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1 Introduction

Firms are hit by idiosyncratic shocks of various nature and magnitude. The features of this
firm-level variation are crucial for many economic questions that relate to firm dynamics.!
Despite their importance, however, the statistical properties of firms’ fundamentals remain
elusive, especially when it comes to higher-order moments and rich time series processes.?
The vast majority of firm dynamics models assume that firm-level productivity follows an
AR(1) process with normal innovations, but potential departures from this benchmark are
likely to have substantial consequences. Rare, nonlinear, idiosyncratic shocks can even be-
come a source of aggregate fluctuations.

In this paper, we document that, even among relatively large, publicly listed, US firms,
firm-level sales and productivity substantially depart from standard AR(1) models with
Gaussian innovations. We find that heavy-tailed, extreme, shocks are a pervasive feature of
firm-level growth rates. Changes to revenue-based productivity are even more heavy-tailed
than sales, and most of the overall variation in tail growth remains unexplained by observable
factors. In addition, we document substantial nonlinearities in persistence: firms can be hit
by large shocks that erase the impact of previous shocks. We estimate a model of productivity
that separates persistent and transitory shocks, is consistent with our empirical findings, and
helps us characterize their drivers. Finally, we show analytically and quantitatively how non-
Gaussianity and nonlinearities affect the importance of idiosyncratic (granular) shocks for
aggregate fluctuations. Simultaneously accounting for these features is crucial to obtain
empirically plausible volatility and autocorrelation of granular fluctuations.

Our starting point is an agnostic analysis of firm sales, using data from US Compustat.
We document that firm-level sales growth is very concentrated — relative to a Gaussian
benchmark — but exhibits heavy tails. Sales growth is fairly symmetric, but very large
changes of either sign are likely to occur: kurtosis is much higher than what implied by a
Gaussian distribution at all quantiles of firm sales, and especially high for small firms.

We then investigate the dynamics of firm sales. Following recent work on household
earnings by Arellano et al. (2017), we estimate quantile autoregressions and document that

the persistence of lagged firm sales is not constant in the size and sign of sales changes as

!For example, firm-level stochastic processes matter for the role played by input adjustment costs (e.g.,
Bloom (2009) and Roys (2016)), misallocation losses from financial frictions (see Moll (2014)), and in general
are key inputs to macroeconomic models with firm heterogeneity (e.g., Khan and Thomas (2008)). More-
over, idiosyncratic shocks can even be a source of aggregate fluctuations (see Gabaix (2011), Di Giovanni,
Levchenko and Mejean (2014) Carvalho and Grassi (2019)).

2Complementary to our analysis, Salgado, Guvenen and Bloom (2019) show that the skewness of sales
and productivity growth is procyclical. A burgeoning literature has recently documented non-normality and
nonlinearities in household earnings dynamics (see Arellano, Blundell and Bonhomme (2017) and Guvenen,
Karahan, Ozkan and Song (2021)): our analysis is indeed inspired by this influential recent work.



would be implied by a standard AR(1) process. In particular, the approach introduced by
Arellano et al. (2017) provides a measure of persistence of past shocks, often referred to as
the persistence of history. We find that such persistence is heterogeneous, with small firms
being hit by large positive shocks to their sales having the lowest persistence. This means
that a large positive shock hitting a small firm can wipe out the history of past negative
shocks. However, among large firms, good and bad past shocks exhibit similar persistence.

Firm sales clearly represent the combination of exogenous fundamental shocks and en-
dogenous inputs. We find that our findings on sales are not solely driven by endogenous
responses, as revenue-based labor productivity and revenue-based Total Factor Productivity
(TFP) do not seem to be characterized by either a AR(1) process or to face Gaussian inno-
vations. In fact, we find that TFP growth is even more concentrated and heavy-tailed than
labor productivity and, in turn, sales. Nearly half of TFP growth rates are less than 5% in
absolute value, 5 times more likely than if the data was normally distributed and more than
twice as likely than for sales growth. Rare, large, TFP changes of either sign occur: kurtosis
is larger than for sales. TFP growth exhibits mildly negative skewness among large firms,
but these firms seem to absorb left-tailed shocks given what we find for sales. An illustrative
exercise suggests that this is consistent with firms adjusting their inputs increasingly less as
the productivity shock becomes larger.?

TFP also exhibits nonlinear persistence of history: in fact, one that is more pronounced
than for sales, with double the range of estimated persistence values. In particular, we
find evidence of microeconomic disasters hitting large firms. Since this feature holds for
productivity but not for sales, it suggests that large firms have ways to absorb the impact
of disastrous negative shocks. In summary, we conclude that firms face fundamental shocks
that feature non-Gaussianity and nonlinearities.

In order to investigate further the drivers and the implications of our empirical results,
we estimate a rich, state-of-the-art, model of productivity dynamics, following work by
Arellano et al. (2017) and Arellano et al. (2021) on household earnings. The model features
both transitory and persistent components, and allows for non-Gaussianity and nonlinear
persistence of history, hence making it consistent with our empirical findings. The estimated
model indicates that both persistent and, especially, transitory shocks are non-Gaussian.
While a decomposition of this type is common in the household literature, transitory shocks
are often overlooked in firm dynamics.

To dig deeper into the source of firm-level shocks, we employ machine learning techniques

3In complementary recent work, Fella, Galvez, Gonzdlez, Ruiz-Garcia and Senga (2021) find that Span-
ish firm-level productivity exhibits non-linearity and non-normality. They find that accounting for these
productivity features alters the estimation of capital adjustment costs.



and exploit the richness of our dataset to identify the best predictors of firm-level tail events.
Financial constraints, competitors’ growth, and some firm-level characteristics weakly corre-
late with extreme growth. R&D expenses predict greater sales and TFP growth, especially
productivity booms. However, most of the overall variation in tail growth remains unex-
plained by observable factors. Hence, our results are consistent with Berlingieri, De Ridder,
Lashkari and Rigo (2024), who show that product innovation works through bursts, which
are however not predictable due to the stochastic nature of the innovation process. We also
use our model estimates to separately identify the drivers of persistent and transitory shocks.
We find that observables explain close to no variation in extreme transitory growth.

Our findings therefore suggest that firms are hit by extreme and unpredictable shocks, of
varying degree of persistence. The firm—level stochastic processes we estimate are thus likely
to be important for various aspects of firm dynamics, such as input adjustment costs (Cooper
and Haltiwanger (2006), Fella et al. (2021)), financial frictions (Moll (2014)), insurance
provision (Guiso, Pistaferri and Schivardi (2005)). In the last part of the paper, we focus on
two additional aspects. First, we investigate how the nature of idiosyncratic shocks affects
the power law behavior of firm size distributions. This aspect has been overlooked by the
literature, which typically considers proportional random growth (see Gabaix (2016) for a
survey of the literature). Second, rare, large, idiosyncratic shocks as those we document can
be a direct source of aggregate fluctuations. Indeed, Gabaix (2011) supports his granular
hypothesis with many historical examples that are consistent with our empirical findings.*
Conceptual frameworks studying the granular hypothesis are typically static and feature
little or no discussion on the nature of the shocks. Two notable exceptions are Acemoglu,
Ozdaglar and Tahbaz-Salehi (2017) and Carvalho and Grassi (2019). The former paper
studies the conditions under which idiosyncratic shocks and sectoral heterogeneity result in
macroeconomic tail risk. Carvalho and Grassi (2019) build a systematic framework linking
firm dynamics and micro-originated fluctuations. Complementary to these papers, we study
the role of specific features of idiosyncratic stochastic processes, namely non-Gaussian shocks
and nonlinear persistence, and their quantitative relevance, for the granular hypothesis. We
proceed in two steps.

First, we show analytically the role played by the heavy-tailed distribution of shocks

in a stylized theoretical setting. Intuitively, non-Gaussian shocks can provide a reason for

4Among others, the major strike at General Motors in 1970, or natural disasters in the U.S. (Barrot and
Sauvagnat (2016)), Japan (Boehm, Flaaen and Pandalai-Nayar (2019)), and more generally rare economic
disasters (Barro (2006)). Other examples of large negative shocks are scandals that reduce firms’ profitability.
For example, in January 2016 55 E. Coli bacteria infections were linked to food served at Chipotle restaurants.
Q1 2016 Chipotle revenues dropped 23%. Large shocks can also be positive, such as those at Walmart in
2002. Sterk, Sedldcek and Pugsley (2021) study high-growth, “gazelles”, startups, who make persistent
contributions to aggregate productivity growth.



a heavy-tailed distribution of firm sizes, which is the typical cornerstone of the granular
hypothesis. Moreover, we show that correlated shocks may amplify power law behavior. Ex-
treme and nonlinearly persistent shocks, like those we uncover in the empirical analysis, can
therefore substantially affect firms’ concentration and its evolution over time. Furthermore,
for a given size distribution, we discuss how non-Gaussian shocks play an ambiguous role for
granular aggregate fluctuations, depending on whether heavier tails are coupled with larger
idiosyncratic variance, and thus greater aggregate volatility.

Second, we use our estimated model to quantitatively assess the importance of non-
Gaussianities and nonlinearities for granular fluctuations. To do so, we compute the volatility
and autocorrelation of the growth rate in an aggregated measure of TFP, generated by
simulating our baseline estimated model and four alternative models. Separating a transitory
and a persistent component of productivity, even in an AR(1) setup, increases aggregate
volatility towards the empirical counterpart, but at the expense of a counterfactually negative
autocorrelation. In contrast, modeling a single component with nonlinear persistence, using
estimates from empirical quantile autoregressions, makes the autocorrelation of aggregate
TFP growth rates excessively large. Adding Gaussian transitory shocks to this framework
results in excessively high volatility and negative autocorrelation. It is only with our full
model, which features nonlinear persistence and non-Gaussian transitory and persistent
shocks, that we can generate aggregate fluctuations that align with the data.

Our exercise thus suggests that non-Gaussian shocks as typically observed in the data are
associated with less volatile micro-originated aggregate fluctuations, compared to a Gaus-
sian counterpart. We therefore propose a new, empirically grounded, dampening channel,
complementary to, but conceptually distinct from, the size-variance tradeoff documented
by Stanley et al. (1996) and Yeh (2019). Our exercise also shows that nonlinearities and
non-Gaussianities need to be simultaneously accounted for; failure to do so generates coun-
terfactual behavior, not just at the firm level, but also in the aggregate.

Our paper is closely related to three recent studies investigating heavy-tailed and non-
linear firm-level shocks. Jaimovich, Terry and Vincent (2023) focus on the implications for
the stationary distribution of firms and the effects of firm subsidies. Fella et al. (2021) dis-
cuss how non-normalities influence the quantitative importance of capital adjustment costs.
Salgado et al. (2019) focus on the cyclicality of firm-level skewness. Complementary to these
studies, we explore a novel dimension through which the nature of firm-level shocks matters:
micro-originated aggregate fluctuations.

The paper is organized as follows. In Section 2.1 we present our empirical results on
firm sales. Section 2.2 shows that TFP also follows a non-Gaussian and nonlinear stochastic

process. Section 3 estimates a model consistent with the empirical findings. Section 4 inves-



tigates the drivers of extreme shocks. Section 5 shows, analytically and quantitatively, how
non-Gaussianity and nonlinearities affect power law behavior and the granular hypothesis.

Section 6 concludes.

2 Firm-level non-Gaussianity and nonlinearities

2.1 Firm sales

We start by documenting the empirical features of firm sales, using data from US Compustat
over the period between 1987 and 2017. We keep firms that remain in operation for at least
2 consecutive years and apply standard selection criteria. We focus on the manufacturing
sector but we show robustness to the whole economy in Appendix B.4. Appendix A provides
details on the sample. We regress the log of firm sales on industry dummies and a linear time
trend, and retain the residuals as our variable of interest. By doing so, we absorb observable
permanent differences and low frequency aggregate fluctuations. As such, our measures
can be thought as the combination of idiosyncratic shocks and heterogeneous sensitivities
to aggregate shocks, if any.” For the remainder of the paper, when mentioning sales and
productivity we always refer to their residualized counterparts.

