, T., Crump, R. K., Moench, E., 2015. Regression-based estimation of dynamic asset pricing
models. Journal of Financial Economics 118, 211–244.

Andrews, D. W. K., 2005. Cross-section regression with common shocks. Econometrica 73, 1551–
1585.

Ang, A., Kristensen, D., 2012. Testing conditional factor models. Journal of Financial Economics
106, 132–156.

Ang, A., Liu, J., Schwarz, K., 2020. Using stocks or portfolios in tests of factor models. Journal of
Financial and Quantitative Analysis 55, 709–750.

Bai, J., Zhou, G., 2015. Fama–macbeth two-pass regressions: Improving risk premia estimates.
Finance Research Letters 15, 31–40.

Bali, T. G., Engle, R. F., Murray, S., 2016. Empirical Asset Pricing: The Cross Section of Stock
Returns. John Wiley & Sons, Inc., Hoboken, NJ.

Barras, L., Gagliardini, P., Scaillet, O., 2022. Skill, Scale, and Value Creation in the Mutual Fund
Industry. Journal of Finance 77, 601–638.

Boons, M., Duarte, F., De Roon, F., Szymanowska, M., 2020. Time-varying inflation risk and stock
returns. Journal of Financial Economics 136, 444–470.

Borri, N., Chetverikov, D., Liu, Y., Tsyvinski, A., 2024. One factor to bind the cross-section of
returns. Working Paper No. 32365, NBER.

Bryzgalova, S., 2015. Spurious factors in linear asset pricing models, working paper.

Cattaneo, M. D., Crump, R. K., Farrell, M. H., Feng, Y., 2024. On binscatter. American Economic
Review Forthcoming.

Cattaneo, M. D., Crump, R. K., Farrell, M. H., Schaumburg, E., 2020a. Characteristic-sorted
portfolios: Estimation and inference. Review of Economics and Statistics 102, 531–551.

Cattaneo, M. D., Farrell, M. H., Feng, Y., 2020b. Large sample properties of partitioning-based
series estimators. Annals of Statistics 48, 1718–1741.

Chava, S., Gallmeyer, M., Park, H., 2015. Credit conditions and stock return predictability. Journal
of Monetary Economics 74, 117–132.

Chen, L., Smetanina, E., Wu, W. B., 2021a. Estimation of nonstationary nonparametric regression
model with multiplicative structure. Econometrics Journal 25, 176–214.

Chen, R., Kan, R., 2004. Finite sample analysis of two-pass cross-sectional regressions, working
paper.

Chen, Y., Han, B., Pan, J., 2021b. Sentiment trading and hedge fund returns. Journal of Finance
76, 2001–2033.

Chen, Z., Da, Z., Huang, D., Wang, L., 2023. Presidential economic approval rating and the cross-
section of stock returns. Journal of Financial Economics 147, 106–131.

39



Chen, Z., Lu, A., Zhu, X., 2024. Investor sentiment and the pricing of macro risks for hedge funds.
Management Science Forthcoming.

Chordia, T., Goyal, A., Shanken, J. A., 2017. Cross-sectional asset pricing with individual stocks:
Betas versus characteristics, working paper.

Cochrane, J., 2005. Asset Pricing. Princeton University Press, Princeton, revised edition.

Cochrane, J. H., 1996. A cross-sectional test of an investment-based asset pricing model. Journal
of Political Economy 104, 572–621.

Connor, G., Hagmann, M., Linton, O., 2012. Efficient semiparametric estimation of the fama–french
model and extensions. Econometrica 80, 713–754.

Connor, G., Li, S., Linton, O. B., 2021. A dynamic semiparametric characteristics-based model
for optimal portfolio selection. Research Paper 21-1, Michael J. Brennan Irish Finance Working
Paper Series.

Connor, G., Linton, O., 2007. Semiparametric estimation of a characteristic-based factor model of
common stock returns. Journal of Empirical Finance 14, 694–717.

Crump, R. K., Luck, S., 2023. The sloos and economic downturns, working paper.

Eisdorfer, A., Froot, K., Ozik, G., Sadka, R., 2022. Competition links and stock returns. Review of
Financial Studies 35, 4300–4340.

Fama, E. F., MacBeth, J. D., 1973. Risk, return, and equilibrium: Empirical tests. Journal of
Political Economy 81, 607–636.

Fan, J., Ke, Z. T., Liao, Y., Neuhierl, A., 2022a. Structural deep learning in conditional asset
pricing, working paper.

Fan, J., Liao, Y., Wang, W., 2016. Projected principal component analysis in factor models. Annals
of Statistics 44, 219–254.

Fan, Z., Londono, J. M., Xiao, X., 2022b. Equity tail risk and currency risk premiums. Journal of
Financial Economics 143, 484–503.

Gagliardini, P., Ossola, E., Scaillet, O., 2016. Time-varying risk premium in large cross-sectional
equity data sets. Econometrica 84, 985–1046.

Gagliardini, P., Ossola, E., Scaillet, O., 2020. Estimation of large dimensional conditional factor
models in finance. In: Durlauf, S. N., Hansen, L. P., Heckman, J. J., Matzkin, R. L. (eds.),
Handbook of Econometrics, Elsevier, vol. 7, chap. 3, pp. 219–282.

Garleanu, N., Pedersen, L. H., 2011. Margin-based asset pricing and deviations from the law of one
price. Review of Financial Studies 24, 1980–2022.

Giglio, S., Xiu, D., 2021. Asset pricing with omitted factors. Journal of Political Economy 129,
1947–1990.

Goldberg, J., Nozawa, Y., 2021. Liquidity Supply in the Corporate Bond Market. Journal of Finance
76, 755–796.

40



Gospodinov, N., Kan, R., Robotti, C., 2014. Misspecification-robust inference in linear asset-pricing
models with irrelevant risk factors. Review of Financial Studies 27, 2139–2170.

Gospodinov, N., Robotti, C., 2013. Asset pricing theories, models, and tests. In: Baker, H. K.,
Filbeck, G. (eds.), Portfolio Theory and Management , Oxford University Press, chap. 3.

Goyal, A., 2012. Empirical cross-sectional asset pricing: A survey. Financial Markets and Portfolio
Management 26, 3–38.

Hall, P., Heyde, C. C., 2014. Martingale limit theory and its application. Academic press.

Han, F., Wu, W. B., 2023. Probability inequalities for high-dimensional time series under a trian-
gular array framework. In: Springer Handbook of Engineering Statistics, Springer, pp. 849–863.

Jagannathan, R., Wang, Z., 1998. An asymptotic theory for estimating beta-pricing models using
cross-sectional regression. Journal of Finance 53, 1285–1309.

Kelly, B. T., Pruitt, S., Su, Y., 2019. Characteristics are covariances: A unified model of risk and
return. Journal of Financial Economics 134, 501–524.

Kleibergen, F., 2009. Tests of risk premia in linear factor models. Journal of Econometrics 149,
149–173.

Kleibergen, F., Lingwei, K., Zhan, Z., 2019. Identification robust testing of risk premia in finite
samples. Journal of Financial Econometrics 21, 263–297.

Lown, C., Morgan, D. P., 2006. The credit cycle and the business cycle: New findings using the
loan officer opinion survey. Journal of Money, Credit and Banking 38, 1575–1597.

Lown, C. S., Morgan, D. P., 2002. Credit effects in the monetary mechanism. FRBNY Economic
Policy Review 8, 217–235.

Lown, C. S., Morgan, D. P., Rohatgi, S., 2000. Listening to loan officers: The impact of commercial
credit standards on lending and output. FRBNY Economic Policy Review 6, 1–16.

Nagel, S., 2013. Empirical cross-sectional asset pricing. Annual Review of Financial Econonimics
5, 167–199.

Raponi, V., Robotti, C., Zaffaroni, P., 2020. Testing Beta-Pricing Models Using Large Cross-
Sections. The Review of Financial Studies 33, 2796–2842.

Schreft, S. L., Owens, R. E., 1991. Survey evidence of tighter credit conditions: What does it mean?
Federal Reserve Bank of Richmond Economic Quarterly 77, 29–34.

Shanken, J., Zhou, G., 2007. Estimating and testing beta pricing models: Alternative methods and
their performance in simulations. Journal of Financial Economics 84, 40–86.

Welch, I., Goyal, A., 2008. A comprehensive look at the empirical performance of equity premium
prediction. Review of Financial Studies 21, 1455–1508.

Wu, W. B., 2005. Nonlinear system theory: Another look at dependence. Proceedings of the Na-
tional Academy of Sciences 102, 14150–14154.

Zhang, T., Wu, W. B., 2012. Inference of time-varying regression models. Annals of Statistics 40,
1376–1402.

41



Beta-Sorted Portfolios

Supplemental Appendix∗

Matias D. Cattaneo† Richard K. Crump‡ Weining Wang§

November 8, 2024

Contents

SA-1 First Step Estimator 1

SA-1.1 Preliminary Technical Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

SA-1.2 Uniform Convergence Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

SA-1.3 Asymptotic Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

SA-1.4 Proof of Lemma SA-1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

SA-1.5 Proof of Theorem SA-1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

SA-1.6 Proof of Theorem SA-1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

SA-2 Second Step Estimators 6

SA-2.1 Preliminary Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

SA-2.2 Proof of Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

SA-2.3 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

SA-2.4 Proof of Theorem 4.5(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

SA-2.5 Proof of Theorem 4.5(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

SA-2.6 Proof of Lemma SA-2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

SA-2.7 Proof of Lemma SA-2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

SA-2.8 Proof of Lemma SA-2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

SA-3 References 26

∗Cattaneo gratefully acknowledges financial support from the National Science Foundation (SES-1947662 and
SES-2241575). Wang gratefully acknowledges financial support from the ESRC (Grant Reference: ES/T01573X/1).

