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Abstract 

Does the effect of monetary policy depend on the prevailing level of inflation? In order to answer this 

question, we construct a parsimonious nonlinear time series model that allows for inflation regimes. We 

find that the effects of monetary policy are markedly different when year-over-year inflation exceeds 5.5 

percent. Below this threshold, changes in monetary policy have a short-lived effect on prices, but no 

effect on the unemployment rate, giving a potential explanation for the recent “soft landing” in the United 

States. Above this threshold, the effects of monetary policy surprises on both inflation and unemployment 

can be larger and longer lasting.  
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1 Introduction

What are the effects of monetary policy on the economy? Although this question has long

been a cornerstone of macroeconomic research (see Christiano et al. (1999) and the references

therein), it has recently become more prominent than ever, as most major economies try to

bring inflation down toward their respective inflation targets from the recent high inflation

rates, that they have not experienced since the early 1980s.

In this paper, we investigate whether the effects of monetary policy and the tradeoffs that

policymakers face depend on the level of inflation that prevails in the economy. Policymakers

rely on economic models to decide their course of action, but much of the research on the

effects of monetary policy is based on linear models with constant parameters, disregarding

any potential state-dependence on the level of inflation. There are reasons to expect that

economic agents’ behavior is different when inflation deviates considerably from its target.

For example, Weber et al. (2023), in a series of randomized controlled trials (RCTs), show

that both consumers and firms react to information and form expectations differently when

inflation is high. There is also considerable empirical evidence on the oil price crises, when

a high level of inflation was also associated with more persistent macroeconomic variables

as well as larger volatility. If such state-dependence on the level of inflation in the econ-

omy is present, linear models can lead to erroneous empirical conclusions. In this paper, we

address this problem by building a parsimonious and computationally tractable nonlinear

vector autoregressive (VAR) model, a self-exciting threshold (SET-) Bayesian VAR model

that delivers easily interpretable nonlinearities and allows the data to identify the inflation

regimes as well as the regime-dependent parameters. We identify the effects of monetary

policy using an instrument for monetary policy shocks, an approach commonly used in the

literature. As such, our identification strategy is the same as that in many papers that focus

on linear models.

We find that our approach gives rise to large inflation thresholds, thus endogenously separat-

ing periods where inflation rates are not representative of the sample. Seventy-five percent

of our sample falls into one inflation regime where year-over-year CPI-based inflation is less

than 5.5 percent. In this regime, the persistence of macroeconomic variables is low, and

hence the effects of shocks are short-lived. Monetary policy can reduce inflation, but it has

no meaningful effect on the unemployment rate, thus providing a rationale for the recent

“soft landing” of the U.S. economy, at least once year-over-year inflation became lower than

5.5 percent. This recent episode is not included in our sample, so it is not the case of our

model simply fitting these recent data. This result is driven by the different reduced-form
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relationships we uncover between inflation and unemployment when inflation levels are low

and stable. Once inflation becomes larger, monetary policy has larger and more persistent

effects on prices and a significant effect on the unemployment rate. Finally, we find that

the persistence and the effects of policy shocks do not monotonically change with the level

of inflation, and once the underlying inflation rate becomes double-digit (larger than 11

percent), the policy effects disappear and we find a price puzzle. A standard linear VAR

model estimated on our sample would have erroneously led researchers to the conclusion

that monetary policy has no effect on prices or the unemployment rate, since it would have

averaged the effects over these very different regimes.

The remainder of the paper is organized as follows. Section 2 establishes in detail the econo-

metric methodology and explains the novelties of our model relative to existing threshold

models in the literature. Section 3 contains our empirical application to monetary policy in

the US across inflation regimes, including a small illustrative Monte Carlo exercise. Section

4 concludes and the supplementary Appendix contains some additional results.

2 Methodology

In this section, we describe our econometric methodology. Modeling nonlinearities is a

challenging task, especially in environments with dependent data. The modeling choices we

make in this paper are guided by two main goals: (i) transparency and (ii) computational

speed. We prefer a simple model in which the factors determining the nonlinearities are clear

and easily interpretable. Moreover, our model is set up so that inference is computationally

fast and straightforward, while at the same time allowing for regularization via the use of

priors, opening up the use of our nonlinear model for applications with many observables.

In a nutshell, our model is a Bayesian self-exciting threshold VAR: a piecewise-linear VAR

model where breaks in the model’s parameters are governed by lagged observables and, within

each linear regime defined by the model’s threshold parameters, inference is standard. We

make two important departures from existing models in the literature. First, we allow the

regimes to be identified via regime-dependence in the conditional variance in addition to

regime-dependence in the conditional mean of the series. Such an extension is relevant for

macroeconomic applications where series undergo different volatility regimes over time and

hence information from regime-dependence in the second moment may be useful to exploit

in order to estimate more precisely the threshold parameters. The second novelty of our

approach relative to existing models in the literature is the use of Bayesian inference on the
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VAR parameters while maintaining fast and efficient Bayesian estimation of the threshold

without the need for a computationally expensive MCMC step. The remainder of this section

provides a detailed technical description and justification of our approach.

