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Abstract 

We study panel data regression models when the shocks of interest are aggregate and possibly small 

relative to idiosyncratic noise. This speaks to a large empirical literature that targets impulse responses via 

panel local projections. We show how to interpret the estimated coefficients when units have 

heterogeneous responses and how to obtain valid standard errors and confidence intervals. A simple 

recipe leads to robust inference: including lags as controls and then clustering at the time level. This 

strategy is valid under general error dynamics and uniformly over the degree of signal-to-noise of macro 

shocks. 
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1 Introduction

Applied macroeconomists are increasingly interested in empirical estimates of the trans-
mission of aggregate uncertainty to individual outcomes, often in the form of impulse
responses.

A popular approach is to formulate estimating equations of the form

Yi,t+h = β(h)siXt + controls + vh,it, (1)

where Yit is a micro outcome for unit i (i = 1, . . . ,N) at time t (t = 1, . . . ,T) and Xt a macro
shock of interest. Shocks are often interacted with unit-level covariates si to document
heterogeneity in transmission along observables. For example, Ottonello and Winberry
(2020) and Crouzet and Mehrotra (2020) are interested in the heterogeneous effects of
monetary policy shocks Xt on firm-level investment and sales along different margins,
such as firm size or leverage. Estimates β̂(h) of the response at horizon h are then obtained
via least squares; a panel local projections version of Jordà (2005).

Despite its routine application, little is known about the statistical properties of β̂(h).
The way standard errors are computed in the empirical literature illustrates it well: in our
own survey of almost 50 recent papers, around half compute two-way clustered standard
errors, one-third cluster within units only, and many others resort to Driscoll and Kraay
(1998). This reflects the vastly different ways in which researchers perceive the nature
of shocks, the role of each dimension of the panel for precision, and the importance of
aggregate variation in the data.

In this paper, we provide the first treatment of estimation and inference for this prob-
lem. We show how to interpret β̂(h) when impulse-response heterogeneity is unrestricted,
and propose standard errors and confidence intervals that are easy to compute and robust
to the signal-to-noise of macro shocks in the microdata. As a result, a very simple recipe
for inference emerges: clustering standard errors at the time level and ex-ante including
enough lags as controls. We refer to this as time-clustered lag-augmented heteroskedasticity-
robust (t-LAHR) inference.1

We establish our results in a comprehensive setup featuring observed and unobserved
macro and micro shocks, cross-sectional heterogeneity in responses, general forms of

1A full Matlab package for panel local projections — including estimation and t-LAHR inference —
and replication files are available at https://github.com/TinchoAlmuzara/PanelLocalProjections.
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serial dependence, and arbitrary signal-to-noise. Our analysis extends to a rich panel
environment most of the empirical strategies from macroeconometrics (Ramey, 2016; Stock
and Watson, 2018; Plagborg-Møller and Wolf, 2021), including some which are — to our
knowledge — novel and empirically promising in the panel context. Specifically, we cover
settings where the shock of interest is directly observed (the most prevalent assumption
in applications), those where it is recoverable from a macro system (via, say, recursive or
long-run identification) and those where it is contaminated with measurement error but
a proxy is available (as in local projection-instrumental variables; LP-IV for short).2

In that setup, we first show that β̂(h) recovers the slope coefficient of a population linear
projection of unit-specific impulse responses on the characteristics si, thereby formalizing
what practitioners have in mind when including interactions in Equation (1). Importantly,
this is also the case when the shock of interest is unobserved, such as in the instrumental
variables setup where only a noisy measurement is available. If si = 1, the estimand boils
down to the average response in the population. Crucially, since we place no restrictions
on the underlying impulse-response heterogeneity or in si, our characterization of the
estimand is effectively nonparametric.3

Signal-to-noise. The degree of signal-to-noise of macro shocks in the microdata is a key
parameter of the problem. Common shocks to all units drive identification and, therefore,
how sizable they are relative to micro shocks determines both the strength of identifying
variation and the extent of unaccounted-for spatial dependence.4 Considering different
signal regimes also reflects the scope of empirical work, which takes interest in atomistic
and granular agents, administrative and narrow datasets, unit-specific and aggregate
regression controls, etc.

Hence, one of our main contributions is to introduce a novel asymptotic framework
where the signal value of aggregates may be arbitrarily low (or high) in the limit. We
achieve this by indexing the relative standard deviation of macro to micro shocks by a

2Narrative approaches (as in Crouzet and Mehrotra, 2020, for monetary policy shocks) and high-
frequency approaches (as in Känzig, 2021, for oil supply shocks) are examples of popular identification
methods where shocks are typically treated as observable. In Section 3.4, we argue that it is sometimes more
appropriate to view these as proxies and allow for measurement error. Drechsel (2023) imposes long-run
restrictions on a structural VAR model to identify investment-specific technology shocks.

3We discuss extensions to (exogenous) time-varying characteristics sit in Section 3 (Remark 7).
4It is immediate that if si = 1 in Equation (1), including time fixed effects causes collinearity. If si varies

over units, for time indicators to remove all additional aggregate variation one would need the untenable
assumption that only impulse responses to Xt at horizon h are heterogeneous. In our exposition, we always
allow for time indicators as controls when si displays cross-sectional variation.
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parameter κ that can drift with the sample size. This device allows for a range of data
generating processes (DGPs) in which estimation uncertainty is dominated by micro-level
terms, a combination of micro and macro errors, or aggregate components only.5 On the
contrary, standard asymptotic plans where κ is fixed only capture the latter and ignore
idiosyncratic shocks, potentially leading to poor approximations in small samples. It is
clear then that the nature of estimation error depends on κ and the question is whether
inference procedures are robust to different macro signal regimes. Our main result is that
t-LAHR inference is uniformly valid over κ, that is, t-LAHR confidence intervals have correct
asymptotic coverage for the (nonparametric) local projection estimand uniformly over κ.

Shocks and inference. Our notion of macro shock is that of an innovation uncorrelated
to its own lags and leads and other shocks, in line with the time series literature on local
projections (Stock and Watson, 2018; Montiel Olea and Plagborg-Møller, 2021). This is an
identifying assumption without which the estimand of β̂(h) may not be interpretable as an
impulse response. Empirical researchers widely recognize this and in practice devote great
effort to constructing and motivating Xt by leveraging methods from macroeconometrics.
We show that it also has important consequences for inference with microdata.

The macro shock nature of Xt delivers a connection which serves as a guiding principle
throughout the paper: panel local projections with macro shocks are equivalent to synthetic
time series local projections with an appropriately aggregated dependent variable. This is
true even if shocks interact with covariates si and if unit and time effects are included. Then,
aggregating the microdata by collapsing the cross-sectional dimension of the panel and
treating it as a time series yields valid inference for any κ.6 This is precisely what t-LAHR
inference does, since time-level clustering in the panel problem and heteroskedasticity-
robust inference in the synthetic time series problem are equivalent.

The macro shock nature of Xt also clarifies the role of lag augmentation. In a panel
local projection that controls for p lags of siXt, the regression scores (the product of shocks

5Our approach also resonates with the renewed interest on the potential for unit-level shocks to explain
aggregate fluctuations, as in Gabaix (2011) and subsequent literature. Our device to obtain non-negligible
micro errors is closer to Jovanovic (1987) in that we rely on scaling micro variation up rather than on
fat-tailed distributions. However, we conjecture that similar inference results can be obtained in the latter
under appropriate regularity conditions.

6This synthetic time series representation is also illustrative of the fact that the concentration rate of
the estimation error is at most T−1/2, even in situations where N ≫ T. This suggests caution regarding
the conventional wisdom in many empirical applications that a larger cross-sectional dimension somehow
compensates for a shorter time series.
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and residuals) are nearly uncorrelated even if residuals are not. Specifically, they are a
moving average of order h where the first p autocovariances are zero and the remaining
ones do not depend on κ. This has two major implications. First, it confers a double layer
of simplicity to inference: up to horizon h ≤ p, there is no need for unit-level clustering
or heteroskedasticity and autocorrelation robust (HAR) approaches to deal with serial
dependence. Second, it explains why t-LAHR inference might have only small coverage
distortions even for horizons exceeding p: these distortions depend on the size of the
autocorrelation coefficients of the score, which are small in low-signal environments. In
fact, if the DGP is well approximated by a low-order vector autoregression (VAR), we
prove t-LAHR inference is uniformly valid over both κ and h ∝ T, a result reminiscent of
those in Montiel Olea and Plagborg-Møller (2021) for time series local projections.