†Department of Operations Research and Financial Engineering, Princeton University.
‡Macrofinance Studies, Federal Reserve Bank of New York.
§Faculty of Economics and Business, University of Groningen.



SA-1 First Step Estimator

Define bit0 = (αit0 , βit0)> = E(Xt0X
>
t0 |Ft0−1)

−1E(Xt0Rit0 |Ft0−1). We consider a slightly generalized

first step estimator that allows for (one-sided) kernel weighting:

b̂it0 =
(
α̂it0 , β̂it0

)>
=
( H∑
s=1

K
( s

Th

)
Xt0−sX

>
t0−s

)−1( H∑
s=1

K
( s

Th

)
Xt0−sRi(t0−s)

)
,

where H = bThc, Xt = (1, f>t )>, and K(.) is a kernel function satisfying the following assumption.

Assumption SA-1 (Kernel function). K(.) : [−1, 1] 7→ R+ is Lipschitz continuous.

SA-1.1 Preliminary Technical Lemma

For a (m × n)-dimensional matrix A = (aij)1≤i≤m,1≤j≤n, we define the induced matrix norms

|A|1 = max1≤j≤n |
∑m

i=1 ai,j |, |A|2 = max|v|=1 |Av|2, and |A|∞ = max1≤i≤m |
∑n

j=1 ai,j |.
To save notation, we define the following quantities:

A(t0) =
1

Th

H∑
s=1

K
( s

Th

)
Xt0−sX

>
t0−s, Ã(t0) =

1

Th

H∑
s=1

K
( s

Th

)
E[Xt0−sX

>
t0−s|Ft0−s−1],

and

Bi(t0) =
1

Th

H∑
s=1

K
( s

Th

)
Xt0−sRi(t0−s), B̃i(t0) =

1

Th

H∑
s=1

K
( s

Th

)
E[Xt0−sRit0−s|Ft0−s−1].

Lemma SA-1.1. Suppose Assumptions 1–3 and SA-1 hold, max1≤t≤T nt . n, and log(nT )/(Th)→
0. Then,

max
bThc+1≤t0≤T

∣∣A(t0)− E[A(t0)]
∣∣
∞ .P

T 1/q

Th
+

√
log T

Th
,

max
bThc+1≤t0≤T

∣∣A(t0)− Ã(t0)
∣∣
∞ .P

T 1/q

Th
+

√
log T

Th
,

max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣Bi(t0)− E[Bi(t0)]
∣∣
∞ .P

(nT )1/q

Th
+

√
log(nT )

Th
,

max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣Bi(t0)− B̃i(t0)∣∣∞ .P
(nT )1/q

Th
+

√
log(nT )

Th
.

SA-1.2 Uniform Convergence Rate

The following theorem is a generalization of Theorem 3.1 in the paper.

1



Theorem SA-1.2. Suppose the conditions of Lemma SA-1.1 hold, and T 2/q−1n2/q/h→ 0. Then,

sup
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣̂bit0 − bit0∣∣∞ .P

√
log(nT )

Th
+ h =: RnT .

The rate condition T 2/q−1n2/q/h→ 0 implies that T 1/q

Th .
√

log T
Th , and it favors higher moments.

For example, it implies n1/4

T 3/4h
→ 0 when q = 8.

SA-1.3 Asymptotic Normality

We provide an asymptotic normality result for b̂it0 , assuming conditional homoskedasticity (but

possibly time-varying) for simplicity. This result is not used in the main paper, but is reported

here for completeness.

Theorem SA-1.3. Suppose the conditions of Theorem SA-1.2 hold, Var[εit0 |Ft0−s−1] = σ2ε,t0 is a

non-random constant, and Th3 → 0. Then,

√
ThΣb(t0)

−1/2(b̂it0 − bit0)→L N(0, I), Σb(t0) = ΣA(t0)
−1ΣB(t0)ΣA(t0)

−1,

where ΣA(t0) = E[Xt0X
>
t0 ]
∫ 0
−1K(s)ds and ΣB(t0) = σ2ε,t0E[Xt0X

>
t0 ]
∫ 0
−1K

2(s)ds.

A plug-in consistent estimator of the asymptotic variance can be constructed using estimated

residuals:

(σ̂2ε,t0 , ς̂
2
t0)> = arg min

c0,c1

t0−1∑
t=1

nt∑
i=1

K
( t− t0
Th

)(
û2it − c0 − c1(t− t0)/T

)2
,

where ûit denote the estimated residuals.

SA-1.4 Proof of Lemma SA-1.1

We assume that d = 1 without loss of generality. For the first result, we have

max
bThc+1≤t0≤T

∣∣A(t0)− E[A(t0)]
∣∣
∞ . R1 + R2 + R3,

where

R1 = max
bThc+1≤t0≤T

∣∣∣ 1

Th

H∑
s=1

K
( s

Th

)(
z2t0−s − E[z2t0−s]

)∣∣∣,
R2 = max

bThc+1≤t0≤T

∣∣∣ 1

Th

H∑
s=1

K
( s

Th

)
zt0−sτ

( t0 − s
T

)∣∣∣,
R3 = max

bThc+1≤t0≤T

∣∣∣ 1

Th

H∑
s=1

K
( s

Th

)
zt0−s

∣∣∣.
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In addition, Assumption 2 implies that (i) {z2t−s − E[z2t−s]}s, {zt−sτ
(
t−s
T

)
}s, and zt are mean zero

and square-integrable, and (ii) Θ(z2• ; q, v) . 1 with v > 1/2− 2/q. Therefore, Lemma A.3 in Zhang

and Wu (2012) implies that R1 + R2 + R3 .P
T 1/q

Th +
√

log T
Th .

For the second result, we have

max
bThc+1≤t0≤T

∣∣A(t0)− Ã(t0)
∣∣
∞ . R4 + R5 + R6,

where

R4 = max
bThc+1≤t0≤T

∣∣∣ 1

Th

H∑
s=1

K
( s

Th

)(
z2t0−s − E[z2t0−s|Ft0−s−1]

)∣∣∣,
R5 = max

bThc+1≤t0≤T

∣∣∣ 1

Th

H∑
s=1

K
( s

Th

)
(zt0−s − E[zt0−s|Ft0−s−1])τ

( t0 − s
T

)∣∣∣,
R6 = max

bThc+1≤t0≤T

∣∣∣ 1

Th

H∑
s=1

K
( s

Th

)
(zt0−s − E[zt0−s|Ft0−s−1])

∣∣∣.
These terms form a martingale difference sequence. Thus, we let us be equal to either z2t0−s −
E[z2t0−s], (zt0−s − E[zt0−s|Ft0−s−1])τ

(
t0−s
T

)
, or zt0−s − E[zt0−s|Ft0−s−1], to save notation. Then,

using summation by part

max
H+1≤t0≤T

∣∣∣ H∑
s=1

K
( s

Th

)
ut0−s

∣∣∣
≤ max

H+1≤t0≤T

(
max

t0−H≤`≤t0−1

∣∣∣ ∑̀
s=t0−H

us

∣∣∣) t0−2∑
s=t0−H+1

∣∣∣K( t0 − s
Th

)
−K

( t0 − s− 1

Th

)∣∣∣
+ max
H+1≤t0≤T

∣∣∣ t0−1∑
s=t0−H

us

∣∣∣K( 1

Th

)

. max
H+1≤t0≤T

max
t0−H≤`≤t0−1

∣∣∣ ∑̀
s=t0−H

us

∣∣∣,
because

t0−1∑
s=t0−H+1

∣∣∣K( t0 − t
Th

)
−K

( t0 − s+ 1

Th

)∣∣∣ . 1,

by the Lipschitz continuity of the kernel function. Let λ be a sufficient large positive constant.

Then, Hall and Heyde (2014, Theorem 2.4) implies that

P
(

max
t0−H≤`≤t0−1

∣∣∣ ∑̀
t=t0−H

ut

∣∣∣ ≥ 2λ
)
. (2 ∨ (

√
Th max

t0−H≤t≤t0−1
‖ut‖2/λ))P

(∣∣∣ t0−1∑
s=t0−H

us

∣∣∣ ≥ λ).
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Thus, it suffices to look at H blocks of observations. We have

max
T−H+1≤t0≤T

max
t0−H≤`≤t0−1

∣∣∣ ∑̀
s=1

ut0−s

∣∣∣ . max
t0∈2H,3H,··· ,T−H

∣∣∣ t0∑
s=t0−H

us

∣∣∣,
and applying Freedman’s inequality (Freedman, 1975) and the union bound, we can verify that

R4 + R5 + R6 .P
T 1/q

Th +
√

log T
Th .

The last two conclusions follow analogously, using martingale methods and a union bound over

i. For example, consider the fourth conclusion. We have

max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣Bi(t0)− B̃i(t0)∣∣∞
≤ max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣∣ 1

Th

H∑
s=1

K
( s

Th

)
Xt0−sεit0−s

∣∣∣
∞

+ max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣ 1

Th

H∑
s=1

K
( s

Th

)
(Xt0−sX

>
t0−s − E[Xt0−sX

>
t0−s|Ft0−s−1])bit0−s

∣∣
∞.