We first provide a brief discussion of the standard practice of estimation of threshold VAR

(TVAR) models in the literature before we outline how we depart from it and then establish

the novel estimation methodology that we adopt. The univariate TAR model was first

introduced by Tong (1977) and generalized in various directions by Tong and Lim (1980),

Chan (1993), and Tong (2011), among others. Here we consider a multivariate generalization

given by an M × 1 TVAR model of order p, characterized by k regimes:

yt =
∑k

i=1

(
B0,i +

∑p

j=1
Bj,iyt−j

)
Ψ

(i)
t (γ0) + Σ1/2ηt, ηt|Ft−1 ∼ (0, IM) (1)

where the index i = {1, ..., k} refers to each regime, B0,i is a vector of state-dependent inter-

cepts, Bj,i are state-dependent autoregressive matrices with all the roots of the associated

characteristic polynomial outside the unit disk for each i, Σ is a positive definite covariance

matrix and ηt are martingale difference innovations with Ft denoting the natural filtration of

ηt containing information up to t. The choice of matrix square root to obtain Σ1/2 will encode

the identification restrictions that we use to identify the effects of monetary policy in our ap-

plication; we discuss the details of our choice later. The parameter γ0 is a (k−1)×1 threshold

parameter vector which defines the regimes, with γ0
1 < γ0

2 < · · · < γ0
k−1, and Ψ

(i)
t (γ0) is an

indicator function equal to one whenever a threshold condition associated with regime i is

satisfied at period t. It is standard to assume that the regimes are driven by an underlying

state variable st which is Ft−1-measurable, which can be either internal or external to the

model. The ith regime is defined as all periods t such that Ψ
(i)
t (γ0) = I(γ0

i−1 < st ≤ γ0
i ) (with

Ψ
(1)
t (γ0) = I(st ≤ γ0

1) and Ψ
(k)
t (γ0) = I(st > γ0

k−1) for the first and last regimes respectively),

where I is the indicator function.

Next, we discuss the choice of the state variable st. Whenever st is a lagged variable

from the vector yt with lag d ∈ {1, ..., p} , the model is called a self-exciting T-VAR (SET-

VAR) model. A SETAR model and its multivariate extensions have two important desirable

properties: (i) the nonlinearity through the indicator functions makes the model piecewise

linear, which facilitates simple estimation relative to more complex nonlinear models; (ii)

while simple, the self-exciting mechanism can capture important nonlinearities that are par-

ticularly relevant in cyclical data and SETAR models can generate statistical phenomena

ranging from jump resonance, nonlinear vibrations, jump cycles, harmonic distortions and

even chaos (see Tong and Lim (1980) for a discussion and examples). Consistency and the
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resulting asymptotic distributions of the LS estimators in SETAR models are established

in Chan (1993), and the associated limit theory in this literature is established by typically

showing that the Markov chain defined by the companion form of the process is geometrically

ergodic1.

Letting Bi = (B0,i, B1,i . . . , Bp,i) and βi = vec(B′
i), conditional on the true threshold

parameter γ0, the estimation of the regime-dependent parameter vector βi is standard. In

particular, conditional on the true value of γ, the OLS estimator of βi, for each regime i, is
√
n−consistent and asymptotically normal (see, e.g. Tong (2011)). Since γ is unknown in

most empirical applications, a consistent estimator of γ is required for the estimation of βi.

This is typically done via a numerical minimization of the sum of squared residuals (SSR)

as a function of γ (see Hansen (1997)). In practice, the vector β = (β′
1, . . . , β

′
k)

′ is estimated

via OLS for a grid of values of the threshold. Then, β̂ = (β̂′
1, . . . , β̂

′
k)

′ is used to compute the

residuals for all possible values of the grid for the threshold parameter γ and an estimator

for γ is given by the value that attains the minimum SSR:

γ̂ = argmin
γ

∑n

t=1
ε̂′tε̂t = argmin

γ

[
min

β1,...,βk

∑n

t=1
ε′tεt

]

where εt =
(
yt −

∑k
i=1 (IM ⊗ x′

t) βiΨ
(i)
t (γ)

)
, ε̂t =

(
yt −

∑k
i=1 (IM ⊗ x′

t) β̂iΨ
(i)
t (γ)

)
and xt =(

1, y′t−1, ...y
′
t−p

)′
. The minimizer γ̂ of the above minimization is equivalent to the estimator

γ̂ coming from joint minimization of the sum of squared residuals function:(
γ̂, β̂

)
= argmin

γ,β

∑n

t=1
ε′tεt.

The standard identification assumption in the literature is that for all regimes i ∈ {1, . . . , k},
the following condition holds:

∀i, j ∈ {1, . . . , k}, βi ̸= βj when i ̸= j; (2)

in other words, at least one of the elements in the parameter vector β is required to differ

across any pair of regimes. Super-consistency of γ̂ to the true threshold value can be es-

tablished under regularity conditions (e.g. Chan (1993)) with a faster rate of convergence

to the true γ0 (n instead of the usual parameteric
√
n). Inference in this model is typically

1This requires stability conditions on the autoregressive parameters across regimes, such as maxi ρ (Fi) <
1, where ρ (.) denotes the spectral radius and Fi is the companion matrix based on the autoregressive matrices
Bj,i in regime i.
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conducted in two steps: (i) γ is estimated and the estimator γ̂ is set as the threshold in the

subsequent analysis, and (ii) conditional on γ̂, inference on βi is standard, consistent and

asymptotically normal. The super-consistency for γ̂ implies that estimation uncertainty of