We complement our theoretical results with simulations for realistic designs and sam-
ple sizes, allowing for moderately long horizons and substantial persistence in micro
shocks. We study the performance of a battery of approaches, including an alternative to
t-LAHR that substitutes lag augmentation with HAR inference, and incorporating small-
sample refinements (Müller, 2004; Imbens and Kolesár, 2016; Lazarus, Lewis, Stock, and
Watson, 2018). We find that t-LAHR inference shows remarkable performance relative
to all other competitors, particularly in low-signal environments, in near non-stationary
scenarios, and over moderate horizons even if we do not impose a VAR on outcomes.7

In practice, we recommend to supplement t-LAHR inference (controlling for lags of both
outcome and shock variables) with the refinement proposed in Imbens and Kolesár (2016).

Empirical survey and illustration. We reviewed a large body of empirical work that pre-
cedes this paper. The typical application uses administrative data on firms or households,
tracks units at the quarterly or annual frequency for a limited number of periods, and
estimates impulse responses to shocks via local projections. Most applications include
interactions of the form siXt and both unit and time fixed effects, but vary widely in the
number and nature of additional controls.8

7It is known that ad-hoc parameter choices and small-sample biases in sample autocovariances con-
tribute to the subpar relative performance of HAR estimators (Herbst and Johansenn, 2023).

8We reproduce the full list in Supplemental Appendix D which includes 47 empirical papers that run
panel regressions with macro shocks. A few focus on the case h = 0 only, but the vast majority compute
impulse responses over several horizons. The economic content of Xt is very diverse, including fiscal policy
shocks, investment shocks, TFP and innovation shocks, carbon pricing shocks, temperature shocks, etc. In
these applications, the cross-sectional dimension is usually orders of magnitude larger than the effective
time-series dimension. In our review we leave out empirical work with very small cross-sections where
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In otherwise comparable empirical designs, we document large dispersion in the way
practitioners compute standard errors: among 47 different papers, 24 compute two-way
clustered standard errors (within units and time), 15 cluster within units only, 7 use
Driscoll and Kraay (1998) and 1 clusters within time only.

These choices reflect diverging views on the dominant sources of statistical uncertainty,
from ruling out serial dependence to ruling out spatial dependence; from a suggestion
that both unit-level and aggregate dynamics matter to an explicit stance that either of the
two dominates. Often, these choices are made with little discussion or citing previous
work as a justification.9 Our framework allows us to revisit them. First, off-the-shelf
autocorrelation consistent methods such as Driscoll and Kraay (1998) leave information
on the table about the autocovariance function of the regression scores, which comes at a
cost in small samples. Second, validity in the case where standard errors do not explicitly
adjust for serial dependence (as in two-way clustering) boils down to whether a reasonable
number of lags was included in estimation. Third, clustering within units is superfluous,
even in low-signal regimes where the size of unit-level dynamics is comparable to that
of aggregates. Fourth, clustering only within units breaks down in the face of even
small amounts of spatial dependence induced by aggregate shocks, that is, in high- and
moderate-signal environments.

Finally, we illustrate our methods in an empirical exercise inspired by a booming
literature that investigates the role of financial frictions and firm heterogeneity in the
transmission of monetary policy. For instance, Crouzet and Mehrotra (2020), Ottonello and
Winberry (2020), Anderson and Cesa-Bianchi (2024) and Jeenas and Lagos (2024) target
impulse responses of firm investment to monetary policy shocks interacted with external
covariates si such as firm size, default risk or stock turnover. The exercise highlights the
importance of the choice of inference method, and the value of the synthetic time series
representation as a way to gain intuition about the source of identifying variation.

Related literature. Our paper contributes to various strands of the literature.
First, it relates to the time series literature on local projection inference (Hansen and

Hodrick, 1980; Jordà, 2005; Stock and Watson, 2018; Montiel Olea and Plagborg-Møller,

entities are meaningful and a unit-by-unit treatment is feasible. Nonetheless, when these units are pooled
together, as in Fukui, Nakamura, and Steinsson (2023), our results still apply.

9The availability of a large cross-sectional dimension and the interaction of shocks with covariates si are
also often argued as sources of large gains in statistical precision, also reflecting an implicit stance on the
presence of macro shocks. We elaborate on the (im)plausibility of these notions below and in Remark 5.
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2021; Lusompa, 2023; Xu, 2023; Montiel Olea, Plagborg-Møller, Qian, and Wolf, 2024).
Relative to this literature we are the first to deal with the panel data case with aggregate
shocks.10 We supplement the macroeconometric toolbox with results that are unique to
the panel setting by accommodating cross-sectional heterogeneity in responses, spatial
dependence and coexisting micro and macro shocks of any relative sizes.

In a time series finite-order VAR setup, Montiel Olea and Plagborg-Møller (2021) show
the uniform validity of heteroskedasticity-robust inference on lag-augmented local pro-
jections over the persistence of the data and horizon h. They postulate mean independent
innovations, the same type of assumption we impose on Xt. Our Proposition 2 can be
interpreted as the panel version of their results. However, our focus is on uniformity with
respect to the macro signal-noise κ, which has no obvious counterpart in the time series
setup, and we derive most of our results without assuming a VAR model.

Second, we contribute to the literature on estimation and inference with aggregate
shocks. In stylized models, Hahn, Kuersteiner, and Mazzocco (2020) bring attention to the
drastic consequences of drawing inferences from short panels with aggregate uncertainty.
Although our focus is on thought experiments where macro shocks are a key source of
identification, we can connect to their results by reinterpreting confidence intervals that
exploit independence across units as valid for an alternative estimand that conditions on
the path of aggregate shocks.

An important empirical literature exploits regional-exposure designs with instruments
of the form siXt used to identify the causal link between Yit and a unit-level variable Wit,
yielding a reduced-form equation identical to (1) for h = 0.11 Recent work emphasizes the
role of the exogeneity of Xt for credible identification (Adão, Kolesár, and Morales, 2019;
Arkhangelsky and Korovkin, 2023; Majerovitz and Sastry, 2023). The broad empirical
literature to which our paper speaks is related, but different in fundamental ways: panel
local projections interpret aggregate shocks Xt in the macroeconometric sense and aim at
measuring their dynamic propagation via impulse responses, whereas regional-exposure
(and shift-share) approaches target the relative effects of Xt on Yit and Wit treating Xt as

10Our results on limited serial dependence in regression scores relate to the earlier multi-step forecast
literature (Hansen and Hodrick, 1980), which relied on infinite lags to ensure forecast errors have an MA(h)
representation. In the local projection context, Jordà (2005) arrived at a similar result under a finite-order
VAR model while Lusompa (2023) provided a recent reformulation. Instead, we exploit the orthogonality
properties of macro shocks to show that the scores have MA(h) dynamics. The distinction is reminiscent of
the difference between design-based and model-based/conditional unconfoundedness assumptions.

11Examples include regional fiscal multipliers (Nakamura and Steinsson, 2014) or the effects of foreign
aid on conflict across countries (Nunn and Qian, 2014).

7



an auxiliary shifter. They are complementary tools addressing different questions, but the
econometrics of panel local projections is less understood. Our paper adds to it formal
inference results in a rich panel environment that allows for heterogeneity, dynamics and
different macro signal regimes.

In some cases, that literature has also relied on quasi-random variation in exposures si

for identification. In our context, this would entail very strong requirements, analogous
to finding a separate independent source of exogenous variation for every horizon of
interest.12 This point echoes a similar conclusion at which Hahn, Kuersteiner, Santos, and
Willigrod (2024) arrive in shift-share setups with heterogeneous treatment effects.

