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Abstract 

We study panel data regression models when the shocks of interest are aggregate and possibly small 

relative to idiosyncratic noise. This speaks to a large empirical literature that targets impulse responses via 

panel local projections. We show how to interpret the estimated coefficients when units have 

heterogeneous responses and how to obtain valid standard errors and confidence intervals. A simple 

recipe leads to robust inference: including lags as controls and then clustering at the time level. This 

strategy is valid under general error dynamics and uniformly over the degree of signal-to-noise of macro 

shocks. 
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1 Introduction

Applied macroeconomists are increasingly interested in empirical estimates of the

transmission of aggregate uncertainty to individual outcomes, often in the form of

impulse responses.

A popular approach is to formulate estimating equations of the form

Yi,t+h = β(h)siXt + controls + vh,it, (1)

where Yit is a micro outcome for unit i (i = 1, . . . ,N) at time t (t = 1, . . . ,T), such as

household income or firm sales, and Xt an observed macro shock of interest, such

as a monetary policy or oil supply shock. Shocks are often interacted with unit-

level covariates si to document heterogeneity in transmission along observables.

Estimates β̂(h) of the response at horizon h are then obtained via least squares; a

panel local projections version of Jordà (2005).

Despite its routine application, little is known about the statistical properties of

β̂(h). The way standard errors are computed in the empirical literature illustrates it

well: in our own survey of almost 50 recent papers, around half compute two-way

clustered standard errors, one-third cluster within units only, and many others

resort to Driscoll and Kraay (1998). This reflects the vastly different ways in which

researchers perceive the nature of shocks, the role of each dimension of the panel

for precision, and the importance of aggregate variation in the data.

In this paper, we provide the first treatment of estimation and inference for this

problem. We show how to interpret β̂(h) when impulse-response heterogeneity is

unrestricted and propose standard errors and confidence intervals that are easy to

compute and robust to the signal-to-noise of macro shocks in the microdata. As a

result, a very simple recipe for inference emerges: clustering standard errors at the

time level and ex-ante including sufficient lags as controls. We refer to this strategy

as time-clustered lag-augmented heteroskedasticity-robust (t-LAHR) inference.

We establish our results in a comprehensive setup that features observed and

unobserved macro and micro shocks, cross-sectional heterogeneity in responses,

general forms of serial dependence in outcomes, and unrestricted signal-to-noise.

We first show that β̂(h) recovers the slope coefficient of a population linear projection
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of unit-specific impulse responses on characteristics si, thereby formalizing what

practitioners have in mind when including interactions in equation (1). If si = 1, the

estimand boils down to the average response in the population. Notably, because

we place no restrictions on the underlying impulse-response heterogeneity or si,

our characterization of the estimand is in effect nonparametric.1

Signal-to-noise. The degree of signal-to-noise of macro shocks in the microdata

is a crucial parameter of the problem. Here, it is common shocks to all units that

drives identification, and how sizable they are relative to micro shocks determines

both the strength of identifying variation and the extent of unaccounted-for spatial

dependence.2 The notion of different signal regimes also reflects the scope of em-

pirical work, which takes interest in atomistic and granular agents, administrative

and narrow datasets, unit-specific and aggregate regression controls, etc.

Hence, one of our key contributions is to introduce a novel asymptotic framework

where the signal value of aggregates may be arbitrarily low (or high) in the limit.

We achieve this by indexing the relative standard deviation of macro to micro

shocks by a parameter κ that can drift with the sample size. This device allows

for a range of data generating processes (DGPs) in which estimation uncertainty

is dominated by micro-level terms, a combination of micro and macro errors, or

aggregate components only.3 On the contrary, standard asymptotic plans whereκ is

fixed only capture the latter and ignore idiosyncratic shocks, potentially leading to

poor approximations in small samples. It is clear then that the nature of estimation

error depends on κ and the question is whether inference procedures are robust to

1We discuss extensions to (exogenous) time-varying characteristics sit in Section 3 (Remark 7).
2It is immediate that if si = 1 in equation (1), including time fixed effects causes collinearity. If

si varies over units, for time indicators to remove all additional aggregate variation one would need

the untenable assumption that only impulse responses to Xt at horizon h are heterogeneous. In our

exposition, we always allow for time indicators as controls when si displays cross-sectional variation.
3Our approach also resonates with the renewed interest on the potential for unit-level shocks to

explain aggregate fluctuations, as in Gabaix (2011) and subsequent literature. Our device to obtain

non-negligible micro errors is closer to Jovanovic (1987) in that we rely on scaling micro variation up

rather than on fat-tailed distributions. However, we conjecture that similar inference results can be

obtained in the latter under appropriate regularity conditions.
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different macro signal regimes. Our main result is that t-LAHR inference is uniformly

valid over κ, in other words, t-LAHR confidence intervals have correct asymptotic

coverage for the (nonparametric) local projection estimand uniformly over κ.

Inference. The key assumption in our framework is the availability of an observed

macro shock Xt. Our notion of shocks is that of mean independent innovations with

respect to both its own lags and leads and other shocks, in line with the time series

literature on local projections inference (Stock and Watson, 2018; Montiel Olea and

Plagborg-Møller, 2021). We first focus on the case where the shock of interest is

observed — an assumption prevalent in most empirical applications — and then

consider settings where the shock of interest is recoverable (spanned by Xt and its

lags) or contaminated with measurement error but a proxy is available (as in local

projection-instrumental variable estimators; LP-IV for short).4

The macro and shock nature of Xt delivers the following observation which serves

as a guiding principle throughout the paper: panel local projections with macro

shocks are equivalent to synthetic time series local projections with an appropriately

aggregated dependent variable. This is true even if shocks interact with covariates

si and if unit and time effects are included. Therefore, aggregating the microdata

by collapsing the cross-sectional dimension of the panel and treating it as a time

series delivers valid inference for any κ.5 This is precisely what t-LAHR inference

does, since time-level clustering in the panel problem and heteroskedasticity-robust

inference in the synthetic time series problem are essentially equivalent.

The macro and shock nature of Xt also clarifies the role of lag augmentation. In

a panel local projection that controls for p lags of siXt, the regression scores (the

product of shocks and residuals) are nearly uncorrelated even if residuals are not.

4Examples of popular identification methods include narrative approaches (as in Crouzet and Mehro-

tra, 2020, for monetary policy shocks), high-frequency identification (as in Känzig, 2021, for oil supply

shocks) or a combination of Cholesky/structural VAR restrictions (as in Drechsel, 2023, for firm invest-

ment shocks). See Ramey (2016, Section 2.3) for a review of identification methods in macroeconometrics.
5This synthetic time series representation is also illustrative of the fact that the concentration rate of

the estimation error is at most T−1/2, even in situations where N ≫ T. This suggests caution regarding the

conventional wisdom in many empirical applications that a larger cross-sectional dimension somehow

compensates for a shorter time series.

4



Specifically, they are a moving average of order h where the first p autocovariances

are zero and the remaining ones are independent of κ. This has two major implica-

tions. First, it confers a double layer of simplicity to inference: up to horizon h ≤ p,

there is no need for unit-level clustering or heteroskedasticity and autocorrelation

robust (HAR) approaches to deal with serial dependence. Second, it explains why

t-LAHR inference might have only small coverage distortions even for horizons

exceeding p: these distortions depend on the size of the autocorrelation coefficients

of the score, which are small in low-signal environments. In fact, if the DGP is

well approximated by a low-order vector autoregression (VAR), we prove t-LAHR

inference is uniformly valid over both κ and h ∝ T, a result reminiscent of those in

Montiel Olea and Plagborg-Møller (2021) for time series local projections.

We complement our theoretical results with simulations for realistic designs and

sample sizes, allowing for moderately long horizons and substantial persistence in

micro shocks. We study the performance of a battery of approaches, including an

alternative to t-LAHR that substitutes lag augmentation with HAR inference, and

incorporating small-sample refinements (Müller, 2004; Imbens and Kolesár, 2016;

Lazarus, Lewis, Stock, and Watson, 2018). We find that t-LAHR inference shows

remarkable performance relative to all other competitors, particularly in low-signal

environments, in near non-stationary scenarios, and over moderate horizons even

if we do not impose a VAR on outcomes.6 In practice, we recommend to supplement

t-LAHR inference (controlling for a reasonable number of lags of both outcome and

shock variables) with the refinement proposed by Imbens and Kolesár (2016).

Empirical survey and illustration. We reviewed a large body of empirical work

that precedes this paper. The typical application uses administrative data for firms,

tracks units at the quarterly or annual frequency for a limited number of periods,

and estimates impulse responses to monetary policy shocks via local projections.

6It is known that ad-hoc parameter choices and small-sample biases in sample autocovariances

contribute to the subpar relative performance of HAR estimators (Herbst and Johansenn, 2023).
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Most applications include interactions of the form siXt and both unit and time fixed

effects, but vary widely in the number and nature of additional controls.7

In otherwise comparable empirical designs, we document large dispersion in the

way practitioners compute standard errors: among 47 different papers, 24 compute

two-way clustered standard errors (within units and time), 15 cluster within units

only, 7 use Driscoll and Kraay (1998) and 1 clusters within time only.

These choices reflect very different views on the dominant sources of statistical

uncertainty, from ruling out serial dependence to ruling out spatial dependence;

from a suggestion that both unit-level and aggregate dynamics need to be accounted

for to an explicit stance that either of the two dominates. Often these choices are

made with little discussion or citing previous work as justification.8 Our framework

allows us to revisit them. First, off-the-shelf autocorrelation consistent methods

such as Driscoll and Kraay (1998) leave information on the table (the autocovariance

function of the regression scores is known), which comes at a cost in small samples.

Second, validity in the case where standard errors do not explicitly adjust for serial

dependence (as in two-way clustering) boils down to whether a reasonable number

of lags was included in estimation. Third, clustering within units is superfluous,

even in low-signal regimes where the size of unit-level dynamics is comparable to

that of aggregates. Fourth, clustering only within units breaks down even in the

face of small amounts of spatial dependence induced by aggregate shocks (that

is, moderate-signal environments). In fact, we offer a way to reinterpret these

7We reproduce the full list in Supplemental Appendix D which includes 47 empirical papers that

run panel regressions with macro shocks. A few focus on the case h = 0 only, but the vast majority

compute impulse responses over several horizons. The economic content of Xt is very diverse, including

fiscal policy shocks, investment shocks, TFP and innovation shocks, carbon pricing shocks, temperature

shocks, etc. In these applications, the cross-sectional dimension is usually orders of magnitude larger

than the effective time-series dimension. In our review we leave out empirical work with very small

cross-sections where entities are meaningful and a unit-by-unit treatment is feasible. Nonetheless, when

these units are pooled together, as in Fukui, Nakamura, and Steinsson (2023), our results still apply.
8The availability of a large cross-sectional dimension and the interaction of shocks with covariates

si are also often argued as sources of large gains in statistical precision, also reflecting an implicit stance

on the presence of macro shocks. We elaborate on the (im)plausibility of these notions in Remark 5.
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confidence intervals as providing valid inference for an estimand indexed to the

actual realizations of aggregate shocks during the sample period.

Finally, we illustrate our methods in an empirical exercise inspired by a booming

literature that investigates the role of financial frictions and firm heterogeneity in

the transmission of monetary policy.9 The exercise highlights the importance of the

choice of inference method, and the value of the synthetic time series representation

as a way to gain intuition about the source of identifying variation.

Related literature. Our paper contributes to various strands of the literature.

First, it relates to the time series literature on inference for local projections

(Hansen and Hodrick, 1980; Jordà, 2005; Stock and Watson, 2018; Montiel Olea and

Plagborg-Møller, 2021; Lusompa, 2023; Xu, 2023; Montiel Olea, Plagborg-Møller,

Qian, and Wolf, 2024). Relative to this literature we are (to our knowledge) the first

to deal with the panel data case with aggregate shocks.10

In a time series finite-order VAR setup, Montiel Olea and Plagborg-Møller (2021)

show the uniform validity of heteroskedasticity-robust inference on lag-augmented

local projections over the persistence in the data and horizon h. They also postulate

mean independent innovations, the same type of assumption we impose on Xt.

Our Proposition 2 (and, more generally, Section 3.3) can be interpreted as the panel

version of their results. Nonetheless, our focus is on uniformity with respect to the

macro signal-to-noise κ, which has no obvious counterpart in the time series setup,

and we derive most of our results without assuming a VAR model.

9For instance, Crouzet and Mehrotra (2020), Ottonello and Winberry (2020), Anderson and Cesa-

Bianchi (2024) and Jeenas and Lagos (2024) target impulse responses of firm investment to monetary

policy shocks interacted with external covariates si such as firm size, default risk or stock turnover.
10Our results on limited serial dependence in regression scores relate to the earlier multi-step forecast

literature (Hansen and Hodrick, 1980), which relied on including infinitely many lags to ensure that

the forecast errors have a MA(h) representation. In the local projection context, Jordà (2005) arrived

at a similar result under a finite-order VAR model while Lusompa (2023) provided a recent refor-

mulation. Instead, we exploit the orthogonality properties of macro shocks to show that the scores

have MA(h) dynamics. The distinction is reminiscent of the difference between design-based and

model-based/conditional unconfoundedness assumptions.

7



Second, we contribute to the literature on estimation and inference with aggre-

gate shocks. Using stylized models, Hahn, Kuersteiner, and Mazzocco (2020) bring

attention to the drastic consequences of drawing inferences from short panels with

aggregate uncertainty. Although our focus is on thought experiments where macro

shocks are a key source of identification, we can connect to their results by reinter-

preting confidence intervals that exploit independence across units as valid for an

approach to inference that conditions on the path of aggregate shocks.

Recent additions to this literature study regional-exposure designs where the

researcher has access to low-rank instruments of the form siXt (si are region-specific

exposures to aggregate conditions) and so the reduced-form equation looks like (1)

for h = 0. Arkhangelsky and Korovkin (2023) argue that exogenous variation comes

from the time series shock Xt and focus on threats to instrument validity, whereas

Majerovitz and Sastry (2023) consider either si or Xt as sources of identification and

suggest that inference needs to take spatial dependence into account in the latter

case. Our paper extends these ideas by giving formal inference results that cover

dynamic responses and different macro signal environments.

Third, our paper relates to the cross-sectional dependence literature that studies

models where the scores feature varying degrees of spatial dependence (Driscoll

and Kraay, 1998; Andrews, 2005; Pesaran, 2006; Gonçalves, 2011; Pakel, 2019). Our

framework falls in the polar case where the shock of interest only varies over time,

precluding solutions based on partialling out the common component from the

regressors, as in Pesaran (2006). Moreover, our uniformity result (which translates

into robustness to the degree of spatial dependence) is new to the literature.

Outline. Section 2 provides an overview of our results in a simple static model,

illustrating the role of aggregate shocks and their signal relative to micro shocks.

Section 3 presents our main inference result in a general, heterogeneous dynamic

model. Section 4 discusses a comprehensive simulation study and Section 5 the

empirical illustration. Proofs can be found in Appendix A with additional details

in the Supplemental Appendix. A Matlab code repository is available online.11

11https://github.com/TinchoAlmuzara/PanelLocalProjections.
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2 Simple model

We illustrate the main points of the paper in a simple, static regression model with

homogeneous responses. We keep the exposition simple and omit technical details

with the goal of building insights. The more general setup is studied in Section 3.

Model assumptions. We observe a micro outcome Yit and a macro shock Xt for

units i = 1, . . . ,N and over periods t = 1, . . . ,T. They are related by

Yit = β0Xt + vit,

vit = Zt + κuit,
(2)

where vit is an error term including both aggregate and idiosyncratic unobservables,

denoted Zt and uit, respectively. Here κ regulates their relative importance in the

micro data, as explained below. The goal is to estimate and do inference on β0.

This simple model is a stylized representation of an empirical setting where we

are interested in the transmission of aggregate uncertainty to individual outcomes;

the effect of Xt on Yit. Examples of the former include changes in interest rates, tax

regulations or oil prices, which might leave a mark on household consumption,

worker’s labor income or firm sales. In fact, one could entertain any combination

of macro variables and micro outcomes in these examples. When interest centers

around one aggregate variable — captured by Xt — it would be hard to ex-ante

rule out the presence of any others — embedded in Zt. This basic premise is at the

core of the our results.