The term
∑H

s=1K
(
s
Th

)
Xt0−sεit0−s a martingale difference sequence, and therefore proceeding as

above we verify the desired result. The second term of the upper bound in the preceding display is

bounded similarly.

SA-1.5 Proof of Theorem SA-1.2

We have b̂it0−bit0 = A(t0)
−1Bi(t0)−Ã(t0)

−1Bi(t0)+Ã(t0)
−1Bi(t0)−Ã(t0)

−1Ã(t0)bit0 , and therefore

sup
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣̂bit0 − bit0∣∣∞ .P R1 + R2

where

R1 = max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣A(t0)
−1Bi(t0)− Ã(t0)

−1B̃i(t0)
∣∣
∞

R2 = max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣B̃i(t0)− Ã(t0)bit0
∣∣
∞

because maxbThc+1≤t0≤T
∣∣Ã(t0)

−1∣∣
∞ .P 1.

For the first term, we have

R1 ≤ max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣A(t0)
−1∣∣
∞
∣∣A(t0)− Ã(t0)

∣∣
∞
∣∣Ã(t0)

−1∣∣
∞
∣∣Bi(t0)∣∣∞

+ max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣Ã(t0)
−1∣∣
∞
∣∣Bi(t0)− B̃i(t0)∣∣∞

.P
(nT )1/q

Th
+

√
log(nT )

Th
.

4



For the second term, we have

R2 = max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣∣ 1

Th

H∑
s=1

K
( s

Th

)
E(Xt0−sX

>
t0−t|Ft0−s−1)(bi(t0−s) − bit0)

∣∣∣
≤ max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣bi(t0−H) − bit0
∣∣∣∣∣ 1

Th

H∑
s=1

K
( s

Th

)
E(Xt0−sX

>
t0−t|Ft0−s−1)

∣∣∣
+ max
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣∣ 1

Th

H−1∑
s=1

(bi(t0−s) − bi(t0−s−1))
s∑
j=1

K
( j

Th

)
E(Xt0−jX

>
t0−j |Ft0−j−1)

∣∣∣
.P h+ h max

bThc+1≤t0≤T
max

1≤i≤nt0

max
1≤s≤(H−1)

∣∣∣ 1

Th

s∑
j=1

K
( j

Th

)
E(Xt0−jX

>
t0−j |Ft0−j−1)

∣∣∣ .P h.

This completes the proof.

SA-1.6 Proof of Theorem SA-1.3

From previous results, the bias is

sup
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣Ã−1(B̃i(t0)− Ã(t0)bit0)
∣∣
∞ .P h,

and therefore we have the decomposition:

b̂it0 − bit0 = A(t0)
−1Bi(t0)− Ã(t0)

−1B̃i(t0) +OP(h)

= A(t0)
−1(A(t0)− Ã(t0))Ã(t0)

−1Bi(t0) +A(t0)
−1(Bi(t0)− B̃i(t0)) +OP(h),

= R1,it0 −R2,it0 +OP(h),

with

R1,it0 = −A(t0)
−1(A(t0)− Ã(t0))Ã(t0)

−1(Bi(t0)− Ã(t0)bit0),

R2,it0 = −A(t0)
−1{(A(t0)− Ã(t0))bit0 − (Bi(t0)− B̃i(t0))}.

Similar to the proof of Theorem SA-1.2, we have

sup
bThc+1≤t0≤T

max
1≤i≤nt0

|R1,it0 |∞ .P h

(
(nT )1/q

Th
+

√
log(nT )

Th

)
= oP

( 1√
Th

)
,

under the rate conditions imposed.

Next, observe that

sup
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣∣R2,it0 +A(t0)
−1

H∑
s=1

K
( s

Th

)
Xt0−sεit0−s

∣∣∣
∞

= oP

( 1√
Th

)
,
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because

sup
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣∣ 1

Th

H∑
s=1

K
( s

Th

)
(Xt0−sX

>
t0−s − E[Xt0−sX

>
t0−s|Ft0−s−1])bit0−s − (A(t0)− Ã(t0))bit0

∣∣∣
∞

.P sup
bThc+1≤t0≤T

max
1≤i≤nt0

|A(t0)− Ã(t0)|∞h = oP

( 1√
Th

)
.

Therefore, putting the results above together and proceeding as before, we have

sup
bThc+1≤t0≤T

max
1≤i≤nt0

∣∣∣√Th(̂bit0 − bit0) +A(t0)
−1 1√

Th

H∑
s=1

K
( t

Th

)
Xt0−tεit0−t

∣∣∣
∞

= oP(1).

Furthermore, using prior results, it follows that

√
ThΣb(t0)

−1/2(b̂it0 − bit0) = −Σb(t0)
−1/2ΣA(t0)

−1 1√
Th

H∑
s=1

K
( t

Th

)
Xt0−tεit0−t + oP(1),

uniformly over t0 and i. The stochastic linear approximation on the right-hand-side of the equal

sign is a martingale difference sequence, and thus the proof can now be easily completed by applying

Corollary 3.1 in Hall and Heyde (2014).

SA-2 Second Step Estimators

This section presents the proofs of the main results reported in the paper. It also provides additional

results that are either discussed heuristically in the paper or are not given there to streamline the

presentation.

Remark SA-2.1. For the results for the second step estimators we will condition on two events,

namely, that maxH+1≤t≤T max1≤i≤nt

∣∣β̂it∣∣ is bounded and that (Φ̂tΦ̂
>
t /nt)

−1 exists and is finite

uniformly in t: (1) When RnT → 0 then
∣∣β̂it∣∣ is bounded with probability approaching one; (2) by

Lemma SA-2.3 (below), if J2 log(nT )/n + RnT → 0, then minH+1≤t≤T λmin(Φ̂tΦ̂
>
t /nt) is bounded

away from zero with probability approaching one.

SA-2.1 Preliminary Technical Lemmas

Let kjt = bntj/Jtc and κj,t = j/Jt. Recall

β̂(kjt),t = F−1
β̂,n,t

(κj,t), F
β̂,n,t

(u) =
1

nt

nt∑
i=1

1(β̂it ≤ u),

and

β(kjt),t = F−1β,n,t(κj,t), Fβ,n,t(u) =
1

nt

nt∑
i=1

1(βit ≤ u).
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The following lemma presents some basic properties of the estimated quantiles and the resulting

partitioning scheme.

Lemma SA-2.2. Suppose the conditions of Theorem SA-1.2 hold, and J2 log(nT )/n → 0 and

RnT → 0. Then,

max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣β̂(kjt),t − β(kjt),t∣∣ .P

√
log(nT )

n
+ RnT ,

1

J
.P min
bThc+1≤t≤T

min
1≤j≤Jt

|β(kjt),t − β(k(j−1)t),t| ≤ max
bThc+1≤t≤T

max
1≤j≤Jt

|β(kjt),t − β(k(j−1)t),t| .P
1

J
,

max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣β̂(kjt),t − β(kjt),t − [β̂(k(j−1)t),t − β(k(j−1)t),t]
∣∣ .P

√
log(nT )

nJ
+

RnT
√

log(nT )

J
=: LnT ,

max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣ 1

nt

nt∑
i=1

1(β̂it ∈ P̂jt)−
1

nt

nt∑
i=1

1(βit ∈ Pjt)
]∣∣∣ .P LnT ,

and

max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣ 1

nt

nt∑
i=1

1(βit ∈ Pjt)− E[1(βit ∈ Pjt)]
∣∣∣ .P

√
log(nT )

nJ
.

The next lemma controls the convergence of the Gram matrix, score vector, and other related

quantities underlying our estimator. Recall that Qt is a diagonal matrix with elements {qjt : j =

1, . . . , Jt}.

Lemma SA-2.3. Suppose the conditions of Theorem SA-1.2 hold, and J2 log(nT )/n → 0 and

RnT → 0. Then,

max
bThc+1≤t≤T

∣∣∣(Φ̂tΦ̂
>
t /nt)

−1 −Q−1t
∣∣∣
∞

.P J
2LnT + J2

√
log(nT )

nJ
,

max
bThc+1≤t≤T

∣∣∣ 1

nt

nt∑
i=1

Φi,tεit

∣∣∣
∞

.P

√
log(nT )

nJ
,

max
bThc+1≤t≤T

∣∣∣ 1

nt

nt∑
i=1

(Φ̂i,t − Φi,t)εit

∣∣∣
∞

.P

√
log(nT )LnT

n
,
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max
bThc+1≤t≤T

∣∣∣ 1

nt

nt∑
i=1

Φi,tβit(ft − E[ft|Gt−1])
∣∣∣
∞

.P

√
log(nT )

J
+

√
log(nT )

nJ
,

max
bThc+1≤t≤T

∣∣∣ 1

nt

nt∑
i=1

(Φ̂i,t − Φi,t)βit(ft − E[ft|Gt−1])
∣∣∣
∞

.P

√
log(nT )LnT

n
+
√

log(nT )LnT ,

max
bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
k=1

Φ̂i,tΦ̂
>
k,tβitβkt

∣∣∣
∞

.P
1

J2
,

max
bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
k=1

(
Φ̂i,t − Φi,t

)(
Φ̂k,t − Φ◦k,t

)>
βitβkt

∣∣∣
∞

.P L2nT .

Finally, the following lemma gives the cross-sectional convergence rate of µ̂t(β) to Mt(β).