γ does not have a first-order effect on inference (e.g. limit distribution) for βi and hence can

be ignored, providing a justification for the two-step plug-in procedure described above and

widely used in the literature. A similar two-step estimation method can be found in Samia

and Chan (2011), where the objective function considered for γ is a likelihood function in-

stead with error covariance constant across regimes. While in some papers the variance is

allowed to be regime-specific (e.g. Chan (1993)) in the second estimation stage, estimation

of the threshold γ is identified only through regime-dependence in the conditional mean of

the series. This could be a drawback of existing methods if additional information on the

regimes contained in the second moments is ignored when estimating the threshold param-

eter γ in the first step. Since such additional information on the volatility of the series may

be useful for identifying γ, particularly in macroeconomic data where we know that some

regimes were characterized not just by mean but also by volatility changes, we extend the

estimator of Samia and Chan (2011) by proposing a novel way to estimate γ by including

the parameters in Σ in the regime-dependent parameter vector. Our approach is based on

the use of a likelihood function, and, crucially, we allow for the variance parameters Σ to

switch across regimes (that is, Σi may differ across i) in both estimation stages2, enabling

us to exploit additional information contained in the second moment of the series. Such an

extension is economically relevant, since it allows us to identify regimes even when there may

not be an associated break in the conditional mean but only in the conditional variance of

the data. There is ample empirical evidence for the importance of allowing for the volatility

of the series to change over time to properly capture the behaviour of the macroeconomy

(see, e.g. Cogley and Sargent (2005), Primiceri (2005)).

The second novelty of our estimation procedure is that we allow for a Bayesian treatment

of the model’s autoregressive parameters and covariance matrices across regimes as well

as for a prior distribution on the threshold parameter while maintaining computational

efficiency. We achieve such computational gains and the proper Bayesian treatment for the

regime-dependent VAR parameters by using a Bayesian point estimator for γ. Since such

a point estimator converges at a faster rate than the VAR parameter estimates, the two-

step procedure that we propose is well-justified, since the posterior uncertainty of γ does

2A semi-parametric equivalent to our parametric likelihood approach would amount to considering a GLS
rather than an OLS objective function, i.e., minimization of the Mahalanobis instead of the Euclidean norm
of the innovations in the first stage.
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not affect the posterior of the VAR parameters for large samples3. In other words, letting

θi = [β′
i, vech (Σi)

′]′, the difference between the scaled posterior centered around the true

value θ0i of the VAR parameters for regime i conditional on posterior values of the threshold

γ and conditional on a super-consistent estimator γ̂ satisfies:

p(
√
n(θi − θ0i )|γ, y1, ..., yn)− p(

√
n(θi − θ0i )|γ̂, y1, ..., yn)) →p 0 as n → ∞.

This approach is in contrast to a fully Bayesian treatment of the threshold parameter γ,

(see, e.g. Chen and Lee (1995)), which requires approximating the posterior of γ through

an expensive Metropolis step4. A Bayesian treatment of the VAR parameters is particularly

relevant in the context of the SET-VAR model, since a large number of variables and lags

can result in frequentist procedures overfitting, especially after splitting the observations of

the sample into regimes, and a prior distribution can be used to penalize and regularize the

estimation procedure.

We now turn to describing in detail the methodology we use in this paper. The VAR

model with regime-dependent conditional mean and covariance is given by:

yt =
∑k

i=1

(
B0,i +

∑p

j=1
Bj,iyt−j + Σ

1/2
i ηt

)
Ψ

(i)
t (γ0), ηt|Ft−1 ∼ (0, IM).

We assume a prior density for the VAR parameters p (βi,Σi) for each regime i = 1, ..., k as

well as a prior density for the threshold parameter p (γ) independent from p (βi,Σi) . For

the sake of generality, we allow here for different priors p(βi,Σi) across regimes. In our

empirical application, we use the same prior for all regimes to ensure that the uncovered

differences across regimes are coming from the data rather than from prior beliefs. We

consider a fine grid of Nγ equidistant points Γ =
(
γ, ..., γ

)
for each element of γ, which

corresponds to a discrete uniform prior for each element i: p (γij) = 1/Nγ for γij ∈ Γ for

each gridpoint j = 1, ..., Nγ. Since we need distributional assumptions in order to write down

a likelihood function, we proceed by making a Gaussianity assumption5 on the innovations

ηt|Ft−1 ∼ N (0, IM). The log-posterior density of the model’s parameters (except constants)

3Alternatively, one can view γ as a hyperparameter, whose value is determined in a preliminary estimation
step, which is a common approach in Bayesian inference (Giannone et al., 2015).

4Broemeling and Cook (1992) and Geweke and Terui (1993) provide earlier Bayesian treatment of γ in
TAR models, obtaining a posterior through (numerical) integration.