We now make two sets of assumptions, later generalized in Section 3 to allow

for observable and unobservable heterogeneity, and more flexible dynamics.

Assumption S1 (Stationarity and iidness in the simple model).

(i) {Xt,Zt, {uit}
N
i=1}

T
t=1 is stationary.

(ii) {{uit}
N
i=1}

∞

t=−∞ are i.i.d. over i conditional on {Xt,Zt}
T
t=1.
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Assumption S1(i) implies Yit is stationary too. Assumption S1(ii) simply assigns

the role of inducing cross-sectional dependence in the error term vit to Zt.
12

Assumption S2 (Shocks and independence in the simple model).

(i) E
[
Xt

∣∣∣∣{Xτ}τ,t,
{
Zτ, {uiτ}

N
i=1

}T

τ=1

]
= 0.

(ii) E
[
Zt

∣∣∣∣{Zτ}τ,t,
{
Xτ, {uiτ}

N
i=1

}T

τ=1

]
= 0.

(iii) E
[
uit

∣∣∣{uiτ}τ,t,
{
Xτ,Zτ

}T
τ=1

]
= 0.

Assumption S2 implies Xt, Zt and uit are mutually unpredictable and serially

uncorrelated. Assumption S2(i) is ultimately an identification condition, whereas

S2(ii) and S2(iii) are made for symmetry. Indeed, mutual unpredictability of macro

shocks lies at the core of macroeconometrics and is typically necessary to give

structural interpretation to impulse-response calculations (see, for instance, Ramey,

2016; Stock and Watson, 2016; Plagborg-Møller and Wolf, 2021).13 Assumption S2(i)

is an empirically realistic starting point, since in the majority of applications Xt is

the (perhaps noisy) measurement of a shock.

Remark 1 (Relaxing Assumption S2). In practice, we might only observe a proxy

shock X∗t , which may be contaminated with measurement error or possess some

residual autocorrelation structure, say X∗t =
∑k
ℓ=1 αℓX

∗

t−ℓ + Xt for known k < ∞.

These cases can be handled by treating X∗t as an instrument — a panel version

of the LP-IV estimator (Stock and Watson, 2018, Section 1.3), which we study in

Section 3.4 — or by including lags of X∗t as controls, see also Section 3.3.

12Both assumptions can be relaxed; we briefly discuss departures from S1(i) in Section 3 and 4.

Allowing for weak spatial dependence in uit in place of S1(ii) is also possible with minor modifications.
13Mean independence assumptions with respect to past and future innovations are a slight strength-

ening of the more standard martingale difference assumptions, and are convenient in representations

where both leads and lags of the variable might enter the model, cf. Montiel Olea and Plagborg-Møller

(2021, Assumption 1) in a similar context of local projection inference. This still allows for dynamics on

the second- or higher-order moments given the paths of other shocks. It permits that, say, monetary,

fiscal or oil supply shocks (Xt,Zt) increase the variance of household-level income (Yit) via higher order

dynamics in uit.
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Estimation and inference. A natural estimator of β0 is pooled least squares,

β̂ =

∑N
i=1

∑T
t=1 XtYit∑N

i=1
∑T

t=1 X2
t

=

∑T
t=1 Xt

(
N−1 ∑N

i=1 Yit

)
∑T

t=1 X2
t

,

which is also a panel local projection (LP) estimator at horizon h = 0 and the esti-

mator in a time series regression involving the synthetic outcome Ŷt = N−1 ∑N
i=1 Yit

and Xt. The double nature of β̂ as panel and time series estimator arises naturally

in the presence of macro shocks, as we further demonstrate in Section 3.

Denote the residual by ξ̂it = Yit − β̂Xt. A key takeaway from our paper is that a

reliable approach to inference uses the time-level cluster heteroskedasticity-robust

standard error σ̂, given by σ̂2 = V̂/TĴ2 where Ĵ = (NT)−1 ∑N
i=1

∑T
t=1 X2

t = T−1 ∑T
t=1 X2

t

is the least squares denominator and

V̂ =
1
T

T∑
t=1

 1
N

N∑
i=1

Xtξ̂it


2

.

Another sign of the duality between panel regressions with aggregate shocks and

time series regression is that σ̂ is also the usual Eicker–Huber–White standard error

computed using the synthetic time series residuals ξ̂t = N−1 ∑N
i=1 ξ̂it.

As mentioned in the Introduction, two popular inferential choices in applications

are based on one-way (unit-level) cluster and two-way (unit- and time-level) cluster

standard errors, σ̂1W and σ̂2W, given by σ̂2
1W = V̂1W/TĴ2 and σ̂2

2W = V̂2W/TĴ2 where

V̂1W =
1
N

N∑
i=1

 1
T

T∑
t=1

Xtξ̂it


2

, V̂2W = V̂ + V̂1W −
1

NT

T∑
t=1

N∑
i=1

X2
t ξ̂

2
it.

These standard errors reflect different concerns about the nature of estimation error

or, more precisely, the correlation of the regression score Xtvit over units and time.

Substituting (2), the estimation error decomposes as

β̂ − β0 =

∑T
t=1 XtZt∑T

t=1 X2
t︸     ︷︷     ︸

Op(1)

+
κ
√

N

(
1
√

N

∑N
i=1

∑T
t=1 Xtuit∑T

t=1 X2
t

)
︸                     ︷︷                     ︸

Op(1)

, (3)
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i.e., as the sum of macro and micro components. The former induces cross-sectional

correlation while the latter is uncorrelated across units and both have limited serial

dependence — for t , τ, E
[
XtZt · XτZτ

]
= E

[
Xtuit · Xτuiτ

]
= 0 by Assumption S2(i)

and iterated expectations.14 This is a direct consequence of Xt being a shock.

The intuition for why σ̂ gives valid inference is the following. If the macro term is

not asymptotically small, Xtvit displays correlation over i but not over t, the type of

situation for which σ̂ is designed. If, on the other hand, the micro term dominates,

Xtvit is uncorrelated over both i and t. Yet σ̂ still works: while it does not impose

that the cross-sectional covariances of Xtvit are zero, it will correctly estimate them

to be zero. One may wish to switch to a non-clustered heteroskedasticity-robust

standard error in that case, but we show both analytically (Proposition 1) and in

simulations (Section 4) that there is no loss in simply using σ̂.

Clearly, correlation over t at the unit-level is never a concern; that is why unit-

level clustering either fails or is not needed. In fact, σ̂1W is asymptotically equivalent

to the non-clustered standard error, and the same holds for σ̂2W and σ̂.

Macro-micro signal-to-noise ratio. Which term dominates the decomposition (3)

will depend upon κ/
√

N. We now provide another interpretation of this quantity.

Consider the average outcome Ŷt = N−1 ∑N
i=1 Yit and, for the sake of illustration,

suppose Var (Zt) = Var (uit) = 1. By Assumptions S1 and S2, the proportion of the

variance of Ŷt explained by the unobserved macro error can be measured as

R̄2(κ) = 1 −
Var

(
Ŷt

∣∣∣Xt,Zt

)
Var

(
Ŷt

∣∣∣Xt

) =
1

1 + κ2/N
, (4)

that is, the signal-to-noise ratio is O(N/κ2). It increases with N since cross-sectional

averaging reduces the variance from idiosyncratic errors, but decreases with |κ|.

We will study estimation and inference in sequences of data generating processes

(DGPs) where κ is allowed to grow as T,N → ∞. This leads, in essence, to three

regimes. If κ/
√

N = o(1), (such as if κ is fixed), R̄2(κ)→ 1 and macro shocks are the

only source of aggregate variation; we call this the asymptotically high-signal case.

14The lack of serial correlation would remain true even if Zt and uit were serially correlated.
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If κ ∝
√

N, R̄2(κ) is bounded away from 0 and 1 in the limit and both macro and

micro shocks matter for aggregate fluctuations; this is the asymptotically moderate-

signal case. Finally, if κ/
√

N diverges, R̄2(κ) → 0, macro shocks are imperceptible

and we are in the asymptotically low-signal case.15

The intuitive notion of κ-regimes has a natural counterpart in our asymptotic

approximations, in that there is a close relation between the contribution of macro

shocks to Ŷt and the nature of estimation error for β0, as illustrated by (2) and (4).

In particular, the macro term dominates in the high-signal case, the micro term

dominates in the low-signal case, and they are roughly balanced in the moderate-

signal case. Moreover, it is not always possible to consistently detect what κ-regime

applies. It is important then to derive inference procedures that are robust in the

sense of uniform validity with respect to κ.16

Uniformity over κ. From the decomposition in (3), letting N,T → ∞ and under

regularity conditions specified in Section 3,

σ0(κ)−1
√

T
(
β̂ − β0

) d
−−−−→ N(0, 1),

where

{
E

[
X2

t

]}2
× σ0(κ)2 =


E

[
X2

t Z2
t

]
, if κ/

√
N→ 0,

E
[
X2

t

(
Z2

t + κ̄
2u2

it

)]
, if κ/

√
N→ κ̄,(

κ2/N
)

E
[
X2

t u2
it

]
, if κ/

√
N→∞,

This shows two things. First, the rate of concentration of the estimation error β̂−β0

is either
√

T in the high- and moderate-signal cases or
√

NT/κ (i.e., slower than
√

T

15Of course, letting κ grow with the sample size should not be taken literally — it is simply a device to

ensure our approximations suitably interpolate between high and low signal-noise environments. This

type of embeddings are common in econometrics; an example which also has a low-signal interpretation

is weak IV (Staiger and Stock, 1997).
16We will consider inference procedures that are invariant to rescaling. It follows that all of our results

can be equivalently obtained in an embedding that scales down the macro component of the model in

(2) by κ−1. Put differently, what matters is the relative size of macro and micro components.
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and possibly even zero, thus making β̂ inconsistent) in the low-signal case. Second,

the asymptotic distribution of β̂ changes discontinuously across κ-regimes.

Despite the discontinuity, our main result is that the (1 − α) confidence interval

Ĉα =
[
β̂ ± z1−α/2σ̂

]
, where zq is the q-quantile of the standard normal distribution,

has correct coverage for β0 uniformly over κ,

lim
T,N→∞

sup
κ

∣∣∣∣Pκ (β0 ∈ Ĉα

)
− (1 − α)

∣∣∣∣ = 0. (5)

where Pκ denotes probabilities for a DGP with a given κ. This is much stronger than

pointwise validity, as it implies that the quality of the asymptotic approximation

to the coverage probability of Ĉα is itself robust to the κ-regime. Statement (5) also

means that if sample information about macro shocks is extremely scarce and β̂ is

inconsistent, the length of Ĉα adjusts as needed to reflect the weak macro signal.

One might wonder how much the static nature of (2) limits these results. The rest

of the paper will show that they extrapolate to a substantially more general and

empirically realistic framework with rich forms of dynamics and heterogeneity.

Remark 2 (Inference conditional on aggregate shocks). Ignoring the unobservable

macro component in (3) when doing inference is equivalent to conditioning on its

realization. In that situation, σ̂1W is a valid standard error for responses defined by

moment restrictions that condition on the realized path of aggregate shocks during

the sample period.17 In general, this induces an internal/external validity trade-off

whereby practitioners may be able to pin down certain parameters very precisely

but these might lack generalizability to other contexts.

3 General case

In this section, we establish estimation and inference results for impulse responses

to aggregate shocks in a general setup featuring observed and unobserved, macro

and micro shocks, and unrestricted heterogeneity of individual responses.

17A proof and additional details are available upon request. As a practical example, we think of the

responses of micro outcomes to monetary and fiscal policies during the COVID-19 pandemic.
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We introduce the setup in Section 3.1 and state the main results in Section 3.2.

We treat the important case of finite-order VAR DGPs in Section 3.3 and local

projections with instrumental variables (LP-IV) in Section 3.4. Proofs are developed

in Appendix A with technical lemmas in Supplemental Appendix B.

3.1 Setup

The researcher observes an outcome Yit, an aggregate shock Xt and characteristics

si for units i = 1, . . . ,N and over periods t = 1, . . . ,T. Everything is scalar but it is

straightforward to extend the results to the multivariate case. We assume

Yit = µi +

∞∑
ℓ=0

βiℓXt−ℓ + vit, (6)

vit =

∞∑
ℓ=0

γiℓZt−ℓ + κ
∞∑
ℓ=0

δiℓui,t−ℓ, (7)

where Zt and uit are unobserved serially uncorrelated aggregate and idiosyncratic

errors. We denote βi = {βiℓ}
∞

ℓ=0, γi = {γiℓ}
∞

ℓ=0, δi = {δiℓ}
∞

ℓ=0 and θi = {µi, βi, γi, δi}. These

are draws from a cross-sectional distribution and below we specify conditions so

that the infinite sums in (6)-(7) are well defined with probability one.

Here, θi traces out cross-sectionally heterogeneous responses to both aggregate

and idiosyncratic shocks, and access to external variables si allows the researcher

to study their transmission along unit-level observables. Our premise is that there

is usually more heterogeneity in θi than can be explained by si alone and our goal

is to characterize estimation and inference in that context.

As in Section 2, we consider a range of DGPs indexed by κ to cover different

signal-to-noise environments. We also make the following assumptions:

Assumption 1 (Stationarity and iidness).

(i) {Xt,Zt, {uit}
N
i=1}

∞

t=−∞ is stationary conditional on {θi, si}
N
i=1.

(ii) {θi, si, {uit}
∞

t=−∞}
N
i=1 is i.i.d. over i conditional on {Xt,Zt}

∞

t=−∞.

Assumption 2 (Shocks and mean independence).

(i) E
[
Xt

∣∣∣∣{Xτ}τ,t,
{
Zτ, {uiτ}

N
i=1

}∞
τ=−∞

, {θi, si}
N
i=1

]
= 0.
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(ii) E
[
Zt

∣∣∣∣{Zτ}τ,t,
{
Xτ, {uiτ}

N
i=1

}∞
τ=−∞

, {θi, si}
N
i=1

]
= 0.

(iii) E
[
uit

∣∣∣{uiτ}τ,t,
{
Xτ,Zτ

}∞
τ=−∞ , θi, si

]
= 0.

Assumptions 1 and 2 generalize S1 and S2 to accommodate the presence of both

unobserved heterogeneity and external covariates. Assumption 2 requires them to

be strictly exogenous with respect to shocks. Importantly, the joint distribution of

(θi, si) is left unrestricted, and so is that of {θi, si}
N
i=1 conditional on {Xt}

∞

t=−∞, as in

pure fixed effects approaches. For a discussion of all other components, we refer

the reader to Section 2. Again, the crucial assumption is 2(i) on the availability of

an observed macro shock satisfying certain orthogonality conditions. We consider

alternatives to it in the form of mismeasurement with an instrument in Section 3.4.

3.1.1 Estimator and inference procedure

We now introduce the panel LP estimator and inference procedure. We denote by

Wit ∈ R
d the vector of controls (d may change with the sample size). If Wit contains

no time fixed effects, let ŝi = si — this accommodates the case si = 1. Otherwise, let

ŝi = si −N−1 ∑N
j=1 s j and note that if time fixed effects are included, local projections

on siXt and ŝiXt produce numerically the same estimate β̂(h) below. In addition to

unit and possibly time dummies, we consider below cases in which Wit contains

lags of siXt or Yit and we assume that Wit is observed for t = 1, . . . ,T.18

The fitted equation for the panel LP estimator β̂(h) is

Yi,t+h = β̂(h)ŝiXt + η̂(h)′Wit + ξ̂it(h),

where the residual ξ̂it(h) is orthogonal to ŝiXt and Wit. To characterize β̂(h) we use

Frisch–Waugh–Lovell. Consider the auxiliary regression of ŝiXt on Wit,

ŝiXt = π̂(h)′Wit + x̂it(h), (8)

18Since Yit, Xt and si could be multivariate, this is without loss of generality. For example, a panel LP

of Yit on siXt controlling for Xt and lags of Yit and another micro control Ỹit is covered by redefining

Yit to (Yit, Ỹit) and si to (1, si). Also, note that if Wit includes lags of shocks or outcomes we assume we

observe siXt or Yit for t < 1.
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where the residual x̂it(h) is orthogonal to Wit. Then, an explicit formula for β̂(h) is

β̂(h) =

∑T−h
t=1

∑N
i=1 x̂it(h)Yi,t+h∑T−h

t=1
∑N

i=1 x̂it(h)2
. (9)

The time-clustered heteroskedasticity-robust standard error is

σ̂(h) =

√
V̂(h)

(T − h) Ĵ(h)2 , (10)

with

Ĵ(h) =
1

N(T − h)

T−h∑
t=1

N∑
i=1

x̂it(h)2, V̂(h) =
1

(T − h)

T−h∑
t=1

 1
N

N∑
i=1

x̂it(h)ξ̂it(h)


2

. (11)

Finally, the (1 − α) confidence interval is

Ĉα(h) =
[
β̂(h) ± z1−α/2σ̂(h)

]
, (12)

where zq is the q-quantile of the standard normal distribution.