Lemma SA-2.4. Suppose the conditions of Theorem SA-1.2 hold, and J2 log(nT )/n → 0 and

R2
nT log(nT )→ 0. Then,

max
H+1≤t≤T

sup
β∈B

∣∣µ̂t(β)−Mt(β)
∣∣ .P

√
J log(nT )

n
+

1

J
+ JLnT = oP(1).

SA-2.2 Proof of Lemma 4.1

We begin with the elementary decomposition

µ̂(β)− µ̄T (β;H) =
1

T −H

T∑
t=H+1

(µ̂t(β)− µt(β))

=
1

T −H

T∑
t=H+1

(
p̂t(β)>(Φ̂tΦ̂

>
t )−1Φ̂tRt − µt(β)

)

=
1

T −H

T∑
t=H+1

p̂t(β)>Q−1t
1

nt

nt∑
i=1

Φi,t

(
εit + βit(ft − E[ft|Gt−1])

)
+ B(β) + R(β),

where

B(β) =
1

T −H

T∑
t=H+1

[
p̂t(β)>(Φ̂tΦ̂

>
t )−1

nt∑
i=1

Φ̂i,t

(
µt(βit)− Φ̂>i,ta

◦
t

)
+
(
p̂t(β)>a◦t − µt(β)

)]
,
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and

R(β) = R1(β) + R2(β) + R3(β) + R4(β),

with

R1(β) =
1

T −H

T∑
t=H+1

p̂t(β)>
(

(Φ̂tΦ̂
>
t /nt)

−1 −Q−1t
) 1

nt

nt∑
i=1

Φ̂i,tεit,

R2(β) =
1

T −H

T∑
t=H+1

p̂t(β)>Q−1t
1

nt

nt∑
i=1

(
Φ̂i,t − Φi,t

)
εit,

R3(β) =
1

T −H

T∑
t=H+1

p̂t(β)>
(

(Φ̂tΦ̂
>
t /nt)

−1 −Q−1t
) 1

nt

nt∑
i=1

Φ̂i,tβit(ft − E[ft|Gt−1]),

R4(β) =
1

T −H

T∑
t=H+1

p̂t(β)>Q−1t
1

nt

nt∑
i=1

(
Φ̂i,t − Φi,t

)
βit(ft − E[ft|Gt−1]),

where a◦t = (E[Φi,tΦ
>
i,t|Gt−1])−1E[Φi,tRit|Gt−1].

By previous results, the term (Φ̂tΦ̂
>
t /nt)

−1 exists and is finite with probability approaching one,

and on that event, E[R1(β)] = 0. Thus, on that event, using the martingale structure,

1

(T −H)2

T∑
t=H+1

Var[R1(β)|Ft−1]

.P
1

T
max

bThc+1≤t≤T
Var

[
p̂t(β)>

(
(Φ̂tΦ̂

>
t /nt)

−1 −Q−1t
) 1

nt

nt∑
i=1

Φ̂i,tεit

∣∣∣Ft−1]
.P

1

T
max

bThc+1≤t≤T
p̂t(β)>

(
(Φ̂tΦ̂

>
t /nt)

−1 −Q−1t
) 1

n2t

nt∑
i=1

Φ̂i,tΦ̂
>
i,t

(
(Φ̂tΦ̂

>
t /nt)

−1 −Q−1t
)
p̂t(β)

.P
1

nTJ

(
J2LnT + J2

√
log(nT )

nJ

)2
.
J3L2nT
nT

+
J2 log(nT )

n2T
= oP(

J

nT
).

Proceeding analogously, for the second term, we verify

1

T
max

bThc+1≤t≤T
Var

[
p̂t(β)>Q−1t

1

nt

nt∑
i=1

(
Φ̂i,t − Φi,t

)
εit

∣∣∣Ft−1]
.P

J2

T
max

bThc+1≤t≤T

1

n2t

nt∑
i=1

∣∣(Φ̂i,t − Φi,t)(Φ̂i,t − Φi,t)
>∣∣
∞ .

J2LnT
nT

= oP(
J

nT
+

1

TJ2
),

because JLnT → 0.

For the third term, first consider the case when β 6= 0. Proceeding as above, we have

1

T
max

bThc+1≤t≤T
Var

[
p̂t(β)>

(
(Φ̂tΦ̂

>
t /nt)

−1 −Q−1t
) 1

nt

nt∑
i=1

Φ̂i,tβit(ft − E[ft|Gt−1])
∣∣∣Ft−1]

9



.P
1

T
max

bThc+1≤t≤T
p̂t(β)>

(
(Φ̂tΦ̂

>
t /nt)

−1 −Q−1t
) 1

n2t

nt∑
i=1

nt∑
k=1

Φ̂i,tΦ̂
>
k,tβitβkt(

(Φ̂tΦ̂
>
t /nt)

−1 −Q−1t
)
p̂t(β)

.P
1

T

(
J2LnT + J2

√
log(nT )

nJ

)2
max

bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
k=1

Φ̂i,tΦ̂
>
k,tβitβkt

∣∣∣
∞

.P
1

T

(
J2LnT + J2

√
log(nT )

nJ

)2
(

1

J2
) = oP(

1

T
).

When β = 0, we obtain the faster upper bound

1

T
max

bThc+1≤t≤T
Var

[
p̂t(β)>

(
(Φ̂tΦ̂

>
t /nt)

−1 −Q−1t
) 1

nt

nt∑
i=1

Φ̂i,tβit(ft − E[ft|Gt−1])
∣∣∣Ft−1]

.P
1

T

(
J2LnT + J2

√
log(nT )

nJ

)2
(

1

J4
) = oP(

J

nT
+

1

TJ2
),

because JLnT → 0.

For the fourth term, first consider the case when β 6= 0. Using the same logic as before,

1

T
max

bThc+1≤t≤T
Var

[
p̂t(β)>Q−1t

1

nt

nt∑
i=1

(
Φ̂i,t − Φi,t

)
βit(ft − E[ft|Gt−1])

∣∣∣Ft−1]
.P

J2

T
max

bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
k=1

(
Φ̂i,t − Φi,t

)(
Φ̂k,t − Φk,t

)>
βitβkt

∣∣∣
∞

.P
J2

T
L2nT = oP(T−1),

since JLnT → 0. Likewise, when β = 0,

1

T
max

bThc+1≤t≤T
Var

[
p̂t(β)>Q−1t

1

nt

nt∑
i=1

(
Φ̂i,t − Φi,t

)
βit(ft − E[ft|Gt−1])

∣∣∣Ft−1]
.P

J2

T
max

bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
k=1

(
Φ̂i,t − Φi,t

)(
Φ̂k,t − Φk,t

)>
βitβkt

∣∣∣
∞

.P
1

T
L2nT = oP(

1

TJ2
),

because JLnT → 0.

Finally, for the bias term, we verify that B(β) .P J
−1. Define

ã◦t = (ΦtΦ
>
t )−1E(ΦtRt|Ft−1) = (ΦtΦ

>
t )−1Φtµt(βt),

where µt(βt) = (µt(β1t), . . . , µt(βntt))
′. Then,

max
bThc+1≤t≤T

∣∣a◦t − ã◦t ∣∣∞
10



= max
bThc+1≤t≤T

∣∣(E[ΦtΦ
>
t |Gt−1]

)−1(
ΦtΦ

>
t − E[ΦtΦ

>
t |Gt−1]

)
ã◦t
∣∣
∞

≤ max
bThc+1≤t≤T

∣∣(E[ΦtΦ
>
t |Gt−1]

)−1∣∣
∞ max
bThc+1≤t≤T

∣∣ΦtΦ
>
t − E[ΦtΦ

>
t |Gt−1]

∣∣
∞ max
bThc+1≤t≤T

∣∣ã◦t ∣∣∞
.P J

−1,

where the last line follows by Lemma SA-2.2, Bernstein’s inequality and since
∣∣ã◦t ∣∣∞ is bounded

on the event that (ΦtΦ
>
t /nt)

−1 exists and is finite which occurs with probability approaching one.

Therefore, B(β) . B1(β) + B2(β) where

B1(β) =
1

T −H

T∑
t=H+1

p̂t(β)>(Φ̂tΦ̂
>
t )−1

nt∑
i=1

Φ̂i,t

(
µt(βit)− Φ̂>i,ta

◦
t

)
,

B2(β) =
1

T −H

T∑
t=H+1

p̂t(β)>(Φ̂tΦ̂
>
t )−1

nt∑
i=1

Φ̂i,t

(
Φ̂>i,ta

◦
t − µt(β)

)
.

For the first term B1(β) we have

|B1(β)| .
∣∣∣ 1

T −H

T∑
t=H+1

p̂t(β)>(Φ̂tΦ̂
>
t )−1

nt∑
i=1

Φ̂i,tµt(βit)−
1

T −H

T∑
t=H+1

p̂t(β)>ã◦t

∣∣∣
+
∣∣∣ 1

T −H

T∑
t=H+1

p̂t(β)> (ã◦t − a◦t )
∣∣∣.