Figure 1 shows how the distribution of sales growth, measured as annual changes in
residualized log sales, is non-Gaussian. In the data there are far more extreme sales changes
than what is implied by a Gaussian distribution with the same standard deviation as in the
data. Indeed, sales growth displays high concentration and heavy tails. In the data, 20%
of the time sales growth is less than 5% in absolute value, compared to only 8% under the
Gaussian distribution. Two thirds of firms experience an annual sales growth rate smaller
than 20% in absolute terms; if the data was normally distributed, only one third of the
observations would experience these growth rates.

What are the features of this non-Gaussianity? To investigate this further, we look at the
skewness and kurtosis of sales growth, by quantiles of past sales.® First, shocks are roughly
symmetric even for subsets of firms, as shown in Figure 2a. We report Kelley (1947) skewness,
defined as Sk = (PQO_PI;E’S()):&%O_PN) . A positive Kelley Skewness implies that the right part of
the distribution (P50 — P10) accounts for a larger share of the overall dispersion (P90 — P10)

than the lower part. This seems to be particularly true for firms with low sales in t — 1,

5For some further discussion on this, see Section 5. In Appendix B.6 we show how our results change if
we do not detrend our data.

5The population skewness and kurtosis might be infinite with heavy-tailed data, see for instance Sarpietro
et al. (2022). Thus, we consider quantile-based measures of skewness and kurtosis, which are robust to the
existence of moments, and refer to them simply as skewness and kurtosis throughout the rest of the paper.



Figure 1: Distribution of one-year log sales changes
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Notes: Empirical densities of residualized log sales changes between year t and t — 1 depicted in solid blue. The standard
deviation is 0.491, Kelley Skewness 0.053 and Crow-Siddiqui Kurtosis 7.207. Gaussian density with the same standard deviation

of data shown in dashed red. See main text for details on the data.

although even for this group of firms the departure from symmetry is mild. These relatively
small deviations from symmetry are in sharp contrast with substantially negative skewness
of household earnings growth that has been documented, among others, by Guvenen et al.
(2021). Our findings are instead consistent with the symmetric distribution of employment
growth rates among mature firms documented by Decker et al. (2016).

Kurtosis, rather than skewness, is the main driver of non-Gaussianity in firm sales growth.
As shown in Figure 2b, firms of different size all experience heavy tailedness of shocks. We
measure this with the Crow-Siddiqui measure of kurtosis, defined as Ky = %, which
purges the measure from outliers. Kurtosis is highest at the bottom of the sales distribution
and is always higher than 5 for all other quintiles of past sales. These values are significantly
higher than the benchmark kurtosis of 2.906 for the standard Normal distribution. Even
the largest firms face sales growth that is twice as heavy-tailed as its Gaussian counterpart.
Large values of conditional kurtosis are common to previous findings on household earnings.
Our results are also consistent with German data on investment surprises, which display
excess kurtosis but no significant skewness, as showed by Bachmann et al. (2017). This
study interprets their findings as at least partly driven by fat-tailed underlying firm risk, a
conclusion that is consistent with our later findings on productivity.

Finally, we focus on the dynamics of firm sales. Following Arellano et al. (2017), we



Figure 2: Skewness and kurtosis of one-year log sales changes
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plot a measure of persistence in the data in Figure 3. The figure shows the estimated
average derivative of the conditional quantile function of residualized log sales y;; given
yivt_1.7 Derivatives are taken with respect to v;;—1 and evaluated at a given percentile of
Yit—1, and at a given percentile of the shock. This derivative effect can be interpreted as
a measure of persistence in an autoregressive process for log sales. As such, it provides a
measure of persistence of past shocks, often referred to as the persistence of history. As
discussed by Arellano et al. (2017), a standard AR(1) process would deliver the same level
of history persistence for all firms, regardless of their past sales and/or shocks: in other
words, a flat three-dimensional figure. Figure 3, instead, shows some nonlinearities, with
persistence of firm sales history ranging from 0.73 to slightly above 1. History persistence is
lowest for low-sales firms hit by a large positive shock. Thus, a large positive shock to firms
at the bottom of the sales distribution can wipe out the history of past negative shocks (see
the right end of the graph). The opposite does not hold true: for high-sales firms hit by
the smallest (most negative) shocks persistence is around 1. Hence, negative shocks do not
cancel out the good sales history of large firms.

The one-sided nonlinearity that we document for firm sales differs from recent findings
on household earnings by Arellano et al. (2017), with high-income households facing “micro
disasters”. It is possible that these micro disasters also hit large firms and make them exit
the market, thus eluding our selected sample. However, we believe that this channel should

play a limited role. First, publicly quoted firms are less likely to exit than all firms in the

7As done in the literature, quantile functions are set as third-order Hermite polynomials.



Figure 3: Quantile autoregressions of log sales
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data and estimation of quantile functions in the text.

population, thus making Compustat less prone to this selection issue. Second, we are also
keeping firms that stay in the sample for only two years, thus limiting selection as much
as possible. Third, we find that the probability of firm exit monotonically decreases with
past sales. As such, even if present, this selection issue is less likely to be relevant among
high-sales firms. Fourth, as we show next, large firms do face micro disasters — in the form
of fundamental shocks — but they seem to absorb them via input adjustment. As such,
persistence of history is more nonlinear for productivity than for sales.

To conclude, we have shown several statistical properties of firm sales that are inconsistent
with a simple random walk process with gaussian shocks, even in a fairly homogeneous sample
as Compustat. Next, we investigate whether our findings are solely driven by endogenous
responses turning to two alternative productivity measures: Labor Productivity (LP) and
Total Factor Productivity (TFP).

2.2 Productivity

In this section we show that the documented non-Gaussianity and nonlinearities in firm sales
likely reflect the features of the distributions of more exogenous measures of firm performance.

We look at two measures of productivity: revenue labor productivity and revenue-based
total factor productivity. We assume that firms operate with a Cobb-Douglas production,

using a composite measure of variable inputs, C', and capital stock, K. Then, for firm



1=1,...,N at time t = 1,...,T, we estimate TFP as a residual of the revenue function as

follows:

Zit = Yit — 5ch‘,t - /Bkki,t (1)

where y;, is the log sales of firm ¢ at time ¢, ¢;; is the log of the variable input and
ki+ is the logged capital stock. Following the analysis by De Loecker et al. (2020), also
with Compustat data, we use cost of goods sold (COGS) for ¢;;. This variable combines
all expenses directly attributable to the production of the goods sold by the firm; as such,
it includes not only labor costs, but also other inputs such as materials, intermediates, and
energy. Compustat does not provide a detailed breakdown of these inputs.® We construct
the capital stock following Ottonello and Winberry (2020), as we discuss in Appendix A.
Since we do not observe firm-level prices, our TFP measure effectively combines idiosyncratic
technical efficiency shocks with demand shocks. With this caveat in mind, this remains the
relevant measure of fundamental shocks that affect firms’ revenues, as discussed by Decker
et al. (2020) and Blackwood et al. (2021).” In order to estimate the revenue elasticities, 3,
with = = {c¢, k}, we follow Decker et al. (2020) and note that the first-order condition on a
given production input x from static profit maximization implies that 5, equates the share
of that factor’s costs in total sales. We construct these ratios using industry-level data from
the KLEMS database constructed by the Bureau of Labor Statistics (BLS). Our revenue
elasticities are year-specific and industry-specific. The industry granularity we use is 3-digit
NAICS for the manufacturing sector and 2-digit for the whole economy. The first order
condition pinning down revenue elasticities holds if there are no factor adjustment costs or
wedges; as is typically assumed in the literature (see for instance Decker et al. (2020)), we
require this condition to hold on average across firms within an industry. As suggested by
Syverson (2011), we further strengthen this argument by averaging the revenue elasticities
over 6-year windows. We choose this approach over some alternatives for TFP estimation to
avoid imposing restrictive assumptions on the stochastic process. In the literature, our TFP
measure has been called TFPS (for “TFP-shares”), as discussed by Decker et al. (2020).

As for sales, our baseline sample consists of firms operating in the manufacturing sector
from US Compustat over the period between 1987 and 2017; we discuss various robustness
exercises in Section 2.3. As done for sales in the previous section, we regress the log of firm

productivity measures on industry dummies and a linear time trend and retain the residuals

8Keller and Yeaple (2009) impute a measure of intermediate inputs, but this requires additional assump-
tions.

9See De Loecker and Goldberg (2014) for a discussion of output and input price heterogeneity in the
context of TFP estimation. DeVera (2023) use Portuguese data to disentangle productivity from demand
shocks: they find nonlinear persistence in either component, consistent with our results.



Table 1: Concentration of sales, labor productivity and TFPS growth rates

S [—0.05, 0.05] [—0.10, 0.10] [—0.20, 0.20]

Data AN (ps,0,) Ratio ‘ Data AN (ps,0,) Ratio ‘ Data MN(pz,0.) Ratio

Prob (|ASales| € 5) 198 8.1 24 | 387 16.2 24 | 64.5 31.4 2.1
Prob(|ALP| € 5) 288 8.6 34 | 492 16.9 29 | 708 33.2 2.1
Prob(|ATFP| € §) 454 8.9 51 | 674 18.1 3.7 | 836 35.0 2.4

Note: One year changes in logged variables, using baseline sample as described in the text. Columns for N'(uz,0z) refer to
draws, of size equal to the dataset, from a normal distribution with mean p; and standard deviation o, where x denotes
the variable considered in each row. Standard deviations are 0.491, 0.468, and 0.441 for changes in log sales, LP, and TFP,

respectively.

as our variable of interest.

We document that growth rates (i.e., one-year log changes) of both productivity measures
display clear departures from non-Gaussianity, in the form of high concentration and heavy
tails. Indeed, firms typically experience small or no changes in productivity, but they are
occasionally hit by extreme, negative and positive, shocks. In fact, Table 1 reports how
these features are more markedly pronounced for productivity than for sales. Sales growth
less than 5% in absolute value has a 20% probability of occurring in the data, more than
twice as likely as if the data was normally distributed, with the same empirical standard
deviation. Changes in productivity are even more concentrated: nearly half of TFP growth
rates are less than 5% in absolute value, 5 times more likely than if the data was normally
distributed. In Appendix B.1 we show this concentration towards negligible growth rates is
compensated by the presence of rare and heavy-tailed events.

We further explore the features of this non-Gaussianity by investigating moments of
firm-level changes. We focus on TFP, but report similar results for labor productivity in
Appendix B.3. Figure 4a plots the standard deviation of firm-level one-year log-changes in
sales and TFP, for 5 quintiles of past sales. Both measures decay with size; this behavior
could be consistent with the fact that larger firms are more stable and established. Not
only they face less volatile sales, but also less dispersed fundamental shocks. The standard
deviation of sales growth is slightly higher than for productivity, a feature consistent with
standard theoretical frameworks of firm decisions.

These results may suggest that sales inherit most of the underlying features of the pro-
ductivity process. However, we show that the picture is more complicated when we look at
higher order conditional moments of productivity changes, which lie at the core of our results
on non-Gaussianity and nonlinearities. Specifically, we focus on quantile-based measures of

skewness and kurtosis as done for sales in Section 2.1. Figure 4b plots Kelley Skewness.
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Figure 4: Conditional moments of firm-level one year log-changes
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observations are ordered by quantiles of the sales distribution of ¢ — 1 (x-axis). For each quantile, we show on the y-axis the

Standard Deviation in Figure 4a, the Kelley Skewness in Figure 4b and Crow-Siddiqui Kurtosis in Figure 4c of log-changes.

Similar to what shown for sales, there is little departure from symmetry. However, condi-
tional skewness of productivity growth falls more clearly with firm size, while the same is not
true for sales. Most importantly, large firms display negative tail risk in productivity, but
symmetric sales growth. This suggests that they are more likely to be hit by large negative
productivity shocks, but manage to avoid large sale losses, likely through input adjustment.

We also find that the heavy tails in sales growth are most likely driven by heavy-tailed
underlying exogenous shocks. Figure 4c displays Crow-Siddiqui kurtosis for our different
measures, conditional on past quantiles of sales. Departures from gaussianity are even more
pronounced for TFP than for sales. Firms at the bottom of the distribution are particularly

likely to face very large shocks, of either sign.
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In summary, we conclude that firms face shocks that are fundamentally non-Gaussian,
and therefore what documented for firm sales is not solely the result of endogenous responses
to these shocks. In fact, firms behave in a way that reduces the degree of heavy tailedness
and asymmetry of their sales, relative to the shocks that they face. While investigating
this is beyond the scope of this paper, in Appendix C we estimate a simple reduced form
setup that can shed some light on these findings. We find that firms respond to shocks
increasingly less as the productivity change becomes of larger magnitude. This behavior is
broadly consistent with various economic models of firm behavior, such as those featuring
hiring costs and financial frictions.