3.1.2 Additional assumptions

To establish our uniform asymptotic approximations, we need the following:

Assumption 3 (Regularity conditions).

(i) There is a positive finite constant M8 such that, almost surely,

E
[
X8

t

∣∣∣{θi, si}
N
i=1

]
≤M8, E

[
Z8

t

∣∣∣{θi, si}
N
i=1

]
≤M8, E

[
u8

it

∣∣∣θi, si

]
≤M8.

(ii) There is a positive finite constant M such that, almost surely,

E
[
X2

t

∣∣∣{Xτ}τ,t, {θi, si}
N
i=1

]
≥M, E

[
Z2

t

∣∣∣{Xτ}, {θi, si}
N
i=1

]
≥M, E

[
u2

it

∣∣∣{Xτ}, θi, si

]
≥M.

(iii) The conditional cumulants up to fourth-order of vec
{
(Xt,Zt,uit)(Xt,Zt,uit)

′
}

given

{θi, si}
N
i=1 are almost surely absolutely summable.

(iv) There are positive finite constants Cℓ such that C =
∑
∞

ℓ=0 Cℓ < ∞ and, almost surely,

|βiℓ| ≤ Cℓ, |γiℓ| ≤ Cℓ, |δiℓ| ≤ Cℓ, |si| < C.
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(v) There is a positive finite constant C such that, almost surely,

∞∑
ℓ=0

N−1
N∑

i=1

ŝiβiℓ


2

≥ C,
∞∑
ℓ=0

N−1
N∑

i=1

ŝiγiℓ


2

≥ C, N−1
∞∑
ℓ=0

N∑
i=1

ŝ2
i δ

2
iℓ ≥ C.

Our model interprets θi as unit-specific parameters and {Xt,Zt,uit} as sources of

uncertainty. This calls for making time series assumptions on the uncertainty given

parameters (parts (i), (ii) and (iii)) while requiring that parameters ensure sufficient

regularity for all units in the cross-sectional population (parts (iv) and (v)).

Parts (i), (ii) and (iii) are standard in the time series context (see, for instance,

Assumption 2 in Montiel Olea and Plagborg-Møller (2021)). They put limits on the

tails of the distributions of shocks, as well as the predictability and dependence of

their second moments. Part (iv), on the other hand, guarantees that infinite moving

averages, such as
∑
∞

ℓ=0 βiℓXt−ℓ, are well defined for all units. Absolute summability

rules out unit roots but still allows for rich persistence patterns — such as those

from stationary ARMA and other short-memory processes.19

Lastly, part (v) requires that N−1 ∑N
i=1 ŝi

∑
∞

ℓ=0 βiℓXt−ℓ, N−1 ∑N
i=1 ŝi

∑
∞

ℓ=0 γiℓZt−ℓ and

N−1/2 ∑N
i=1 ŝi

∑
∞

ℓ=0 δiℓui,t−ℓ display non-zero variability conditional on {θi, si}
N
i=1. It is

mostly a technical condition to prevent trivial cases in which the regression score

has zero variance. Nevertheless, it is compatible with, say, a non-negligible fraction

of units having zero exposure to macro or micro shocks. It also places no restriction

on the relative importance of macro versus micro shocks which is governed by κ.

3.2 Main result

The main contribution of the paper is to characterize the large-sample properties of

β̂(h), σ̂(h) and Ĉα(h). In the asymptotic plan, we take T,N→∞ and we are interested

in uniform approximations with respect to κ. The key result is Proposition 1 which

states that Ĉα(h) delivers uniformly valid inference for the coefficient in a regression

of βih on ŝi if enough lags of ŝiXt are used as controls.

19We conjecture, however, that many of our results remain valid at moderate horizons in the presence

of near unit roots and our simulation evidence supports this claim. See Section 3.3 for further discussion.
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We describe first the estimand and then the uniform inference result. We use Pκ
to indicate probabilities under a DGP associated to a given value of κ and we omit

the subindex from objects whose probabilities (or expectations) do not depend on

κ (such as those in Assumptions 2 and 3).

Estimand. If si is not a constant and time fixed effects are included, the population

object targeted by the panel LP is

β(h) =
Cov

(
si, βih

)
Var (si)

. (13)

In other words, panel LPs estimate the slope in a population linear projection of

βih on characteristics si including an intercept. Similarly, if si = 1, the estimand

becomes the mean impulse response β(h) = E
[
βih

]
. Note that omitting either Xt or

time dummies as controls in a panel LP has the effect of forcing the regression of βih

on si through the origin, leading to the estimand β(h) = (E
[
s2

i

]
)−1E

[
siβih

]
. In order

to obtain a rich summary of the heterogeneity in βih, therefore, the researcher will

typically need to explore different choices of si or allow si to be a vector.20

Under the conditions of Proposition 1, β̂(h) = β(h)+ oPκ
(1) for any DGP sequence

Pκ such that κ/
√

TN = o(1): that is, if the panel LP estimator converges, it is to β(h).

This clarifies the sense in which panel LPs can be interpreted when the underlying

population of interest features unrestricted heterogeneity in responses to shocks,

as in (6). Precisely because we place virtually no restriction on the joint distribution

of (θi, si), the characterization of the estimand is of a nonparametric nature.

20For example, the best linear approximation E∗
[
βih

∣∣∣si
]
= E

[
βih

]
+ (Cov

(
si, βih

)
/Var

(
si
)
)
(
si − E

[
si
])

requires both estimands or, alternatively, the interaction of Xt with (1, si) rather than si alone (omitting

time effects). If si is multivariate, a confidence region constructed on the basis of a time-clustered

heteroskedasticity-robust variance estimate enjoys the same uniform validity property of Proposition

1. We illustrate this in our empirical calculations in Section 5.
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Uniformly valid inference. Let p be the number of lags of ŝiXt included in the

controls Wit. Both p and h are fixed as T,N→∞while T/N→ 0.21 Our main result

is that Ĉα(h) has correct coverage for β(h) uniformly over κ so long as h ≤ p:

Proposition 1. Under Assumptions 1, 2 and 3, for h ≤ p,

lim
T,N→∞

sup
κ

∣∣∣∣Pκ (β(h) ∈ Ĉα(h)
)
− (1 − α)

∣∣∣∣ = 0. (14)

Proof. See Appendix A. □

Proposition 1 states that valid inference results from clustering standard errors at

the time level, which accounts for cross-sectional dependence induced by omitted

aggregate shocks, and from ex-ante including lags of ŝiXt as controls, which renders

the regression scores uncorrelated. We refer to this strategy as time-clustered lag-

augmented heteroskedasticity-robust (t-LAHR) inference. As in Section 2 and as

explained below, it is closely linked to inference in time series LPs.

Despite the general error dynamics in (6)–(7), the regression score
∑N

i=1 Xtŝiξit(h, κ),

with ξit(h, κ) the population counterpart to ξ̂it(h) defined in (19), has limited serial

correlation. It is an MA(h) process with the first p autocovariances set to zero.

Thus, it becomes uncorrelated when p ≥ h which is why t-LAHR works. Besides,

when p < h, the autocovariances stem only from leftover leads of Xt and not from

the unobserved macro error Zt or micro error uit. In fact, they will tend to be small

compared to the variance of the score in low-signal (large κ) DGPs or if βiℓ decays

quickly. We therefore expect t-LAHR inference to have small coverage distortions

even for p < h; we provide affirmative evidence via simulations in Section 4.

A striking implication of Proposition 1 is that t-LAHR inference remains valid

even in the low-signal setting κ/
√

N → ∞ where there is scarcity of information

about aggregate shocks in the sample and β̂(h) is inconsistent. The uniformity over

DGPs with different macro-micro signal-noise obviates the need to take a stand on

the κ-regime, which is important because κ is not always consistently estimable.

21We regard T/N → 0 as a mild requirement for the empirical applications of reference. It follows

from the proof of Proposition 1 that if T/N is not asymptotically negligible (as if taking N as fixed), (14)

holds with β(h) replaced by the finite-population estimand β̃(h) = (
∑N

i=1 ŝ2
i )−1 ∑N

i=1 ŝiβih.
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In contrast, inference based on unit-level clustering of the regression score is

not uniformly valid as it tends to severely undercover β(h) in high- and moderate-

signal regimes. Similarly to Section 2, provided lags of ŝiXt are included, unit-level

clustering is asymptotically equivalent to not clustering at all, whereas two-way

clustering is equivalent to time-level clustering. That is, unit-level clustering is

neither necessary nor sufficient for valid inference — yet another implication of Xt

being a shock that has no counterpart in a more generic time series setup.

Remark 3 (Proof steps). To establish (14), we decompose the problem into showing

(A) asymptotic normality of the score, (B) consistency of the standard error, and

(C) negligibility of some remainder terms. We obtain uniformity via the drifting

parameter sequence approach (see Andrews, Cheng, and Guggenberger (2020)).

In (A), although the regression score is serially uncorrelated, it contains leads

and lags of macro and micro errors. This makes the reverse martingale technique

of Montiel Olea and Plagborg-Møller (2021) inapplicable. Instead, using a similar

insight to that of Xu (2021), we produce a martingale approximation by rearranging

the score so that the leads at time t become the lags at a time in the future of t. See

Lemma 1 in Supplemental Appendix B for the details.

In (B) and (C), we rely on direct calculation of uniform bounds. The presence of

heterogeneity poses a challenge with no parallel in the time series case. Because of

Assumption 3, we can derive many of the bounds by first conditioning on {θi, si}
N
i=1,

exploiting the connection between conditional and unconditional convergence.

Remark 4 (Synthetic time series). A useful device to interpret panel LPs is the

following representation. The residual x̂it(h) in (8) can be written as x̂it(h) = ŝiX̂t(h),

where X̂t(h) is the residual from regressing Xt on Xt−1, . . . ,Xt−p and an intercept (on

T − h observations).22

Then, the panel LP estimator in (9) can be written as

β̂(h) =

∑T−h
t=1

∑N
i=1 ŝiX̂t(h)Yi,t+h∑T−h

t=1
∑N

i=1 ŝiX̂t(h)2
=

∑T−h
t=1 X̂t(h)Ŷt+h∑T−h

t=1 X̂t(h)2
,

22To see this, note that x̂it(h) is ŝiXt minus a linear combination of ŝiXt−1, . . . , ŝiXt−p and unit and

possibly time indicators which is orthogonal to all of the latter. When Wit includes additional controls,

the synthetic time series representation is asymptotically but not numerically equivalent.
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i.e., the time series LP estimator that regresses cross-sectional regression coefficients

Ŷt+h = (
∑N

i=1 ŝ2
i )−1 ∑N

i=1 ŝiYi,t+h on Xt controlling for Xt−1, . . . ,Xt−p and an intercept. The

standard error σ̂(h) in (10) is also the Eicker–Huber–White standard error calculated

on the time series LP residuals ξ̂t(h) = (
∑N

i=1 ŝ2
i )−1 ∑N

i=1 ŝiξ̂it(h). Hence, t-LAHR

inference for panel LPs and lag-augmented heteroskedasticity-robust inference for

time series LPs are intimately related.

Remark 5 (si and precision). This representation is also useful to illuminate the

fact that estimation error is of order T−1/2 in environments with κ ∝
√

N, despite

what otherwise looks like a standard panel regression with potentially very rich

micro data. We can give interpretable conditions under which variation in si affords

faster convergence rates. These are akin to si being a cross-sectional instrument: we

require si to correlate with βih — that is, be relevant for heterogeneity in transmission

of Xt at horizon h — but to be orthogonal to all other exposures to aggregate shocks,

({βiℓ}ℓ,h, γi). These conditions seem particularly hard to meet: for each horizon h, a

source of variation that is orthogonal to responses at all other horizons is required.

(Assumption 3(v) rules this out in our formulation.) In some sense, this reveals an

intrinsic trade-off between documenting interesting transmission mechanisms and

finding valid instruments for precision.

Remark 6 (t-HAR). In principle, time-clustered HAR inference is a valid alternative

to t-LAHR. An analogue to Proposition 1 can be established for a confidence interval

that replaces V̂(h) in (11) with the Hansen and Hodrick (1980) variance estimator

V̂(h) + 2
∑h
ℓ=p+1 Ṽℓ(h) where

Ṽℓ(h) =
1

(T − h)

T−h∑
t=ℓ+1

 1
N

N∑
i=1

x̂it(h)ξ̂it(h)


 1

N

N∑
i=1

x̂i,t−ℓ(h)ξ̂i,t−ℓ(h)

 ,
This boils down to V̂(h) for p ≥ h. Unlike V̂(h), this alternative variance estimator

is not guaranteed to be positive semidefinite. Also, t-LAHR inference is simpler to

implement and refine, remains tractable over moderate horizons under VAR DGPs

(Section 3.3), and performs better in small samples (Section 4).
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Remark 7 (State-dependence). In some applications, interest is in the differential

pass-through of shocks to responses along an observable (time-varying) state, de-

noted now sit. Formalizing this requires extending (6)–(7) to allow for time-varying

impulse responses:

Yit = µi +

∞∑
ℓ=0

βitℓXt−ℓ + vit, vit =

∞∑
ℓ=0

γitℓZt−ℓ + κ
∞∑
ℓ=0

δitℓui,t−ℓ.

Letting ŝit = sit−N−1 ∑N
j=1 s jt, the corresponding panel LP estimator on ŝitXt retains its

interpretation as the slope coefficient of the linear projection E∗
[
βith

∣∣∣sit
]

as long as sit

and impulse responses are exogenous with respect to Xt. Although a more detailed

exploration is beyond the scope of our paper, the treatment of sit is analogous to

that of si, and all the results above carry over with little modification. We revisit

this in simulations in Section 4 and in our empirical illustration in Section 5.23

3.3 Panel VAR model

It is not uncommon in applications that the researcher is interested in responses at

an horizon h which is a non-negligible fraction of T. Proposition 1 guarantees exact

coverage for short horizons depending on the number of lags of the outcome and

shock used as controls. There is, however, one important class of DGPs for which

our uniformity result extends to h ∝ T: the VAR class.

We now assume a panel VAR(p) model (with p < ∞):

Yit = mi +

p∑
ℓ=1

AℓYi,t−ℓ +

p∑
ℓ=0

BiℓXt−ℓ + Ci0Zt + κDi0uit. (15)

If
∑p
ℓ=1 Aℓ < 1, as implied by Assumption 3(iv), we can recover the unit-specific

parameters µi, {βiℓ}, {γiℓ}, {δiℓ} from mi, {Aℓ}, {Biℓ},Ci0,Di0 by inverting the lag poly-

nomial A(L) = 1 −
∑p
ℓ=1 AℓL

ℓ. That is, VAR model (15) is a special case of (6)–(7).