Last, our paper relates to the cross-sectional dependence literature that studies models
where the scores feature spatial correlation (Driscoll and Kraay, 1998; Andrews, 2005;
Pesaran, 2006; Gonçalves, 2011; Pakel, 2019). Our setting lies in the polar case where the
shock of interest only varies over time, precluding solutions based on partialling out the
common component from the regressors, as in Pesaran (2006). Our uniformity result (that
translates into robustness to the degree of spatial dependence) is new to this literature.

Outline. Section 2 provides an overview of our results in a simple static model, illus-
trating the role of aggregate shocks and their signal relative to micro shocks. Section 3
presents our main inference result in a general, heterogeneous dynamic model. Section
4 discusses a comprehensive simulation study and Section 5 the empirical illustration.
Proofs can be found in Appendix A with additional details in the Supplemental Appendix.
A Matlab code repository is available online at https://github.com/TinchoAlmuzara/
PanelLocalProjections.

2 Simple model

We illustrate the main points of the paper in a simple, static regression model with
homogeneous responses. We keep the exposition simple and omit technical details with
the goal of building insights. The general setup is studied in Section 3.

12Consider, for instance, the role of firm size (si) in mediating the transmission of monetary policy shocks
to firm-level outcomes, as in Crouzet and Mehrotra (2020) and our empirical application. For the cross-
sectional dimension of the panel to help pin down the impulse response at, say, h = 2, firm size must be
orthogonal to firm-level responses at any other horizon and to any other aggregate shock. This is, of course,
hardly plausible. In fact, such exclusion restrictions would rule out dynamic effects over different horizons
altogether — the object of empirical interest. We elaborate on this in Remark 5.
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Model assumptions. We observe a micro outcome Yit and a macro shock Xt for units
i = 1, . . . ,N and over periods t = 1, . . . ,T. They are related by

Yit = β0Xt + vit,

vit = Zt + κuit,
(2)

where vit is an error term including both aggregate and idiosyncratic unobservables, de-
noted Zt and uit, respectively. Here κ regulates their relative importance in the microdata,
as explained below. The goal is to estimate and do inference on β0.

This simple model is a stylized representation of an empirical setting where we are
interested in the transmission of aggregate uncertainty to individual outcomes; the effect
of Xt on Yit. Examples of the former include changes in interest rates, tax regulations or
oil prices, which might leave a mark on household consumption, worker’s labor income
or firm sales. In fact, one could entertain any combination of macro variables and micro
outcomes in these examples. When interest centers around one aggregate variable, cap-
tured by Xt, it would be hard to ex-ante rule out the presence of any others, embedded in
Zt. This basic premise is at the core of the our results.

We now make two sets of assumptions, later generalized in Section 3 to allow for
observable and unobservable heterogeneity, and more flexible dynamics.

Assumption S1 (Stationarity and iidness in the simple model).

(i) {Xt,Zt, {uit}
N
i=1}

T
t=1 is stationary.

(ii) {{uit}
∞

t=−∞}
N
i=1 are i.i.d. over i conditional on {Xt,Zt}

T
t=1.

Assumption S1(i) implies Yit is stationary too. Assumption S1(ii) simply assigns the
role of inducing cross-sectional dependence in the error term vit to Zt.

13

Assumption S2 (Shocks and independence in the simple model).

(i) E
[
Xt

∣∣∣∣{Xτ}τ,t,
{
Zτ, {uiτ}

N
i=1

}T

τ=1

]
= 0.

(ii) E
[
Zt

∣∣∣∣{Zτ}τ,t,
{
Xτ, {uiτ}

N
i=1

}T

τ=1

]
= 0.

(iii) E
[
uit

∣∣∣{uiτ}τ,t,
{
Xτ,Zτ

}T
τ=1

]
= 0.

13Both assumptions can be relaxed; we briefly discuss departures from S1(i) in Section 3 and 4. Allowing
for weak spatial dependence in uit in place of S1(ii) is also possible with minor modifications.
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Assumption S2 implies Xt, Zt and uit are mutually unpredictable and serially uncorre-
lated: S2(i) is ultimately an identification condition, whereas S2(ii) and S2(iii) are made for
symmetry. Indeed, mutual unpredictability of macro shocks lies at the core of macroecono-
metrics and is typically necessary to give structural interpretation to impulse-response
calculations (see, for instance, Ramey, 2016; Stock and Watson, 2016; Plagborg-Møller and
Wolf, 2021).14 Here we are assuming Xt is observable, in line with most of our empirical
applications of reference (Supplemental Appendix D), but we consider other possibilities
below and in Section 3.1.

Remark 1 (When Xt is not directly observable). Researchers rely on different strategies,
such as narrative or high-frequency approaches, to construct measurements of the shocks
of interest Xt. In practice, it is often more appropriate to treat them as imperfect measures of
Xt, contaminated with measurement error or with some residual autocorrelation structure.
In other cases, researchers treat Xt as recoverable from a macro system after imposing
certain restrictions, as in recursive or long-run identification. In Section 3 we show that
our analysis extends to all these settings.

Estimation and inference. A natural estimator of β0 is pooled least squares,

β̂ =

∑N
i=1

∑T
t=1 XtYit∑N

i=1
∑T

t=1 X2
t

=

∑T
t=1 Xt

(
N−1 ∑N

i=1 Yit

)
∑T

t=1 X2
t

,

which is also a panel local projection (LP) estimator at horizon h = 0 and the estimator
in a time series regression involving the synthetic outcome Ŷt = N−1 ∑N

i=1 Yit and Xt. The
double nature of β̂ as panel and time series estimator arises organically in the presence of
macro shocks, as we further demonstrate in Section 3.

Denote the residual by ξ̂it = Yit − β̂Xt. A key takeaway from our paper is that a reliable
approach to inference uses the time-level cluster heteroskedasticity-robust standard error
σ̂, given by σ̂2 = V̂/TĴ2 where Ĵ = (NT)−1 ∑N

i=1
∑T

t=1 X2
t = T−1 ∑T

t=1 X2
t is the least squares

14Mean independence assumptions with respect to past and future innovations are a slight strengthening
of the more standard martingale difference assumptions, and are convenient in representations where
both leads and lags of the variable might enter the model, cf. Montiel Olea and Plagborg-Møller (2021,
Assumption 1) in a similar context of local projection inference. This still allows for dynamics on the second-
or higher-order moments given the paths of other shocks. It permits that, say, monetary, fiscal or oil supply
shocks (Xt,Zt) increase the variance of household-level income (Yit) via higher order dynamics in uit.
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denominator and

V̂ =
1
T

T∑
t=1

 1
N

N∑
i=1

Xtξ̂it


2

.

Another sign of the duality between panel regressions with aggregate shocks and time
series regression is that σ̂ is also the usual Eicker–Huber–White standard error computed
using the synthetic time series residuals ξ̂t = N−1 ∑N

i=1 ξ̂it.
As mentioned in the Introduction, two popular inferential choices in applications are

based on one-way (unit-level) cluster and two-way (unit- and time-level) cluster standard
errors, σ̂1W and σ̂2W, given by σ̂2

1W = V̂1W/TĴ2 and σ̂2
2W = V̂2W/TĴ2 where

V̂1W =
1
N

N∑
i=1

 1
T

T∑
t=1

Xtξ̂it


2

, V̂2W = V̂ + V̂1W −
1

NT

T∑
t=1

N∑
i=1

X2
t ξ̂

2
it.

These standard errors reflect different concerns about the nature of estimation error or,
more precisely, the correlation of the regression score Xtvit over units and time.