Finally, we study the dynamics of productivity. We have previously shown how firm sales
depart from a standard AR(1) process and display lower persistence of history among small
firms being hit by large positive shocks. In other words, large positive shocks erase part
of the history of previous bad realizations for firms with low sales. We confirm that this
behavior seems to be inherent to fundamental shocks, rather than firm behavior, as shown
in the right panel of Figure 5. Moreover, we highlight the appearance of a nonlinear left
tail. Such behavior implies that very negative productivity shocks cancel the history of past
positive productivity shocks when hitting firms with highest productivity. An equivalent
mechanism has been highlighted for household earnings by Arellano et al. (2017); we show
it is also present among firms, albeit quantitatively more limited.'” Persistence of history is

more heterogeneous for TFP than for sales, ranging between 0.5 and 1.3.

2.3 Robustness

Our results are robust to different samples. In addition, we show how they change with the

frequency of the data.

Industries, trimming, and recessions

All our empirical findings broadly apply to the whole economy, rather than just the manu-
facturing sample, as we show in Appendix B.4. In a second robustness check, we restrict the
sample by trimming relatively small firms.'' All the results are basically unaffected, suggest-
ing that the differential behavior at the bottom of the distribution is not driven by outliers.
We also compute confidence bands via bootstrapping. The tight confidence bands shown

in Appendix B.5 confirm the precision and reliability of our findings. Finally, our findings

10 A]] the results presented in this section are qualitatively unchanged when considering all industries.
1Tn particular, we drop firms with less than 10 employees, or either sales and total assets less than 100
thousand dollars. As such, we exclude about 3% of the firms relative to the baseline sample.
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Figure 5: Quantile autoregressions
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on kurtosis do not hinge on specific aggregate conditions.'? Indeed, sales growth kurtosis
is above 5 for all years in our sample and high across all quintiles of past sales even during
recessions. We thus conclude that the heavy tailedness is a key feature of the distribution of

sales and productivity growth and represents a clear departure from normality.

Data frequency

First, we investigate whether the departures from normality are driven by transitory changes
only. Following Guvenen et al. (2021), we consider a measure of persistent changes defined
as the difference between two 3-year averages of residualized log sales (or productivity) as
follows: A(§) = G—1,441 — Yt—2,t—4, Where g, is the average of log sales over the period
[t — j,t — k]. Through averaging before differencing, this alternative measure allows us
to purge the effects of the transitory component of sales changes. We repeat our analysis
with this measure of persistent changes and obtain qualitatively similar results, as shown
in Appendix B.2. We find that persistent changes are non-Gaussian, although they exhibit
lower concentration and relatively less heavy-tailedness compared to the benchmark measure
of overall sales and productivity changes.

Second, we leverage the Compustat data and look at firm-level dynamics at the quarterly

frequency. We find that the distributions of quarter-on-quarter sales and productivity growth

12For an analysis on how higher order moments of sales growth evolve over the business cycle see Higson
et al. (2002) and Bloom et al. (2018).
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are also clearly non-Gaussian, especially due to high kurtosis. Consistent with what shown
before for persistent changes, quarterly changes are more heavy-tailed than yearly growth.
This suggests that some non-Gaussian shocks — transitory in nature — wash out over time, but
some effects persist for longer: these mechanisms will be featured in the statistical model we
estimate in the next section, which formally separates transitory and persistent components
of firm-level productivity. Persistence of history is also nonlinear, in a similar fashion to
what shown previously for one-year changes. We detail these results in Appendix B.7.

We have shown that firm-level productivity features non-Gaussian shocks and nonlinear
persistence. What statistical process is consistent with our findings and how can we use an
estimated model to learn about micro and macro fluctuations? This is what we investigate

in the next section.

3 A nonlinear model of productivity

The empirical evidence presented so far suggests that the dynamics of firm productivity are
characterized by a rich process. In this section, we estimate a model of productivity that
can rationalize the empirically observed nonlinearities and non-Gaussian shocks. We use
a state-of-the-art framework and techniques proposed by Arellano et al. (2017) (thereafter,
ABB) and Arellano et al. (2021) (thereafter, ABBL) and leverage two main features. First,
we assume that the stochastic process of productivity is a combination of a persistent and
a transitory component, allowing us to disentangle the drivers of our empirical findings
showed so far. Second, we introduce potential nonlinearities in the persistence of shocks
using a quantile-based panel data framework.

Allowing for shocks of different degrees of persistence is not common in the study of firm
dynamics, where an AR(1) process for the log of productivity is typically assumed.'® This
stands in sharp contrast with the literature on household earnings dynamics, in which tran-
sitory and persistent shocks are typically separated, even in a standard framework without
nonlinearities.!* Persistence of idiosyncratic productivity is, however, of first-order impor-
tance for firm dynamics too. Among others, Moll (2014) shows how the persistence of
productivity shocks interacts with financial frictions and matters for the size and the speed
of aggregate transitions. Moreover, transitory and persistent shocks are likely to affect firms’
inputs differently, depending on the nature of their adjustment costs, and whether they face

a static or forward-looking input demand (see seminal work by Cooper and Haltiwanger

13Guiso et al. (2005) and Roys (2016) are some notable exceptions, although both of these works do no
allow for any nonlinearities.

14Tn the earnings literature, the transitory-persistent time series structure can be dated back to Friedman
(1957) and MaCurdy (1982).
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(2006) and a specific discussion by Roys (2016)). A further example of the importance of
this distinction can be found in the corporate finance literature: Décamps et al. (2016) show
how permanent and transitory cash-flow shocks are associated with very different corporate
policies. For instance, their relative importance substantially alters the cash—flow sensitivity
of cash.

Motivated by these considerations, we estimate the model proposed by ABB. Let o,
denote the residualized log of productivity, net of a linear time trend and industry effects,
of firm ¢ at time ¢, where ¢ = 1,...,7 and ¢ = 1,..., N. We model o;; as the sum of a general

Markovian persistent component and a transitory innovation, as follows:

Oit = Mt + €4 (2)

We allow the persistent component 7;; to follow a first-order Markov process:

Nit = Q(Witflauit) (uit‘nitflamtf% ) ~ Uniform(07 1)7 t=2,..,T (3)

where Q(n;_1,u;) is the w;-th conditional quantile of n; given n;_;. The transitory
component, €;;, has zero mean and is independent over time and of 7;, for all s,5s = 1, ..., 7.1

We take from ABB the argument for identification, which relies on the literature on
nonlinear models with latent variables (see Hu and Schennach (2008), Wilhelm (2015)).
This quantile-based model allows us to capture nonlinear persistence and conditional het-
eroskedasticity. In particular, it highlights a role for the persistence of histories. Consider a
shock wu; to n;_1; its impact on TFP depends on the shock occurring at time ¢ + 1, w1,
whose impact on TFP will in turn depend on the shock occurring at time ¢ + 2, and so on.

More formally, nonlinear persistence is:

0Q(Nit—1,
p(Mit—1,7) = Q(n(s—an) (4)

which is a measure of the impact of n;;_; on 7;; and, as a result, on 0;;, when firm ¢ is hit by

a shock wu;; that has rank 7.

15Note that the process can be extended to allow for a higher order Markov process for 7, a moving
average for €, or to allow for unobserved time-invariant firm-specific effects. As noted in the literature, it is
not possible to disentangle measurement error from the transitory innovation without additional information.
We believe, however, that this should be less of a concern for our dataset — audited balance sheets — than
for survey data commonly used in the earnings literature.
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Average nonlinear persistence across 7 is:

5Q(nit_1,7)]
on

p(1) = E[ (5)

The p’s are measures of persistence of productivity histories. Here one can see how this
flexible model can allow the persistence of the shocks to the persistent component, 7;;_1, to
depend on the size and sign of current and future shocks w;,u;41... Within this framework
it is possible to analyze how unusual shocks to firm productivity can significantly reduce
or increase the persistence of past shocks. For instance, micro-disasters that wipe out the
memory of all past productivity shocks.! We therefore study a framework in which unusual
shocks can occur, which wipe out the productivity effect of a series of past shocks. Similarly,
the persistence of current shocks is subject to the realization of future shocks.

We closely follow the estimation strategy proposed by ABBL. We specify the conditional
quantile function describing the process for the persistent component 7;; using Hermite poly-

nomials. As a result, we write the expression in Equation (3) as:

Mt = Q(Nit—1,7) = Z a (7)pw(Mii1) (6)

k=0

where ¢, denotes the basis of the Hermite polynomials and a? the corresponding coef-
ficients. In implementation, we follow ABBL and set K = 3. We define , = [/(L + 1),
with L = 11, and specify the functions a% to be piecewise-linear in the interval [r,7.]. In
addition, we follow ABBL and treat aOQ as quantiles of an exponential distribution in the
ranges (0, 7] and [r7, 1). This introduces two tail parameters, those defining the exponential
distributions; we estimate each not only for 7; ., but also for the transitory shock and for the
persistent component in the first period, 7;9. Computationally, estimation is implemented
using the Sequential Monte Carlo methods proposed by ABBL. We defer to their paper for
an extensive discussion of the computational details of the algorithm.!”

In the remainder of this section, we analyze the drivers of the empirically documented
nonlinearities in productivity through the lens of the estimated model. Figure 6 displays

estimates of the average derivative of the conditional quantile function of residualized log-

6Note that this nonlinear model nests the canonical (linear) model, typically used in the literature, as a
special case. The canonical model is obtained by restricting 7, to follow a random walk, i.e. 17;+ =1 t—1+V; ¢.
In the canonical model, all shocks are associated with the same persistence, irrespective of the history of
a firm’s productivity. A shock v enters n; linearly with persistence p = 1, so that the shock transmits
entirely to o;¢, regardless of a firm’s past sequence of shocks to TFP.

1"The Laplace tails assumption is only imposed in the implementation and can be relaxed and replaced
by a more heavy-type tails assumption. However, we do not pursue this idea here and follow instead the
same implementation strategy as suggested by ABB and ABBL.
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TFP. The top-left panel 6a reproduces the empirical persistence for the data, also showed
previously in Figure 5b. Persistence of productivity is far from homogeneous, as it depends
both on the initial level of productivity and the size of the productivity shock, and it ranges
between 0.5 and 1.3. The nonlinear model does a good job at replicating the empirical
patterns, as shown in Figure 6b. In Figure 6¢, we show the derivatives of the conditional
quantile function for the persistent component of the estimated productivity process. The
nonlinear patterns of persistence are similar to those estimated for the entire productivity
process, although slightly less pronounced, suggesting a marginal role of transitory shocks
for nonlinear dynamics. Our estimates also shed light on the behavior of specific firms.
In Appendix E we show how large positive and negative shocks shocks to the persistent
component of productivity asymmetrically affected a large firm in the sample (Apple). This
case study provides an example of how micro disasters can erase the persistence of history.

Another important feature of the nonlinear model is that it allows for non-Gaussianity
of both components of the productivity process. As shown in Appendix E, we find that
both shocks are non-Gaussian, even when sorting firms by their productivity.’® Indeed,
even the most productive firms face persistent and transitory shocks that feature significant

departures from Gaussianity.

4 What is the source of firm-level shocks?

In this section we employ econometric and machine learning techniques to investigate what
lies behind the non-Gaussianities and non-linearities that we have documented thus far.
Although our analysis does not isolate causal links, we identify which economic factors are
the most important predictors of firm-level extreme growth. Despite uncovering several
correlations, we find that most of the overall variation in tail growth remains unexplained.
We also use the estimates from our econometric model to separately investigate whether the
source of persistent shocks differs from that of transitory shocks.

We consider the following drivers. First, we follow Farre-Mensa and Ljungqvist (2016)
and construct various measures of financial constraints employed in the literature. Second,
we consider some firm-level financial characteristics, such as the cash-to-asset ratio or the
leverage ratio. Third, we look at other firm characteristics like their age, their R&D expenses
(as a share of total assets), the industry in which they operate. Fourth, we construct industry-
year measures of sales and TFP growth. These measures aim at capturing competitors’

performance. Fifth, we use patent and publications data from Arora et al. (2019). Finally,

18Reassuringly, the model is able to match well the conditional moments of productivity growth presented
in Section 2.2, as we show in Appendix E.
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Figure 6: TFP persistence in the data and in the model
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we consider production inputs potentially affecting firm sales, such as employment, cost of
goods sold, capital, both in levels and in growth rates. The list of all the variables considered,
and their construction, are detailed in Appendix F.1.