23Rambachan and Shephard (2021, Section 3.4) offer a nonparametric characterization of local pro-

jection estimands when states are endogenous in a time-series potential outcomes framework; see also

Gonçalves, Herrera, Kilian, and Pesavento (forthcoming) for the case where st = 1
{
Xt > c

}
.
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Assuming that p is known and that Wit contains p lags of Yit and siXt, the t-LAHR

confidence interval Ĉα(h) defined in (12) has uniform validity even for moderately

long horizons h exceeding p:

Proposition 2. Under Assumptions 1, 2 and 3, for some positive constant ϕ < 1,

lim
T,N→∞

sup
0≤h≤ϕT

sup
κ

∣∣∣∣Pκ (β(h) ∈ Ĉα(h)
)
− (1 − α)

∣∣∣∣ = 0. (16)

Proof. See Appendix A. □

The intuition and proof for Proposition 2 mirror that of Proposition 1. Under

VAR model (15) the regression score
∑N

i=1 Xtŝiξit(h, κ), with ξit(h, κ) now defined in

(20), is serially uncorrelated not just for h ≤ p but for any h. The basic consequence is

that if a low-order VAR model is a reasonable approximation, the t-LAHR inference

approach that relies on controlling for a small number of lags of the outcome and

shock is robust over long horizons and regardless of the amount of micro noise.24

Remark 8 (LP inference when the shock is not observable). Proposition 2 can

be read as the panel data counterpart to the result in Montiel Olea and Plagborg-

Møller (2021) under stationarity when the shock is directly observable. That parallel

implies that if Xt is unavailable but instead we observe X∗t =
∑p−1
ℓ=1 αℓX

∗

t−ℓ+Xt and we

run a local projection of Yi,t+h on siX
∗

t including p lags of Yit and siX
∗

t in the control

vector Wit, t-LAHR inference is uniformly valid over h and κ.25

Remark 9 (Heterogeneity in VAR coefficients). Model (15) assumes homogeneous

coefficients {Aℓ}. This is common in the microeconometric literature on panel VARs

(Arellano, 2003, Chapter 6) but it is not necessary for (16). For example, we can

24The results in Montiel Olea et al. (2024) suggest that for a fixed horizon h, t-LAHR inference would

also remain valid if the VAR model (15) were contaminated by moving averages of Zt and uit in a

T−1/4-neighborhood of zero — that is, if the VAR model holds only approximately. The simulation

evidence in Section 4 based on DGPs which are not VARs is consistent with this idea.
25Lag-augmentation means including at least one more lag than the autoregressive order of X∗t which

is p − 1. The connection with Montiel Olea and Plagborg-Møller (2021) also suggests that Ĉα(h) is

uniformly valid over the VAR parameter space (including unit roots) if a certain condition on uniform

non-singularity of the least squares denominator matrix (Assumption 3 in their paper) holds.
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establish Proposition 2 in a moderate heterogeneity environment that replaces Aℓ

with Aiℓ where sup1≤i≤N |Aiℓ −Aℓ| = Op

(
T−1/2

)
. Proposition 2 can also be established

(under slightly different regularity conditions) if we allow for heterogeneity in {Aℓ}

but we include p unit-specific lags of Yit as controls in Wit.

3.4 Panel LP-IV and proxy shocks

The most common implementation of panel LPs in empirical work treats the shock

of interest as observed. Nevertheless, it is sometimes more realistic to assume there

is measurement error in the shock elicitation process. This creates an endogeneity

problem that can be dealt with by using the shock measures as instruments for the

actual underlying shock (Ramey, 2016; Stock and Watson, 2018).

The researcher observes the outcome Yit and characteristics si, but instead of the

actual shock Xt she observes an endogenous aggregate state variable X̃t and a proxy

shock X∗t . In addition to (6)–(7), we assume

X̃t =

∞∑
ℓ=0

bℓXt−ℓ +

∞∑
ℓ=0

cℓZt−ℓ, (17)

X∗t = a0Xt + νt, (18)

where νt is measurement error. We normalize b0 = 1 to fix the scale of the estimand

as only relative impulse responses are identified.26 We also adopt the following:

Assumption 4 (LP-IV).

(i) a0 , 0.

(ii) Assumptions 1, 2 and 3 hold with Zt replaced by (Zt, νt).

(iii) For the same constants Cℓ and C of Assumption 3,

|bℓ| ≤ Cℓ, |cℓ| ≤ Cℓ,
∞∑
ℓ=0

b2
ℓ ≥ C,

∞∑
ℓ=0

c2
ℓ ≥ C.

26It is straightforward to include intercepts in both (17) and (18). Additionally, as in Section 3.3, we

can derive uniformity results with respect to the horizon h by assuming a VAR model in (6), (7) and (17).
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Assumption 4(i) is needed for instrument relevance, and we restrict our attention

to the strong instrument case where we keep a0 fixed as N,T → ∞. On the other

hand, Assumption 4(ii) implies that νt is orthogonal to {Xτ,Zτ}. This embodies the

key lead-lag exogeneity condition requiring X∗t to be contemporaneously correlated

only with Xt, a well-known condition in the time series LP-IV context.27 Finally,

Assumption 4(iii) imposes regularity on the endogenous variable X̃t.

LP-IV estimation and inference. LP-IV regresses Yi,t+h on X̃t = (X̃t, X̃t−1, . . . , X̃t−p)′

using X∗t = (X∗t ,X
∗

t−1, . . . ,X
∗

t−p)′ as instruments (both interacted with si), controlling

for unit and time effects (Wit denotes controls). The residualized instrument is

x̂it(h) = ŝiX
∗

t − π̂(h)′Wit = ŝiX̂
∗

t (h),

where X̂∗t (h) = X∗t − (T − h)−1 ∑T−h
t=1 X∗t . The panel LP-IV estimator β̂IV(h) is then

β̂IV(h) =

T−h∑
t=1

N∑
i=1

x̂it(h)ŝiX̃
′

t


−1 T−h∑

t=1

N∑
i=1

x̂it(h)Yi,t+h =

T−h∑
t=1

X̂∗t (h)X̃′t


−1 T−h∑

t=1

X̂∗t (h)Ŷi,t+h,

where Ŷi,t+h is the synthetic outcome defined in Remark 4. Put another way, panel

LP-IV admits a synthetic time series LP-IV representation.

The only entry of β̂IV(h) that has interpretation as an estimate of a relative impulse

response is β̂IV
0 (h) = e′1β̂

IV(h) where e1 is the first column of Ip+1. The remaining

entries are necessary for t-LAHR inference to be valid. Given residuals

ξ̂IV
it (h) = Yi,t+h − ŝiX̃

′

t β̂
IV(h) − η̂IV(h)′Wit,

we define

ĴIV(h) =
1

N(T − h)

T−h∑
t=1

N∑
i=1

x̂it(h)ŝiX̃
′

t , V̂ IV(h) =
1

(T − h)

T−h∑
t=1

 1
N

N∑
i=1

x̂it(h)ξ̂IV
it (h)


2

.

27See, for instance, Stock and Watson (2018, p. 924) and Plagborg-Møller and Wolf (2021, p. 970). The

setup can be extended to allow νt to be serially correlated and to the case where X∗t is valid only after

conditioning on a set of controls.
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The time-clustered heteroskedasticity-robust standard error for β̂IV
0 (h) is

σ̂IV
0 (h) =

[
1

(T − h)
·

(
e′1 ĴIV(h)−1

)
V̂ IV(h)

(
e′1 ĴIV(h)−1

)′]1/2

and the (1 − α) confidence interval, ĈIV
α (h) =

[
β̂IV

0 (h) ± z1−α/2σ̂
IV
0 (h)

]
. Then:

Proposition 3. Under Assumption 4, for h ≤ p,

lim
T,N→∞

sup
κ

∣∣∣∣Pκ (β(h) ∈ ĈIV
α (h)

)
− (1 − α)

∣∣∣∣ = 0.

Proof. See Appendix A. □

Remark 10 (Absence of first-stage heterogeneity). The LP-IV estimand coincides

(under the normalization b0 = 1) with the LP estimand (13) despite the presence

of heterogeneity. This is far from obvious: under treatment effect heterogeneity,

IV estimands are generally (weighted averages of) local average treatment effects

(Angrist and Imbens, 1995; Angrist, Imbens, and Graddy, 2000). It is the aggregate-

only nature of the first-stage model that underlies this result. This is yet another

illustration of the unique setting that we study in this paper.

4 Simulation study

We ran a comprehensive simulation study to verify the finite-sample robustness of

the inference procedures analyzed in Section 3. Here we provide a summary and

defer additional detail and results to Supplemental Appendix C.

Designs. Our study relies on two different DGPs. The first is the general setup

(6)–(7) supplemented with (17)–(18) to cover the endogenous case. We begin by

simulating shocks {Xt,Zt, νt, {uit}
N
i=1} as mutually and serially independent N(0, 1)

random variables, and by drawing {θi, si}
N
i=1 independently across units. To ensure

correlation between observed and unobserved heterogeneity we use a technique

described in Supplemental Appendix C. We calibrate the distribution of {βiℓ, γiℓ, δiℓ}

and the value of {bℓ, cℓ} to produce realistic degrees of shock persistence.

Given these elements, we generate the inputs for panel LP and LP-IV procedures,

namely Yit, Xt, si, X̃t, X∗t . We also simulate the time-varying covariate sit = si + ζit
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(where ζit is such that sit remains strictly exogenous) to compare panel LPs on siXt

and sitXt — this illustrates the point we made in Remark 7.

The second DGP is the VAR model (15). Again we generate shocks as i.i.d. N(0, 1)

and we simulate the heterogeneity as detailed in Supplemental Appendix C. When

calibrating the VAR parameters {Aℓ}we allow the largest AR root to be 1− c/T (we

use c = 5) to capture the essence of a near non-stationary environment.28

The results below are based on nMC = 5, 000 Monte Carlo samples. Motivated by

our survey of the empirical literature, we look at designs with T = 30 and T = 100.

We set N = 1, 000 (although we also considered experiments with larger N) and

we let κ take values consistent with R̄2(κ) ∈ {0.99, 0.66, 0.33} as defined in (4). As

a reference, R̄2(κ) = 0.66 corresponds to the one-third of aggregate fluctuations

explained by micro shocks suggested by Gabaix (2011) for GDP growth, which we

take as moderate signal-to-noise.

Inference procedures. We compare t-LAHR inference with one-way (1W), two-

way (2W), and Driscoll-Kraay (DK98) inferences. These are implemented without

lag augmentation, as is common practice. For illustrative purposes, we also include

t-HR (the non-lag-augmented counterpart to t-LAHR) and t-HAR alternatives.

For t-LAHR inference we use the simple lag selection rule p = min{h, (T − h)1/3
}

(except in the VAR DGP where p is known) and we apply the finite-sample refine-

ment advocated by Imbens and Kolesár (2016). The lag selection rule is motivated

by Xu (2023, Section 3.3) for fixed h and provides fairly generous lag augmentation.

For t-HAR inference we use the equally-weighted cosine approach (Müller, 2004)

with the choice of tuning parameter recommended in Lazarus et al. (2018).

Results. In Figure 1, we report pointwise coverage rates for horizons 0 ≤ h ≤ 0.25T

with T = 100. These correspond to 90% confidence intervals for panel LP and LP-IV

using si to interact the aggregate shock. Panels (a)-to-(c) display LP while (d)-to-(f)

display LP-IV in the general DGP; panels (g)-to-(i) display LP in the VAR DGP.

28We also considered experiments where (a) in the first DGP shocks are conditionally heteroskedastic,

and (b) in the VAR DGP we have unit-specific VAR parameters {Aiℓ}. We did not find any major difference

with what we report here.
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Figure 1 suggests four takeaways. First, t-LAHR performs best in all scenarios,

with coverage close to the nominal rate even in low-signal cases and for horizons

h well beyond p. Its mean absolute coverage distortion never exceeds 2%, whereas

it is between 4% and 7% for the second best option (t-HAR) under high signal.

Second, estimating the long-run variance of the score (instead of lag augmenting)

can be challenging with small T. This is particularly true for DK98 which relies on

Newey–West. Interestingly, these approaches do better in low-signal DGPs where,

as mentioned before, there is less to gain from doing HAC.

Third, one-way clustering is very sensitive to R̄2(κ), suffering severe distortions

in intermediate- and high-R̄2(κ) cases. What is more, it is outperformed by t-LAHR

even if micro shocks explain the majority of aggregate variation. This is consistent

with the view that 1W guards against the wrong type of correlation in the score.

Finally, two-way clustering is usually close to t-HR, its non-i-clustered version;

another indication that there is no clear advantage in clustering by units. In fact, in

certain occasions (mainly low-signal and near non-stationary designs), 2W gives

worse inferences than t-HR or 1W alone. This is possibly due to the non-standard

behavior of variance estimators when there are micro (near) unit roots.

Identical takeaways emerge in experiments where we substitute si with either 1

or sit (Supplemental Appendix C), and with a sample size T = 30 (Figure 2).

In sum, the small-sample evidence reinforces many of our theoretical results. It

shows that the large-sample approximations of Section 3 provide reliable guidance

for understanding estimation and inference with aggregate shocks. Furthermore,

it illustrates the practical relevance of achieving uniformity with respect to κ, and

it delivers a clear methodological prescription: t-LAHR inference.
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5 Empirical illustration

We now discuss an empirical exercise that demonstrates the applicability of our

methods in a setup featuring time-varying sit and unbalanced panels, and compares

our practical recommendation to popular alternatives. The exercise is motivated

by the burgeoning literature on the role played by firm heterogeneity and financial

frictions in the propagation of monetary policy.

Data and background. Quantifying firm-level responses to exogenous changes

in policy is a key empirical goal as it is informative on the mechanisms through

which monetary policy operates. For instance, Crouzet and Mehrotra (2020) focus

on the role of firm size for investment response heterogeneity, finding larger (albeit

noisy) responses for smaller firms; Ottonello and Winberry (2020) instead focus on

default risk, finding larger responses for less risky companies.

For our empirical analysis, we construct a dataset similar to the latter based

on Compustat and high-frequency identified monetary policy shocks (Gurkaynak,

Sack, and Swanson, 2005; Gorodnichenko and Weber, 2016). This results in an

unbalanced panel for the period 1990Q1–2010Q4 with observations on firm-level

investment, size, and leverage.29 In total, there are T = 80 quarters and N = 4, 187

individual companies which, net of missing data, amount to 235,233 observations.

We consider regressions of cumulative investment changes Yi,t+h = log(ki,t+h/ki,t−1)

(kit being the capital stock) on policy shocks Xt interacted with sit, a vector containing

size, leverage, and their product. From Section 3, we know that under unrestricted

heterogeneity the population counterpart is the linear projection of firm-level im-

pulse responses on sit. Thus, including size and leverage together (as well as their

interaction) in sit is a way to enrich the linear approximation.

29We use the paper’s replication code to build the data and we verify that we can replicate the original

results, with minor numerical differences that can be attributed to revisions in input data. Firm size

is measured by the value of total assets held by a company while leverage is its debt-to-assets ratio.

We have also tried the distance-to-default measure in Ottonello and Winberry (2020) with qualitatively

similar results.
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Synthetic time series representation. A fundamental insight of our paper is that

the synthetic time series form of the microdata is a sufficient statistic for the panel

LP; a low dimensional representation of a highly complex, unbalanced dataset.30

FIGURE 3. Synthetic time series representations.

Note: Grey areas are NBER-dated recessions. s1 is size, s2 is leverage and s3 is the interaction. Xt and Ŷt

are standardized to zero mean and unit variance; Xt > 0 indicates a surprise cut in the Fed Funds rate.

Figure 3 displays it for the three components of sit. It is clear that movements

in synthetic outcomes concurrent with surprise cuts in policy rates, mostly around

recessions, are the main source of identification. There is also substantial variation

in synthetic outcomes unrelated to Xt, indicating the presence of omitted aggregate

or non-negligible idiosyncratic shocks — the central premises of our paper.

Estimation and inference method comparison. Figure 4 reports point estimates

and 90% confidence intervals for the coefficient on each entry of sitXt at different

30Remark 4 generalizes as follows. Let dit = 0 indicate a missing observation with dit = 1 otherwise.