5Such a distributional assumption is required for full information Bayesian estimation; however, posterior
inference on the conditional mean parameters Bi continues to be valid for large samples even if the distri-
bution of the innovations is non-Gaussian, as long as the first two conditional moments of the innovations
are correctly specified (see, e.g. Petrova (2022)).
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is given by:

ln(p (β,Σ, γ|y1, ..., yn)) = ℓ (β,Σ, γ) +
∑k

i=1
ωi ln p (βi,Σi) + ln p (γ) ,

where the log-likelihood of the sample ℓ (β,Σ, γ) is given by the sum of the log-likelihoods

across each regime:

ℓ (β,Σ, γ) =
∑k

i=1
ℓi (β,Σ, γ)

ℓi (β,Σ, γ) = −ni

2
ln (2π)− ni

2
ln det (Σi)−

1

2

∑n

t=1
ε′itΣ

−1
i εit,

the innovations for each regime εit are defined as εit = (yt − (IM ⊗ x′
t) βi)Ψ

(i)
t (γ) and the

weights ωi depend on the contribution of each regime in the sample, satisfying ωi =
ni

n
, with∑k

i=1 ωi = 1, where ni is the effective sample sizes in each regime i, ni =
∑n

t=1 Ψ
(i)
t (γ). The

problem can be equivalently rewritten in a more compact way as a reweighting scheme of

the likelihood of the observations (y1, . . . , yn) with flat (zero-one) weighting given by the

regimes: for each regime i ∈ {1, ..., k} , observations that satisfy the threshold condition for

the corresponding regime (i.e. Ψ
(i)
t (γ0) = I(γ0

i−1 < st ≤ γ0
i )) are given weight one to evaluate

the regime-specific likelihood ℓi (β,Σ, γ), with the remaining observations receiving weight

zero. For each regime i ∈ {1, ..., k}, we denote the weights for the likelihood as

wt,i = I(γ̂i−1 < st ≤ γ̂i) (3)

and further define the matrices Y = (y1, . . . , yn)
′,X = (x′

1, . . . , x
′
n)

′ andWi = diag(w1,i, . . . , wn,i).

The resulting “weighted” log-likelihood for each regime i of the sample y = vec(Y ) can be

written as:

ℓi (β,Σ, γ) ∝ −tr(Wi)

2
ln (detΣi)−

1

2
(y − (IM ⊗X)βi)

′ (Σ−1
i ⊗Wi) (y − (IM ⊗X)βi) ,

where tr(Wi) = ni gives the “effective” regime sample sizes. Next, we consider joint maxi-

mization of the log-posterior density(
γ̂, β̂, Σ̂

)
= argmax

γ,β,Σ
ln(p (β,Σ, γ|y1, ..., yn)),
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where the maximizer γ̂ can be equivalently obtained through

γ̂ = argmax
γ

[
max

β1,...,βk,Σ1,...,Σk

ln(p (β,Σ, γ|y1, ..., yn))
]
= argmax

γ
ln
(
p(β̆, Σ̆, γ|y1, ..., yn)

)
= arg max

γ∈Γk−1
ℓ
(
β̆, Σ̆, γ

)
+
∑k

i=1
ωi ln p

(
β̆i, Σ̆i

)
(4)

where β̆ and Σ̆ are the posterior modes (the maximizers of the posterior density), as a

function of the threshold parameter γ, Γk−1 is the (k − 1) Cartesian product of the grid Γ

and, in the last line, we have used the fact that our uniform prior for the threshold does not

affect the maximizer γ̂ other than through the set over which the maximization is performed

γ ∈ Γk−1. It is straightforward to use our procedure with an informative continuous prior

on γ. We choose the discrete uniform prior since: (i) it simplifies and streamlines the

estimation through the grid search maximization, (ii) the threshold is a low-dimensional

parameter which does not require penalization, and (iii) we prefer to let the data speak on

the threshold values and choose not to impose any informative prior beliefs ex ante.

Next, we evaluate the corresponding log-posterior density at the posterior mode of the

entire vector θi = [β′
i, vech (Σi)

′]′ over the Γk−1-dimensional grid of values for γ and estimate

the threshold γ as the maximizer over the grid.

Conditional on the threshold estimator γ̂, we proceed with standard Bayesian estimation

for θi. Since the VAR model can be over-parameterized, especially when the number of

variables M and the number of lags p is large and the sample size n is small, we follow a

standard conjugate Bayesian methodology for the conditional inference on θi with standard

Minnesota prior on Bi and Wishart prior on Σ−1
i for each regime i ∈ {1, ..., k} of the form

βi|Σi, γ̂ ∼ N
(
β0i, (Σ

−1
i ⊗ κ0i)

−1
)
, Σ−1

i |γ̂ ∼ W(α0i, λ0i) (5)

where β0i is a vector of prior means, κ0i is a positive definite matrix controlled through a

scalar overall shrinkage parameter, α0i is the Wishart distribution scale parameter, and λ0i

is a positive definite matrix. While our methodology allows for the use of priors that differ

across regimes, as mentioned before, for the empirical application of the paper, we set the

same priors for each regime, since we would like to let the data speak and do not want to

impose regime-dependence ex ante.

In this way, our piecewise-linear Gaussian model with Normal-Wishart prior distribution

for βi and Σ−1
i for each regime i ∈ {1, ..., k} yields a closed-form conjugate Normal-Wishart

expression for the posterior density across each regime, conditional on the threshold γ of the
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form:

βi|Σi, γ̂, X, Y ∼ N
(
β̃i, (Σ

−1
i ⊗ κ̃i)

−1
)
, Σ−1

i |γ̂ ∼ W(α̃i, λ̃i), (6)

where the posterior parameters β̃i, κ̃i, α̃i, λ̃i for each regime i are given by

β̃i =
(
IM ⊗ κ̃−1

i

) [
(IM ⊗X ′WiX)β̂i + (IM ⊗ κ0i)β0i

]
,

κ̃i = κ0i +X ′WiX, α̃i = α0i + ni, λ̃i = λ0i + Y ′WiY +B0iκ0iB
′
0i − B̃iκ̃iB̃

′
i,

where β̂i is the threshold OLS estimator for each regime i :

β̂i = (IM ⊗X ′WiX)−1(IM ⊗X ′Wi)y,

Wi is the diagonal matrix containing the zero-one weights for each regime defined in (3),

X = (x′
1, ..., x

′
T )

′ and B̃i and B0i satisfy β̃i := vec(B̃′
i) and β0i := vec(B′

0i). The full details

of our estimation algorithm can be found in Appendix A.