We begin by looking at what predicts sales growth. To identify the most relevant predic-
tors, we run a LASSO estimation for different levels of the regularization parameter and at
the optimal shrinkage parameter selected through cross-validation.'* The most important
predictors are average sales growth among the industry competitors, R&D expenses, acqui-
sitions, and profitability, which are all positively correlated with sales growth.?’ However,
all these variables (and many others) explain less than 10% of the overall variation in sales
growth. Not surprisingly, sales growth is strongly correlated with changes in flexible pro-
duction inputs, such as the cost of goods sold, and the R? increases substantially when we
include them. We report all these results in detail in Appendix F.2.

We repeat the same analysis for TFP growth, finding similar predictors as for sales
growth: profitability, R&D, as well as changes in production inputs such as employment
growth. Financially constrained firms are typically associated with higher TFP growth in
the optimal LASSO, but the coefficients are close to zero. The average TFP growth of
competitors in the industry is strongly positively correlated with firm-level TFP growth,
suggesting that productivity booms may reflect industry shocks. However, the adjusted R?
remains low: typically below 3%, and less than 20% even when we include changes in firm’s
production factors.

We are particularly interested in what drives tail growth. To shed light on this, we
perform a classification LASSO approach analogous to what discussed previously, but using
as dependent variables whether TFP growth is in the bottom 1% of the distribution, in the
top 1%, or in either tail. Interestingly, when the regularization parameter is set “optimally”
through cross-validation, there are more predictors for extremely negative TFP growth than
for positive shocks. The cash-to-assets ratio and profitability strongly predict tail TFP
growth. R&D expenses is a strong, positive, predictor of large productivity booms, and the
nonlinear relationship with tail TFP growth can also been seen via the quantile regression
estimates reported in the Appendix.?’ The growth rate in the number of patents is positively
correlated with TFP (and especially sales) growth at the top. Moreover, the number of new

publications and new patents are a very important predictor of top 1% TFP growth when

19T start with, we exclude the variables that are mechanically associated with sales growth through the
firm’s production function.

20When considering a sub-sample matched with patent information, the growth rate in patents and
publications are also “optimal” predictors, but the associated LASSO coefficients are close to zero.

2'We also build a random forest, which allows for nonlinear effects. This approach highlights the im-
portance of other predictors: for instance, investment opportunities (market-to-book ratio as in Frank and
Goyal (2009)) predicting large TFP drops.
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considering a random forest, which allows for nonlinear effects. Hence, our findings are
consistent with recent work by Berlingieri et al. (2024), who show that product innovation
works through bursts, which eventually lead to large revenue growth. However, most of
the likelihood of experiencing tail growth remains unexplained by observable factors. As we
show in Appendix F.2, R? is always less than 15%, and typically well below that value.??

Finally, we use the estimates of our econometric model outlined in Section 3 to conduct
the same analysis separately for changes in the nonlinear, persistent, component of TFP
— An — and changes in the transitory component — Ae.?* The predictors of the persistent
component are similar to those of overall TFP growth. The R? remains low across specifica-
tions. Predicting transitory shocks appears to be even harder. Profitable firms are less likely
to face extremely negative transitory shocks; interestingly, R&D does not only positively
affect the likelihood of a persistent productivity shock, but also that of a transitory boom,
although this effect is small. Nevertheless, transitory shocks remain mostly unexplained by
observables, especially at the tails, with the R? reaching 2% at most.

In summary, our findings suggest that some economic drivers, a few of which have been
explored in the literature, lie behind extreme firm shocks. These forces provide an economic
micro-foundation for our statistical estimates. Nevertheless, most of the variation in firm
(tail) growth remains unexplained. The firm—level stochastic processes we estimate can thus
be used as inputs for structural models that take the source of the shocks as given. In the
next sections we offer two examples of this approach. First, we discuss analytically how
non-Gaussian shocks can affect the power law behavior of firm size distributions. Second,
how a rich stochastic process with nonlinear persistence affects the aggregate implications

of granular shocks.

5 Micro shocks and macro outcomes

In this last section, we investigate how the nature of idiosyncratic shocks affects the power
law behavior of firm size distributions and the aggregate implications of granular shocks.
The literature has typically focused on how proportional random growth can lead to a
power law in the firm size distribution (see Gabaix (2009) and Gabaix (2016) for surveys of
the literature and Gibrat (1931)), thus restricting and, at the same time, overlooking the
actual nature of idiosyncratic shocks. Similarly, the granular hypothesis (see Gabaix (2011)

for a seminal paper) typically hinges on a heavy-tailed firm size distribution; in this setting,

22 A similar finding holds for sales tail growth, as we show in Appendix F.2.
23Simulations are done in-sample via sequential MCMC for 7. € is defined as the difference between
residualized log TFP in the data and model-simulated 7.
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idiosyncratic firm-level shocks — of any form — do not average out, and thus shocks to large
firms can explain a significant part of aggregate movements.?*

We shift the focus towards the features of the shocks that firms face, which have received
much less attention. First, we highlight some key mechanisms in a stylized theoretical setting.
Second, we discuss a quantitative exercise that showcases the role of non-Gaussianity and
nonlinearities for the volatility and persistence of micro—originated aggregate fluctuations.

Our approach and interpretation of firm-level shocks are similar in spirit to Salgado
et al. (2019), who argue that business cycles can originate from fluctuating skewness of
idiosyncratic shocks. As in their framework, one might wonder whether the features of
the distribution of the idiosyncratic shocks derive endogenously from macro shocks rather
than being the sources of aggregate fluctuations. This decomposition is beyond the scope
of our paper. Conceptually, we effectively consider a world without aggregate shocks, where
aggregate fluctuations in productivity are solely generated by idiosyncratic shocks. Within
this setting, we study the role that the features of the distribution of firm-level shocks and

their dynamics play for aggregate fluctuations.

5.1 Analytical insights

We consider the following general setting. We assume that there are N firms and each firm
1 produces a quantity S; of consumption good at time t. The firm growth rate is:
ASit1 Sitpr — 5

3 = S, = Ujt41 (7)

where U1 are random variables with unrestricted distribution except for zero mean. To

draw a parallel with the model introduced in Section 3, note that the difference 0,11 — 044,

where o0 is defined in Equation (2), approximates %’1“ in Equation (7) for smal

5

Hence, U4, approximates the innovations to the components n;; + €;.2

This setting can be used to study the origins of the power law behavior in firm size
distribution and its evolution over time. In the literature, proportional random growth is a
popular explanation for power laws (Champernowne (1953); Simon (1955)). In the general
model described above, let us assume the existence of an initial distribution of firm sizes, S;g,
and that U;; is independent of firm sizes and over time. Then, firm sizes satisfy Gibrat’s
law (Gibrat (1931)), which posits that all firms have the same expected growth rate and the

same variance of growth rates, i.e. Var(Uj ) = o?. Over time, this leads to a distribution

24There have been several recent empirical applications of this idea. Among others, see Amiti and
Weinstein (2018) on granular bank supply shocks and aggregate investment.
25To make this parallel we have obviously assumed that S is a measure of productivity.
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that becomes lognormal with larger and larger variance; this, coupled with some friction
such as a lower bound on size, results in a stationary distribution which is a power law (see
Gabaix (2016)).

We explore two properties of the distribution of shocks that may influence the rate at
which power law behavior emerges and the heaviness of the tails of the firm size distribution.
First, we introduce heavy-tailed shock distributions. Second, we depart from proportional
random growth and explore a dynamic framework where shocks may exhibit persistence and

correlate with size.

Heavy-tailed shocks can provide a reason for heavy-tailed size distributions
Let us start with the static case. We analyze how the distribution of U;;.; may alter the

distribution of S;;,1.?% From Equation (7), we can rewrite next-period sales as:
Sity1 = Sit(1+ Usry1) (8)

The tail behavior of next-period sales depends on the tail behavior of the two factors on
the right hand side of Equation (8). Let us assume that S;,, which has positive support,
and U;,, are independent. To fix ideas, we consider different cases. If both S;; and Uy
are Pareto distributed, then S;,; will have a power tail behavior, i.e., S;y; will have a
Pareto-type tail, being regularly varying (RV) at oo in the upper tail.?" If, instead, S;; has
an exponential upper tail, then the power law-behavior of the tail of U, is enough to make
Sit+1 have a power tail behavior. As such, non-Gaussian shocks can provide a reason for
heavy-tailed size distributions. Finally, if S;; is Pareto, then 5,41 will have a power law
behavior regardless of whether the distribution of U1 has an upper heavy tail or not. To
establish these results, see, for instance, Proposition 1.3.9 in Mikosch (1999).

While non-Gaussianity of U1 maintains that S;,1 will have a power law behavior, it
is not obvious that S;; will dominate the power law behavior of S; ;. The heaviness of the
tails and variance of U;,; might alter the features of the distribution of S;;, 1. Thus, the

distribution of the error term might be relevant in shaping the distribution of S;; ;.

26For simplicity, consider o;; = €;;. Then, Ujs 11 = €;¢41 — €;¢. If €;¢ and €;;41 are uncorrelated and feature
heavy tails, then Uj;4q will also feature heavy tails by Remark 1.3.5 in Mikosch (1999).

27 A random variable X is said to be regularly varying at oo with Pareto exponent a(X ) if, for any = > 0
as t — oo:

PI‘Ob(X > t.’E) _ x—(x(XJr).
Prob(X > t)
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Correlated shocks may amplify power law behavior
Next, we consider a dynamic framework with potentially correlated shocks. To take into
account the full history of shocks, we express S;;,1 in terms of initial sales, S;y, and the

sequence of growth rate shocks over time as follows:

Sit41 = Sit(1 4+ Uirs1)
Sit41 = Sit—1(1 + Ui) (1 + Ust41)

t
Sit+1 = Sio H(l + Uija)
j=0

Assuming independence between S;y and H;ZO(l + Ujj+1), the behavior of the upper tail
of Si11 will be dominated by that of the distribution with the heavier tail, either that of
Sio or of II_y(1 4 Ujj41). The tail behavior of the latter will depend on the heaviness of the
tails of the shock distribution.

If U is uncorrelated over time, the tail index of their product is determined by the
minimum of the tail indices of the individual factors. If instead U exhibits persistence, as
in the model estimated in Section 3, then the tail behavior of their product depends on the
nature of their dependence.?® For instance, for a squared random variable with symmetric
tails, the tail index of the square is half that of the original variable. If the two variables
are positively correlated, extreme positive shocks tend to co-occur, and their product will
amplify these extremes, thereby reinforcing the heavy-tailed behavior. This can result in
even more pronounced power-law behavior in the product’s distribution. As such, extreme
and nonlinearly persistent shocks, like those we uncover in the empirical analysis, can be the
source of power law firm size distributions.?” In general, heavy-tailed shocks can impact the

distribution of firm sizes, regardless of whether the initial distribution follows a power law.?"

Heavy-tailed shocks can affect the granular hypothesis
Next, we investigate how the nature of shock affects micro-originated aggregate fluctuations.
Gabaix (2011) considers the setting described above and examines whether firm-level shocks

impact aggregate output by extending the model to include aggregate GDP, defined as

28Gee Appendix G.1 for an example and related derivations.

29For a similar argument specifically on innovation bursts, see Berlingieri et al. (2024).

30With data that track all firms from inception to death, it may be possible to quantify the relative
importance of initial conditions and shocks on the development of the power law distribution of firms sizes.
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Y, = Zf\il Sit, and GDP growth:

N

AY, S;

SUIIR
t i=1 t

Under the assumption that the shocks Uj;,q are uncorrelated random variables, then the

standard deviation of GDP growth is:

N L (S 2\ /2
0Gpp = (ZU <7t) ) (9)
i=1
Gabaix (2011) proposes the granular hypothesis by deriving the asymptotic behavior of ogpp
as N — oo. He shows that, as N — oo, if the size of firms, S;;, has a distribution with finite
variance, then the CLT applies, and the decay rate of the shocks is v/ N. Otherwise, if the
distribution of firms sizes has an infinite variance and potentially even infinite mean, then
the rate of decay is N'='/¢ or In N, respectively (a Pareto law distribution where the Pareto
exponent ¢ is < 2 (< 1) has infinite variance (mean)). Hence, granular shocks matter for
the aggregate when the distribution of sales has a power law behavior.