The third term is OP(J−1) by above calculations and because |p̂t(β)|∞ = 1. Next note that the first

term is an average of µt(βit) in each P̂jt which contains β whereas the second term is an average

of µt(βit) in each Pjt which contains β where Pjt are the portfolios constructed using the sample

quantiles of βit. Thus, the first two terms are bounded by

∣∣∣ 1

T −H

T∑
t=H+1

p̂t(β)>(Φ̂tΦ̂
>
t )−1

nt∑
i=1

Φ̂i,tµt(βit)−
1

T −H

T∑
t=H+1

p̂t(β)>ã◦t

∣∣∣
.P max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣(β̂(kjt),t ∨ β(kjt),t)− (β̂(kj(t−1)),t ∧ β(kj(t−1)),t−1
)∣∣ .P J

−1,

by our smoothness assumptions on µt(·) and by Lemma SA-2.2. The second term B2(β) follows

by similar steps.

SA-2.3 Proof of Theorem 4.3

By Lemma 4.1, we have

µ̂(β)− µ̄T (β;H)−B(β)√
E[σ2ε(β) + σ2f (β)]

=
T∑

t=H+1

ηt(β) + R0 + oP(1),

11



where

ηt(β) := (E[σ2ε(β) + σ2f (β)])−1/2
1

T −H
p̂t(β)>Q−1t

1

nt

nt∑
i=1

(
Φi,tεit + E[Φi,tβit|Gt−1](ft − E[ft|Gt−1])

)
,

forms a martingale difference sequence adapted to the filtration Ft−1, and because

R0 := (E[σ2ε(β) + σ2f (β)])−1/2
1

T −H

T∑
t=H+1

p̂t(β)>Q−1t
1

nt

nt∑
i=1

(Φi,tβit − E[Φi,tβit|Gt−1])(ft − E[ft|Gt−1])

.P

√
nT

J

1√
TnJ

+

√
J

n
= oP(1),

and

R(β)√
E[σ2ε(β) + σ2f (β)]

= oP(1).

Thus, the proof is completed by employing the martingale central limit theorem of Hall and Heyde

(2014, Corollary 3.1), whose conditions are implied by the following two conditions:

T∑
t=H+1

E[ηt(β)4|Ft−1]→P 0 (SA-2.1)

and

E
∣∣∣ T∑
t=H+1

E[ηt(β)2|Ft−1]− 1
∣∣∣2 → 0. (SA-2.2)

For the first condition (SA-2.1), we have

T∑
t=H+1

E[ηt(β)4|Ft−1] . R1 + R2,

where

R1 := (E[σ2ε(β) + σ2f (β)])−2
1

T 4

T∑
t=H+1

E
[(
p̂t(β)>Q−1t

1

nt

nt∑
i=1

Φi,tεit

)4∣∣∣Ft−1],
R2 := (E[σ2ε(β) + σ2f (β)])−2

1

T 4

T∑
t=H+1

E
[(
p̂t(β)>Q−1t E[Φi,tβit|Gt−1](ft − E[ft|Gt−1])

)4∣∣∣Ft−1].

12



For the first term we have

R1 . min(
n2T 2

J2
, T 2J4)

1

T 4

T∑
t=H+1

1

n4t

nt∑
i=1

E
[(
p̂t(β)>Q−1t Φi,tεit

)4∣∣∣Ft−1]

+ min(
n2T 2

J2
, T 2J4)

1

T 4

T∑
t=H+1

1

n4t

nt∑
i=1

nt∑
k=1,k 6=i

E
[(
p̂t(β)>Q−1t Φi,tεit

)2∣∣∣Ft−1]E[(p̂t(β)>Q−1t Φk,tεkt

)2∣∣∣Ft−1]
.P

1

T
,

and, similarly, R2 .P
1
T for both cases of interest (β 6= 0 and β = 0).

For the second condition (SA-2.1), first define

Zt(β) = E[ηt(β)2|Ft−1]− E[ηt(β)2], M`(β) =

T∑
t=H+1

[
E[Zt(β)|Ft−`]− E[Zt(β)|Ft−`−1]

]
,

and because Zt(β) is mean-zero and adapted to the filtration Ft and therefore

Zt(β) =
∞∑
`=0

[
E[Zt(β)|Ft−`]− E[Zt(β)|Ft−`−1]

]
.

Then, we have

E
∣∣∣ T∑
t=H+1

E[ηt(β)2|Ft−1]− 1
∣∣∣2

=

T∑
t2=H+1

T∑
t1=H+1

E[{E[ηt1(β)2|Ft1−1]− E[ηt1(β)2]}{E[ηt2(β)2|Ft2−1]− E[ηt2(β)2]}]

=

(√√√√E
[( T∑

t=H+1

Zt(β)
)2])2

=

(√√√√E
[( T∑

t=H+1

∞∑
`=0

[
E[Zt(β)|Ft−`]− E[Zt(β)|Ft−`−1]

])2])2

=

(√√√√E
[( ∞∑

`=0

M`(β)
)2])2

=
∥∥∥ ∞∑
`=0

M`(β)
∥∥∥2 ≤ ( ∞∑

`=0

‖M`(β)‖
)2

=

( ∞∑
`=0

√√√√ T∑
t=H+1

E
[
(E[Zt(β)|Ft−`]− E[Zt(β)|Ft−`−1])2

])2

.

( ∞∑
`=0

√
R3,`(β)

)2

+

( ∞∑
`=0

√
R4,`(β)

)2

,

13



because, for k ≥ 0, we have

E[ηt(β)2|Ft−`−k]

= (E[σ2ε(β) + σ2f (β)])−1
1

(T −H)2
1

n2t

nt∑
i=1

E
[(
p̂t(β)>Q−1t Φi,tεit

)2∣∣∣Ft−`−k]
+ (E[σ2ε(β) + σ2f (β)])−1

1

(T −H)2
E
[(
p̂t(β)>Q−1t E[Φi,tβit|Gt−1](ft − E[ft|Gt−1])

))2∣∣∣Ft−`−k],
and therefore

T∑
t=H+1

E
[
(E[Zt(β)|Ft−`]− E[Zt(β)|Ft−`−1])2

]
=

T∑
t=H+1

E
[
(E[E[ηt(β)2|Ft−1]|Ft−`]− E[E[ηt(β)2|Ft−1]|Ft−`−1])2

]
=

T∑
t=H+1

E
[
(E[ηt(β)2|Ft−`]− E[ηt(β)2|Ft−`−1])2

]
. R3,`(β) + R4,`(β),

where

R3,`(β) = (E[σ2ε(β) + σ2f (β)])−2
1

(T −H)4

T∑
t=H+1

1

n4t

nt∑
i=1

nt∑
k=1

E

[((
E
[(
p̂t(β)>Q−1t Φi,tεit

)2∣∣∣Ft−`]− E
[(
p̂t(β)>Q−1t Φi,tεit

)2∣∣∣Ft−`−1])
)

×

((
E
[(
p̂t(β)>Q−1t Φk,tεkt

)2∣∣∣Ft−`]− E
[(
p̂t(β)>Q−1t Φk,tεkt

)2∣∣∣Ft−`−1])
)]

. (E[σ2ε(β) + σ2f (β)])−2
1

T 3n2
max

H+1≤t≤T
max

1≤i≤nt

E

[(
E
[(
p̂t(β)>Q−1t Φi,tεit

)2∣∣∣Ft−`]− E
[(
p̂t(β)>Q−1t Φi,tεit

)2∣∣∣Ft−`−1])2
]
,

and

R4,`(β) . (E[σ2ε(β) + σ2f (β)])−2
1

T 3

max
H+1≤t≤T

E

[((
E
[(
p̂t(β)>Q−1t E[Φi,tβit|Gt−1](ft − E[ft|Gt−1])

)2∣∣∣Ft−`]
− E

[(
p̂t(β)>Q−1t E[Φi,tβit|Gt−1](ft − E[ft|Gt−1])

)2∣∣∣Ft−`−1])
)2]

.
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To complete the proof, observe that under our imposed assumptions,

∞∑
`=0

√
R3,`

= (E[σ2ε(β) + σ2f (β)])−1
1

T 3/2n
max

H+1≤t≤T
max

1≤i≤nt

∞∑
`=0

√√√√E

[(
E
[(
p̂t(β)>Q−1t Φi,tεit

)2∣∣∣Ft−`]− E
[(
p̂t(β)>Q−1t Φi,tεit

)2∣∣∣Ft−`−1])2
]

. min(
nT

J
, TJ2)

1

T 3/2n
Θn,T ((p̂•(β)>Q−1• Φi,•εi•)

2; q, v) = o(1),

and

∞∑
`=0

√
R4,`

= (E[σ2ε(β) + σ2f (β)])−1
1

T 3/2
max

H+1≤t≤T
∞∑
`=0

(
E

[((
E
[(
p̂t(β)>Q−1t E[Φi,tβit|Gt−1](ft − E[ft|Gt−1])

)2∣∣∣Ft−`]

− E
[(
p̂t(β)>Q−1t E[Φi,tβit|Gt−1](ft − E[ft|Gt−1])

)2∣∣∣Ft−`−1])
)2])1/2

. min(
n

J
, J2)

1

T 1/2
Θn,T ((p̂•(β)>Q−1• E[Φi,•βi•|Gt−1]f•)2; q, v) = o(1).

Then the conclusion follows.

SA-2.4 Proof of Theorem 4.5(i)

It will be convenient to define the rate rn,T (β) = J
Tn + 1

TJ2 for β = 0 and rn,T (β) = 1
T for β 6= 0.