3 Inflation and the Effects of Monetary Policy

We apply the SET-VAR methodology outlined in the previous section to U.S. data in order

to study the effects of monetary policy at different inflation levels. Given the recent inflation

experience not only in the U.S. but also across the world, an important question is whether

policymakers’ decisions have the same effect when inflation is around the 2 percent target

as when inflation is much higher. The most widely used models in the literature to allow

for possible structural changes in the evolution of the economy are time-varying parameter

(TVP) VAR models. While TVP-VAR models are extremely flexible, an important drawback

is that all of the model’s parameters are allowed to change at every point in time. This lack

of parsimony leads to two serious issues that hinder the practical implementation of TVP-

VAR models: (i) they are subject to the curse of dimensionality, and so the widely used state

space approaches (see, e.g. Cogley and Sargent (2005), Primiceri (2005)) come with large

computational costs that grow quickly with the number of parameters and lags, and (ii) if

the true parameters switch only across a finite number of macroeconomic regimes, allowing

parameter changes at each period is unnecessary and can result in a loss of efficiency; for

example, in the TVP-VAR setup, Petrova (2019) obtains a nonparametric consistency rate for

the time-varying parameters while the SET-VAR approach obtains the standard parametric
√
n−consistency rate.
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Alternative approaches that focus on a small number of distinct regimes (Sims and Zha,

2006) typically model the regimes as a function of an unobservable variable that follows

a discrete Markov chain. Our choice to model the regime directly as a function of an

observable variable facilitates a more transparent understanding of what drives the different

regimes and allows one to focus on the specific nonlinearities characterized by our choice of

state variable. Compared to both TVP- and Markov-switching VAR models, our approach

provides parsimony, interpretability, and computational ease.6

3.1 Data, Priors, and Our State Variable

We use monthly U.S. data starting in January 1970 through December 2007 on the federal

funds rate, the unemployment rate, and inflation (computed as the year-on-year growth

of the consumer price index). All data series are from the Federal Reserve Bank of St.

Louis. In addition, we use a proxy for the unobserved monetary policy shock to identify

the effects of exogenous changes in monetary policy. In particular, we use the updated

version of the Romer & Romer’s monetary policy shock (Romer and Romer (2004); Wieland

and Yang (2020)). We choose the Romer & Romer instrument because it allows us to

use data from the 1970s and 1980s to infer about the effects of monetary policy shocks.

Alternative instruments based on high-frequency changes in asset prices around monetary

policy decisions (Gertler and Karadi, 2015) are generally only available for much shorter and

more recent sample periods. The downside of the Romer & Romer proxy is that the sample

ends in 2007 because it is not clear how to extend the measure during periods where the

effective lower bound on nominal interest rates binds. Since we want to study the effects of

monetary policy in high-inflation environments, and since the high-inflation periods of the

1970s and 1980s are longer than the recent bout of high inflation, we choose to work with

the Romer & Romer shocks, extended as much as possible.

In order to apply the SET-VAR approach, we require a suitable choice for the state

variable that drives the regimes. Given that central banks consider inflation to be the

relevant macroeconomic variable to target, and hence to determine monetary policy choices,

we consider it to be the natural candidate. For measurability (so that the prediction error

decomposition can be easily applied to compute the likelihood function), we use inflation

6Another class of models related to ours consists of smooth transition VARs, where VAR parameters are
a convex combination of two sets of VAR parameters and the weights are governed by a smooth function of
an observable variable (Auerbach and Gorodnichenko, 2012).
Finally, Mavroeidis (2021) and Aruoba et al. (2022) develop VAR models with occasionally binding con-
straints that also share some similarities with our approach.
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from the previous period; that is, we set d = 1. In the notation of Section 2, this means

that st = πt−1
7. In theoretical macroeconomic models, a one-period lag of the inflation

rate is often an important state variable. Furthermore, there is evidence that the economic

behavior of households, firms, and the government/central bank changes when inflation

becomes too high: households might start to pay more attention to inflation, in line with

rational-inattention-based theories (Sims (2003) and Weber et al. (2023)); firms change their

price-setting behavior in high-inflation environments (Golosov and Lucas, 2007); and the

central bank might adjust its behavior to more aggressively combat inflation.