Non-Gaussian shocks may increase the volatility of GDP in two ways. First, indirectly,
as we have previously showed that heavy-tailed shocks can provide a reason for heavy-tailed
size distributions, affecting S in Equation (9). Second, directly affecting 0. As an extreme
case, if the distribution of the error term is such that the variance does not exist (infinite o),
then also aggregate GDP growth volatility in Equation (9) will be infinite. However, larger
kurtosis is not necessarily coupled with larger variance. Heavy tailed-ness of a distribution
is not informative of its variance, and the latter is the crucial statistic in Equation (9). This
consideration is reminiscent of findings by Acemoglu et al. (2017), who show that, conditional
on a degree of sectoral heterogeneity, microeconomic shocks that display exponential tails can
result in macroeconomic tail risk without necessarily increasing the volatility of aggregate
output.

This section illustrated how the features of the cross-sectional distribution of idiosyncratic
shocks affect the granular hypothesis. Even in this stylized setting, non-Gaussian shocks
play an ambiguous role for granular aggregate fluctuations. Several components have been
assumed away but may be important: among others, the correlation between firms’ size
and the error term, its variance (Yeh (2019)), and heterogeneous dynamics in the process
of firms’ productivity. Given the complexity of these layers, in the next section we use
numerical simulations to quantitatively assess the role of non-Gaussianities and nonlinearities

for aggregate volatility and autocorrelation.
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5.2 Quantitative exploration

In this section we use the estimates from our model — and other model alternatives — to quan-
titatively highlight how the different nature of firm-level shocks matters for micro—originated
aggregate fluctuations.®! In particular, we construct the growth rate of aggregated TFP as

Gy = log N% > exp{oi.} —log Ntl,l > exp{oi—1}, where o, is the simulated log of TFP, for

a firm ¢ at time ¢, using model-estimated parameters. By dividing by the number of firms
N, we abstract from fluctuations along the extensive margin, which are not relevant for our
analysis.>> We consider TFP for continuity with the analysis in the paper, but our conclu-
sions are qualitatively similar if we repeat the exercise for sales. We consider five different
models. First, a plain vanilla AR(1) such that 0,11 = po;s + Vi4+1, where innovations v
are normally distributed with variance o2. We estimate p and o2 with a standard minimum
distance estimation technique proposed by Chamberlain (1984).3* We obtain the following
estimates: p = 0.925 and 52 = 0.095. Second, we add Gaussian transitory shocks ¢ to the
AR(1). This slightly increases the estimated persistence to 0.934, and lowers 52 to 0.081,
with an estimated variance of transitory innovations 2 = 0.171. Third, we estimate a model
that only features a persistent component with nonlinear persistence. To do so, we estimate
quantile autoregressions as done for Figure 5, and then use the estimated coefficients to sim-
ulate the sample of firms. Fourth, we estimate the flexible model of Section 3, but assume
Gaussian transitory shocks. In this setup, the variance of transitory shocks is estimated to
be much higher than for the AR(1), at 0.635. Finally, we consider our full model.

For each of these models, we simulate a sample of firms starting from the empirical
distribution, and maintaining the structure of the data panel (i.e.: firm-specific spells). We
provide details of estimation and simulation in Appendix D. For each model, we compute
two objects of interest, which we report in Table 2. First, the volatility of G;. This is the
typical measure in most research on the granular hypothesis, as we have discussed in the
previous section. Second, we also compute the one year autocorrelation of G;. In recent
work, Carvalho and Grassi (2019) show that if there is a finite number of firms, rather than

a continuum, then the distribution of firms across productivity levels varies stochastically

31Gtrictly speaking, our TFP measures are not solely idiosyncratic shocks but also combine heterogeneous
sensitivities to aggregate shocks, as previously discussed. Regardless of their origin, however, this simulation
exercise treats these fluctuations as happening at the level of individual firms and then we aggregate them
up. We show that if the stochastic process of these firm-level fluctuations features nonlinearities and non-
Gaussianities, the implications for the resulting aggregate fluctuations are substantially different.

32This aggregated measure of TFP is likely different from time series of aggregate TFP, and indeed our
exercise has nothing to say about the latter.

33We choose the estimator that minimizes the distance between the theoretical autocovariances generated
by the model and the empirical autocovariances of productivity. We follow the recommendation of Altonji
and Segal (1996) of using the identity matrix to reduce the substantial small sample bias that can result
from choosing the optimal weighting matrix suggested by Chamberlain (1984).

25



Table 2: Micro—originated fluctuations with different idiosyncratic processes

Data (I) (I) (1) @1V) (V)

o (Gy) 0.086 0.017 0.085 0.020 0.251 0.038
CORR (Gt,G¢—1) 0.051 0.087 -0.150 0.351 -0.408 0.068

Note: We estimate each model on the baseline sample and simulate out of sample, maintaining the structure of the data panel.
We simulate each model 100 times, computing the variance and the autocorrelation of aggregate TFP growth rate for each

simulation, and then reporting medians across simulations. Details can be found in Appendix D.

over time. As a result, aggregate productivity also follows a stochastic process, even when
all shocks are idiosyncratic.

The standard AR(1) process generates non-zero volatility of aggregate TFP growth and
positive persistence, due to the finite number of firms and their fat-tailed productivity dis-
tribution. However, the volatility is lower than in the data. Results for this model are shown
in column (I). Adding a transitory, normally distributed, component, as done in column (II),
raises the volatility substantially, but introduces negative autocorrelation as this component
dominates the properties of the overall stochastic process.>* A similar pattern is observed in
column (IV), which embeds Gaussian transitory shocks in the fully flexible model: volatility
overshoots the data counterpart and the autocorrelation becomes even more negative. In
column (III), instead, we extend the standard AR(1) with nonlinear persistence. Volatility
is little affected. Aggregate growth rates are very persistent in this setup, as witnessed by
the autocorrelation. Note that nonlinearities do not necessarily imply higher persistence,
especially for the growth rate of aggregate TFP. Indeed, heterogeneity and aggregation can,
in principle, work in both directions.

Our full model, showed in column (V), delivers plausible aggregate moments. Aggregate
volatility undershoots what observed in the data but is closest to all other models except
(I). However, model (V) generates a positive autocorrelation that is closer to what seen in
the data. It should be stressed that these aggregate moments are not explicitly targeted; as
such, we see the good performance of model (V) as an additional success of this modeling
framework, previously overlooked in the literature.

By comparing different models, our analysis shows how the nature of firm-level shocks
affects micro-originated aggregate fluctuations. Our findings underscore that both nonlinear-
ities in persistence and non-Gaussian shocks should be accounted for. In addition, transitory
and persistent components should be modeled separately. Although the dispersion and kur-

tosis of transitory shocks are substantially smaller than those of changes in the persistent

34In Appendix G.2 we show these results analytically, in a simplified setting.
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component, the results of this section still suggest that it is crucial to account for non-
gaussianities in both components. Failure to do so generates counterfactual behavior, not
just at the firm level, but also in the aggregate.?®> We find that non-Gaussian shocks as
typically observed in the data are associated with less volatile micro-originated aggregate
fluctuations, relative to a Gaussian counterpart. Importantly, this dampening channel is
separate from, but complementary to, the size-variance tradeoff recently put forward by Yeh
(2019).%¢ Moreover, nonlinear persistence, as estimated by our model, raises the persistence

of micro-originated aggregate fluctuations.

6 Conclusion

We have documented that sales and productivity of U.S. publicly listed firms follow a stochas-
tic process likely different from the canonical linear AR(1). Firms face heavy-tailed funda-
mental shocks and they partly absorb them through input adjustment. In addition, they
face nonlinear and heterogeneous persistence. We estimate a quantile-based panel data
framework borrowed from the literature on household earnings and show that it is a good
representation of firm-level dynamics.

Nonlinear dynamics can affect firm behavior in multiple ways. We have focused on one:
micro-originated (granular) aggregate fluctuations. While the literature on the granular
hypothesis has typically focused on the firm size distribution, we have investigated the role
played by the features of the shocks. Our analysis suggests that transitory and persistent
productivity shocks need to be modeled separately, and nonlinearities and non-Gaussianities
simultaneously accounted for; failure to do so generates counterfactual behavior, not just at
the firm level, but also in the aggregate. We hope that the findings in this paper spur further

research in the literature on semi-structural estimation approaches applied to firms.

35The model of column (IV) tries to fit rare shocks by estimating an excessively large standard deviation of
the Gaussian distribution. This ends up dwarfing the persistent component, even when the latter is allowed
to be non-gaussian and with nonlinear persistence.

36Note that in our data the variance of TFP growth rates also falls with firm size, as shown previously.
As such, this channel is incorporated in our simulations.
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Supplemental Appendix to

“Nonlinear Firm Dynamics”

by DAVIDE MELCANGI’ and SILVIA SARPIETRO’

A Data Appendix

Our data consists of yearly firm-level information from US Compustat, over the period
between 1987 and 2017. We exclude firms that are not incorporated in the US. Moreover, we
keep firms with positive sales and cost of goods sold.! We exclude firms without an industry
classification (“unclassifiable firms”), as well firms whose Standard Industrial Classification
(SIC) is financial and real estate activities (6021 — 6799) or utilites (4900 — 4991). We keep
firms that remain in operation for at least 2 consecutive years. If a firm is in the sample
for multiple spells, we keep the longest spell. Finally, we keep drop missing observations
for sales, labor productivity, and TFP. For the baseline sample of manufacturing firms, this
leaves us with an unbalanced panel of 6,018 firms and 57,882 firm-year observations. For
the whole economy, we have 12,303 firms and 111,478 observations. We deflate sales, cost
of goods sold, and the capital stock by the GDP deflator. The capital stock is constructed
following Ottonello and Winberry (2020). For each firm, the first value of end of period
capital is set to the level of gross plant, property, and equipment (ppegt in Compustat). We
then compute the evolution of capital, from this period onwards, using changes of net plant,
property, and equipment (ppent). If a firm has a missing observation for ppent, we impute
its value with linear interpolation only if the missing observation has nonmissing values of
ppent in the previous and following year. Capital stock is the lag of the end-of-period capital
constructed as just described.

Revenue elasticities used in the calculation of TFPS are constructed using industry-level
data from the KLEMS database constructed by the BLS. The revenue elasticity for capital
is the ratio of capital cost and value of production, while for the variable input (cost of
goods sold) we divide the sum of costs of materials, labor, and energy, by the value of

production. Revenue elasticities are year-specific and industry-specific — 3-digit NAICS level

Federal Reserve Bank of New York. Email: davide.melcangi@ny.frb.org. The views expressed in this
paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of
New York or the Federal Reserve System.

"Bologna University. Email: silvia.sarpietro@unibo.it.

'Tn unreported results we find that our results are little sensitive to the exclusion of firms with sales or
total assets less $100,000, or with less than 10 employees.



Figure A.1: Distribution of one-year log changes
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t — 1 depicted in solid blue. In panel (a), the standard deviation is 0.468, Kelley Skewness 0.026 and Crow-Siddiqui Kurtosis
7.948. In panel (b), the standard deviation is 0.441, Kelley Skewness 0.006 and Crow-Siddiqui Kurtosis 10.713. Gaussian

density with the same standard deviation of data shown in dashed red. Baseline sample of manufacturing firms.

for the manufacturing sector, 2-digit when looking at the whole economy. The first order
condition pinning down revenue elasticities holds if there are no factor adjustment costs or
wedges; as is typically assumed in the literature (see for instance Decker, Haltiwanger, Jarmin
and Miranda (2020)), we require this condition to hold on average across firms within an
industry. As suggested by Syverson (2011), we further strengthen this argument by averaging
the revenue elasticities over 6-year windows.

After constructing the log of TFPS as the revenue function residual — using sales, cost
of goods sold, the capital stock, and the revenue elasticities — we residualize it by regressing
TFPS on industry dummies and a linear time trend.

The quarterly dataset described in Section and Appendix follows similar steps and vari-
able creation as in Ottonello and Winberry (2020). For this sample of manufacturing firms

we have 6,840 firms and 234,105 firm-quarter-year observations.