We start with the result when β 6= 0,

|σ̂2FM(β)− σ2ε (β)− σ2f (β)− σ2µ (β) | . R1 + R2 + R3,

where

R1 =
∣∣∣ 1

(T −H)2

T∑
t=H+1

(µ̂t (β)− µt (β))2 − σ2ε (β)− σ2f (β)
∣∣∣,

R2 =
∣∣∣ 1

(T −H)
(µ̂ (β)− µ̄T (β;H))2

∣∣∣,
R3 =

∣∣∣ 2

(T −H)2

T∑
t=H+1

(µ̂t (β)− µt (β)) (µt (β)− µ̄T (β;H))
∣∣∣.
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For R1, we can follow similar steps as for the proof of Lemma 4.1 to obtain that

R1 = OP

( 1

TJ2

)
+ oP(rn,T (β)) = oP

( 1

T

)
.

Next, note that R2 = oP( 1
TJ + 1

T 2 ) by Lemma 4.1 and Theorem 4.3 so that R2 = oP

(
1
T

)
. Finally,

for R3 we have that

R3 .
∣∣∣ 1

(T −H)2

T∑
t=H+1

(µ̂t (β)− µt (β))µt (β)
∣∣∣+
∣∣∣ 1

(T −H)
µ̄T (β;H) (µ̂ (β)− µ̄T (β;H))

∣∣∣.
By similar steps as in the proof of Lemma 4.1, and using the fact that |µt(β)| is bounded, the first

term is OP( 1
TJ +

√
rn,T (β)

T ) and by Lemma 4.1 and Theorem 4.3 the second term is OP(

√
rn,T (β)

T ).

Thus, R3 = oP

(
1
T

)
, and the result for β 6= 0 follows.

Now consider the β = 0 case. We have that,

∣∣σ̃2FM(β)− σ2ε(β)− σ2f (β)− σ2µ(β)
∣∣ . R1 + R2 + R3,

where

R1 =
∣∣∣ 1

(T −H)2

T∑
t=H+1

(µ̂t (β)−Bt(β)− µt (β))2 − σ2ε (β)− σ2f (β)
∣∣∣,

R2 =
∣∣∣ 1

(T −H)
(µ̂ (β)−B(β)− µ̄T (β;H))2

∣∣∣,
R3 =

∣∣∣ 2

(T −H)2

T∑
t=H+1

(µ̂t (β)−Bt(β)− µt (β)) (µt (β)− µ̄T (β;H))
∣∣∣.

For R1, we can follow similar steps as for the proof of Lemma 4.1 to obtain that R1 = oP(rn,T (β)).

Next, note that R2 = oP(rn,T (β)) directly by Lemma 4.1 and Theorem 4.3. Finally, for R3, using

the Cauchy–Schwarz inequality, we have

R2
3 .

∣∣∣ 1

(T −H)2

T∑
t=H+1

(µ̂t (β)−Bt(β)− µt (β))2
∣∣∣ · σ2µ(β).

By the same steps as for R1 we have that the first factor is OP(rn,T (β)). By assumption, we have

that σ2µ(β) = oP(rn,T (β)) and so R3 = oP(rn,T (β)).

SA-2.5 Proof of Theorem 4.5(ii)

Recall that we define the rate rn,T (β) = J
Tn + 1

TJ2 for β = 0 and rn,T (β) = 1
T for β 6= 0 from the

Proof of Theorem 4.5(i). We first decompose σ̂2f,PI(β) as

σ̂2f,PI(β)− σ̃2f,PI(β)− snT (β) = R(β),
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where

snT (β) =
1

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2t q̂
2
jt

(
nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)β̂it

)2

(E[ft|Gt−1]− ̂E[ft|Gt−1])2,

and

R(β) :=
2

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2t q̂
2
jt

(
nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)β̂it

)2

(ft − E[ft|Gt−1])(E[ft|Gt−1]− ̂E[ft|Gt−1]).

Clearly, snT (β) ≥ 0 for all β ∈ B. For R(β), note that the summands form a martingale difference

sequence with respect to Ft−1 so that, when β 6= 0,

E[R2(β)] =
2

(T −H)4
E
[ T∑
t=H+1

Jt∑
j=1

1

n4t q̂
4
jt

(
nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)β̂it

)4

(ft − E[ft|Gt−1])2(E[ft|Gt−1]− ̂E[ft|Gt−1])2
]

.
1

(T −H)4

T∑
t=H+1

E
[
(E[ft|Gt−1]− ̂E[ft|Gt−1])2

]
,

. rn,T (β)2.

When β = 0, we can follow similar steps and obtain that Var[R(β)] = o(rn,T (β)2) using Lemma

SA-2.2. Finally, we need only show that
∣∣σ̃2f,PI(β) − σ2f (β)

∣∣ = oP(rn,T (β)) which holds under the

conditions of Theorem SA-1.2 and given the results in Lemma SA-2.2 to Lemma SA-2.3.

We next prove that |σ̂2ε,PI(β)− σ̃2ε,PI(β)| = oP(rn,T (β)). We have that,

|σ̂2ε,PI(β)− σ̃2ε,PI(β)| ≤ R4 + R5 + R6 + R7,

where

R4 =
2

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2t q̂
2
jt

nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)(Mt(βit)−Mt(β̂it))
2

R5 =
2

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2t q̂
2
jt

nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)(Mt(β̂it)− µ̂t(β̂it))2

R6 =
2

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2t q̂
2
jt

nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)|εit||Mt(βit)−Mt(β̂it)|

R7 =
2

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2t q̂
2
jt

nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)|εit||Mt(β̂it)− µ̂t(β̂it)|.
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For the first term,

R4 ≤
4

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2t q̂
2
jt

nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)(µt(βit)− µt(β̂it))2

+
4

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2t q̂
2
jt

nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)(βit − β̂it)2(ft − E[ft|Ft]))2

.P
J

nT
R2
nT = oP(

J

nT
).

For the second term,

R5 =
2

(T −H)2

T∑
t=H+1

Jt∑
j=1

1

n2t q̂
2
jt

nt∑
i=1

p̂j,t(β)p̂j,t(β̂it)(Mt(β̂it)− µ̂t(β̂it))2

= oP(
J

nT
).

For the last two terms we have

R6 .P
J

nT
RnT = oP(

J

nT
), R7 .P

J

nT

√
J log(nT )

n
+

1

J2
= oP(

J

nT
).

Finally, we need only show that
∣∣σ̃2ε,PI(β)−σ2ε(β)

∣∣ = oP(rn,T (β)). The above statement holds under

the conditions of Theorem SA-1.2 and given the results in Lemma SA-2.2 to Lemma SA-2.3. This

completes the proof.

SA-2.6 Proof of Lemma SA-2.2

For the first result, note that by Theorem SA-1.2 and the assumptions imposed,

max
1≤j≤Jt−1

∣∣β̂(kjt),t − β(kjt),t∣∣ = max
1≤j≤Jt

∣∣F−1
β̂,n,t

(κj,t)− F−1β,n,t(κj,t)
∣∣ . R1,t + R2,t + R3,t,

where

R1,t = max
1≤j≤Jt

∣∣∣F−1β,n,t(κj,t)− F
−1
β,t (κj,t)

∣∣∣,
R2,t = max

1≤j≤Jt

∣∣∣F−1
β̂,t

(κj,t)− F−1β,t (κj,t)
∣∣∣,

R3,t = max
1≤j≤Jt

∣∣∣F−1
β̂,n,t

(κj,t)− F−1
β̂,t

(κj,t)
∣∣∣.

Note that R1,t . R11,t + R12,t with

R11,t = max
1≤j≤Jt

∣∣∣F−1β,n,t(κj,t)− F
−1
β,t (κj,t)−

[
Fβ,n,t(F

−1
β,t (κj,t))− Fβ,t(F−1β,t (κj,t))

]
/fβ,t(F

−1
β,t (κj,t))

∣∣∣,
R12,t = max

1≤j≤Jt

∣∣∣Fβ,n,t(F−1β,t (κj,t))− Fβ,t(F−1β,t (κj,t))
]∣∣∣,
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and it follows by standard arguments that

max
bThc+1≤t≤T

R1,t .P

√
log(nT )

n
.

Next, we have

max
bThc+1≤t≤T

R2,t = max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣F−1
β̂,t

(κj,t)− F−1β,t (κj,t)
∣∣∣

.P max
bThc+1≤t≤T

max
1≤j≤Jt

sup
|v|.RnT

∣∣∣F−1β,t (κj,t + v)− F−1β,t (κj,t)
∣∣∣ . RnT .

Finally, for R3,t, we proceed as for R1,t but taking into account the first-step estimation. Thus,

R3,t . R31,t + R32,t + R33,t with

R31,t = max
1≤j≤Jt

∣∣∣F−1
β̂,n,t

(κj,t)− F−1
β̂,t

(κj,t)−
[
F
β̂,n,t

(F−1
β̂,t

(κj,t))− Fβ̂,t(F
−1
β̂,t

(κj,t))
]
/fβ,t(F

−1
β̂,t

(κj,t))
∣∣∣,

R32,t = sup
u∈B,|v|.RnT

∣∣∣Fβ,n,t(u+ v)− Fβ,n,t(u)− Fβ,t(u+ v) + Fβ,t(u)
∣∣∣,

R33,t = sup
u∈B

∣∣∣Fβ,n,t(u)− Fβ,t(u)
∣∣∣,

with arbitrary high probability for n and T large enough, uniformly in t, and where B = [βl, βu].

We set fβ,t(F
−1
β̂,t

(κj,t)) = fβ,t(βl) if F−1
β̂,t

(κj,t) < βl, and fβ,t(F
−1
β̂,t

(κj,t)) = fβ,t(βu) if F−1
β̂,t

(κj,t) > βu.