For the estimation of the model, we use a specification with 12 lags and three regimes,

and impose a flat prior on the threshold vector γ in the first estimation step. In the notation

of Section 2, we set γ and γ to be the minimum and maximum observed values of the state

variable in the sample, respectively. More details about the construction of the grid Γ can

be found in Appendix B. For the VAR parameters, we use a loose Minnesota-style prior with

overall shrinkage λ = 1 to ensure flexibility. Since the variables included in our SET-VAR

do not exhibit a clear stochastic trend, we follow standard practice (Bańbura et al. (2010),

Kilian and Lütkepohl (2017)) and center the coefficient on the first lag of each variable at

zero. We further impose the condition that, in each regime, the companion form of the

SET-VAR only has eigenvalues less than one in complex modulus. The prior for the Wishart

parameters is set following the automatic rule in Kadiyala and Karlsson (1997). Importantly,

we impose the same prior in all regimes; that is, our priors are not regime-specific, and hence,

the estimated threshold γ̂ is not directly affected by our choice of VAR priors. This is not a

necessary feature of the methodology outlined, but rather a choice, in order to avoid imposing

any prior beliefs about the different regimes ex ante.

With the above choice of state variable, lag order, and number of regimes, the SET-VAR

model (1) becomes:

yt =
∑3

i=1

(
B0,i +

∑12

j=1
Bj,iyt−j + Σ

1/2
i ηt

)
I(γi−1 < πt−1 ≤ γi). (7)

We consider the model (7) and estimate the threshold parameter γ = (γ1, γ2)
′ using our

novel Bayesian approach, allowing, in addition, for Σi to differ across regimes, as explained

in Section 2. This yields threshold estimates γ̂ = (5.49, 11.02) and the resulting regimes are

defined accordingly:8

7Since year-on-year inflation is a very persistent series, different values of the lag d deliver very similar
results. We have performed robustness checks with respect to d; these additional results can be found in
Figure A-2 in the Appendix.

8Figure A-1 in the Appendix displays the posterior objective function against the two-dimensional grid
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• Low regime: πt−1 ≤ 5.49 (74.3% of the sample);

• Medium regime: 5.49 < πt−1 ≤ 11.02 (19.6% of the sample);

• High regime: πt−1 > 11.02 (6.1% of the sample).

Figure 1: Macroeconomic data in our VAR. Light and dark grey areas denote the medium-
and high-inflation regimes respectively.

Figure 1 displays our raw macroeconomic data against the estimated regimes. It is clear

that the high regime (i.e. the regimes in place whenever inflation is higher than 11.02 percent)

represents periods characterized by outliers, that is, observations that are not necessarily

representative of the vast majority of the sample. Seventy-five percent of our sample is

represented by what we label the low regime. A case could be made for having only two

regimes, but we show below that our model implies considerable differences between the

medium and high regimes.

In Figure 2, we perform the following exercise: we estimate as an alternative a fully time-

varying parameter (TVP) VAR model using the same lag order and priors, using the quasi-

Bayesian kernel approach of Petrova (2019) and display the TVP model-implied long-run

means and variances of the series against the identified regimes of our SET-VAR model.9 As

discussed, this TVP model is more flexible, since it allows the VAR parameters to change

in each period, but on the downside, it is also a highly parameterized model with a slower

for γ, which we maximize to obtain the threshold estimates.
9We define the unconditional or long-run moments as the moments associated with the parameters in

place at each point in time, assuming no further parameter changes, as is common in the literature on
time-varying parameter VARs (Cogley and Sargent, 2005; Primiceri, 2005).
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nonparametric rate of convergence, and crucially, it can be unnecessarily overparameterized,

especially if it is applied to a setup where the parameters are only a subject to a small

number of regimes changes. It also makes it harder to interpret what drives the resulting

nonlinearities. We conduct this exercise to investigate whether the estimated long-run means

and variances of the flexible TVP model display regime-dependence along the lines of our

identified regimes. As is clear from Figure 2, not only the unconditional means but also the

unconditional variances of the series change with the SET-VAR-identified inflation regimes,

providing a justification for our selection of lagged inflation as the state variable, as well

as for our modeling choice to use regime-dependence in the second moments to identify the

threshold. Furthermore, this figure provides some evidence that the assumption of three

regimes is reasonable for our data set.

Figure 2: Time-varying LR means and variances against estimated regimes

A central theme of our findings is that our approach endogenously filters out outliers or

unusual time periods: those with unusually high inflation rates. There is always a tension

about what to do with somewhat unusual periods in empirical analyses. On the one hand,

behavior during those periods might not be representative of most of the sample, resulting

in estimation bias; but on the other hand, periods of high volatility (which turn out to be

periods of high inflation in our sample) help tightly pin down estimates if the underlying

relationships are unchanged. The results in this paper lend credibility to the former view,

while, at the same time, providing a data-driven methodology that can help researchers

decide whether outliers are contaminating results.
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3.2 The Effects of Monetary Policy Shocks

In this section, we consider how the transmission and effectiveness of monetary policy can

differ when the economy is in different inflation regimes. We estimate the structural SET-

VAR model with the Romer & Romer instrument as a proxy for the policy shock. Formally,

our identification strategy involves a Cholesky factorization of the regime-dependent covari-

ance matrix, ordering the Romer & Romer proxy first in the vector of observables, following

Plagborg-Møller and Wolf (2021). We normalize the Cholesky factor to have ones on the

main diagonal; then the first column of the resulting matrix, associated with the policy in-

strument, yields the effect of the monetary shock on impact on all variables, up to scaling.