Substituting (2), the estimation error decomposes as

β̂ − β0 =

∑T
t=1 XtZt∑T

t=1 X2
t︸     ︷︷     ︸

Op(1)

+
κ
√

N

(
1
√

N

∑N
i=1

∑T
t=1 Xtuit∑T

t=1 X2
t

)
︸                     ︷︷                     ︸

Op(1)

, (3)

i.e., as the sum of macro and micro components. The former induces cross-sectional
correlation while the latter is uncorrelated across units and both have limited serial de-
pendence — for t , τ, E

[
XtZt · XτZτ

]
= E

[
Xtuit · Xτuiτ

]
= 0 by Assumption S2(i) and

iterated expectations.15 This is a direct consequence of Xt being a shock.
The intuition for why σ̂ gives valid inference is the following. If the macro term

is not asymptotically small, Xtvit displays correlation over i but not over t, the type of
situation for which σ̂ is designed. If, on the other hand, the micro term dominates, Xtvit

is uncorrelated over both i and t. Yet σ̂ still works: while it does not impose that the
cross-sectional covariances of Xtvit are zero, it will correctly estimate them to be zero. One
may wish to switch to a non-clustered heteroskedasticity-robust standard error in that
case, but we show both analytically (Proposition 1) and in simulations (Section 4) that

15The lack of serial correlation would remain true even if Zt and uit were serially correlated.
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there is no loss in simply using σ̂.
Clearly, correlation over t at the unit-level is never a concern; that is why unit-level

clustering either fails or is not needed. In fact, σ̂1W is asymptotically equivalent to the
non-clustered standard error, and the same holds for σ̂2W and σ̂.

Macro-micro signal-to-noise ratio. Which term dominates the decomposition (3) will
depend uponκ/

√
N. We now provide another interpretation of this quantity. Consider the

average outcome Ŷt = N−1 ∑N
i=1 Yit and, to illustrate, suppose Var (Zt) = Var (uit) = 1. By

Assumptions S1 and S2, the proportion of the variance of Ŷt explained by the unobserved
macro error can be measured as

R̄2(κ) = 1 −
Var

(
Ŷt

∣∣∣Xt,Zt

)
Var

(
Ŷt

∣∣∣Xt

) =
1

1 + κ2/N
, (4)

i.e., the signal-noise ratio is O(N/κ2). It increases with N since cross-sectional averaging
reduces the variance from idiosyncratic errors, but decreases with |κ|.

We will study estimation and inference in sequences of data generating processes
(DGPs) where κ is allowed to grow as T,N →∞. This leads, in essence, to three regimes.
If κ/

√
N = o(1), (such as if κ is fixed), R̄2(κ) → 1 and macro shocks are the only source

of aggregate variation; we call this the asymptotically high-signal case. If κ ∝
√

N, R̄2(κ)
is bounded away from 0 and 1 in the limit and both macro and micro shocks matter for
aggregate fluctuations; this is the asymptotically moderate-signal case. Finally, if κ/

√
N

diverges, R̄2(κ) → 0, macro shocks are imperceptible and we are in the asymptotically
low-signal case.16

The intuitive notion of κ-regimes has a natural counterpart in our asymptotic approx-
imations, in that there is a close relation between the contribution of macro shocks to Ŷt

and the nature of estimation error for β0, as illustrated by (2) and (4). In particular, the
macro term dominates in the high-signal case, the micro term dominates in the low-signal
case, and they are roughly balanced in the moderate-signal case. Moreover, it is not al-
ways possible to consistently detect what κ-regime applies. It is important then to derive

16Of course, letting κ grow with the sample size should not be taken literally — it is simply a device
to ensure our approximations suitably interpolate between high and low signal-noise environments. This
type of embeddings are common in econometrics; an example which also has a low-signal interpretation is
weak IV (Staiger and Stock, 1997).
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inference procedures that are robust in the sense of uniform validity with respect to κ.17

Uniformity overκ. From the decomposition in (3), letting N,T→∞ and under regularity
conditions specified in Section 3,

σ0(κ)−1
√

T
(
β̂ − β0

) d
−−−−→ N(0, 1),

where

{
E

[
X2

t

]}2
× σ0(κ)2 =


E

[
X2

t Z2
t

]
, if κ/

√
N→ 0,

E
[
X2

t

(
Z2

t + κ̄
2u2

it

)]
, if κ/

√
N→ κ̄,(

κ2/N
)

E
[
X2

t u2
it

]
, if κ/

√
N→∞,

This shows two things. First, the rate of concentration of the estimation error β̂−β0 is either
√

T in the high- and moderate-signal cases or
√

NT/κ (i.e., slower than
√

T and possibly
even zero, thus making β̂ inconsistent) in the low-signal case. Second, the asymptotic
distribution of β̂ changes discontinuously across κ-regimes.

Despite the discontinuity, our main result is that the (1 − α) confidence interval given
by Ĉα =

[
β̂ ± z1−α/2σ̂

]
, where zq is the q-quantile of the standard normal distribution, has

correct coverage for β0 uniformly over κ,

lim
T,N→∞

sup
κ

∣∣∣∣Pκ (β0 ∈ Ĉα

)
− (1 − α)

∣∣∣∣ = 0. (5)

where Pκ denotes probabilities for a DGP with a given κ. This is much stronger than
pointwise validity, as it implies that the quality of the asymptotic approximation to the
coverage probability of Ĉα is itself robust to the κ-regime. Statement (5) also means that
if sample information about macro shocks is extremely scarce and β̂ is inconsistent, the
length of Ĉα adjusts as needed to reflect the weak macro signal.

One might wonder how much the static nature of (2) limits these results. The rest of
the paper will show that they extrapolate to a substantially more general and empirically
realistic framework with rich forms of dynamics, serial correlation and heterogeneity.

Remark 2 (Inference conditional on aggregate shocks). Ignoring the unobservable macro

17We will consider inference procedures that are invariant to rescaling. It follows that all of our results
can be equivalently obtained in an embedding that scales down the macro component of the model in (2)
by κ−1. Put differently, what matters is the relative size of macro and micro components.
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component in (3) when doing inference is equivalent to conditioning on its realization. In
that situation, σ̂1W is a valid standard error for responses defined by moment restrictions
that condition on the realized path of aggregate shocks during the sample period.18 In
general, this induces an internal/external validity trade-off whereby practitioners may be
able to pin down certain parameters very precisely but these might lack generalizability.

3 General case

In this section, we establish estimation and inference results for impulse responses to
aggregate shocks in a general setup featuring observed and unobserved, macro and micro
shocks, and unrestricted heterogeneity of individual responses.

We introduce the setup in Section 3.1 and state the main results in Section 3.2. We
treat the important case of finite-order VAR DGPs in Section 3.3 and local projections with
instrumental variables (LP-IV) in Section 3.4. Proofs are developed in Appendix A with
technical lemmas in Supplemental Appendix B.

3.1 Setup

The researcher observes an outcome Yit, an aggregate shock Xt and characteristics si for
units i = 1, . . . ,N and over periods t = 1, . . . ,T. Everything is scalar but it is straightfor-
ward to extend the results to the multivariate case. We assume

Yit = µi +

∞∑
ℓ=0

βiℓXt−ℓ + vit, (6)

vit =

∞∑
ℓ=0

γiℓZt−ℓ + κ
∞∑
ℓ=0

δiℓui,t−ℓ, (7)

where Zt and uit are unobserved serially uncorrelated aggregate and idiosyncratic terms
and βiℓ, γiℓ and δiℓ are the unit-level responses to shocks Xt, Zt and uit at horizon ℓ. We
denote βi = {βiℓ}

∞

ℓ=0, γi = {γiℓ}
∞

ℓ=0, δi = {δiℓ}
∞

ℓ=0 and θi = {µi, βi, γi, δi}. These are draws from a
cross-sectional distribution and below we specify conditions so that the infinite sums in
(6)-(7) are well defined with probability one.

Here, θi traces out cross-sectional heterogeneity in the responses to macro and micro

18A proof and additional details are available upon request. As a practical example, we think of the
responses of micro outcomes to monetary and fiscal policies during the COVID-19 pandemic.
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shocks. The linear formulation (6)–(7) can accommodate flexible dynamic patterns, gen-
erating rich heterogeneous versions of commonly used time series models (such as a VAR,
as shown in Section 3.3). As a result, Yit will often display non-trivial serial correlation.