Recall also that we set β̂(0)t = βl and β̂(nt)t = βu for simplicity.

For R31,t, using standard results, for any c ∈ R, we have

P
(√

n max
bThc+1≤t≤T

R31,t > v
)
≤

T∑
t=bThc+1

P
(√

nR31,t > v
)

≤
T∑

t=bThc+1

P
(

sup
|u|≤RnT ,y∈B

|Zn,β,t(y + c/
√
nt + u)− Zn,β,t(y + u)| & v

)

+

T∑
t=bThc+1

P
(

max
1≤j≤Jt

|
√
nt(Fβ̂,t(F

−1
β̂,t

(κj,t) + c/
√
nt)− Fβ̂,n,t(F

−1
β̂,n,t

(κj,t))/fβ,t(F
−1
β̂,t

(κj,t))− c| & v
)
,

where Zn,β,t(y) =
√
nt(Fβ,n,t(y)− Fβ,t(y)). The first term in the upper bound vanishes due to the

modulus of continuity of the empirical distribution function (Stute, 1982), the uniform inequality

in Massart (1990) with the union bound, and our imposed rate conditions. For the second term in

the upper bound, first note that

F
β̂,t

(F−1
β̂,t

(κj,t) + c/
√
nt) = P(β̂it ≤ F−1

β̂,t
(κj,t) + c/

√
nt|Gt−1)

= P(βit ≤ βit − β̂it + F−1
β̂,t

(κj,t) + c/
√
nt|Gt−1)

= Fβ,t(βit − β̂it + F−1
β̂,t

(κj,t) + c/
√
nt)
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= Fβ,t(βit − β̂it + F−1
β̂,t

(κj,t)) + fβ,t(c̃)
c
√
nt
,

where c̃ is some point between βit − β̂it + F−1
β̂,t

(κj,t) + c/
√
nt and βit − β̂it + F−1

β̂,t
(κj,t). Therefore,

max
1≤j≤Jt

|
√
nt(Fβ̂,t(F

−1
β̂,t

(κj,t) + c/
√
nt)− Fβ̂,n,t(F

−1
β̂,n,t

(κj,t))/fβ,t(F
−1
β̂,t

(κj,t))− c|

. max
1≤j≤Jt

|
√
nt(Fβ,t(βit − β̂it + F−1

β̂,t
(κj,t))− Fβ,n,t(βit − β̂it + F−1

β̂,n,t
(κj,t))|

+ max
1≤j≤Jt

∣∣∣ fβ,t(c̃)

fβ,t(F
−1
β̂,t

(κj,t))
c− c

∣∣∣.
Therefore, we have

max
1≤t≤bThc+1

max
bThc+1≤t≤T

R31,t .P

√
RnT log(nT )

n
+

RnT√
n
.

Similarly, for R2,t and R3,t, by the modulus of continuity of the empirical distribution function

Stute (1982, Lemma 2.3), Assumption 6, and the uniform inequality in Massart (1990) with the

union bound, we obtain

max
bThc+1≤t≤T

R32,t .P

√
RnT log(nT )

n
,

and

max
bThc+1≤t≤T

R33,t .P

√
log(nT )

n
.

For the upper bound of the second result, define U(k(j−1)t),t = Fβ,t(β(k(j−1)t),t), and note that

U(kjt),t − U(kj−1t),t follows a Beta distribution with parameter (kjt − kj−1t, nt + 1 − (kjt − kj−1t))
conditional on Gt−1, and thus E[U(kjt),t − U(kj−1t),t|Gt−1] = (kjt − kj−1t)/(nt + 1). Employing a

Taylor series expansion of F−1β,t (b) and following B.10 in Bobkov, Gentil, and Ledoux (2001), we

verify

P
(

max
bThc+1≤t≤T

max
1≤j≤Jt

|β(kjt),t − β(k(j−1)t),t| & J−1
)

.
T∑

t=bThc+1

Jt∑
j=1

E
[
P
(
|β(kjt),t − β(k(j−1)t),t| & J−1

∣∣Gt−1)]

.
T∑

t=bThc+1

Jt∑
j=1

E
[
P
(
|U(kjt),t − U(kj−1t),t| & J−1

∣∣Gt−1)]
. TJ max

bThc+1≤t≤T
exp

(
− C(nt + 1)(J−1t (1− (nt + 1)−1))2

)
,

for a positive constant C. It follows that the upper bound in the last display goes to 0 under the

20



rate conditions imposed. The lower bound in the second result of the lemma is proven similarly

using the results in Skorski (2023).

For the third results, it follows the same steps as for max1≤j≤Jt−1
∣∣β̂(kjt),t − β(kjt),t∣∣ except for

a additional differencing step:

max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣β̂(kjt),t − β(kjt),t − [β̂(k(j−1)t),t − β(k(j−1)t),t]
∣∣ .√ log(nT )

nJ
+

RnT
J
.

We shall break to the following term,

R1,t = max
1≤j≤Jt

∣∣∣F−1β,n,t(κj,t)− F
−1
β,t (κj,t)− (F−1β,n,t(κj−1,t)− F

−1
β,t (κj−1,t))

∣∣∣,
R2,t = max

1≤j≤Jt

∣∣∣F−1
β̂,t

(κj,t)− F−1β,t (κj,t)− (F−1
β̂,t

(κj−1,t)− F−1β,t (κj−1,t))
∣∣∣,

R3,t = max
1≤j≤Jt

∣∣∣F−1
β̂,n,t

(κj,t)− F−1
β̂,t

(κj,t)− (F−1
β̂,n,t

(κj−1,t)− F−1
β̂,t

(κj−1,t))
∣∣∣.

Similar to the previous step, we have maxbThc+1≤t≤T R1,t .p

√
log(nT )
nJ .

Next,

max
bThc+1≤t≤T

R2,t . RnT /J.

Then,

max
bThc+1≤t≤T

R3,t .P

√
RnT log(nT )

nJ
+

RnT
J
√
n
.

Thus the conclusion holds.

For the next result,

max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣ 1

nt

nt∑
i=1

[
1(β̂it ∈ P̂jt)− 1(βit ∈ Pjt)

]∣∣∣
= max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣ 1

nt

nt∑
i=1

[
1
(
F−1
β̂,n,t

(κj,t) < β̂it ≤ F−1
β̂,n,t

(κj+1,t)
)
− 1

(
F−1β,t (κj,t) < βit ≤ F−1β,t (κj+1,t)

)]∣∣∣
≤ max
bThc+1≤t≤T

R4,t + max
bThc+1≤t≤T

R5,t,

where

R4,t = max
1≤j≤Jt

∣∣∣ 1

nt

nt∑
i=1

[
1
(
F−1β,n,t(κj,t) < βit ≤ F−1β,n,t(κj+1,t)

)
− 1

(
F−1β,t (κj,t) < βit ≤ F−1β,t (κj+1,t)

)]∣∣∣
R5,t = max

1≤j≤Jt

∣∣∣ 1

nt

nt∑
i=1

[
1(F−1

β̂,n,t
(κj,t) < β̂it ≤ F−1

β̂,n,t
(κj+1,t))− 1

(
F−1β,n,t(κj,t) < βit ≤ F−1β,n,t(κj+1,t)

)]∣∣∣.
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For the term R4,t,

max
bThc+1≤t≤T

R4,t ≤ max
bThc+1≤t≤T

R41,t + max
bThc+1≤t≤T

R42,t .P

√
log(nT )

nJ
,

where

R41,t = max
1≤j≤Jt

∣∣∣Fβ,t(F−1β,n,t(κj+1,t))− Fβ,t(F−1β,n,t(κj,t))−
[
Fβ,t(F

−1
β,t (κj+1,t))− Fβ,t(F−1β,t (κj,t))

]∣∣∣,
and

R42,t = max
1≤j≤Jt

∣∣∣ 1

nt

nt∑
i=1

[
1
(
F−1β,n,t(κj,t) < βit ≤ F−1β,n,t(κj+1,t)

)
− 1

(
F−1β,t (κj,t) < βit ≤ F−1β,t (κj+1,t)

)]
−
[
Fβ,t(F

−1
β,n,t(κj+1,t))− Fβ,t(F−1β,n,t(κj,t))−

[
Fβ,t(F

−1
β,t (κj+1,t))− Fβ,t(F−1β,t (κj,t))

]∣∣∣.
To see the above result, notice that

max
bThc+1≤t≤T

R41,t

. max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣fβ,t(F−1β,t (κj+1,t))[F
−1
β,n,t(κj+1,t)− F−1β,t (κj+1,t)]− fβ,t(F−1β,t (κj,t))[F

−1
β,n,t(κj,t))− F

−1
β,t (κj,t)]

∣∣∣,
+ max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣F−1β,n,t(κj+1,t)− F−1β,t (κj+1,t)
∣∣∣2

. max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣fβ,t(F−1β,t (κj+1,t))− fβ,t(F−1β,t (κj,t))
∣∣∣∣∣∣F−1β,n,t(κj+1,t)− F−1β,t (κj+1,t)

∣∣∣
+ max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣F−1β,n,t(κj+1,t)− F−1β,t (κj+1,t)]− [F−1β,n,t(κj,t))− F
−1
β,t (κj,t)]

∣∣∣
+ max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣F−1β,n,t(κj+1,t)− F−1β,t (κj+1,t)
∣∣∣2

.P

√
log(nT )

nJ
,

and employing standard empirical process theory we also verify that

max
bThc+1≤t≤T

R42,t .P

√
log(nT )

n3/2J
.