Given that impulse responses are identified only up to scale in our setting, we further nor-

malize the impact vectors to ensure better comparability across inflation regimes. Namely,

we analyze a monetary policy shock that causes an immediate increase of 50 basis points

in the federal funds rate in every regime. We first look at what happens if we disregard

any nonlinearities and estimate instead a linear Bayesian VAR (using the same priors as in

the regime-dependent case). The posterior median and 68 percent posterior bands of the

resulting impulse response functions to a 50 basis points monetary policy shock are dis-

played over a horizon of 90 months in Figure 3. From the figure we find that there is no

statistically meaningful movement in unemployment and inflation in response to a monetary

policy shock if we focus on the linear model, a result that few policymakers would take at

face value. Many papers in the VAR literature that study monetary policy shocks and their

effects find similar inconclusive or even counter-intuitive evidence, which often also depends

on the exact sample used (Bu et al., 2020; Ramey, 2016). One compelling explanation for

such discrepancies in the empirical results could be that if the true underlying effects of

policy shocks were in fact regime-dependent, then fitting a linear model on differing samples

that could contain various proportions of each separate inflation regime would result to large

variations in the empirical findings.

Next, in Figure 4 we demonstrate how these problems can be mitigated by explicitly

allowing for regime-dependence associated with the underlying level of inflation in the econ-

omy10. The left column displays the response when inflation in the last period is less than

5.5 percent11. There is a persistent increase in nominal rates, but it is not associated with

any significant increase in the unemployment rate. On the other hand, inflation falls after

10The impulse responses of the Romer & Romer instrument can be found in Figure A-3.
11Throughout this paper we report results conditional on a regime staying in place. This way of reporting

results is common in the nonlinear VAR literature (Cogley and Sargent, 2005).
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3.2.1 Small Monte Carlo exercise on nonlinearities

To highlight our findings that the causal effects of monetary policy can change dramatically

once we allow for nonlinearities, which can endogenously remove outliers/unusual periods of

high inflation, we now turn to a stylized Monte Carlo exercise to illustrate this issue further

in a controlled environment. For simplicity, we focus on one endogenous variable zt, one

shock of interest mt and a variable ut that summarizes the persistent effects of all other

variables in the economy. Our data-generating process is:

ut = ρut−1 + vt

zt =

{
βmt + ρzt−1 + ut if zt−1 < z

γmt + ρzt−1 + ut otherwise

(8)

(9)

where vt and mt are zero-mean i.i.d. Gaussian random variables, and z is the threshold

value, which we calibrate so that zt infrequently exceeds the threshold and so the model is

more often in the first regime. We assume opposing effects of the shock in the two regimes:

β < 0 and γ > 0. The exact calibration is ρ = 0.8, z = 13, β = −0.5, γ = 7, mt ∼ N (0, 1),

and vt ∼ N (0, 1.5). We simulate 5,000 samples of size 500 each. For each sample, we

run two ordinary least squares regressions to estimate the policy effect of mt on zt: one

regression for the entire sample and another where we run the same regression, but only for

the observations where zt−1 < z so that we do not consider the outliers. This is equivalent

to estimating the threshold model with knowledge of the true threshold value.

Even with infrequent outliers in each sample (the frequency of outliers across the sample is

around 5 percent), the outliers substantially contaminate the results if the regime-dependence

is ignored, as expected. We argue that even though the blue histogram in the top panel of

Figure 5 would ultimately collapse to the total pooled effect of the shock across the two

regimes, this is not a value most economists would be interested in. Instead, they would be

interested in the causal effects of mt on zt for most of the sample, which is -0.5 and well

approximated by the light blue histogram in the top panel, as well as in the different and

possibly relevant causal effect in the extraordinary periods when zt exceeds the threshold.

Pooling the regimes together by fitting a linear model can cause a bias that does not vanish

as the sample size increases and can lead to erroneous empirical conclusions.
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where

zt :=


yt

yt−1

...

yt−p−1

 , µi :=


B0,i

0
...

0

 , Ai :=


B1,i B2,i . . . Bp,i

IM 0 . . . 0
...

. . .
...

0 IM 0

 , εi,t :=


Σ

1/2
i ηt

0
...

0

 .

Given the stability condition max1≤i≤k ρ (Ai) < 1 where ρ (.) denotes the spectral radius,

we can compute the implied regime-dependent unconditional means τi and unconditional

variances Ui for each variable from the vector MA(∞) representation (assuming each regime

remains in place indefinitely) as

τi = (I − Ai)
−1µi

Ui =
∑∞

j=0
Aj

iΩi(A
j
i )

′,

where Ωi = E[εi,tε′i,t]. Figure 6 displays the estimated posterior densities for τi and Ui for

each regime.

The results in Figure 6 confirm the existence of differences across regimes. This is evident

not only when looking at the long-run trends but also when looking at the volatility of the

series, which is a further justification for our modeling choice to allow for the threshold

estimation to also depend on the second moment of the variables included in the model.

Since we found different transmission of the policy shock in Section 3.2, with some effects

lasting considerably longer while others disappearing within a few months, we investigate

whether variables have different persistence across inflation regimes. To this end, we compute

the regime-specific persistence h steps ahead for each variable, using the measure proposed

by Cogley et al. (2010):

R2
i,h,k = 1−

e′k(
∑h−1

j=0 A
j
iΩi(A

j
i )

′)ek

e′k(
∑∞

j=0 A
j
iΩi(A

j
i )

′)ek
(11)

where ek is the k
th standard basis vector for RMp, which selects the kth variable in the system.