Abstracting from controls, the panel local projection estimator with a time-varying sit is

β̂(h) =

∑T−h
t=1

∑N
i=1 ditsitXtYi,t+h∑T−h

t=1
∑N

i=1 dits
2
itX

2
t

=

∑T−h
t=1 ωtXtŶt+h∑T−h

t=1 ωtX
2
t

,

where ωt =
∑N

i=1 dits
2
it and Ŷt+h = (

∑N
i=1 s2

it)
−1 ∑N

i=1 sitYi,t+h. This is a weighted least squares regression of

slope coefficients Ŷt+h on Xt. Note that if sit = 1 the weights boil down to the number of non-missing

observations ωt =
∑N

i=1 dit, as intuition suggests. Our theory applies with data missing at random.
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6 Conclusion

The use of micro data to answer macro questions offers an exciting avenue to

study how agents respond to economy-wide policies. Possibilities include a better

understanding of the transmission of shocks and the nature of heterogeneity.

Challenges are ubiquitous too. We propose a disciplined approach to uncertainty

quantification when both aggregate and idiosyncratic shocks coexist and interest is

in parameters identified solely by macro shocks. One such scenario is the estimation

of impulse responses to macro shocks when rich micro data and a measurement of

the shock of interest are available. Despite the complex environment, inference is

simple and robust: it involves lag augmentation and clustering at the time level,

and is valid regardless of the relative signal of macro shocks in the microdata.

Our basic framework generalizes beyond the empirical applications we have

focused on. Other, related literatures where identification comes from randomness

in group level shocks include regional-exposure and shift-share designs. In fact,

impulse responses are sometimes an object of interest too — see, for instance, the

literature on cross-sectional fiscal multipliers (Chodorow-Reich, 2019).

We also leave some interesting dimensions for future research. Quantifying

signal-to-noise (perhaps a lower bound) seems relevant in settings where uniform

inference is not possible; we expect that these issues become more salient as macroe-

conomists embrace the use of microdata to sharpen identification (Nakamura and

Steinsson, 2018). On a different note, strong persistence of micro-level shocks are

likely a feature of many datasets, and these are only captured in an indirect sense

by our signal-to-noise device. Formalizing the idea of (possibly heterogeneous)

non-stationarities along these lines seems promising and full of empirical content.

Finally, extensions to simultaneous inference over impulse response horizons could

be made building on Jordà (2009) and Montiel Olea and Plagborg-Møller (2019).
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A Proofs

Proposition 1

Let β̃(h) =
(∑N

i=1 ŝ2
i

)−1 ∑N
i=1 ŝiβih be the coefficient in the (infeasible) regression of βih

on ŝi — the finite-population counterpart to β(h). Also, define

ξit(h, κ) =
∞∑
ℓ=0

(
ιℓ(h)βiℓXt+h−ℓ + γiℓZt+h−ℓ + κδiℓui,t+h−ℓ

)
, (19)

ξt(h, κ) =
1
N

N∑
i=1

ŝiξit(h, κ) =
∞∑
ℓ=0

ιℓ(h)β̄ℓXt+h−ℓ + γ̄ℓZt+h−ℓ +
κ
N

N∑
i=1

ŝiδiℓui,t+h−ℓ


where ιℓ(h) = 1 − 1

{
h ≤ ℓ ≤ h + p

}
, β̄ℓ = N−1 ∑N

i=1 ŝiβiℓ and γ̄ℓ = N−1 ∑N
i=1 ŝiγiℓ. Finally,

let V(h, κ) = Varκ
(
Xtξt(h, κ)

∣∣∣{θi, si}
N
i=1

)
.

Proof of Propositions 1. Let
∑

i,t denote summation over 1 ≤ t ≤ T − h and 1 ≤ i ≤ N.

For any ψ ∈ Rd,∑
i,t

x̂it(h)2

 (β̂(h) − β̃(h)
)
=

∑
i,t

x̂it(h)
(
Yi,t+h − β̃(h)ŝiXt − ψ

′Wit

)
=

∑
i,t

ŝiXt

(
Yi,t+h − βihXt − ψ

′Wit

)
−

∑
i,t

(π̂(h)′Wit)
(
Yi,t+h − β̃(h)ŝiXt − ψ

′Wit

)
.

The first line uses
∑

i,t x̂it(h)2 =
∑

i,t x̂it(h)ŝiXt and
∑

i,t x̂it(h)Wit = 0d×1 (to introduce ψ).

The second line uses x̂it(h) = ŝiXt − π̂(h)′Wit and
∑

i,t ŝiXt(β̃(h)ŝiXt − βihXt) = 0.

We can choose ψ so that

∑
i,t

ŝiXt

(
Yi,t+h − βihXt − ψ

′Wit

)
=

∑
i,t

ŝiXtξit(h, κ) = N
T−h∑
t=1

Xtξt(h, κ).

Here, Wit consists of p lags of ŝiXt, unit indicators, and (possibly) time indicators

(so that d = p + N + T). To choose ψ, we set the coefficient on ŝiXt−ℓ to β̃(h + ℓ) =(∑N
i=1 ŝ2

i

)−1 ∑N
i=1 ŝiβi,h+ℓ, the coefficient on the unit-i indicator toµi, and the coefficients
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on time indicators to zero. Moreover, π̂(h)′Wit = ŝi(Xt−X̂t(h)) with X̂t(h) the residual

from a regression of Xt on Xt−1, . . . ,Xt−p and an intercept. Then,∑
i,t

(π̂(h)′Wit)
(
Yi,t+h − β̃(h)ŝiXt − ψ

′Wit

)
=

∑
i,t

(π̂(h)′Wit)ξit(h, κ).

It follows that the standardized estimation error can be written as

β̂(h) − β̃(h)
σ̂(h)

=

∑T−h
t=1

∑N
i=1 x̂it(h)(Yi,t+h − β̃(h)x̂it(h))

N
√

(T − h)V̂(h)

=

√
V(h, κ)

V̂(h)
×

 ∑T−h
t=1 Xtξt(h, κ)√
(T − h)V(h, κ)

+ RT(h, κ)


where the remainder term is

RT(h, κ) = −
∑T−h

t=1
∑N

i=1 (π̂(h)′Wit) ξit(h, κ)

N
√

(T − h)V(h, κ)
.

To establish our uniform approximation we exploit drifting parameter sequences

(see Andrews et al. (2020) for formal results connecting the two). For simplicity we

index everything to T, including N = NT. We show that for any {κT}, as T→∞,

(A)
{
(T − h)V(h, κT)

}−1/2 ∑T−h
t=1 Xtξt(h, κT) d

−−−−−→
PκT

N(0, 1),

(B) V̂(h)/V(h, κT)
p

−−−−−→
PκT

1,

(C) RT(h, κT)
p

−−−−−→
PκT

0.

Hence, for any such {κT},

β̂(h) − β̃(h)
σ̂(h)

d
−−−−−→

PκT

N(0, 1).

We establish (A), (B) and (C) in Lemmas 1, 2 and 3 in Supplemental Appendix B.

Now, Assumptions 1(ii) and 3(iv) imply β̃(h) − β(h) = OPκT

(
N−1/2

)
whereas Lemma

2 implies min{1, κ−1
T }σ̂(h) = OPκT

(
(T − h)−1/2

)
. Since T/N→ 0,

(β̂(h) − β(h))
σ̂(h)

=
(β̂(h) − β̃(h))

σ̂(h)
+ oPκT

(1)
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and the result follows. □

Proposition 2

Define

ξit(h, κ) =
h∑
ℓ=0

(
ιℓ(h)βiℓXt+h−ℓ + γiℓZt+h−ℓ + κδiℓui,t+h−ℓ

)
, (20)

ξt(h, κ) =
1
N

N∑
i=1

ŝiξit(h, κ) =
h∑
ℓ=0

ιℓ(h)β̄ℓXt+h−ℓ + γ̄ℓZt+h−ℓ +
κ
N

N∑
i=1

ŝiδiℓui,t+h−ℓ

 ,
and, as before, let V(h, κ) = Varκ

(
Xtξt(h, κ)

∣∣∣{θi, si}
N
i=1

)
. By recursive substitution,

Yi,t+h = mi(h) +
p∑
ℓ=1

(Aℓ(h)Yi,t−ℓ + Biℓ(h)Xt−ℓ) + βihXt + ξit(h, κ),

for some mi(h), {Aℓ(h)}, {Biℓ(h)} that depend on the VAR parameters mi, {Aℓ}, {Biℓ}.

Proof of Proposition 2. We follow exactly the same steps as for Proposition 1. The

control vector Wit includes p lags of Yit and ŝiXt in addition to unit and time effects.

In the step where we chooseψ, we set the coefficient on Yi,t−ℓ to Aℓ(h), the coefficient

on ŝiXt−ℓ to B̃ℓ(h) =
(∑N

i=1 ŝ2
i

)−1 ∑N
i=1 ŝiBiℓ(h), the coefficient on the unit-i indicator to

mi(h), and the coefficients on time indicators to zero.

The standardized estimation error can then be written as

β̂(h) − β̃(h)
σ̂(h)

=

√
V(h, κ)

V̂(h)
×

 ∑T−h
t=1 Xtξt(h, κ)√
(T − h)V(h, κ)

+ RT(h, κ)


where the remainder term is now

RT(h, κ) = −

∑T−h
t=1

∑N
i=1 (π̂(h)′Wit)

[
(βih − β̃(h)ŝi)Xt +

∑p
ℓ=1(Biℓ(h) − B̃ℓ(h)ŝi)Xt−ℓ + ξit(h, κ)

]
N

√
(T − h)V(h, κ)

.

Let ϕ < 1. In contrast to Proposition 1, instead of a single drifting parameter we

now have two. We show that for any {hT, κT} such that hT ≤ ϕT,

(A)
{
(T − hT)V(hT, κT)

}−1/2 ∑T−hT
t=1 Xtξt(hT, κT) d

−−−−−→
PκT

N(0, 1),
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(B) V̂(hT)/V(hT, κT)
p

−−−−−→
PκT

1,

(C) RT(hT, κT)
p

−−−−−→
PκT

0.

We prove (A), (B) and (C) in Lemmas 8, 9 and 10 in Supplemental Appendix B.

The rest of the argument is identical to that of Proposition 1. □

Proposition 3

Using (17), substitute X̃t, X̃t−1, . . . , X̃t−p in succession into (6)–(7) to obtain

Yi,t+h = µi + βihX̃t +

p∑
ℓ=1

η̃iℓX̃t−ℓ + ξit(h, κ),

ξit(h, κ) =
∞∑
ℓ=0

(
ιℓ(h)β̃iℓXt+h−ℓ + γ̃iℓZt+h−ℓ + κδiℓui,t+h−ℓ

)
,

for some coefficients {η̃iℓ}, {β̃iℓ}, {γ̃iℓ} that depend on {βiℓ}, {γiℓ}, {bℓ}, {cℓ} and satisfy

the bound conditions in Assumption 3 for a suitable choice of Cℓ and C. Also define

β̃(h) =
(∑N

i=1 ŝ2
i

)−1 ∑N
i=1 ŝiβih with βih = (βih, η̃i1, . . . , η̃ip)′, ξt(h, κ) = N−1 ∑N

i=1 ŝiξit(h, κ)

and V(h, κ) = Varκ
(
X∗tξt(h, κ)

∣∣∣{θi, si}
N
i=1

)
.

Proof of Proposition 3. Following similar steps to the derivation in Proposition 1, let∑
i,t denote summation over 1 ≤ t ≤ T − h and 1 ≤ i ≤ N. For any ψ,∑

i,t

x̂it(h)ŝiX̃
′

t

 (β̂IV(h) − β̃(h)
)
=

∑
i,t

ŝiX
∗

t

(
Yi,t+h − X̃′t β̃ih − ψ

′Wit

)
−

∑T−h
t=1 X∗t

(T − h)

∑
i,t

ŝi

(
Yi,t+h − ŝiX̃

′

t β̃(h) − ψ′Wit

)
.

Note Wit includes unit and (possibly) time effects. To choose ψ, set the coefficient

on the unit-i indicator to µi and the coefficients on time indicators to zero, so that

∑
i,t

ŝiX
∗

t

(
Yi,t+h − X̃′t β̃ih − ψ

′Wit

)
= N

T−h∑
t=1

X∗tξt(h, κ),
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∑T−h
t=1 X∗t

(T − h)

∑
i,t

ŝi

(
Yi,t+h − ŝiX̃

′

t β̃(h) − ψ′Wit

)
=

∑T−h
t=1 X∗t

(T − h)

 T−h∑
t=1

ξt(h, κ).

Thus, the standardized estimation error can be written as

β̂IV
0 (h) − β̃(h)

σ̂IV
0 (h)

=

√√√√√ (
e′1J−1

)
V(h, κ)

(
e′1J−1

)′(
e′1 ĴIV(h)−1

)
V̂ IV(h)

(
e′1 ĴIV(h)−1

)′
×


(
e′1 ĴIV(h)−1

)∑T−h
t=1 X∗t ξ̃t(h, κ)√

(T − h)
(
e′1J−1

)
V(h, κ)

(
e′1J−1

)′ + RT(h, κ)


where J = (N−1 ∑N

i=1 ŝ2
i )E

[
X∗t X̃

′

t

]
and the remainder term is

RT(h, κ) = −

{
(T − h)−1

(
e′1 ĴIV(h)−1

)∑T−h
t=1 X∗t

}∑T−h
t=1 ξt(h, κ)√

(T − h)
(
e′1J−1

)
V(h, κ)

(
e′1J−1

)′ .

As in Proposition 1, we show that for any {κT} and λ , 0(p+1)×1

(A)
{
(T − h)λ′V(h, κT)λ

}−1/2 ∑T−h
t=1 λ

′X∗tξt(h, κT) d
−−−−−→

PκT

N(0, 1),

(B)
(
λ′V̂ IV(h)λ

)
/ (λ′V(h, κT)λ)

p
−−−−−→

PκT

1 and ĴIV(h)
p

−−−−−→
PκT

J,

(C) RT(h, κT)
p

−−−−−→
PκT

0.

The technical steps for (A), (B), and (C) are stated in Lemmas 11, 12 and 13 in

Supplemental Appendix B. The rest of the argument is as in Proposition 1. □
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B Additional proofs

We adopt the following notation in the proofs below. We use PN, EN, VarN, CovN to

denote probability, expectation, variance and covariance given {θi, si}
N
i=1 (we insert

a subindex κ or κT when necessary).

With a slight abuse of nomenclature we sometimes call Loève’s inequality to

the statement |
∑m

i=1 Xi|
r
≤ cr

∑m
i=1 |Xi|

r (with cr = 1 if r ≤ 1 and cr = mr−1 otherwise)

where X1, . . . ,Xm are random variables and not just to E
[
|
∑m

i=1 Xi|
r]
≤ cr

∑m
i=1 E

[
|Xi|

r]
(which is implied by the former). See Davidson (1994, Theorem 9.28).

Without loss of generality we assume κ ≥ 0. We also define the scaling function

g(κ) = max{1, κ} and note that g(κ)/κ = g(κ−1). In Proposition 1

V(h, κ)

g(κ2/N)
=

∑
∞

ℓ=0

{
ιℓ(h)β̄2

ℓEN

[
X2

t X2
t+h−ℓ

]
+ γ̄2

ℓEN

[
X2

t Z2
t+h−ℓ

]}
g(κ2/N)

+

∑N
i=1

∑
∞

ℓ=0 ŝ2
i δ

2
iℓEN

[
X2

t u2
i,t+h−ℓ

]
Ng(N/κ2)

is bounded below by CM2 > 0 and above by 3C4M4 < ∞ for any κ (and h). The same

applies to V(h, κ)/g(κ2/N) in Proposition 2. In Proposition 3, tr{V(h, κ)}/g(κ2/N) is

bounded below by (a2
0 + 1)CM2 > 0 and above by 6(p + 1)(a2

0 + 1)C4M4 < ∞.

*Federal Reserve Bank of New York: martin.almuzara@ny.frb.org
†CEMFI: victor.sancibrian@cemfi.edu.es
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Proposition 1

Parts (A), (B) and (C) of the proof of Proposition 1 in Appendix A are established

in Lemmas 1, 2 and 3 below. Lemmas 4 and 5 provide auxiliary results for Lemma

1, while 6 and 7 do the same for 2. At all times, we make Assumptions 1, 2 and 3

and we fix h and p ≥ h as T,N→∞ (note we do not need T/N→ 0 here).