B Additional empirical results

B.1 Productivity distributions

Figure A.1 shows the empirical densities of one-year log changes in labor productivity and

TFP. We show how both measures are clearly not distributed in a gaussian way.



Figure A.2: Distribution of persistent changes
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(b)) depicted in solid blue. In panel (a), the standard deviation is 0.572, Kelley Skewness 0.092 and Crow-Siddiqui Kurtosis
5.120. In panel (b), the standard deviation is 0.404, Kelley Skewness 0.131 and Crow-Siddiqui Kurtosis 8.013. Gaussian density

with the same standard deviation of data shown in dashed red. Baseline sample of manufacturing firms.

B.2 Persistent changes

In this section we report the results for persistent changes, as described in Section 2.3. In
particular, we consider the difference between two 3-year averages of our logged variables.
First, we show the distributions. In Figure A.2a we show how the empirical density of these
persistent changes in sales is more concentrated than its gaussian counterpart, constructed
with the same standard deviation. Compared to the distribution of one-year log changes,
shown in Figure 1, the departures from non-Gaussianity are less pronounced, suggesting that
transitory shocks are also non-Gaussian.

A similar story applies to TFP, as shown in Figure A.2b. Figure A.3 confirms that
the main source of non-Gaussianity is heavy tailedness (kurtosis). In addition, small firms
display a much larger Crow-Siddiqui kurtosis of persistent changes in TFP, compared to

persistent changes in sales, in line with what shown for one-year changes.

B.3 Labor productivity

In this section we report higher order moments of log changes in labor productivity, as well
as quantile autoregressions, for the baseline sample discussed in Section 2. In Figure A.4
we show that the dispersion of changes in labor productivity falls as firm sales increase.
There is little asymmetry of labor productivity changes, except for a mild positive skewness

among smallest firms. Finally, labor productivity shocks are very heavy-tailed, with marked



Figure A.3: Conditional moments of firm-level persistent changes
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departures from gaussianity.
In Figure A.5 we show that quantile autoregressions of log labor productivity suggest
that also this alternative measure of firm profitability has a markedly nonlinear persistence

of history.



Figure A.4: Conditional moments of firm-level one year log-changes: labor productivity

0.9 . . : 0.14 "
j —+-Data: LP X Data: LP
08 ™ i 012 - - Gaussian ||
N \
N 01F % |
071 N, , N,
\ L \ -
c \ " 0.08 \
= L N\, i @ \
-§ 0.6 \ 2 o006} N\ 1
[5) \\ H N
o L \, 4 L N, 4
5 05 \ & 004 \
< > \
o L k) L % B
S04l e . g 002 .
8 ~. X .
S OF-=-==-===-- P
03 St 1 o
T -0.02 . 1
~- D — -
. L e -
02 b -0.04 Ty
0.1 ! ! : -0.06 ! ' .
1 2 3 4 5 1 2 3 4 5
Past Quantile of sales Past Quantile of sales
(a) Standard Deviation (b) Kelley Skewness
9 "
Ik~
81,
\~
\~
(2] L . N
.g 7 \\
€ hS
g h SN
Ze6 e —
= -4
S
?°/ ]
3
<
O4r B
B e e e e e e e e e e e e = 4
> , . .
1 2 3 4 5

Past Quantile of sales
(¢) Crow-Siddiqui Kurtosis
Notes: Observations are ordered by quantiles of the sales distribution in ¢ — 1 (x-axis). For each quantile, we show on the
y-axis the Standard Deviation in Figure A.4a, the Kelley Skewness in Figure A.4b and Crow-Siddiqui Kurtosis in Figure A.4c

of log-changes in labor productivity.



Figure A.5: Quantile autoregressions of log labor productivity
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Table A.1: Concentration of sales, labor productivity and TFPS growth rates: all industries

S [—0.05, 0.05] [—0.10, 0.10] [—0.20, 0.20]

Data AN (py,0,) Ratio ‘ Data AN (ps,0,) Ratio ‘ Data MN(pz,0.) Ratio

Prob(|ASales| € 5)  19.6 8.3 24 | 39.0 16.6 24 | 65.3 32.4 2.0
Prob(|JALP| € 5) 299 8.7 34 | 49.9 17.1 29 | 708 33.6 2.1
Prob(JATFP| € §) 425 9.6 44 | 64.0 19.3 33 | 814 37.6 2.2

Note: One year changes in logged variables, sample of firms using all industries. Columns for N (uz,0s) refer to draws, of
size equal to the dataset, from a normal distribution with mean p, and standard deviation o, where x denotes the variable

considered in each row. Standard deviations are 0.478, 0.463, and 0.409 for changes in log sales, LP, and TFP, respectively.

B.4 All industries

In this section we repeat the analysis of Section 2.1 and 2.2 for the whole economy. Table A.1
confirms that the distributions of sales, labor productivity, and TFP growth rates are much
more concentrated than a Normal distribution with the same empirical variance. In addition,
concentration is typically highest for TFP, which is arguably the more exogenous measure
of fundamental shocks.

We then turn, in Figure A.6, to conditional moments of those distributions. Our results
are similar to what shown for the manufacturing sector in Figure 4. Smaller firms face more
dispersion in TFP growth rates, and even more so in sales growth rates. Small firms face
shocks that are slightly positively skewed; in contrast, large firms display negative skewness
in TFP log changes, but this does not translate into similar asymmetries for sales. We
confirm that heavy tails in sales shocks are most likely driven by heavy-tailed underling
exogenous shocks. This is particularly true for firms at the bottom of the sales distribution.

Finally, we compute quantile autoregressions for this larger sample and confirm our main
results, as shown in Figure A.7. Firm sales depart from a standard AR(1) process and display
lower persistence of history among small firms hit by large positive shocks. This nonlinear
persistence is even more pronounced when looking at productivity, and a nonlinear left tail
appears. Quantitatively, nonlinearities are almost identical in this broader sample to what

shown for the manufacturing sector.

B.5 Confidence intervals

We bootstrap the baseline empirical sample, at the firm level, with replacement, and compute
for each bootstrapped sample the quantile autoregressions, conditional Kelley skewness and
conditional Crow-Siddiqui Kurtosis. The results showed in Figures A.8 and A.9 point to
tight 95% pointwise confidence bands.



Figure A.6: Conditional moments of firm-level one year log-changes: all industries
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B.6 No Detrending

In section we repeat the analysis of Section 2.1 and 2.2 for data that has not been detrended
— only industry fixed effects are subtracted from the variable of interest. As shown in Figure

A.10 and A.11, the patterns are virtually identical to our baseline results.

B.7 Quarterly data

In this section we report the results for quarterly data, as described in Section 2.3. In

Figure A.12a we show how the empirical density of these quarterly changes in sales is more



Figure A.7: Quantile autoregressions: all industries
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Figure A.8: Conditional moments of firm-level one year log-changes, 95% pointwise confi-
dence bands
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sample, as in Figure 4.

concentrated than its gaussian counterpart, constructed with the same standard deviation.
Compared to the distribution of one-year log changes, shown in Figure 1, the departures
from non-Gaussianity are even more pronounced, confirming that transitory shocks, even at
quarterly frequency, are also non-Gaussian.

A similar story applies to TFP, as shown in Figure A.12b. Figure A.13 confirms that



Figure A.9: Quantile autoregressions, 95% pointwise confidence bands
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the main source of non-Gaussianity is heavy tailedness (kurtosis). In addition, small firms
display a much larger Crow-Siddiqui kurtosis of quarterly changes in TFP, compared to
quarterly changes in sales, in line with what shown for one-year changes.

Finally, in Figure A.14 we show that persistence of history is nonlinear even in the

quarterly dataset.
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Figure A.10: Conditional moments of firm-level one year log-changes: no detrending
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A.12: Distribution of quarterly changes
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Figure A.13: Conditional moments of firm-level quarterly changes
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Figure A.14: Quantile autoregressions: quarterly data
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C Decaying responsiveness to productivity shocks

What type of firm responsiveness is consistent with the findings shown in Section 2.27 To
shed light on this, we come back to our simple production function in logs presented in
Equation (1). Then we take first differences, and assume that changes in the two inputs of
production respond to changes in TFP, such that Ac;; = ¢.Az;; and Ak;; = ¢rAz;;. Then:

Ay = Az + BepeAziy + BrorAziy (10)

where y and z denote the log of sales and TFPS, respectively. For simplicity, we set
¢r = 0. We take Az;; from the data and . as the average estimate from our baseline
sample. With this we can back out Ay;, from Equation (10) for three examples for ¢, and
report the relevant moments, with their empirical counterparts, in Table A.2.2

In the first model, ¢, is the same for all firms and equal to 1, regardless of the sign and
the size of Az. This framework is consistent with the fact that the dispersion of sales growth
is higher than for productivity growth, as long as S.¢. > 0. With constant responsiveness,
however, the Crow-Siddiqui measure of TFP growth is exactly the same as the one for sales
growth. This is at odds with our empirical findings, not just in the entire sample, but also
conditional on each quintile of sales.

In order to qualitatively match the fact that productivity growth displays heavy-tailed
events more often than sales growth, we consider two alternative structures for ¢.. We assume
a flexible dependence of this sensitivity to productivity shocks, such that ¢, = v,€72/*%. Since
the conditional skewness of sales changes is close to zero for nearly all quantiles of firm sales,
we maintain a symmetric structure of ¢., but our reasoning can easily be extended to loadings
vo that differ by the sign of productivity shocks. When 7, < 0, firms adjust their variable
input ¢ increasingly less as the productivity change becomes of larger magnitude; we label
this case decaying response. As shown in Table A.2, choosing v; = 1 and v, = —1 allows
us to qualitatively match what we observe in the data. Not only sales growth remains more
dispersed than productivity growth, but it also has a smaller Crow-Siddiqui kurtosis. Not
surprisingly, the increasing response features the opposite, and counterfactual, pattern.

This simple exercise suggests that not only firms face non-Gaussian and heavy-tailed
fundamental shocks, but they also most likely respond to them by adjusting inputs with
double exponential responsiveness. Our suggestive evidence is inconsistent with a simple,
frictionless, model in which firms choose labor by setting the marginal product equal to an

aggregate wage. That framework would be akin the ”constant response” model presented

2In this example we consider all firms, but the intuition can be tailored to each of the quintile-specific
result previously shown.
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Table A.2: Shocks vs responsiveness

Standard Deviation Kurtosis

Sales TFP ratio | Sales TFP ratio

Data 049 044 1.11 | 721 10.71 0.67
Constant response 0.74 0.44 1.68 | 10.71 10.71 1.00
Decaying response 045 044 102 | 894 10.71 0.83
Increasing response 31.80 0.44 7218 | 17.64 10.71 1.65

Notes: Baseline sample of manufacturing firms as described in Section 2. In the first row, Sales and TFP refer to log changes
in residualized sales and TFP, as described in the text. The last three rows use empirical TFP growth — which is hence the
same across models — and obtain sales growth by fitting Equation (10) with different parameter values as discussed in the text.

Kurtosis is quantile-based (Crow-Siddiqui).

in Table A.2. Moreover, that model predicts that employment is a convex function of TFP.
In contrast, our findings suggest that not only employment is likely a concave function of
fundamental shocks, but also that the log of employment is concave in the log of TFP.? The
investigation of the exact source of these relationships is beyond the scope of this paper and
the findings of Table A.2 should be treated as suggestive. However, we speculate that this
behavior can be seen as broadly consistent with various economic models of firm behavior.
For example, hiring costs may limit the extent to which firms are able to reap the benefits
of large productivity shocks, reducing their ability to hire more workers. Financial frictions,
especially of the type directly constraining labor inputs, could also generate a similar pattern.
These frictions are likely to be relevant for small firms: in line with this, these firms display
the largest kurtosis gap. On the way down, firing costs would also be consistent with this
behavior. Looking back at earlier results, this would rationalize why large firms are more
likely to face negative tail risk in productivity, but are able to absorb those and thus face

symmetric changes in sales.

D Computational Appendix

We follow Arellano et al. (2017) and Arellano et al. (2021) to estimate the nonlinear hidden
quantile model. To do so, we use a stochastic EM algorithm that consists of two steps: 1)
drawing the latent components of the model (7;; and €;;), 2) updating the model parameters

given the latent draws. To perform step 1), we follow Arellano et al. (2021) and use a

3In many models of household behavior, such as Carroll and Kimball (1996), consumption is a concave
function of wealth, implying that dollar-for-dollar MPCs fall with the size of a transitory income shock. Our
findings suggest that a similar pattern may apply to firms too, and even to growth rates of employment.