This measure accounts for the fraction of the total variance of each variable explained by

past shocks at different horizons. It takes values between 0 and 1, with numbers closer

to 1 indicating higher model-implied autocorrelation for the variable, suggesting that its

dependence on past shocks dies out more slowly, and, hence, implying a more persistent

variable.

Figure 7 presents the posterior medians and the posterior 25th and 75th percentiles for

the persistence measures for inflation, unemployment, and the fed funds rate across the three
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Figure 7: Persistence of our variables if each regime was in place indefinitely. Central lines in
the boxes are the posterior medians, and the edges are the posterior 25th and 75th percentiles.
The whiskers extend to most extreme data points not considered outliers.

plied by our model in order to investigate the nature of some of the trade-offs faced by

policymakers. Figure 8 displays the posterior median and the posterior 25th and 75th per-

centiles for these values. While the long-run correlation between inflation and unemployment

does not have a structural (Phillips curve slope) interpretation, it does measure the uncon-

ditional reduced-form relationship between the two, which can provide a summary of the

inflation-unemployment relationship. From the figure, we find that this correlation in the

low-inflation regime has a negative sign, as expected from a New Keynesian model, but

it becomes considerably stronger as the economy moves into the medium-inflation regime.

The stronger inverse relation in the medium regime is consistent with our finding of policy

shocks having larger effects on unemployment in that regime. Finally, in the high regime, the

correlation between inflation and unemployment switches sign and becomes positive, consis-
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tent with the periods of stagflation in that regime, implying that in high-inflation settings,

inflation is actually harmful rather than beneficial to employment.
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Figure 8: Unconditional correlations if each regime was in place indefinitely. Central lines in
the boxes are the posterior medians, and the edges are the posterior 25th and 75th percentiles.
The whiskers extend to most extreme data points not considered outliers.

4 Conclusions

In this paper, we build a self-exciting threshold Bayesian VAR model to investigate whether

monetary policy depends on inflation levels. The econometric contribution of the paper is

twofold. First, we allow for regime-dependence in the variance of the series for full likelihood-

based identification of the threshold parameter, which is particularly relevant for macroeco-

nomic series that have been documented to undergo volatility regimes over time. Second,

we combine two-step frequentist estimation procedures with Bayesian regularization via the

use of priors on the VAR parameters in order to deliver a parsimonious nonlinear time series

model that: (i) allows for a larger number of variables, (ii) is easy and fast to estimate, and

(iii) provides a simple and easily interpretable nonlinearity mechanism.

Using our self-exciting threshold Bayesian VAR, we find that the effects of monetary policy
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vary substantially with the underlying level of inflation in the economy. For most of our

post-WWII sample, inflation has been less than 5.5 percent in the U.S., which our model

identifies as a period during which monetary policy has no meaningful effects on labor mar-

kets. Even though our sample ends in 2007 due to the availability of the instrument series

used to identify the effects of monetary policy, our results are consistent with the recent

“soft landing” of the U.S. economy. On the other hand, when inflation is between 5.5 and

11 percent, the effects of monetary policy are larger and longer-lasting, since variables are

much more persistent in this regime, and the effects of monetary policy on unemployment

are sizable and significant.
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A Our Estimation Algorithm

Step 1. For each grid point in Γk−1, compute the posterior modes for βi and Σi, which in

our Normal-Wishart setup are given by β̆i = β̃i and Σ̆i =
λ̃i

(α̃i+M+1)
.

Step 2. Evaluate the log-likelihood of the sample ℓ
(
β̆, Σ̆, γ

)
and the weighted prior

density
∑k

i=1 ωi ln p
(
β̆i, Σ̆i

)
at the posterior modes β̆ and Σ̆ for each grid point in Γk−1.

Step 3. Numerically maximize the log-posterior p
(
β̆, Σ̆, γ|y1, ..., yn

)
with respect to γ

over the (k − 1)-dimensional grid and store the estimate γ̂.

Step 4. Given γ̂ from Step 3, make draws for βi and Σi from the posterior distribution

in (6).

B Grid Construction

For the estimation of the threshold vector γ, we consider a fine grid of Nγ equidistant points

Γ = (γ, . . . , γ) for all the elements in γ, and perform a grid search over Γk−1, which denotes

the (k − 1) Cartesian product of Γ; in our case k = 3 and γ = [γ1, γ2]
′. In particular, to

consider all of the possible observed values of the state variable, we fix γ = min{st} and

γ = max{st}. In the sample we analyze, min{st} = 1.07 and max{st} = 14.76. The number

of grid points Nγ is chosen to accommodate the trade-off between fineness of the grid and

computational efficiency. For our application, we choose Nγ = 500, which implies increments

in the state variable of approximately 0.03 across grid points. The posterior evaluation is

performed imposing the condition that: (i) γ2 > γ1 always, and (ii) the distance across the

points over which we compute the posterior is constant. The grid search works as follows:

1. For a grid point gi in Γ, set γ1 = gi;

2. For each grid point γ2 = {gi, gi+1, . . . , γ}, evaluate the posterior (equation 4);

3. Set gi = gi+1 and repeat 1-2 until γ1 = γ2 = γ;

4. Search for the maximum value of the posterior over the two-dimensional grid Γk−1.

The corresponding value of the threshold vector is γ̂.

Figure A-1 displays the posterior objective function against the two-dimensional grid.
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C Additional Results

Figure A-1: Objective function
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