Lemma 1 (Asymptotic normality of the score).∑T−h
t=1 Xtξt(h, κT)√
(T − h)V(h, κT)

d
−−−−−→

PκT

N(0, 1).

Proof. The argument relies on the martingale representation:

T−h∑
t=1

Xtξt(h, κT)√
(T − h)V(h, κT)

=

T∑
t=1

χT,t(h, κT)

where we have defined

χT,t(h, κ) =
XtΞX,t(h, κ) + ZtΞZ,t(h) + (κT/N)

∑N
i=1 uitΞU,it(h)√

(T − h)V(h, κT)

with

ΞX,t(h, κ) =
h∑
ℓ=1

1{t − ℓ ≥ 1}β̄h−ℓXt−ℓ +

∞∑
ℓ=p+1

1{t ≤ T − h}β̄h+ℓXt−ℓ

+

∞∑
ℓ=0

1{t ≤ T − h}

γ̄h+ℓZt−ℓ +
κ
N

N∑
i=1

ŝiδi,h+ℓui,t−ℓ

 ,
ΞZ,t(h) =

h∑
ℓ=1

1{t − ℓ ≥ 1}γ̄h−ℓXt−ℓ,

ΞU,it(h) =
h∑
ℓ=1

1{t − ℓ ≥ 1}ŝiδi,h−ℓXt−ℓ.

Under Assumption 2, it can be readily verified that {χT,t(h, κT)}Tt=1 is a martingale

difference array adapted to the natural filtration {FT,t}
T
t=1,

FT,t = σ
(
{Xτ,Zτ, {uiτ}

N
i=1}τ≤t, {θi, si}

N
i=1

)
,

2



that is, χT,t(h, κT) is FT,t-measurable and EκT

[
χT,t(h, κT)

∣∣∣FT,t−1

]
= 0.

By construction,
∑T

t=1 EκT

[
χT,t(h, κT)2

]
= 1 and we can show (Lemmas 4 and 5)

T∑
t=1

χT,t(h, κT)2 p
−−−−−→

PκT

1 and lim
T→∞

T∑
t=1

EκT

[
χT,t(h, κT)4

]
= 0.

By Davidson (1994, Theorems 23.11, 23.16 and 24.3), the Lemma follows. □

Lemma 2 (Consistency of the standard error).

V̂(h)
V(h, κT)

p
−−−−−→

PκT

1.

Proof. Since V(h, κT) > 0 holds PκT
-a.s., it suffices to show that

V̂(h) − V(h, κT)

g(κ2
T/N)

p
−−−−−→

PκT

0.

Write

V̂(h) − V(h, κT)

g(κ2
T/N)

= DT,1(h, κT) +DT,2(h, κT),

where we have defined

DT,1(h, κT) =
T−h∑
t=1

(
X2

t ξt(h, κT)2
− EκT

[
X2

t ξt(h, κT)2
∣∣∣{θi, si}

N
i=1

])
(T − h)g(κ2

T/N)
,

DT,2(h, κT) =
T−h∑
t=1


(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)2
− X2

t ξt(h, κT)2

(T − h)g(κ2
T/N)

 .
Next, using (x2

− y2) = (x − y)(x + y) and the Cauchy-Schwarz inequality,∣∣∣DT,2(h, κT)
∣∣∣ ≤ √

D−T,2(h, κT)
√

D+T,2(h, κT),

with

D−T,2(h, κT) =
T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
− Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

,

3



D+T,2(h, κT) =
T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
+ Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

.

Adding and subtracting Xtξt(h, κT) within the squares in D+T,2(h, κT) and applying

Loève’s inequality,

D+T,2(h, κT) ≤ 2D−T,2(h, κT) + 8|DT,1(h, κT)| +
8V(h, κT)

g(κ2
T/N)

.

We can show (Lemmas 6 and 7) that DT,1(h, κT) = oPκT
(1) and D−T,2(h, κT) = oPκT

(1).

Given that V(h, κT)/g(κ2
T/N) is bounded PκT

-a.s., D+T,2(h, κT) = OPκT
(1) which implies

DT,2(h, κT) = oPκT
(1) and the Lemma follows. □

Lemma 3 (Negligibility of the reminder).

RT(h, κT)
p

−−−−−→
PκT

0.

Proof. Let x̄t(h) = (Xt−1 − X̄1(h), . . . ,Xt−p − X̄p(h))′ where X̄ℓ(h) = (T − h)−1 ∑T−h
t=1 Xt−ℓ.

Since either ŝi was demeaned or time effects were not included as controls,

π̂(h)′Wit = π̂0,i(h) +
p∑
ℓ=1

π̂X,ℓ(h)ŝiXt−ℓ = ŝi
(
X̄0(h) + π̂X(h)′x̄t(h)

)
,

where {π̂0,i(h)}, πX(h) = (π̂X,1(h), . . . , π̂X,p(h))′ are the coefficients from the regression

of siXt on unit fixed effects and p lags of ŝiXt. Furthermore, it is readily seen that

π̂X(h) are also the coefficients in a regression of Xt on x̄t(h),

π̂X(h) =

T−h∑
t=1

x̄t(h)x̄t(h)′

−1 T−h∑

t=1

x̄t(h)Xt.

Note that E
[
Xt−ℓ

]
= E

[
Xt−ℓXt

]
= 0 and that Var

(∑T−h
t=1 Xt−ℓ

)
,Var

(∑T−h
t=1 Xt−ℓXt

)
are

bounded by a constant (M2 and M4, respectively) times (T− h) under Assumptions

1, 2 and 3. Also note that (T − h)−1 ∑T−h
t=1 x̄t(h)x̄t(h)′ = E

[
X2

t

]
× Ip + oPκT

(1). All of this

is independent of κT. It follows that

X̄0(h) = OPκT

(
(T − h)−1/2

)
, π̂X(h) = OPκT

(
(T − h)−1/2

)
.

4



Write

RT(h, κT) = −
X̄0(h)

∑T−h
t=1 ξt(h, κT)√

(T − h)V(h, κT)
−
π̂X(h)′

∑T−h
t=1 x̄t(h)ξt(h, κT)√

(T − h)V(h, κT)
.

To obtain RT(h, κT) = oPκT
(1), we show

{
(T − h)V(h, κT)

}−1/2 ∑T
t=1 ξt(h, κT) = OPκT

(1)

and
{
(T − h)V(h, κT)

}−1/2 ∑T
t=1 x̄t(h)ξt(h, κT) = OPκT

(1). We do so by direct calculation.

First,

EN,κT


T−h∑

t=1

ξt(h, κT)


2 = EN


T−h∑

t=1

∞∑
ℓ=0

ιℓ(h)β̄ℓXt+h−ℓ


2 + EN


T−h∑

t=1

∞∑
ℓ=0

γ̄ℓZt+h−ℓ


2

+
κ2

T

N2 EN


T−h∑

t=1

N∑
i=1

∞∑
ℓ=0

ŝiδiℓui,t+h−ℓ


2

≤ 2(T − h)
[  ∞∑
ℓ=0

ιℓ(h)|β̄ℓ|


2

EN

[
X2

t

]
+

 ∞∑
ℓ=0

|γ̄ℓ|


2

EN

[
Z2

t

]
+
κ2

T

N2

N∑
i=1

 ∞∑
ℓ=0

|ŝiδiℓ|


2

EN

[
u2

it

] ]
≤ (T − h) × 2(2 + κ2

T/N)C4M2,

where the last line uses Assumption 3(i)–(iv).1 By iterated expectations and Cheby-

shev’s inequality, for any ε > 0,

PκT


∣∣∣∣∣∣∣

∑T
t=1 ξt(h, κT)√

(T − h)V(h, κT)

∣∣∣∣∣∣∣ > ε
 = EκT

PN,κT


∣∣∣∣∣∣∣

∑T
t=1 ξt(h, κT)√

(T − h)V(h, κT)

∣∣∣∣∣∣∣ > ε



≤
1
ε2 EκT

[
2(2 + κ2

T/N)C4M2

V(h, κT)

]
≤

1
ε2

6C4M2

CM2 < ∞,

1We also used the fact that for any linear processωt =
∑
∞

ℓ=0 φℓεt−ℓwhere {φℓ} are absolutely summable

and {εt} is white noise with E
[
εt
]
= 0 and E

[
ε2

t

]
= 1,

E


 T∑

t=1

ωt


2 = T−1∑

m=−(T−1)

(T − |m|)
∞∑
ℓ=0

φℓφℓ+|m| ≤ T
∞∑
ℓ=0

|φℓ|
∞∑

m=−∞

|φℓ+|m|| ≤ 2T

 ∞∑
ℓ=0

|φℓ|


2

.
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where the bound on (2+κ2
T/N)/V(h, κT) = ((2+κ2

T/N)/g(κ2
T/N))× (g(κ2

T/N)/V(h, κT))

uses (2 + κ)/g(κ) ≤ 3 and V(h, κT)/g(κ2
T/N) ≥ CM2.

Similarly for any k = 1, . . . , p,

EN,κT


T−h∑

t=1

Xt−kξt(h, κT)


2 ≤ (T − h)

 ∞∑
ℓ=0

ιℓ(h)β̄2
ℓEN

[
X2

t−kX
2
t+h−ℓ

]
+

∞∑
ℓ=0

γ̄2
ℓEN

[
X2

t−kZ
2
t+h−ℓ

]
+
κ2

T

N2

N∑
i=1

∞∑
ℓ=0

ŝ2
i δ

2
iℓEN

[
X2

t−ku
2
i,t+h−ℓ

]
+ 2

h+k∑
ℓ=1

ιh+k−ℓ(h)ιh+k+ℓ(h)|β̄h+k−ℓβ̄h+k+ℓ|EN

[
X2

t−kX
2
t−k−ℓ

]
≤ (T − h) × (4 + κ2

T/N)C4M4,

where we used the autocovariances of Xt−kξt(h, κT) and Assumption 3(i)–(iv) again.

By iterated expectations and Chebyshev, for any ε > 0,

PκT


∣∣∣∣∣∣∣
∑T

t=1 Xt−rξt(h, κT)√
(T − h)V(h, κT)

∣∣∣∣∣∣∣ > ε
 ≤ 1
ε2 EκT

[
(4 + κ2

T/N)C4M4

V(h, κT)

]
≤

1
ε2

5C4M4

CM2 < ∞.

Thus, RT(h, κT) = oPκT
(1) and the Lemma follows. □

Lemma 4. Under the conditions of Lemma 1,

T∑
t=1

χT,t(h, κT)2 p
−−−−−→

PκT

1.

Proof. We show VarN,κT

(∑T
t=1 χT,t(h, κT)2

)
≤ V̄/(T − h) for a constant V̄ independent

of κT. Since EN,κT

[∑T
t=1 χT,t(h, κT)2

]
= 1, by iterated expectations and Chebyshev’s

inequality, for any ε > 0,

PκT


∣∣∣∣∣∣∣

T∑
t=1

χT,t(h, κT)2
− 1

∣∣∣∣∣∣∣ > ε
 = EκT

PN,κT


∣∣∣∣∣∣∣

T∑
t=1

χT,t(h, κT)2
− 1

∣∣∣∣∣∣∣ > ε



≤
V̄

ε2(T − h)
→ 0.

As argued at the beginning of the section, V(h, κ)/g(κ2/N) is bounded away from

zero and infinity uniformly over κ. Thus, it suffices to show

VarN,κT

 T∑
t=1

V(h, κT)χT,t(h, κT)2

g(κ2
T/N)

 ≤ V̄
T − h

,
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PκT
-a.s., for some constant V̄ independent of κT. We do this by a direct calculation.

Define χ̄T,t(h, κT) = χT,t(h, κT)
{
(T − h)V(h, κT)/g(κ2

T/N)
}1/2

so that

g
(
κT
√

N

)
χ̄T,t(h, κT) = XtΞX,t(h, κ) + ZtΞZ,t(h) +

κT

N

N∑
i=1

uitΞU,it(h)

=

∞∑
ℓ=1

bt,ℓXtXt−ℓ︸         ︷︷         ︸
≡g(κT/

√
N)ζ1,t

+

∞∑
ℓ=0

ct,ℓXtZt−ℓ︸         ︷︷         ︸
≡g(κT/

√
N)ζ2,t

+

h∑
ℓ=1

c̃t,ℓZtXt−ℓ︸         ︷︷         ︸
≡g(κT/

√
N)ζ3,t

+
κT

N

N∑
i=1

∞∑
ℓ=0

dit,ℓXtui,t−ℓ︸                    ︷︷                    ︸
≡g(κT/

√
N)ζ4,t

+
κT

N

N∑
i=1

h∑
ℓ=1

d̃it,ℓuitXt−ℓ︸                    ︷︷                    ︸
≡g(κT/

√
N)ζ5,t

(B.1)

for some {bt,ℓ, ct,ℓ, c̃t,ℓ, {dit,ℓ, d̃it,ℓ}
N
i=1} that depend on {θi, si}

N
i=1 (and h). Note that the

coefficients depend on t only via the indicator functions 1{t − ℓ ≤ 1} and 1{t ≤ T − h}.

It will be convenient to define {bℓ, cℓ, c̃ℓ, {di,ℓ, d̃i,ℓ}
N
i=1} as the coefficients we would get

by setting the indicators to one. This implies |bt,ℓ| ≤ |bℓ|, |ct,ℓ| ≤ |cℓ|, and so on.

By Assumption 3(iv), |bℓ|, |cℓ|, |c̃ℓ|, |diℓ|, |d̃iℓ| ≤ C̄ℓ almost surely for finite constants C̄ℓ
such that C̄ =

∑
∞

ℓ=1 C̄ℓ < ∞ (in fact, we can take C̄ ≤ C2 independent of h).

Consider the variance

VarN,κT

 T∑
t=1

V(h, κT)χT,t(h, κT)2

g(κ2
T/N)

 = ∑T
t=1

∑T
τ=1 ΓT(t, τ)

(T − h)2

where (omitting the dependence on h, κT and {θi, si}
N
i=1)

ΓT(t, τ) = CovN,κT

(
χ̃T,t(h, κT)2, χ̃T,τ(h, κT)2

)
.

Expanding the square of χ̃T,t(h, κT) and using the linearity of the covariance we can

express ΓT(t, τ) as the sum of covariances ΓT,k1k2k3k4
(t, τ) = CovN,κT

(
ζk1,t
ζk2,t
, ζk3,τ

ζk4,τ

)
where k1, k2, k3, k4 range over the five terms in (B.1). Moreover, if k1 = k2,

ΓT,k1k2k3k4
(t, τ) can only be non-zero if k3 = k4, while if k1 , k2, only if either k1 = k3
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and k2 = k4 or k1 = k4 and k2 = k3. Then, by the triangle inequality,

∣∣∣ΓT(t, τ)
∣∣∣ =

∣∣∣∣∣∣∣∣
5∑

k1=1

5∑
k2=1

5∑
k3=1

5∑
k4=1

ΓT,k1k2k3k4
(t, τ)

∣∣∣∣∣∣∣∣
≤

5∑
k1=1

5∑
k3=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ + 2
5∑

k1=1

5∑
k2=1

∣∣∣ΓT,k1k2k1k2
(t, τ)

∣∣∣ . (B.2)

We begin with
∑T

t=1
∑T
τ=1 ΓT,k1k1k3k3

(t, τ). Consider k1 = k3 = 1:

g
(
κ4

T

N2

) ∣∣∣ΓT,1111(t, τ)
∣∣∣ = ∣∣∣∣∣∣∣CovN


 ∞∑
ℓ=1

bt,ℓXtXt−ℓ

2

,

 ∞∑
ℓ=1

bτ,ℓXτXτ−ℓ

2
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

bt,ℓ1
bt,ℓ2

bτ,ℓ3bτ,ℓ4CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXτ−ℓ3Xτ−ℓ4

)∣∣∣∣∣∣∣
≤

∞∑
ℓ1=1

∞∑
ℓ3=1

b2
ℓ1

b2
ℓ3

∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2
τX

2
τ−ℓ3

)∣∣∣∣
+ 2

∞∑
ℓ1=1

∑
ℓ2,ℓ1

|bℓ1bℓ2bℓ1+τ−tbℓ2+τ−t|

∣∣∣∣CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXt−ℓ1

Xt−ℓ2

)∣∣∣∣ .
The inequality uses the fact that by Assumption 2, CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXτ−ℓ3Xτ−ℓ4

)
can only be non-zero if ℓ1 = ℓ2 and ℓ3 = ℓ4 or, with ℓ1 , ℓ2, if either ℓ3 = ℓ1 + τ − t

and ℓ4 = ℓ2 + τ − t or ℓ3 = ℓ2 + τ − t and ℓ4 = ℓ1 + τ − t.2 We also use |bt,ℓ| ≤ |bℓ|.