Access to external variables si allows the researcher to study the propagation of shocks
along unit-level observables. Our premise is that there is usually more heterogeneity in
θi than can be accounted for by si alone and our goal is to characterize estimation and
inference in that context. As in Section 2, we consider a range of DGPs indexed by κ to
cover different signal-to-noise environments. We also make the following assumptions:

Assumption 1 (Stationarity and iidness).

(i) {Xt,Zt, {uit}
N
i=1}

∞

t=−∞ is stationary conditional on {θi, si}
N
i=1.

(ii) {θi, si, {uit}
∞

t=−∞}
N
i=1 is i.i.d. over i conditional on {Xt,Zt}

∞

t=−∞.

Assumption 2 (Shocks and mean independence).

(i) E
[
Xt

∣∣∣∣{Xτ}τ,t,
{
Zτ, {uiτ}

N
i=1

}∞
τ=−∞

, {θi, si}
N
i=1

]
= 0.

(ii) E
[
Zt

∣∣∣∣{Zτ}τ,t,
{
Xτ, {uiτ}

N
i=1

}∞
τ=−∞

, {θi, si}
N
i=1

]
= 0.

(iii) E
[
uit

∣∣∣{uiτ}τ,t,
{
Xτ,Zτ

}∞
τ=−∞ , θi, si

]
= 0.

Assumptions 1 and 2 extend S1 and S2 by allowing for unobserved heterogeneity and
external covariates, while Equations (6)–(7) extend (2) by allowing for serial dependence
in micro and aggregate components. Assumption 2 requires (θi, si) to be strictly exogenous
with respect to shocks but, importantly, leaves their joint distribution (and that of {θi, si}

N
i=1

conditional on {Xt}
∞

t=−∞) unrestricted, as in pure fixed effects approaches.

Shock identification. Applied researchers aim at using local projections to learn about
impulse responses βih. Interest in impulse responses naturally leads to the idea of shock
articulated in Assumption 2(i) since then

βih = E
[
Yi,t+h

∣∣∣Xt = 1, θi

]
− E

[
Yi,t+h

∣∣∣Xt = 0, θi

]
.

In a sense, Assumption 2 is an identifying condition without which the estimand of β̂(h)
need not be interpretable as a dynamic causal effect.

A key question is how much information the researcher has about Xt. We distinguish
three settings. The first is one where Xt is assumed directly observed. Empirically, this
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is a very relevant case as it covers most of the applied papers surveyed in Supplemental
Appendix D where Xt is often constructed by narrative or high-frequency methods.19 We
begin our analysis by developing this setting.

The second setting is one where Xt can be recovered from a macro system via stan-
dard macroeconometric identification methods — such as recursive, contemporaneous,
long-run, or heteroskedasticity-based identification (see Ramey (2016) for a review). The
starting point is a SVAR for an n-vector Rt of macro variables observable to the researcher,

α0Rt =

pR∑
ℓ=1

αℓRt−ℓ + εt, (8)

where εt is an n-vector of shocks (following Assumption 2) whose j-th entry is the shock
of interest Xt = ε jt. Write αℓ, j• for the j-th row of αℓ. The identification method pins down
{αℓ, j•}

pR
ℓ=0 from the autocovariances of Rt. Therefore, a researcher who knows the latter can

recover Xt = α0, j•Rt −
∑pR
ℓ=1 αℓ, j•Rt−ℓ. More realistically, if the researcher does not know the

population values of {αℓ, j•}
pR
ℓ=0 but has data {Rt}

T
t=1 (which may go beyond the span of the

microdata in practice), Xt can be estimated by

X̂t = α̂0, j•Rt −

pR∑
ℓ=1

α̂ℓ, j•Rt−ℓ

where α̂ℓ, j• is a root-T consistent estimator of αℓ, j•.
20 Our asymptotic analysis below can

accommodate the case where Xt in (1) is replaced by X̂t (or by α̂0, j•Rt) with a suitable choice
of controls. For recursive identification, this strategy can be implemented by replacing Xt

in (1) by the j-th entry of Rt controlling for siRt−1, . . . , siRt−pR
and entries 1 to j − 1 of siRt.

We return to this setting in Section 3.3 (see Remark 8).
The third setting is one where the researcher only observes the proxy X∗t = Xt + νt — a

measure of Xt contaminated with measurement error. This would apply, for instance, to
the analysis of monetary policy when narrative or high-frequency approaches only yield
an indirect estimate of exogenous shifts in policy. This is an empirically appealing premise
which has not received much attention. In that case, it is more appropriate to think of X∗t

19For example, Crouzet and Mehrotra (2020) and Ottonello and Winberry (2020) for monetary policy and
Känzig (2021) for oil supply shocks.

20For example, Drechsel (2023) follows this strategy to recover investment-specific technology shocks
from a SVAR by imposing the restriction that Xt is the only driver of the relative price of aggregate investment
in the long-run, which is the first entry of the vector Rt.
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as an instrumental variable for an endogenous variable X̃t (such as the policy rate) in a
panel version of LP-IV with outcome Yi,t+h (see Ramey, 2016; Stock and Watson, 2018, for
a treatment in the time series context). We study this setting in Section 3.4.

In all of these settings, our framework allows for the inclusion of additional aggregate
variables, which might account for the predictable part of the macro variables of interest
and play the role of controls in local projections.

3.1.1 Estimator and inference procedure

We now introduce the panel LP estimator and inference procedure. We denote by Wit ∈ R
d

the vector of controls (d may change with the sample size). If Wit contains no time fixed
effects, let ŝi = si — this accommodates the case si = 1. Otherwise, let ŝi = si − N−1 ∑N

j=1 s j

and note that if time fixed effects are included, local projections on siXt and ŝiXt produce
numerically the same estimate β̂(h) below. In addition to unit and possibly time dummies,
we consider below cases in which Wit contains lags of siXt or Yit and we assume that Wit

is observed for t = 1, . . . ,T.21

The fitted equation for the panel LP estimator β̂(h) is

Yi,t+h = β̂(h)ŝiXt + η̂(h)′Wit + ξ̂it(h),

where the residual ξ̂it(h) is orthogonal to ŝiXt and Wit. To characterize β̂(h) we use Frisch–
Waugh–Lovell. Consider the auxiliary regression of ŝiXt on Wit,

ŝiXt = π̂(h)′Wit + x̂it(h), (9)

where the residual x̂it(h) is orthogonal to Wit. Then, an explicit formula for β̂(h) is

β̂(h) =

∑T−h
t=1

∑N
i=1 x̂it(h)Yi,t+h∑T−h

t=1
∑N

i=1 x̂it(h)2
. (10)

21Since Yit, Xt and si can be multivariate, this is without loss of generality. For example, a panel LP of Yit
on siXt controlling for Xt, lags of Yit and another micro control Ỹit is covered by redefining Yit to (Yit, Ỹit)
and si to (1, si). Also, if Wit includes lags of shocks or outcomes, we assume we observe siXt or Yit for t < 1.
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The time-clustered heteroskedasticity-robust standard error is

σ̂(h) =

√
V̂(h)

(T − h) Ĵ(h)2 , (11)

with

Ĵ(h) =
1

N(T − h)

T−h∑
t=1

N∑
i=1

x̂it(h)2, V̂(h) =
1

(T − h)

T−h∑
t=1

 1
N

N∑
i=1

x̂it(h)ξ̂it(h)


2

. (12)

Finally, the (1 − α) confidence interval is

Ĉα(h) =
[
β̂(h) ± z1−α/2σ̂(h)

]
, (13)

where zq is the q-quantile of the standard normal distribution.

3.1.2 Additional assumptions

To establish our uniform asymptotic approximations, we need the following:

Assumption 3 (Regularity conditions).

(i) There is a positive finite constant M8 such that, almost surely,

E
[
X8

t

∣∣∣{θi, si}
N
i=1

]
≤M8, E

[
Z8

t

∣∣∣{θi, si}
N
i=1

]
≤M8, E

[
u8

it

∣∣∣θi, si

]
≤M8.