16



Sequential Monte-Carlo (SMC) sampling method.? The simulation step is run in parallel
across firms to simplify the estimation of the model with unbalanced data. For step 2), as in
Arellano et al. (2017), we update the parameters using quantile regressions, after modelling
all conditional quantile functions as linear quantile specifications at a grid of 11 equidistant
percentiles. For additional details, see Arellano et al. (2017) and Arellano et al. (2021).

We estimate the 5 models described in Section 5.2 on the baseline sample of manufac-
turing firms, using residualized and detrended log TFP as discussed in the main body. The
parameters for the AR(1) models — with and without transitory shocks — are estimated by
minimizing the distance between the theoretical autocovariances generated by the model and
the empirical autocovariances of productivity. We use an identity matrix. We repeat the esti-
mation for 100 initial conditions and keep the estimated parameters associated with the best
goodness of fit (the sum of squared deviations). For model (III), the one that only features
nonlinear persistence, we follow Arellano et al. (2017) and estimate quantile autoregressions
of residualized log TFP, specifying quantile functions as third-order Hermite polynomials.
Model (V) is estimated as described above; model (IV) follows the same structure, adjusting
the log-likelihood to assume that transitory shocks follow a Gaussian distribution.

The simulations in Section 5.2 work as follows, using the estimated parameters. We start
from the firm’s first empirical observation. We also follow the data in the firm-specific spells
— i.e., how long a firm remains in operation. Each model is simulated 100 times. Out-of-
sample simulations of models III-V can result in explosive behavior of some firms.> To deal
with this, we restrict the support of model-simulated log TFP to be the same as in the data:
any firm that hits the bounds in the simulation is dropped. This amounts to 0.7% for model
V and 12.3% for model IV of all firms in the sample. In terms of firm—year observations, it
accounts for 1.9% for model IV but less than 0.1% of all observations for the other models.®
We compute the volatility over time and the one-year autocorrelation of aggregate TFP
growth rates in each of the simulated panel dataset, for each model, and report the medians

across simulations in Table 2 of Section 5.2.

4The use of this sampler instead of the Metropolis-Hastings employed by Arellano et al. (2017) is justified
by numerical stability.

5An alternative to out-of-sample simulations is to use the SMC sampling method in the simulations, as
in ABBL. This latter approach delivers a qualitative similar ordering across models, and a much better fit
to the data for model (V). As such, our out-of-sample simulations can be seen as conservative.

SThese restrictions can find justification through a procedure that accounts for path dependence in
simulating firms’ growth. This procedure would assign a history-dependent probability of converging towards
a long-run firm-value. Given our data, we expect the probability of diverging to decrease, with history-
dependent rates, as firms keep growing.
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E Additional estimation results

Departures from normality and the ability of the model to match the data can be visual-
ized looking at how conditional moments of the distribution of changes of log productivity
residuals vary with firm sales. Figures A.15a, A.15b, and A.15c report the patterns of
conditional dispersion, skewness, and kurtosis in the data, as documented in Section 2.2,
and in the model. The model does a very good job at matching conditional dispersion and
kurtosis, and a fair job with regard to skewness too, although it misses the mildly negative
skewness for productive firms. Figure A.16 plots the histogram of the persistent and transi-
tory components of log productivity as estimated by the model discussed in Section 3. We
then obtain the histograms of the estimated components of log productivity by past quantiles
of the distribution of simulated TFP and report them for the top and bottom quantiles in
Figure A.17.

In Figure A.18, we show the evolution of TFP and its estimated persistent component
for a specific large and productive firm, Apple. In 2006, Apple’s productivity grew as much
as in the top 5% of all firms in the sample for that year. The model estimates that this
productivity boost was mostly driven by the persistent component and led to a subsequent
sustained productivity growth. In 2012, Apple’s productivity dropped sharply.” Again, the
model assigns that even to the persistent component. In line with the results showed in
Figure 6¢ of Section 3, the model suggests that negative shocks hitting productive firms
will erase part of the persistence of histories. Indeed, Apple’s productivity growth has been

sluggish thereafter.

"That productivity change was in the bottom 5% of the distribution for that year.

18



Figure A.15: Conditional moments of residualized log TFP: model vs data
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Figure A.16: Distribution of productivity components in the model
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Figure A.17: Distribution of productivity components in the model by top and bottom

quantiles of TFP
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Figure A.18: Evolution of productivity components for Apple
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F

Source of firm-level shocks

In this section we report details on variable construction and definition, as well as all the

empirical results described in Section 4.

F.1 Data construction

1.

Financial constraint measures (all defined as in Farre-Mensa and Ljungqvist (2016)).
We consider these measures in contemporaneous “levels”, as well as in changes (e.g.,
whether a firm categorized as financially unconstrained according to a metric in the

previous year becomes constrained this year).

e Nondividend payers.
e K7 index, constructed following Lamont et al. (2001).

e WW index, constructed following Whited and Wu (2006) and Hennessy and
Whited (2007).

e HP index, constructed following Hadlock and Pierce (2010).

Firm-level financial characteristics are the following, also constructed as in Farre-Mensa
and Ljungqvist (2016): (i) the ratio of cash and short-term investments (che) to total
assets, (ii) an indicator for any long-term debt, (ii) share of short-term debt, (iv)
long-term book leverage, (v) total book leverage, (vi) return on assets (ROA), (vi)
a profitable dummy taking 1 if ROA is positive and zero otherwise, (vi) investment
opportunities as in Frank and Goyal (2009). Given extreme values, we winsorize (iv),
(v), and (vi) at the top 99.5 percentile.

Firm-level characteristics are: (i) age (measured as the years in sample), (ii) Research
and Development Expense over total assets (winsorized at the top 99.5 percentile), (iii)
NAICS 3-digit industry, (iv) acquisitions over total assets (winsorized at the top 99.5

percentile).

Competitors’ performance. For each year and NAICS 4-digit industry, we construct
average (residualized) sales and TFP growth rates, excluding the own firm. We also

construct growth rates of averages, for the same cells and also excluding own firms.

We use the following variables from Arora et al. (2019): (i) growth rates in the number
of patents, (ii) growth rates in the number of publications, (iii) the log of 1 + the

number of new publications in a given year, (iv) the log of 1 + the number of new
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patents in a given year, (v) an indicator for whether it is the first year in which the
firm obtained a patent. Growth rates in (i) and (ii) are symmetric as introduced by
Davis et al. (2006), thus dividing the change between ¢ and ¢t — 1 between the average

level across both periods.

6. Finally, we consider the log of employment, total assets, cost of goods sold, materials

(defined as in Keller and Yeaple (2009)), and capital, and their changes over time.

F.2 Drivers of firm-level shocks

Tables A.3-A.6 show the adjusted R? for the various dependent variables considered in
Section 4, for different sets of predictors described in the table notes. Since matching patent
variables results in a loss of observations, the analysis with patent variables is done separately
in columns (9)-(11).

Table A.3: R? of predictors: sales growth

m @ 6B @

—
ot
=
—
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=
—
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—
—
&)
=z

(9 (0 an

Financial constraints v v v v v v
Financial variables v v v v v v
Firm characteristics v v v v v v
Competitors v v v v v v
Production inputs v v v
Production inputs (changes) v v
Optimal Lasso v

Patent variables v v v
N 27651 44496 41850 506046 28402 25535 25203 24336 24496 17387 15238

Sales growth 0.005 0.037 0.019 0.011 0.068 0.246 0.601 0.596 0.002 0.059 0.543
Bottom 1%  0.011 0.040 0.022 0.000 0.044 0.059 0.127 0.114 0.005 0.050 0.100
Top 1% 0.014 0.023 0.038 0.001 0.037 0.035 0.075 0.065 0.005 0.039 0.064
Either tail ~ 0.023 0.057 0.059 0.001 0.073 0.052 0.050 0.041 0.010 0.084 0.054

adj. R?

Notes: Baseline sample of manufacturing firms. Dependent variables: residualized sales growth, indicators for residualized sales
growth in the bottom 1%, top 1%, either top or bottom 1%. Estimation run with standard errors robust to heteroskedasticity.
“Financial constraints” are defined in item 1 of Appendix Section F.1. We consider these measures in contemporaneous “levels”,
as well as in changes (e.g., whether a firm categorized as financially unconstrained according to a metric in the previous year
becomes constrained this year). “Financial variables” are defined in item 2 of the same appendix. “Firm characteristics” are
defined in item 3. “Competitors” in item 4. “Production inputs” in item 6. Column (5) also contains year dummies. “Optimal
Lasso” are the variables chosen by the Lasso estimation shown in Table A.8, at the optimal regularization parameter identified

by cross-validation. “Patent variables” are defined in item 5 of Appendix Section F.1.

Figure A.20 shows the LASSO coefficients for a classification exercise predicting whether
an observation is in the top 1% of the TFP growth distribution, at different levels of the
regularization parameter A\. As ) increases, a heavier shrinkage is applied to the coefficient
estimates, which are progressively forced to zero. Hence, LASSO performs variable selection.

A variable is a better predictor the higher X is required to shrink its coefficient to zero. The
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Table A.4: R? of predictors: TFP growth
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Financial constraints v

Financial variables v

Firm characteristics v
Competitors v
Production inputs

Production inputs (changes)

Optimal Lasso v

Patent variables v v v

N 47651 44496 41850 56946 28402 25535 25293 24336 24496 17387 15238

TFP growth 0.003 0.009 0.005 0.002 0.020 0.116 0.194 0.126 0.000 0.023 0.165
Bottom 1%  0.017 0.054 0.046 0.001 0.071 0.036 0.065 0.043 0.008 0.082 0.078
Top 1% 0.018 0.040 0.050 0.002 0.059 0.115 0.028 0.013 0.009 0.067 0.029
Either tail ~ 0.035 0.092 0.098 0.002 0.128 0.137 0.071 0.036 0.017 0.147 0.094

SNENENEN
SNENENENEN
ANENENENENRY

SNRENENEN
N NN

adj. R?

Notes: Dependent variables: residualized TFP growth, indicators for residualized TFP growth in the bottom 1%, top 1%,
either top or bottom 1%. Same notes of Table A.3 for variable definition.

Table A.5: R? of predictors: changes in persistent component (An)

H @ 6B @ 6 ® (M @ (9 (@10) (11
Financial constraints v v v v v v
Financial variables v v v v v v
Firm characteristics v v v v v v
Competitors v v v v v v
Production inputs v v v
Production inputs (changes) v v
Optimal Lasso v
Patent variables v v v
N 47651 44496 41850 56946 28402 25535 25293 24336 24496 17387 15238
An 0.003 0.006 0.004 0.002 0.015 0.100 0.138 0.095 0.000 0.018 0.108

Bottom 1% 0.017 0.054 0.046 0.001 0.072 0.039 0.066 0.048 0.009 0.085 0.095
Top 1% 0.018 0.040 0.052 0.002 0.059 0.113 0.026 0.013 0.009 0.068 0.029
Either tail  0.035 0.092 0.099 0.002 0.129 0.133 0.071 0.041 0.018 0.150 0.104

adj. R?

Notes: Dependent variables: first differences in 7 simulated from model estimates, indicators for the bottom 1%, top 1%, either

top or bottom 1%. Same notes of Table A.3 for variable definition.

vertical dashed line denotes the optimal A selected via cross-validation.

Figure A.21 shows the results of a random forest, with the same dependent variable as in
Figure A.20, but this time in the sample matched with patent data. We report two metrics
that determine the variables’ relative importance in predicting the dependent variable: in-
crease in accuracy and Gini index. We show the 10 best predictors according to the increase
in accuracy.