For the first double sum, now summing over t and τ,

T∑
t=1

T∑
τ=1

∞∑
ℓ1=1

∞∑
ℓ3=1

b2
ℓ1

b2
ℓ3

∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2
τX

2
τ−ℓ3

)∣∣∣∣
≤ 2T

T−1∑
m=0

∞∑
ℓ1=1

∞∑
ℓ3=1

C̄2
ℓ1

C̄2
∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2

t−mX2
t−m−ℓ3

)∣∣∣∣
≤ 2TC̄2

∞∑
ℓ1=1

C̄2
ℓ1

 ∞∑
j1=−∞

∞∑
j2=−∞

∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2

t−mX2
t−m−ℓ3

)∣∣∣∣


2This is similar to the proof of Montiel Olea and Plagborg-Møller (2021, Lemma A.6)
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≤ 2TC̄2K̄
∞∑
ℓ1=1

C̄2
ℓ1
≤ 2TC̄4K̄

for some constant K̄ that can be shown to exist as by Assumption 3(iii) the fourth-

order cumulants of X2
t conditional on {θi, si}

N
i=1 are absolutely summable.

Turning to the second double sum, by Assumption 2, since ℓ1 , ℓ2,∣∣∣∣CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXτ−ℓ1Xτ−ℓ2

)∣∣∣∣ = ∣∣∣∣EN

[
X2

t X2
τX

2
t−ℓ1

X2
t−ℓ2

]∣∣∣∣ ≤ EN

[
X8

t

]
≤M8,

where M8 is the moment bound from Assumption 3(i). Then,

2
T∑

t=1

T∑
τ=1

∞∑
ℓ1=1

∑
ℓ2,ℓ1

|bℓ1bℓ2bℓ1+τ−tbℓ2+τ−t|

∣∣∣∣CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXt−ℓ1

Xt−ℓ2

)∣∣∣∣
≤ 4TM8

T−1∑
m=0

∞∑
ℓ1=1

∑
ℓ2,ℓ1

|bℓ1bℓ2bℓ1+mbℓ2+m|

≤ 4TM8

∞∑
ℓ1=1

∞∑
ℓ2=1

|bℓ1 ||bℓ2 |

 ∞∑
m=0

|bℓ1+m||bℓ2+m|


≤ 4TM8

∞∑
ℓ1=1

∞∑
ℓ2=1

|bℓ1 ||bℓ2 |

 ∞∑
m1=1

|bm1
|
2
∞∑

m2=1

|bm2
|
2


1/2

≤ 4TC̄4M8,

where the second inequality increases the range of summation over ℓ2 and m, the

third uses Cauchy-Schwarz and the fourth follows from Assumption 3(iv).

Putting these calculations together and using g(κ) ≥ 1,∑T
t=1

∑T
τ=1

∣∣∣ΓT,1111(t, τ)
∣∣∣

(T − h)2 ≤
T × 2C̄4(K̄ + 2M8)

g(κ4
T/N

2)(T − h)2 ≤
2C̄4(K̄ + 2M8)

(1 − h/T)(T − h)
.

In fact, the same bound works for
∑T

t=1
∑T
τ=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ for any k1, k3 ∈ {1, 2, 3}.

Next consider k1 = k3 = 4:

g
(
κ4

T

N2

) ∣∣∣ΓT,4444(t, τ)
∣∣∣

(κ4
T/N

4)
=

∣∣∣∣∣∣∣∣CovN


 N∑

i=1

∞∑
ℓ=1

dit,ℓXtui,t−ℓ


2

,

 N∑
i=1

∞∑
ℓ=1

diτ,ℓXτui,τ−ℓ


2
∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣ N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di2t,ℓ2

di3τ,ℓ3
di4τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui2,t−ℓ2

,X2
τui3,τ−ℓ3

ui4,τ−ℓ4

) ∣∣∣∣∣∣
≤

N∑
i1=1

N∑
i3=1

∣∣∣∣∣∣ ∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di1t,ℓ2

di3τ,ℓ3
di3τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui1,t−ℓ2

,X2
τui3,τ−ℓ3

ui3,τ−ℓ4

) ∣∣∣∣∣∣
+

N∑
i1=1

N∑
i2=1

∣∣∣∣∣∣ ∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di2t,ℓ2

di1τ,ℓ3
di2τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui2,t−ℓ2

,X2
τui1,τ−ℓ3

ui2,τ−ℓ4

) ∣∣∣∣∣∣
+

N∑
i1=1

N∑
i2=1

∣∣∣∣∣∣ ∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di2t,ℓ2

di2τ,ℓ3
di1τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui2,t−ℓ2

,X2
τui2,τ−ℓ3

ui1,τ−ℓ4

) ∣∣∣∣∣∣.
The inequality uses the fact that CovN

(
X2

t ui1,t−ℓ1
ui1,t−ℓ2

,X2
τui3,τ−ℓ3

ui3,τ−ℓ4

)
can only be

non-zero if i1 = i2 and i3 = i4, or i1 = i3 and i2 = i4, or i1 = i4 and i2 = i3.

Summing over t and τ and applying to each of the three summands on the right

hand side the same steps as the case k1 = k3 = 1,∑T
t=1

∑T
τ=1

∣∣∣ΓT,4444(t, τ)
∣∣∣

(T − h)2 ≤
3N2
× κ4

T/N
4
× 2C̄4(K̄ + 2M8)

g(κ4
T/N

2)(1 − h/T)(T − h)
≤

6C̄4(K̄ + 2M8)
(1 − h/T)(T − h)

.

Repeating the calculation for the remaining cases (and noting that this bound

is three times larger than the one we computed for k1 = k3 = 1) we conclude that

6C̄4(K̄+2M8)/(1−h/T)(T−h) works for any k1, k3 ∈ {1, 2, 3, 4, 5}. By similar reasoning,

the bound also works for
∑T

t=1
∑T
τ=1 ΓT,k1k2k1k2

(t, τ) whenever k1 , k2. We then get∑T
t=1

∑T
τ=1 ΓT(t, τ)

(T − h)2 ≤
V̄

(T − h)
,
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where V̄ = 75× 6C̄4(K̄+ 2M8)/(1− h/T) does not depend on κT (75 is the number of

covariances in (B.2)). This establishes
∑T

t=1 χT,t(h, κT)2 = 1 + oPκT
(1). □

Lemma 5. Under the conditions of Lemma 1,

lim
T→∞

T∑
t=1

EκT

[
χ4

T,t

]
= 0.

Proof. Using the notation of Lemma 4 and Loève’s inequality,

EN

[
χ̄T,t(h, κT)4

]
≤ 53

5∑
k=1

EN

[
ζ4

k,t

]
. (B.3)

Each of the five terms in (B.3) is under Assumption 3(i)–(iv) bounded by a constant

that does not depend on κT. For k = 1,

g
(
κ4

T

N2

)
EN

[
ζ4

1,t

]
= EN


 ∞∑
ℓ=1

bt,ℓXtXt−ℓ

4
≤

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

|bt,ℓ1
bt,ℓ2

bt,ℓ3
bt,ℓ4
|

∣∣∣∣EN

[
X4

t Xt−ℓ1
Xt−ℓ2

Xt−ℓ3
Xt−ℓ4

]∣∣∣∣
≤M8

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

|bℓ1bℓ2bℓ3bℓ4 | ≤M8

 ∞∑
ℓ=1

|bℓ|

4

≤M8C̄4,

where C̄ is the constant we defined in the first part. The same bound works for

k = 2 and k = 3 in (B.3). For k = 4,

g
(
κ4

T

N2

) EN

[
ζ4

4,t

]
(κ4

T/N
4)
= EN


 N∑

i=1

∞∑
ℓ=1

dit,ℓXtui,t−ℓ


4

≤

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

|di1t,ℓ1
di2t,ℓ2

di3t,ℓ3
di4t,ℓ4
|

×

∣∣∣∣EN

[
X4

t ui1,t−ℓ1
ui2,t−ℓ2

ui3,t−ℓ3
ui4,t−ℓ4

]∣∣∣∣
≤ 3

N∑
i1=1

N∑
i2=1

∞∑
ℓ1=1

∞∑
ℓ2=1

|d2
i1t,ℓ1

d2
i2t,ℓ2
|

∣∣∣∣EN

[
X4

t u2
i1,t−ℓ1

u2
i2,t−ℓ2

]∣∣∣∣
11



≤ 3N2M8

∞∑
ℓ1=1

∞∑
ℓ2=1

d2
ℓ1

d2
ℓ2
≤ 3N2M8C̄4,

where the second inequality uses that for EN

[
X4

t ui1,t−ℓ1
ui2,t−ℓ2

ui3,t−ℓ3
ui4,t−ℓ4

]
to be non-

zero we need i1 = i2 and i3 = i4, or i1 = i3 and i2 = i4, or i1 = i4 and i2 = i3 because of

Assumptions 1(ii) and 2. The same bound applies to k = 5 in (B.3).

Putting these bounds together,

T∑
t=1

EN

[
χT,t(h, κT)4

]
=

∑T
t=1 EN

[
χ̄T,t(h, κT)4

]
g(κ4

T/N
2)

(T − h)2V(h, κT)2 ≤
9M8C̄4g(κ4

T/N
2)

(1 − h/T)(T − h)V(h, κ2
T)2 .

Since V(h, κT)2/g(κ4
T/N

2) ≥ CM2 > 0, using iterated expectations we conclude that∑T
t=1 EκT

[
χT,t(h, κT)4

]
= o(1) where the convergence is uniform over κT. □

Lemma 6. Under the conditions of Lemma 2,

T−h∑
t=1

X2
t ξt(h, κT)2

− EκT

[
X2

t ξt(h, κT)2
∣∣∣{θi, si}

N
i=1

]
(T − h)g(κ2

T/N)

p
−−−−−→

PκT

0.

Proof. The proof is analogous to that of Lemma 4. We will show that for a constant

V̄ independent of κT, VarN,κT

(∑T
t=1 X2

t ξt(h, κT)2/g(κ2
T/N)

)
≤ V̄(T − h). By iterated

expectations and Chebyshev’s inequality it will follow that, for any ε > 0,

PκT


∣∣∣∣∣∣∣

T∑
t=1

X2
t ξt(h, κT)2

− EN,κT

[
X2

t ξt(h, κT)2
]

(T − h)g(κ2
T/N)

∣∣∣∣∣∣∣ > ε
 ≤ V̄
ε2(T − h)

→ 0.

We can write

Xtξt(h, κT) =
∞∑
ℓ=0

ιℓ(h)β̄ℓXtXt+h−ℓ +

∞∑
ℓ=0

γ̄ℓXtZt+h−ℓ +
κT

N

N∑
i=1

∞∑
ℓ=0

ŝiδiℓXtui,t−ℓ

=

∞∑
ℓ=0

bℓXtXt+h−ℓ︸           ︷︷           ︸
≡g(κT/

√
N)ζ1,t

+

∞∑
ℓ=0

cℓXtZt+h−ℓ︸          ︷︷          ︸
≡g(κT/

√
N)ζ2,t

+
κT

N

N∑
i=1

∞∑
ℓ=0

diℓXtui,t+h−ℓ︸                      ︷︷                      ︸
≡g(κT/

√
N)ζ3,t

. (B.4)

for some coefficients {bℓ, cℓ, {diℓ}
N
i=1} that depend on {θi, si}

N
i=1 (and h). By Assumption

3(iv), we have |bℓ|, |cℓ|, |diℓ| ≤ Cℓ almost surely for some positive finite constants Cℓ

12



such that C =
∑
∞

ℓ=1 Cℓ < ∞. Note that the coefficients, constants and variables ζ1,t,

ζ2,t, ζ3,t are different from the ones in the proof of Lemma 4.

Consider the variance

VarN,κT

 T∑
t=1

X2
t ξt(h, κT)2

g(κ2
T/N)

 = T−h∑
t=1

T−h∑
τ=1

ΓT(t, τ)

where (omitting the dependence on h, κT and {θi, si}
N
i=1)

ΓT(t, τ) = CovN,κT

X2
t ξt(h, κT)2

g(κT/
√

N)
,

X2
τξτ(h, κT)2

g(κT/
√

N)

 .
As in the proof of Lemma 4, we expand the square of X2

t ξt(h, κT)2 to express ΓT(t, τ)

as the sum of covariancesΓT,k1k2k3k4
(t, τ) = CovN,κT

(
ζk1,t
ζk2,t
, ζk3,τ

ζk4,τ

)
where k1, k2, k3, k4

range over the three terms in (B.4). If k1 = k2, ΓT,k1k2k3k4
(t, τ) can only be non-zero if

k3 = k4, while if k1 , k2, only if either k1 = k3 and k2 = k4 or k1 = k4 and k2 = k3. Then,

∣∣∣ΓT(t, τ)
∣∣∣ = 3∑

k1=1

3∑
k2=1

3∑
k3=1

3∑
k4=1

∣∣∣ΓT,k1k2k3k4
(t, τ)

∣∣∣
=

3∑
k1=1

3∑
k3=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ + 2
3∑

k1=1

3∑
k2=1

∣∣∣ΓT,k1k2k1k2
(t, τ)

∣∣∣ . (B.5)

By calculations similar to that of Lemma 4, for any k1, k2, k3 ∈ {1, 2, 3},

T−h∑
t=1

T−h∑
τ=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ ≤ 6C4(K̄ + 2M8) × (T − h),

T−h∑
t=1

T−h∑
τ=1

∣∣∣ΓT,k1k2k1k2
(t, τ)

∣∣∣ ≤ 6C4(K̄ + 2M8) × (T − h).

We therefore arrive at

T∑
t=1

T∑
τ=1

ΓT(t, τ) ≤ V̄(T − h),

with V̄ = 27 × 6C4(K̄ + 2M8) independent of κT (27 is the number of terms in (B.5)).

Hence, {(T − h)g(κ2
T/N)}−1 ∑T

t=1

(
X2

t ξt(h, κT)2
− EN,κT

[
X2

t ξt(h, κT)2
])
= oPκT

(1). □
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Lemma 7. Under the conditions of Lemma 2,

T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
− Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

p
−−−−−→

PκT

0.

Proof. We begin by writing

x̂it(h) = ŝi(Xt − X̂t(h)), X̂t(h) = X̄0(h) + π̂X(h)′x̄t(h), (B.6)

with X̄0(h), π̂X(h) and x̄t(h) = (Xt−1−X̄1(h), . . . ,Xt−p−X̄p(h))′ as in the proof of Lemma

3. As argued, X̄0(h) = OPκT

(
(T − h)−1/2

)
and π̂X(h) = OPκT

(
(T − h)−1/2

)
.