(ii) There is a positive finite constant M such that, almost surely,

E
[
X2

t

∣∣∣{Xτ}τ,t, {θi, si}
N
i=1

]
≥M, E

[
Z2

t

∣∣∣{Xτ}, {θi, si}
N
i=1

]
≥M, E

[
u2

it

∣∣∣{Xτ}, θi, si

]
≥M.

(iii) The conditional cumulants up to fourth-order of vec
{
(Xt,Zt,uit)(Xt,Zt,uit)

′
}

given {θi, si}
N
i=1

are almost surely absolutely summable.

(iv) There are positive finite constants Cℓ such that C =
∑
∞

ℓ=0 Cℓ < ∞ and, almost surely,

|βiℓ| ≤ Cℓ, |γiℓ| ≤ Cℓ, |δiℓ| ≤ Cℓ, |si| < C.
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(v) There is a positive finite constant C such that, almost surely,

∞∑
ℓ=0

N−1
N∑

i=1

ŝiβiℓ


2

≥ C,
∞∑
ℓ=0

N−1
N∑

i=1

ŝiγiℓ


2

≥ C, N−1
∞∑
ℓ=0

N∑
i=1

ŝ2
i δ

2
iℓ ≥ C.

Our model interprets θi as unit-specific parameters and {Xt,Zt,uit} as sources of uncer-
tainty. This calls for making time series assumptions on the uncertainty given parameters
(parts (i), (ii) and (iii)) while requiring that parameters ensure sufficient regularity for all
units in the cross-sectional population (parts (iv) and (v)).

Parts (i), (ii) and (iii) are standard in the time series context (see, for instance, As-
sumption 2 in Montiel Olea and Plagborg-Møller (2021)). They put limits on the tails of
the distributions of shocks, as well as the predictability and dependence of their second
moments. Part (iv), on the other hand, guarantees that infinite moving averages, such as∑
∞

ℓ=0 βiℓXt−ℓ, are well defined for all units. Absolute summability rules out unit roots but
still allows for rich persistence patterns — such as those from stationary ARMA and other
short-memory processes.22

Lastly, part (v) requires non-zero variability given {θi, si}
N
i=1 of N−1 ∑N

i=1 ŝi
∑
∞

ℓ=0 βiℓXt−ℓ,
N−1 ∑N

i=1 ŝi
∑
∞

ℓ=0 γiℓZt−ℓ and N−1/2 ∑N
i=1 ŝi

∑
∞

ℓ=0 δiℓui,t−ℓ. It is mostly a technical condition to
prevent trivial cases in which the regression score has zero variance. Nevertheless, it is
compatible with, say, a non-negligible fraction of units having zero exposure to macro
or micro shocks. It also places no restriction on the relative importance of macro versus
micro shocks which is governed by κ.

3.2 Main result

The main contribution of the paper is to characterize the large-sample properties of β̂(h),
σ̂(h) and Ĉα(h). In the asymptotic plan, we take T,N→∞ and we are interested in uniform
approximations with respect to κ. The key result is Proposition 1 which states that Ĉα(h)
delivers uniformly valid inference for the coefficient in a regression of βih on ŝi if enough
lags of ŝiXt are used as controls.

We describe first the estimand and then the uniform inference result. We use Pκ to
indicate probabilities under a DGP associated to a given value of κ and we omit the

22We conjecture, however, that many of our results remain valid at moderate horizons in the presence of
near unit roots and our simulation evidence supports this claim. See Section 3.3 for further discussion.
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subindex from objects whose probabilities (or expectations) do not depend on κ (such as
those in Assumptions 2 and 3).

Estimand. If si is not a constant and time fixed effects are included, the population object
targeted by the panel LP is

β(h) =
Cov

(
si, βih

)
Var (si)

. (14)

In other words, panel LPs estimate the slope in a population linear projection of βih on
characteristics si including an intercept. Similarly, if si = 1, the estimand becomes the
mean impulse response β(h) = E

[
βih

]
. Note that omitting either Xt or time dummies as

controls in a panel LP has the effect of forcing the regression of βih on si through the origin,
leading to the estimand β(h) = (E

[
s2

i

]
)−1E

[
siβih

]
. In order to obtain a rich summary of

the heterogeneity in βih, therefore, the researcher will typically need to explore different
choices of si or allow si to be a vector.23

Under the conditions of Proposition 1, β̂(h) = β(h) + oPκ
(1) for any DGP sequence Pκ

such that κ/
√

TN = o(1): that is, if the panel LP estimator converges, it is to β(h).
This clarifies the sense in which panel LPs can be interpreted when the underlying

population of interest features unrestricted heterogeneity in responses to shocks, as in (6).
Precisely because we place virtually no restriction on the joint distribution of (θi, si), the
characterization of the estimand is of a nonparametric nature.

Uniformly valid inference. Let p be the number of lags of ŝiXt included in the controls
Wit. Both p and h are fixed as T,N → ∞ while T/N → 0.24 Our main result is that Ĉα(h)
has correct coverage for β(h) uniformly over κ so long as h ≤ p:

Proposition 1. Under Assumptions 1, 2 and 3, for h ≤ p,

lim
T,N→∞

sup
κ

∣∣∣∣Pκ (β(h) ∈ Ĉα(h)
)
− (1 − α)

∣∣∣∣ = 0. (15)

23For example, the best linear approximation E∗
[
βih

∣∣∣si
]
= E

[
βih

]
+(Cov

(
si, βih

)
/Var

(
si
)
)
(
si − E

[
si
])

requires
both estimands or, alternatively, the interaction of Xt with (1, si) rather than si alone (omitting time effects). If
si is multivariate, a confidence region constructed on the basis of a time-clustered heteroskedasticity-robust
variance estimate enjoys the same uniform validity property of Proposition 1. We illustrate this in our
empirical calculations in Section 5.

24We regard T/N → 0 as a mild requirement for the empirical applications of reference. It follows from
the proof of Proposition 1 that if T/N is not asymptotically negligible (as if taking N as fixed), (15) holds
with β(h) replaced by the finite-population estimand β̃(h) = (

∑N
i=1 ŝ2

i )−1 ∑N
i=1 ŝiβih.
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Proof. See Appendix A. □

Proposition 1 states that valid inference results from clustering standard errors at
the time level, which accounts for cross-sectional dependence induced by omitted ag-
gregate shocks, and from ex-ante including lags of ŝiXt as controls, which renders the
regression scores uncorrelated. We refer to this strategy as time-clustered lag-augmented
heteroskedasticity-robust (t-LAHR) inference. As in Section 2 and as explained below, it
is closely linked to inference in time series LPs.

Despite the general error dynamics in (6)–(7), the regression score
∑N

i=1 Xtŝiξit(h, κ),
with ξit(h, κ) the population counterpart to ξ̂it(h) defined in (20), has limited serial correla-
tion. It is an MA(h) process with the first p autocovariances set to zero. Thus, it becomes
uncorrelated when p ≥ h which is why t-LAHR works. Besides, when p < h, the autoco-
variances stem only from leftover leads of Xt and not from the unobserved macro error Zt

or micro error uit. In fact, they will tend to be small compared to the variance of the score
in low-signal (large κ) DGPs or if βiℓ decays quickly. We therefore expect t-LAHR inference
to have small coverage distortions even for p < h; we provide affirmative evidence via
simulations in Section 4.

A striking implication of Proposition 1 is that t-LAHR inference remains valid even in
the low-signal setting κ/

√
N →∞ where there is scarcity of information about aggregate

shocks in the sample and β̂(h) is inconsistent. The uniformity over DGPs with different
macro-micro signal-noise obviates the need to take a stand on the κ-regime, which is
important because κ is not always consistently estimable.

In contrast, inference based on unit-level clustering of the regression score is not
uniformly valid as it tends to severely undercover β(h) in high- and moderate-signal
regimes. Similarly to Section 2, provided lags of ŝiXt are included, unit-level clustering is
asymptotically equivalent to not clustering at all, whereas two-way clustering is equivalent
to time-level clustering. That is, unit-level clustering is neither necessary nor sufficient
for valid inference — yet another implication of Xt being a shock that has no counterpart
in a more generic time series setup.