Table A.8 shows, for each dependent variable, the predictors selected at the optimal A
and the associated LASSO coefficients. When the coefficient is not reported, it means that
the variable has not been selected at the optimal A. Note that the LASSO estimation we

run standardizes all variables so that they are on the same scale.
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Table A.6: R? of predictors: changes in transitory component (Ae)

H @ 6 @ 6 ©’, M ® (9 (10 @11
Financial constraints v v v v v v
Financial variables v v v v v v
Firm characteristics v v v v v v
Competitors v v v v v v
Production inputs v v v
Production inputs (changes) v v

Optimal Lasso v

Patent variables v v v

N 47651 44496 41850 56946 28402 25535 25293 24336 24496 17387 15238

Ae 0.003 0.012 0.002 0.006 0.030 0.046 0.083 0.052 0.000 0.035 0.099

adj. R? Bottom 1% 0.005 0.008 0.003 -0.000 0.009 0.012 0.020 0.012 0.001 0.007 0.020

' Top 1% 0.005 0.003 0.003 0.001 0.008 0.015 0.020 0.017 0.001 0.008 0.021

Either tail  0.009 0.009 0.006 0.000 0.012 0.019 0.019 0.018 0.001 0.010 0.019

Notes: Dependent variables: first differences in € simulated from model estimates, indicators for the bottom 1%, top 1%, either

top or bottom 1%. Same notes of Table A.3 for variable definition.

Figure A.19: Quantile

R&D
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L

regression: TFP growth on R&D

R&D
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(a) TFP growth
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(b) Transitory component (Ae)
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Notes: Baseline sample of manufacturing firms. Quantile regressions of residualized TFP growth (left panel) and change in its

transitory component (right panel) on share of R&D expenses as defined in the text. Bootstrapped standard errors.
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Figure A.20: LASSO estimates: indicator for top 1% TFP growth

10-Toid cross-validation choice

Coefficients

-1 -10 -9 -8 -7 -6 -5

Log Lambda

Notes: Dependent variable: indicator for TFP growth in the top 1% of the distribution. Same notes of Table A.3 for variable

definition.
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Figure A.21: Random forest variable importance: indicator for top 1% TFP growth

Mean Decrease Gini

Notes: Dependent variable: indicator for TFP growth in the bottom 1% of the distribution. Same notes of Table A.3 for
variable definition. Sample with patents. We report only the 10 most important variables ranked according to the mean

decreases in accuracy.
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Table A.7: LASSO predictors: sales and TFP

Sales growth TFP growth

All Bottom 1% Top 1% Either tail All Bottom 1% Top 1% Either tail
Financial constraints:
HPbecomingconstrained -0.3823 -0.1218
HPconstrained 0.0044 0.1701 0.0038
HPremainingconstrained -0.001 -0.0005 0.0375
KZbecomingconstrained 0.0176 0.0143
KZbecomingunconstrained — -0.0072 -0.0073
KZconstrained 0.0162 0.0416 0.0774 0.0121
KZremainingunconstrained -0.2096
KZunconstrained -0.0074 -0.0045
WWhbecomingunconstrained 0.0004 0.6824
WWconstrained 0.0133 0.0144
WWremainingconstrained -0.1782
WWunconstrained 0.2096
Financial variables:
ROA 0.0117 -0.0289 -0.0204 0.0095 -0.0069 0.0012
any long-term debt -0.2136  -0.0006 -0.016 -0.0469
cashratio 0.0082 0.4273 0.5646 1.117 0.011 2.9157 0.5565 2.2422
investment opportunities 0.0062 0.0089 0.0057 0.0011 0.0054 0.0062
leverage 0.1295 0.1106 -0.0008 0.0022 -0.0567
profitable 0.0531 -0.5394 -0.3441 -0.9373 0.0504 -1.1987 -0.8061
Firm characteristics:
acquisitions -0.0011 2.9846
age -0.0002 -0.0049
R&D 0.0159 0.0359 1.23 0.3021
any industry dummy v v v v v v v
Competitors:
industry avg sales growth 0.0267 -0.4035
industry avg TFP growth 0.0119 0.0718 -0.064 -0.0634
industry growth avg sales -0.1989
industry growth avg TFP 0.0175 0.0666
Production inputs:
total assets growth 0.0897 -0.0802 0.0187 0.0838 -0.6644 -0.2155
COGS growth 0.5197 -2.2842 1.6088 -0.2412  -0.0832 0.6327 0.4462
employment growth 0.1234 -0.5568 0.7009 -0.1646 0.1052 -0.7276 0.1477 -0.2577
capital stock (log) -0.0021
COGS (log) -0.2949 -0.5151 -0.5019 -0.5969
lagged employment (log) -0.0687
materials growth 0.2012 -0.7434 0.9287 0.1638 0.308
any year dummy v v v v v

Notes: For each column, the table reports the LASSO coefficients when the variable is selected at the optimal regularization
parameter A\. Same notes of Table A.3 for variable definition. For compactness, we do not report the coefficients for the
specific year and industry dummies that are selected. Sample that is not merged with patents (N = 25,293). When we do the
merge, the following variables currently in the table are not selected: HPremainingconstrained, WWremainingconstrained, and

WWunconstrained. In contrast, long-term leverage is selected.
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Table A.8: LASSO predictors: transitory and persistent shocks

An Ae

All Bottom 1% Top 1% Either tail ~ All  Bottom 1% Top 1% Either tail
Financial constraints:
HPbecomingconstrained -0.4473
HPconstrained 0.0051
HPremainingconstrained -0.0062 0.0101 -0.0006
KZbecomingconstrained 0.0076 0.0058 0.7789 0.3891
KZbecomingunconstrained  -0.0078 -0.0007 -0.0614
KZconstrained 0.0086 0.0043 0.0043
KZremainingconstrained 0.012 -0.0136 -0.0687
KZremainingunconstrained  -0.0008
KZunconstrained -0.0053 -0.0001 0.1633 0.1827
WWhbecomingconstrained -0.0082 0.0014
WWhecomingunconstrained 0.6481 -0.005 0.087
WWconstrained 0.009 0.067 0.0056 0.2593
WWremainingunconstrained -0.0011
WWunconstrained -0.001
nondividend payer 0.1442 0.7453 0.7412
Financial variables:
ROA 0.0118 -0.0305 0.0239 -0.0236
any long-term debt -0.0036 -0.0494 -0.0889 -0.0201
cashratio 0.0028 2.8243 0.7351 1.9517 0.0025 0.2316 1.1801 0.6679
investment opportunities 0.0053 0.0028 0.0008 0.0244 0.0081
leverage -0.0034 0.03 -0.0711 -0.0074
profitable 0.0365 -1.3985 -0.0073 -0.7241 0.0166 -1.3385 -0.7299
Firm characteristics:
acquisitions -0.0461 0.0237 1.8569 1.3577
age -0.0002 0 -0.0061
R&D 0.0371 1.3278 0.4885 0.0002
any industry dummy v v v v v
Competitors:
industry avg sales growth -0.0004 -0.6577 0.0072
industry avg TFP growth 0.0565 0.0079 0.237
industry growth avg sales -0.0023 0.0042 0.6079 0.2308
industry growth avg TFP 0.0303 0.0276
Production inputs:
total assets growth 0.0714 -0.9041 -0.332 0.0128 0.5302 0.2798
COGS growth -0.0873 0.6369 0.4611 -0.0007 -0.292 -0.0296
employment growth 0.0938 -0.6725 0.3649 -0.1615 0.0136 -0.0548 0.4654
capital stock (log) -0.0029
materials (log) 0.0008
COGS (log) -0.4686 -0.5211 -0.5324
lagged employment (log) 0 -0.0898 -0.092
materials growth 0.1485 0.539 0.0181 -0.0708 0.6975 0.0807
any year dummy v v v v v v

Notes: For each column, the table reports the LASSO coefficients when the variable is selected at the optimal regularization
parameter A. Same notes of Table A.3 for variable definition. Dependent variables: first differences in 1 and € simulated from
model estimates, indicators for the bottom 1%, top 1%, either top or bottom 1%. Sample that is not merged with patents
(N = 25,293). When we do the merge, the following variables currently in the table are not selected: Kzremainingunconstrained,

WWhbecomingconstrained, WWremainingunconstrained. In contrast, the growth rate in patents and in publications, and dummy

for first patent, are selected.
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G Analytical appendix to Section 5

G.1 Example of how granular shocks affect the firm-size distribu-
tion

In this section, we derive the ¢ + 1 firm-size distribution as a function of initial sales, S;y and
the sequence of shocks over time specifying a model for sales that decompose transitory and
persistent shocks with linear persistence. Specifically, we consider a model for log sales of

firm ¢ at time t, 0;, as follows:

Ot = €5t + MNit

Nit = PNit—1 + Vit

where €; is the transitory shock and 7; is the persistent shock, which follows an AR(1)
process with linear persistence. We then get that St%t_st = U1 is well approximated by
Ojt+1 — Ojt = €jp41 — € + 77it<p - 1) + viry1 and, thus, Si1 = Sio Hézo(l + Uij—i—l) is well

approximated by:

t

Sio [ [(1+ i1 = €5 + 155 (p = 1) + vig41) (11)
=0
t J
=S || (1 + g1 — € T o(p — Vo7 + (0= 1) [ [ o7 Fva + Uij+1>
J=0 k=1

Assuming t = 0,
Si1 =~ Sio(1+ €1 — €0 +mio(p — 1) + vi1)

If €1, €0, Mio, Vi1, Sip are all independent random variables, then S;; will be as heavy tailed
as the heavier-tailed distribution among those of all the above variables.®

For t > 1, then square and product of the innovations appear in the factor Hj‘:o(l +

8For the negative terms appearing in the expression in parentheses, notice that multiplying a random
variable X, regularly varying at infinity with index «, by a negative constant c preserves the regular variation
with the same index a but shifts the focus from the upper tail of X to its lower tail.
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€ij+1 — €ij + 1i;(p — 1) + v;541) in Equation (11). For instance, assuming ¢ =1,

Sia ~ Sio(1+ €1 — €0 +mio(p — 1) +vi) (1 + €2 — €1 + miop(p — 1) + (p — 1)vir + v42)
= Sio(1 4 €2+ mio(p — 1)p+ (p — Dvir + viz + €162 — €51 + €amio(p — 1)p + € (p — D)vir + visenr
— €io — €in€ia + €€ — €ioNio(p — 1)p — €io(p — 1)vix — €igviz
+mi0(p = 1) + €iamio(p — 1) — eamio(p — 1) +mig(p — 1)*p + mio(p — 1)*via + 1io(p — 1)viz
+ vyt + Vin€in — Vi€ + vamio(p — Dp + (p — 1)v; + viv)

G.2 Insights on the effects of the model’s features on the aggre-

gates

Consider the following linear AR(1) model for the TFP of a firm i at time ¢, withi =1, ..., N:
Oit+1 = PO;it + Vitt+1, Where innovations v are normally distributed with variance af. Define
the aggregated TFP G, = Y i 0it— i 0i1—1 = .,(0i1—0i4—1). We are interested in assessing
the importance of p and ¢2 on the variance and autocorrelation of Gy. Let us assume that
0;+ are i.i.d., which is an unappealing assumption that we make here only to illustrate the

mechanisms. Let us also assume that p < 1. For the variance of Gy, we get:

Var(ét) =Var (Z(Oi»t = oi,t1)> = Z Var(ois — 0i1-1)

i

0.2
= S Var (- P ) =N (1= P2 o)
o
I+p

For the first order autocovariance of G;, we get:

COU(én éz%l) = Cov ((Z(Oi,t - Oi,tl)) ) (Z(Oi,tl - 0i,t2)>)

% %

= NCov (—(1— pposes — (L= pWars + 1)) (—(1 = P)ouss + via )
_ v (=0 =poy
_N( 1+p )

Second, we consider a model that also features a Gaussian transitory component as follows:

Oit+1 = Mit+1 + Eigp1, Where 1,441 = pniy + Vg1, and innovations v and e are normally

2

2 and o2. Under the same assumptions considered

distributed with respective variances o
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above, it is possible to show that now:

Var(ét) = Var (Z(Oi,t - 0z’,t—1>> = Z Var(ois — 0j4-1)

= Z Var (—(1 = p)nig—1 + Vig +€ip — €ip—1)

2
:2N< v +o—§)
IL+p

Thus, as expected ¢ increases the volatility of G;. As for the first order autocovariance of

Gt, we now get:

Cov(Gy, Gy 1) = Cov ((Z(Oi,t - Oi,t—1)> : (Z(Oi,t—l - Oi,t—2)>>

N(<1 - (1 p)o? )
= — —— —(1—p)o, —o:

1—p?
- N —(1—p)0§_02
1+p c

Thus, as expected e decreases the autocorrelation of Gj.
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