Next, we write η̂(h)′Wit = η̂0,i(h)+ η̂X(h)′x̄t(h)ŝi and ηX,ih = (βi,h+1, . . . , βi,h+p)′ so that

ξ̂it(h) − ξit(h, κT) =

µi − η̂0,i(h) +
p∑
ℓ=1

βi,h+ℓX̄ℓ(h)

 + (βih − β̂(h)ŝi)Xt + (ηX,ih − η̂X(h)ŝi)
′x̄t(h)

and we note β̂(h)

η̂X(h)

 =
T−h∑

t=1

Xt − X̄0(h)

x̄t(h)


Xt − X̄0(h)

x̄t(h)


′
−1 T−h∑

t=1

Xt − X̄0(h)

x̄t(h)

 Ŷt+h

=

 β̃(h)

η̃X(h)

 +
T−h∑

t=1

Xt − X̄0(h)

x̄t(h)


Xt − X̄0(h)

x̄t(h)


′
−1 T−h∑

t=1

Xt − X̄0(h)

x̄t(h)

 ξt(h, κT)

(N−1 ∑N
i=1 ŝ2

i )

where Ŷt+h = (
∑N

i=1 ŝ2
i )−1 ∑N

i=1 ŝiYi,t+h and η̃X(h) = (
∑N

i=1 ŝ2
i )−1 ∑N

i=1 ŝiηX,ih. Since the least

squares denominator matrix when scaled by (T − h)−1 converges to E
[
X2

t

]
× Ip+1 in

probability uniformly over κT, the calculations in Lemma 3 imply that

(N−1 ∑N
i=1 ŝ2

i )(β̂(h) − β̃(h))

g(κT/
√

N)
= OPκT

(
(T − h)−1/2

)
,

(N−1 ∑N
i=1 ŝ2

i )(η̂X(h) − η̃X(h))

g(κT/
√

N)
= OPκT

(
(T − h)−1/2

)
.

Because Wit includes unit effects,
∑N

i=1 x̂it(h)(η̂0,i(h) − µi +
∑p
ℓ=1 βi,h+ℓX̄ℓ(h)) = 0 and,

N−1
N∑

i=1

x̂it(h)(ξ̂it(h) − ξit(h, κT)) =

N−1
N∑

i=1

ŝ2
i

 (β̃(h) − β̂(h))Xt(Xt − X̂t(h))

14



+

N−1
N∑

i=1

ŝ2
i

 (η̃X(h) − η̂X(h))′x̄t(h)(Xt − X̂t(h)). (B.7)

To prove the Lemma, add and subtract N−1 ∑N
i=1 x̂it(h)ξit(h, κT) within the squares

and use Loève’s inequality to obtain

T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
− Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

≤ 2DπT,2(h, κT) + 2DηT,2(h, κT),

where

DπT,2(h, κT) =
T−h∑
t=1

[
N−1 ∑N

i=1(ŝiXt − x̂it(h))ξit(h, κT)
]2

(T − h)g(κ2
T/N)

,

DηT,2(h, κT) =
T−h∑
t=1

[
N−1 ∑N

i=1 x̂it(h)(ξ̂it(h) − ξit(h, κT))
]2

(T − h)g(κ2
T/N)

.

Inserting (B.6) into the first term and using Loève’s inequality,

DπT,2(h, κT) ≤ 2

X̄0(h)2
∑T−h

t=1 ξt(h, κT)2

(T − h)g(κ2
T/N)

+ ∥π̂X(h)∥2
∑T−h

t=1 ∥x̄t(h)ξt(h, κT)∥2

(T − h)g(κ2
T/N)

 ,
where ∥ · ∥ is Euclidean norm. From calculations similar to those in Lemma 3,∑T−h

t=1 ξt(h, κT)2

(T − h)g(κ2
T/N)

= OPκT
(1) and

∑T−h
t=1 ∥x̄t(h)ξt(h, κT)∥2

(T − h)g(κ2
T/N)

= OPκT
(1) ,

which allows us to conclude that DπT,2(h, κT) = oPκT
(1).

Inserting (B.7) into the second term and using Loève’s inequality,

DηT,2(h, κT) ≤ 2


 (N−1 ∑N

i=1 ŝ2
i )(β̃(h) − β̂(h))

g(κT/
√

N)

2 ∑T−h
t=1 X2

t (Xt − X̂t(h))2

T − h

+

∥∥∥∥∥∥
 (N−1 ∑N

i=1 ŝ2
i )(η̃X(h) − η̂X(h))

g(κT/
√

N)

∥∥∥∥∥∥
2 ∑T−h

t=1 ∥x̄t(h)(Xt − X̂t(h))∥2

T − h

 .
Under Assumption 3(i), we can show that (T − h)−1 ∑T−h

t=1 X2
t (Xt − X̂t(h))2 = OPκT

(1)

and (T − h)−1 ∑T−h
t=1 ∥xt(h)(Xt − X̂t(h))∥2 = OPκT

(1). Thus, DηT,2(h, κT) = oPκT
(1). □
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Proposition 2

Parts (A), (B) and (C) of the proof of Proposition 2 in Appendix A are established in

Lemmas 8, 9 and 10 below. The argument closely resembles the proof of Proposition

1 and, therefore, in order to conserve space we only sketch the steps. Again, we

adopt Assumptions 1, 2 and 3, we fix p and assume hT/T ≤ ϕ < 1 as T,N→∞.

Lemma 8 (Asymptotic normality of the score).∑T−hT
t=1 Xtξt(hT, κT)√
(T − hT)V(hT, κT)

d
−−−−−→

PκT

N(0, 1).

Proof. The proof given for Lemma 1 goes through with the following adjustment:

we can remove the terms β̄ℓ, γ̄ℓ, δiℓ from ΞX,t(h, κ) whenever ℓ > h. That is, we set

ΞX,t(h, κ) =
h∑
ℓ=1

1{t − ℓ ≥ 1}β̄h−ℓXt−ℓ + 1{t ≤ T − h}

γ̄hZt +
κ
N

N∑
i=1

ŝiδihuit

 .
The calculations in Lemmas 4 and 5 apply with the same adjustment. In Lemma

4, V̄ ≤ 75 × 6C8(K̄ + 2M8)/(1 − ϕ), which does not depend on κT or hT. Similarly,

in Lemma 5,
∑T

t=1 EN

[
χT,t(hT, κT)4

]
≤ 9M8C8/(1 − ϕ)2CM2T, which tends to zero as

T→∞ uniformly over κT and hT. □

Lemma 9 (Consistency of the standard error).

V̂(hT)
V(hT, κT)

p
−−−−−→

PκT

1.

Proof. The proofs of Lemma 2 and auxiliary Lemma 6 go through without change.

To establish the equivalent to Lemma 7 in this context, define x̄t(hT) as in its proof

and let ȳit(hT) = (Ŷi,t−1(hT), . . . , Ŷi,t−p(hT)) with Ŷi,t−ℓ(hT) the residual from regressing

g(κT)−1Yi,t−ℓ on unit and time effects. We can write

π̂(hT)′Wit = ŝiX̄0(hT) + ŝiπ̂X(hT)′x̄t(hT) + π̂Y(hT)′ ȳit(hT),

η̂(hT)′Wit = η̂0,i(hT) + ŝiη̂X(hT)′x̄t(hT) + η̂Y(hT)′ ȳit(hT).

Scaling Yi,t−ℓ by g(κT)−1 leaves the least square predictions π̂(hT)′Wit and η̂(hT)′Wit

unchanged, but it helps bound them in probability uniformly over κT.
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Calculations similar to those in Lemma 3 deliver
X̄0(hT)

π̂X(hT)

π̂Y(hT)

 = OPκT

(
(T − hT)−1/2

)
,

g
(
κT
√

N

)−1


(β̂(hT) − β̃(hT))

(η̂X(hT) − η̃X(hT))

(η̂Y(hT) − η̃Y(hT))

 = OPκT

(
(T − hT)−1/2

)
,

where η̃X(hT) = (B̃1(hT), . . . , B̃p(hT))′ and η̃Y(hT) = g(κT)(A1(hT), . . . ,Ap(hT))′ with

Aℓ(h) and B̃ℓ(h) as defined in the proof of Proposition 2 in Appendix A.

The rest of the proof follows the steps of Lemma 7. The convergence is uniform

in both κT and hT because T − hT ≤ (1 − ϕ)T with ϕ < 1. □

Lemma 10 (Negligibility of the remainder).

RT(hT, κT)
p

−−−−−→
PκT

0.

Proof. We begin by defining x̄t(hT) and ȳit(h) as in Lemma 9, by writing

π̂(hT)′Wit = ŝiX̄0(hT) + ŝiπ̂X(hT)′x̄t(hT) + π̂Y(hT)′ ȳit(hT),

and by noting again that 
X̄0(hT)

π̂X(hT)

π̂Y(hT)

 = OPκT

(
(T − hT)−1/2

)
.

Next, we write rit(hT) = (βih − β̃(h)ŝi)Xt +
∑p
ℓ=1(Biℓ(h) − B̃ℓ(h)ŝi)Xt−ℓ and

RT(hT, κT) = −
X̄0(hT)

∑T−hT
t=1 ξt(hT, κT)√

(T − hT)V(hT, κT)
−
π̂X(hT)′

∑T−hT
t=1 x̄t(hT)ξt(hT, κT)√

(T − hT)V(hT, κT)

−
π̂Y(hT)′

∑N
i=1

∑T−hT
t=1 ȳit(hT)(rit(hT) + ξit(hT, κT))

N
√

(T − hT)V(hT, κT)

The rest of the argument mimics the proof of Lemma 3. □
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Proposition 3

Parts (A), (B) and (C) of the proof of Proposition 3 in Appendix A are stated in

Lemmas 11, 12 and 13 below. The proofs are virtually identical to their counterparts

in Proposition 1 with some minor differences. Here we make Assumptions 4 and

we hold h and p ≥ h fixed as T,N→∞.

Lemma 11 (Asymptotic normality of the score).∑T−h
t=1 λ

′X∗tξt(h, κT)√
(T − h)λ′V(h, κT)λ

d
−−−−−→

PκT

N(0, 1).

Proof. The arguments given for Lemma 1 and auxiliary Lemmas 4 and 5 apply with

the obvious change in notation. □

Lemma 12 (Consistency of the standard error and OLS denominator).

λ′V̂ IV(h)λ
λ′V(h, κT)λ

p
−−−−−→

PκT

1 and ĴIV(h)
p

−−−−−→
PκT

J.

Proof. The first part follows from arguments analogous to those given for Lemma

2 and auxiliary Lemmas 6 and 7 (with obvious notational changes). For the second

part, note VarN,κT

(
X∗tX̃t

)
≤ V̄/(T − h) for some constant V̄ independent of κT under

Assumption 4(ii), so that
∥∥∥ĴIV(h) − J

∥∥∥ = oPκT
(1) follows from iterated expectations

and Chebyshev’s inequality. □

Lemma 13 (Negligibility of the remainder).

RT(h, κT)
p

−−−−−→
PκT

0.

Proof. For any λ , 0(p+1)×1, by the same calculations as in Lemma 3,∑T−h
t=1 λ

′X∗t
(T − h)

= OPκT

(
(T − h)−1/2

)
and

∑T−h
t=1 ξt(h, κT)√

(T − h)λ′V(h, κT)λ
= OPκT

(1) .

Since ĴIV(h) = J + oPκT
(1) by the second part of Lemma 12, the result follows. □
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C Details of simulation study

Here we complement Section 4 with additional details. First, we describe how we

simulate the heterogeneity. Second, we specify the calibration of our DGPs. Third

and last, we present further simulation results.

Simulation of observable and unobservable heterogeneity. A primary feature is

the correlation between si and {βi, γi.δi}.
3 We begin by drawing the vector

(si, sγ,i, sδ,i)
′
∼ N

(
13×1, (1 − ρ)I3 + ρ13×3

)
for some ρ , 0. Next, we set a very large L̄ and compute

βiℓ = siβ̆iℓ, γiℓ = sγ,iγ̆iℓ, δiℓ = sδ,iδ̆iℓ,

where {β̆iℓ, γ̆iℓ, δ̆iℓ}
L̄
ℓ=0 are obtained by (a) drawing the roots of ARMA polynomials

from Beta distributions, (b) computing their MA(∞) representations, (c) truncating

them at L̄, and (d) normalizing them so that
∑L̄
ℓ=0 β̆

2
iℓ =

∑L̄
ℓ=0 γ̆

2
iℓ =

∑L̄
ℓ=0 δ̆

2
iℓ = 1.4

To generate time-varying heterogeneity we set sit = si + ζit with ζit ∼ N(0, 1), i.i.d.

over units and time, and independent of si and everything else. This ensures sit

remains exogenous with respect to aggregate and idiosyncratic shocks.

Finally, in the VAR DGP, we set

Biℓ = siB̆iℓ, Ci0 = sγ,i, Di0 = sδ,i.

where {B̆iℓ}
L̄
ℓ=0 are obtained in the same way as {β̆iℓ}

L̄
ℓ=0 above.

Our method does not satisfy Assumption 3(iv), although responses are bounded

with sufficiently high probability that it does not seem to make a difference.

3Instead, µi (and mi in the VAR setup) does not play a big role and we simply draw it as N(0, 1).
4The advantage of this representation is that it separates the scale and persistence. For example, if

Xt is white noise with unit variance conditional on {βiℓ}
L̄
ℓ=0, the variance of

∑L̄
ℓ=0 βiℓXt−ℓ is

∑L̄
ℓ=0 β

2
iℓ = s2

i

while the ratio of long-run variance to variance of
∑L̄
ℓ=0 βiℓXt−ℓ (a measure of persistence) is(∑L̄

ℓ=0 βiℓ

)2

∑L̄
ℓ=0 β

2
iℓ

=

(∑L̄
ℓ=0 β̆iℓ

)2

∑L̄
ℓ=0 β̆

2
iℓ

,

which does not depend on si.
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D A survey of empirical applications

Below, we survey relevant empirical applications by the method used to calculate

standard errors. The list reflects the recent surge in applications (with the oldest

paper dated 2018) and includes both published work and working papers. We

have aimed to make the list comprehensive, but it is possible that some might

have been inadvertently omitted. When different methods were used, we favored

the one used in the main specification and the one used in estimation of dynamic

effects (non-zero horizons). We classified as one-way clustering (within units)

applications that cluster at a higher level of aggregation than primary units; say,

at the industry (or industry-time) level when units are firms. While allowing for

sector-level shocks, these still rule out economy-wide spatial dependence. See the

Introduction for additional details.

By method

Two-way clustering

(within units and time)

Ippolito, Ozdagli, and Perez-Orive (2018), Jeenas (2019), Ottonello and

Winberry (2020), Amberg, Jansson, Klein, and Rogantini Picco (2022),

Palazzo and Yamarthy (2022), Paz (2022), Bellifemine, Couturier, and

Jamilov (2023), Cascaldi-Garcia, Vukotić, and Zubairy (2023), Drechsel

(2023), Durante, Ferrando, and Vermeulen (2022), Duval, Furceri, Lee, and

Tavares (2023), Ferreira, Ostry, and Rogers (2023), González, Nuño, Thaler,

and Albrizio (2023), Lakdawala and Moreland (2023), Singh, Suda, and Zer-

vou (2023), Thürwächter (2023), Zhou (2023), Anderson and Cesa-Bianchi

(2024), Berthold, Cesa-Bianchi, Di Pace, and Haberis (2024), Caglio, Darst,

and Kalemli-Özcan (2024), Camêlo (2024), Gulyas, Meier, and Ryzhenkov

(2024), Paranhos (2024), Lakdawala and Moreland (forthcoming)

Clustering within units Wu (2018), Ozdagli (2018), Crouzet and Mehrotra (2020), Singh, Suda, and

Zervou (2022), Albrizio, González, and Khametshin (2023), Andersen, Jo-

hannesen, Jørgensen, and Peydró (2023), Camara and Ramirez Venegas

(2023), Ghomi (2023), Indarte (2023), Bardóczy, Bornstein, Maggi, and Sal-

gado (2024), Jeenas (2024), Jeenas and Lagos (2024), Lo Duca, Moccero, and

Parlapiano (2024), Paranhos (2024), Ruzzier (2024)

Driscoll and Kraay (1998)

standard errors

Holm, Paul, and Tischbirek (2021), Bahaj, Foulis, Pinter, and Surico (2022),

Cloyne, Ferreira, Froemel, and Surico (2023), Fagereng, Gulbrandsen,

Holm, and Natvik (2023), Gorea, Kryvtsov, and Kudlyak (2023), Bilal and

Känzig (2024), Cao, Hegna, Holm, Juelsrud, König, and Riiser (2024)

Clustering within time Gürkaynak, Karasoy-Can, and Lee (2022)
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