Remark 3 (Proof steps). To establish (15), we decompose the problem into showing
(A) asymptotic normality of the score, (B) consistency of the standard error, and (C)
negligibility of some remainder terms. We obtain uniformity via the drifting parameter
sequence approach (see Andrews, Cheng, and Guggenberger (2020)).

In (A), although the regression score is serially uncorrelated, it contains leads and lags
of macro and micro errors. This makes the reverse martingale technique of Montiel Olea
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and Plagborg-Møller (2021) inapplicable. Instead, using a similar insight to that of Xu
(2023), we produce a martingale approximation by rearranging the score so that leads at
time t become lags at a time in the future of t (Lemma 1 in Supplemental Appendix B).

In (B) and (C), we rely on direct calculation of uniform bounds. The presence of
heterogeneity poses a challenge which has no counterpart in the time series case. Because
of Assumption 3, we can derive many of the bounds by first conditioning on {θi, si}

N
i=1,

exploiting the connection between conditional and unconditional convergence.

Remark 4 (Synthetic time series). A useful device to interpret panel LPs is the following
representation. The residual x̂it(h) in (9) can be written as x̂it(h) = ŝiX̂t(h), where X̂t(h) is
the residual from regressing Xt on Xt−1, . . . ,Xt−p and an intercept (on T−h observations).25

Then, the panel LP estimator in (10) can be written as

β̂(h) =

∑T−h
t=1

∑N
i=1 ŝiX̂t(h)Yi,t+h∑T−h

t=1
∑N

i=1 ŝiX̂t(h)2
=

∑T−h
t=1 X̂t(h)Ŷt+h∑T−h

t=1 X̂t(h)2
,

i.e., the time series LP estimator that regresses cross-sectional regression coefficients Ŷt+h =

(
∑N

i=1 ŝ2
i )−1 ∑N

i=1 ŝiYi,t+h on Xt controlling for 1,Xt−1, . . . ,Xt−p. The standard error σ̂(h) in (11)
is also the Eicker–Huber–White standard error calculated on the time series LP residuals
ξ̂t(h) = (

∑N
i=1 ŝ2

i )−1 ∑N
i=1 ŝiξ̂it(h). Hence, t-LAHR inference for panel LPs and lag-augmented

heteroskedasticity-robust inference for time series LPs are intimately related.

Remark 5 (si and precision). This representation is also useful to illuminate the fact that
estimation error is of order T−1/2 in environments with κ ∝

√
N, despite what otherwise

looks like a standard panel regression with potentially very rich microdata. We can give
interpretable conditions under which variation in si affords faster convergence rates. These
are akin to si being a cross-sectional instrument: we require si to correlate with βih — that
is, be relevant for heterogeneity in transmission of Xt at horizon h — but to be orthogonal
to all other exposures to aggregate shocks, ({βiℓ}ℓ,h, γi). These conditions seem particularly
hard to meet: for each horizon h, a source of variation that is orthogonal to responses at all
other horizons is required. (Assumption 3(v) rules this out in our formulation.) In some
sense, this reveals an intrinsic trade-off between documenting interesting transmission
mechanisms and finding valid instruments for precision.

25To see this, note that x̂it(h) is ŝiXt minus a linear combination of ŝiXt−1, . . . , ŝiXt−p and unit and possibly
time indicators which is orthogonal to all of the latter. When Wit includes additional controls, the synthetic
time series representation is asymptotically but not numerically equivalent. Arkhangelsky and Korovkin
(2023) derive a similar connection in a regional-exposure design context.
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Remark 6 (t-HAR). In principle, time-clustered HAR inference is a valid alternative to
t-LAHR. An analogue to Proposition 1 can be shown for a confidence interval that replaces
V̂(h) in (12) with the Hansen and Hodrick (1980) variance estimator V̂(h) + 2

∑h
ℓ=p+1 Ṽℓ(h)

where

Ṽℓ(h) =
1

(T − h)

T−h∑
t=ℓ+1

 1
N

N∑
i=1

x̂it(h)ξ̂it(h)


 1

N

N∑
i=1

x̂i,t−ℓ(h)ξ̂i,t−ℓ(h)

 ,
This boils down to V̂(h) for p ≥ h. Unlike V̂(h), this alternative variance estimator is not
guaranteed to be positive semidefinite. Also, t-LAHR inference is simpler to implement
and refine, remains tractable over moderate horizons under VAR DGPs (Section 3.3), and
performs better in small samples (Section 4).

Remark 7 (State-dependence). In some applications, interest is in the differential pass-
through of shocks to responses along an observable (time-varying) state, denoted now sit.
Formalizing this requires extending (6)–(7) to allow for time-varying impulse responses:

Yit = µi +

∞∑
ℓ=0

βitℓXt−ℓ + vit, vit =

∞∑
ℓ=0

γitℓZt−ℓ + κ
∞∑
ℓ=0

δitℓui,t−ℓ.

Letting ŝit = sit − N−1 ∑N
j=1 s jt, the corresponding panel LP estimator on ŝitXt retains its

interpretation as the slope coefficient of the linear projection E∗
[
βith

∣∣∣sit
]

as long as sit and
impulse responses are exogenous with respect to Xt. Although a more detailed exploration
is beyond the scope of our paper, the treatment of sit is analogous to that of si, and all the
results above carry over with little modification. We revisit this in simulations in Section
4 and in our empirical illustration in Section 5.26

3.3 Panel VAR model

It is not uncommon in applications that the researcher is interested in responses at an
horizon h which is a non-negligible fraction of T. Proposition 1 guarantees exact coverage
for short horizons depending on the number of lags of the outcome and shock used as
controls. There is, however, one important class of DGPs for which our uniformity result
extends to h ∝ T: the VAR class.

26Rambachan and Shephard (2021, Section 3.4) offer a nonparametric characterization of local projection
estimands when states are endogenous in a time-series potential outcomes framework; see also Gonçalves,
Herrera, Kilian, and Pesavento (forthcoming) for the case where st = 1

{
Xt > c

}
.
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We now assume a panel VAR(p) model for (Yit,Xt) (with p < ∞):

Yit = mi +

p∑
ℓ=1

AℓYi,t−ℓ +

p∑
ℓ=0

BiℓXt−ℓ + Ci0Zt + κDi0uit. (16)

If
∑p
ℓ=1 Aℓ < 1, as implied by Assumption 3(iv), we can recover unit-specific parameters

µi, {βiℓ}, {γiℓ}, {δiℓ} from mi, {Aℓ}, {Biℓ},Ci0,Di0 inverting the polynomial A(L) = 1−
∑p
ℓ=1 AℓL

ℓ.
That is, the VAR model (16) is a special case of (6)–(7).

Assuming that p is known and that Wit contains p lags of Yit and siXt, the t-LAHR
confidence interval Ĉα(h) defined in (13) has uniform validity even for moderately long
horizons h exceeding p:

Proposition 2. Under Assumptions 1, 2 and 3, for some positive constant ϕ < 1,

lim
T,N→∞

sup
0≤h≤ϕT

sup
κ

∣∣∣∣Pκ (β(h) ∈ Ĉα(h)
)
− (1 − α)

∣∣∣∣ = 0. (17)

Proof. See Appendix A. □

The intuition and proof for Proposition 2 mirror that of Proposition 1. In the VAR
model (16), the regression score

∑N
i=1 Xtŝiξit(h, κ), with ξit(h, κ) now defined in (21), is

serially uncorrelated not just for h ≤ p but for any h. The basic consequence is that if a
low-order VAR model is a reasonable approximation, the t-LAHR inference approach that
relies on controlling for a small number of lags of the outcome and shock is robust over
long horizons and regardless of the amount of micro noise.27

Remark 8 (LP inference when the shock is recoverable). Proposition 2 can be read as the
panel data counterpart to the result in Montiel Olea and Plagborg-Møller (2021) under
stationarity when the shock is directly observable. That parallel implies that if instead we
observe a serially correlated aggregate X∗t =

∑p
ℓ=1 αℓX

∗

t−ℓ +Xt and we run a lag-augmented
local projection of Yi,t+h on siX

∗

t including p lags of Yit and siX
∗

t in the control vector Wit,
t-LAHR inference is again uniformly valid over h and κ.28

27The results in Montiel Olea et al. (2024) suggest that for a fixed horizon h, t-LAHR inference would
also remain valid if the VAR model (16) were contaminated by moving averages of Zt and uit in a T−1/4-
neighborhood of zero — that is, if the VAR model holds only approximately. The simulation evidence in
Section 4 based on DGPs which are not VARs is consistent with this idea.