Finally, for the term R5,t, we have

max
bThc+1≤t≤T

R5,t ≤ max
bThc+1≤t≤T

R51,t + max
bThc+1≤t≤T

R52,t .P
RnT
J

√
log(nT ) +

√
RnT
nJ

√
log(nT ),

where

R51,t = max
1≤j≤Jt

∣∣∣Fβ̂,t(F−1β̂,n,t
(κj+1,t))− Fβ̂,t(F

−1
β̂,n,t

(κj,t))−
[
Fβ,t(F

−1
β,n,t(κj+1,t))− Fβ,t(F−1β,n,t(κj,t))

]∣∣∣
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and

R52,t = max
1≤j≤Jt

∣∣∣ 1

nt

nt∑
i=1

[
1
(
F−1
β̂,n,t

(κj,t) < β̂it ≤ F−1
β̂,n,t

(κj+1,t)
)
− 1

(
F−1
β̂,t

(κj,t) < β̂it ≤ F−1
β̂,t

(κj+1,t)
)]

−
[
F
β̂,t

(F−1
β̂,n,t

(κj+1,t))− Fβ̂,t(F
−1
β̂,n,t

(κj,t))−
[
Fβ,t(F

−1
β,n,t(κj+1,t))− Fβ,t(F−1β,n,t(κj,t))

]∣∣∣.
and the proof is completed using the same logic as before.

Finally, the last result follows by Bernstein’s inequality and standard calculations.

SA-2.7 Proof of Lemma SA-2.3

For the first result, we have

max
bThc+1≤t≤T

∣∣∣(Φ̂tΦ̂
>
t /nt)

−1 −Q−1t
∣∣∣
∞

≤ max
bThc+1≤t≤T

|(Φ̂tΦ̂
>
t /nt)

−1|∞ max
1≤j≤Jt

∣∣∣ 1

nt

nt∑
i=1

(1(β̂it ∈ P̂jt)− 1(βit ∈ Pjt))
∣∣∣|(ΦtΦ

>
t /nt)

−1|∞

+ max
bThc+1≤t≤T

|(ΦtΦ
>
t /nt)

−1 −Q−1t |∞

.P J
2LnT + J2

√
log(nT )

nJ
.

For the second result, using the union bound, Markov’s inequality, the conditional on Ft−1, ft
i.i.d. property of εit, and Bernstein’s inequality,

P
(

max
bThc+1≤t≤T

max
1≤j≤Jt

∣∣∣ 1

nt

nt∑
i=1

Φi,j,tεit

∣∣∣ > u
)

.
T∑

t=bThc+1

Jt∑
j=1

P
(∣∣∣ 1

nt

nt∑
i=1

Φi,j,t(εit1(|εit| > M)− E[εit1(|εit| > M)|Ft−1, ft])
∣∣∣ > u

)

+
T∑

t=bThc+1

Jt∑
j=1

P
(∣∣∣ 1

nt

nt∑
i=1

Φi,j,t(εit1(|εit| ≤M)− E[εit1(|εit| ≤M)|Ft−1, ft])
∣∣∣ > u

)

.
T

u2M q−2n
+

T∑
t=bThc+1

Jt∑
j=1

E
[

exp
(
− nu2/2

ϑj,t +Mu/3

)]
,

where ϑj,t = max1≤i≤nt E[Φ2
i,j,tε

2
it|Ft−1, ft] .P J−1. Thus, setting M =

√
nJ−1/ log(nT ) and

u = C

√
log(nT )
nJ for C large enough, the result follows.

The third result is proven similarly using max1≤i≤nt E[(Φ̂i,j,t − Φi,j,t)
2ε2it|Ft−1, ft] .P LnT .

For the fourth result,

max
bThc+1≤t≤T

∣∣∣(ft − E[ft|Gt−1])
1

nt

nt∑
i=1

Φi,tβit

∣∣∣
∞
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≤ max
bThc+1≤t≤T

∣∣∣(ft − E[ft|Gt−1])
1

nt

nt∑
i=1

(
Φi,tβit − E[Φi,tβit|Gt−1]

)∣∣∣
∞

+ max
bThc+1≤t≤T

∣∣∣(ft − E[ft|Gt−1])
1

nt

nt∑
i=1

E[Φi,tβit|Gt−1]
∣∣∣
∞

.P

√
log(nT )

nJ
+

√
log(nT )

J
,

using Bernstein’s inequality conditional on Gt−1.
The fifth result follows similarly to the third result.

max
bThc+1≤t≤T

∣∣∣(ft − E[ft|Gt−1])
1

nt

nt∑
i=1

(Φ̂i,t − Φi,t)βit

∣∣∣
∞

≤ max
bThc+1≤t≤T

∣∣∣(ft − E[ft|Gt−1])
1

nt

nt∑
i=1

(Φ̂i,t − Φi,t)βit − E[(Φ̂i,t − Φi,t)βit|Gt−1]
)∣∣∣
∞

+ max
bThc+1≤t≤T

∣∣∣(ft − E[ft|Gt−1])
1

nt

nt∑
i=1

E[(Φ̂i,t − Φi,t)βit|Gt−1]
∣∣∣
∞

.P

√
log(nT )LnT

n
+
√

log(nT )LnT .

For the sixth result,

max
bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
j=1

Φ̂i,tΦ̂
>
j,tβitβjt

∣∣∣
∞

. max
bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
j=1

Φ̂i,tΦ̂
>
j,tβitβjt −

1

n2t

nt∑
i=1

nt∑
j=1

Φi,tΦ
>
j,tβitβjt

∣∣∣
∞

+ max
bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
j=1

{Φi,tβit − E[Φi,tβit|Gt−1]}{Φ>j,tβjt − E[Φ>j,tβit|Gt−1]}
∣∣∣
∞

+ max
bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
j=1

βitΦi,tE[Φ>j,tβjt|Gt−1]
∣∣∣
∞

+ max
bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
j=1

E[βitΦi,t|Gt−1]Φ>j,tβjt
∣∣∣
∞

+ max
bThc+1≤t≤T

∣∣∣ 1

n2t

nt∑
i=1

nt∑
j=1

E[βitΦi,t|Gt−1]E[Φ>j,tβjt|Gt−1]
∣∣∣
∞

.P
RnT
J2

+
1

J

√
log(nT )

nJ
+

1

nJ
+

1

J2
.

1

J2
.

The last result follows similarly to the proof of the previous terms.
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SA-2.8 Proof of Lemma SA-2.4

We have

max
H+1≤t≤T

sup
β∈B

∣∣µ̂t(β)−Mt(β)
∣∣

= max
H+1≤t≤T

sup
β∈B

∣∣p̂t(β)>(Φ̂tΦ̂
>
t )−1Φ̂tRt − µt(β)− β(ft − E[ft|Gt−1])

∣∣
≤ max

H+1≤t≤T
sup
β∈B

∣∣∣p̂t(β)>Q−1t
1

nt

nt∑
i=1

Φi,tεit

∣∣∣+ max
H+1≤t≤T

sup
β∈B
|Bt(β)|+ max

H+1≤t≤T
sup
β∈B
|Rt(β)|

where

Bt(β) = p̂t(β)>(Φ̂tΦ̂
>
t )−1

nt∑
i=1

Φ̂i,t

(
µt(βit)− Φ̂>i,ta

◦
t

)
+
(
p̂t(β)>a◦t − µt(β)

)
,

with a◦t = (E[Φi,tΦ
>
i,t|Gt−1])−1E[Φi,tRit|Gt−1], and Rt(β) = R1t(β) +R2t(β) +R3t(β) +R4t(β) with

R1t(β) = p̂t(β)>
(

(Φ̂tΦ̂
>
t /nt)

−1 −Q−1t
) 1

nt

nt∑
i=1

Φ̂i,tεit,

R2t(β) = p̂t(β)>Q−1t
1

nt

nt∑
i=1

(
Φ̂i,t − Φi,t

)
εit,

R3t(β) = p̂t(β)>
(

(Φ̂tΦ̂
>
t /nt)

−1 −Q−1t
) 1

nt

nt∑
i=1

Φ̂i,tβit(ft − E[ft|Gt−1]),

R4t(β) = p̂t(β)>Q−1t
1

nt

nt∑
i=1

(
Φ̂i,t − Φi,t

)
βit(ft − E[ft|Gt−1]),

Proceeding as in the proof of Lemma 4.1,

max
H+1≤t≤T

sup
β∈B

∣∣∣p̂t(β)>Q−1t
1

nt

nt∑
i=1

Φi,tεit

∣∣∣ .P

√
J log(nT )

n
,

max
H+1≤t≤T

sup
β∈B
|Bt(β)| .P

1

J
,

max
H+1≤t≤T

sup
β∈B
|R1t(β)| .P

(
J2LnT + J2

√
log(nT )

nJ

)(
J

√
log(nT )LnT

n
+

√
log(nT )

nJ

)
= o
(√J log(nT )

n

)
,
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max
H+1≤t≤T

sup
β∈B
|R2t(β)| .P J

√
log(nT )LnT

n
,

max
H+1≤t≤T

sup
β∈B
|R3t(β)| .P JLnT + J

√
log(nT )

nJ
,

and

max
H+1≤t≤T

sup
β∈B
|R4t(β)| .P JLnT .

This completes the proof.
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