28The connection with Montiel Olea and Plagborg-Møller (2021) also suggests that Ĉα(h) is uniformly
valid over the VAR parameter space (including unit roots) if a certain condition on uniform non-singularity
of the least squares denominator matrix (Assumption 3 in their paper) holds.
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An important extension is recursive identification in a macro system such as (8), where
the researcher observes Rt = (R1t, . . . ,Rnt)

′ and Xt is the j-th entry of εt in the SVAR model,
so that R jt =

∑ j−1
k=1 α0, jkRkt +

∑pR
ℓ=1 αℓ, j•Rt−ℓ + Xt. Consider the panel local projections

Yi,t+h = β̂R(h)siR jt + η̂R(h)′Wit + ξ̂R,it(h) and Yi,t+h = β̂X(h)siX̂t + η̂X(h)′Wit + ξ̂X,it(h),

where Wit includes siR1t, . . . , siR j−1,t, pR lags of siRt, p lags of Yit, and unit and time effects,
and where X̂t is the estimate of Xt from Section 3.1. Then, the analogue to Ĉα(h) that uses
β̂R(h) or β̂X(h) with t-LAHR standard errors also enjoys the uniform validity result (17).29

Remark 9 (Heterogeneity in VAR coefficients). Model (16) assumes homogeneous coef-
ficients {Aℓ}. This is common in the microeconometric literature on panel VARs (Arellano,
2003, Chapter 6) but it is not necessary for (17). We can prove Proposition 2 in a moderate
heterogeneity environment that replaces Aℓ with Aiℓ where sup1≤i≤N |Aiℓ −Aℓ| = Op

(
T−1/2

)
.

Proposition 2 can also be established (under different regularity conditions) if we allow
for heterogeneity in {Aℓ} but include p unit-specific lags of Yit as controls in Wit.

3.4 Panel LP-IV and proxy shocks

The most common implementation of panel LPs in empirical work treats the shock of
interest as observed. Nevertheless, it is sometimes more realistic to assume there is
measurement error in the shock elicitation process. This creates an endogeneity problem
that can be dealt with by using the shock measures as instruments for the actual underlying
shock (Ramey, 2016; Stock and Watson, 2018).

The researcher observes the outcome Yit and characteristics si, but instead of the actual
shock Xt she observes an endogenous aggregate state variable X̃t and a proxy shock X∗t . In
the context of our empirical analysis, X̃t denotes the Fed Funds rate and X∗t an imperfect
measurement of monetary policy surprises Xt. In addition to (6)–(7), we assume

X̃t =

∞∑
ℓ=0

bℓXt−ℓ +

∞∑
ℓ=0

cℓZt−ℓ, (18)

X∗t = a0Xt + νt, (19)

29In the local projection on siX̂t, controlling for siR1t, . . . , siR j−1,t and lags of siRt ensures that the generated
regressor error Xt − X̂t does not affect inference asymptotically by orthogonalizing the residual ξ̂X,it(h) with
respect to si(Xt − X̂t). The same applies to the other macro identification methods discussed in Section 3.1.

25



where νt is measurement error. We normalize b0 = 1 to fix the scale of the estimand as
only relative impulse responses are identified.30 We also adopt the following:

Assumption 4 (LP-IV).

(i) a0 , 0.

(ii) Assumptions 1, 2 and 3 hold with Zt replaced by (Zt, νt).

(iii) For the same constants Cℓ and C of Assumption 3,

|bℓ| ≤ Cℓ, |cℓ| ≤ Cℓ,
∞∑
ℓ=0

b2
ℓ ≥ C,

∞∑
ℓ=0

c2
ℓ ≥ C.

Assumption 4(i) is needed for instrument relevance, and we restrict our attention to
the strong instrument case where we keep a0 fixed as N,T → ∞. On the other hand,
Assumption 4(ii) implies that νt is orthogonal to {Xτ,Zτ}. This embodies the key lead-
lag exogeneity condition requiring X∗t to be contemporaneously correlated only with Xt,
a well-known condition in the time series LP-IV context.31 Finally, Assumption 4(iii)
imposes regularity on the endogenous variable X̃t.

LP-IV estimation and inference. LP-IV regresses Yi,t+h on X̃t = (X̃t, X̃t−1, . . . , X̃t−p)′ using
X∗t = (X∗t ,X

∗

t−1, . . . ,X
∗

t−p)′ as instruments (both interacted with si), controlling for unit and
time effects (Wit denotes controls). The residualized instrument is

x̂it(h) = ŝiX
∗

t − π̂(h)′Wit = ŝiX̂
∗

t (h),

where X̂∗t (h) = X∗t − (T − h)−1 ∑T−h
t=1 X∗t . The panel LP-IV estimator β̂IV(h) is then

β̂IV(h) =

T−h∑
t=1

N∑
i=1

x̂it(h)ŝiX̃
′

t


−1 T−h∑

t=1

N∑
i=1

x̂it(h)Yi,t+h =

T−h∑
t=1

X̂∗t (h)X̃′t


−1 T−h∑

t=1

X̂∗t (h)Ŷi,t+h,

30It is straightforward to include intercepts in both (18) and (19). Additionally, as in Section 3.3, we can
derive uniformity results with respect to the horizon h by assuming a VAR model in (6), (7) and (18).

31See, for instance, Stock and Watson (2018, p. 924) and Plagborg-Møller and Wolf (2021, p. 970). The
setup can be extended to allow νt to be serially correlated and to the case where X∗t is valid only after
conditioning on a set of controls.
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where Ŷi,t+h is the synthetic outcome defined in Remark 4. Put another way, panel LP-IV
admits a synthetic time series LP-IV representation.

The only entry of β̂IV(h) that has interpretation as an estimate of a relative impulse
response is β̂IV

0 (h) = e′1β̂
IV(h) where e1 is the first column of Ip+1. The remaining entries are

necessary for t-LAHR inference to be valid. Given residuals

ξ̂IV
it (h) = Yi,t+h − ŝiX̃

′

t β̂
IV(h) − η̂IV(h)′Wit,

we define

ĴIV(h) =
1

N(T − h)

T−h∑
t=1

N∑
i=1

x̂it(h)ŝiX̃
′

t , V̂ IV(h) =
1

(T − h)

T−h∑
t=1

 1
N

N∑
i=1

x̂it(h)ξ̂IV
it (h)


2

.

The time-clustered heteroskedasticity-robust standard error for β̂IV
0 (h) is

σ̂IV
0 (h) =

[
1

(T − h)
·

(
e′1 ĴIV(h)−1

)
V̂ IV(h)

(
e′1 ĴIV(h)−1

)′]1/2

and the (1 − α) confidence interval, ĈIV
α (h) =

[
β̂IV

0 (h) ± z1−α/2σ̂
IV
0 (h)

]
. Then:

Proposition 3. Under Assumption 4, for h ≤ p,

lim
T,N→∞

sup
κ

∣∣∣∣Pκ (β(h) ∈ ĈIV
α (h)

)
− (1 − α)

∣∣∣∣ = 0.

Proof. See Appendix A. □

Remark 10 (Absence of first-stage heterogeneity). The LP-IV estimand coincides (under
the normalization b0 = 1) with the LP estimand (14) despite the presence of heterogeneity.
This is far from obvious: under treatment effect heterogeneity, IV estimands are generally
(weighted averages of) local average treatment effects (Angrist and Imbens, 1995; Angrist,
Imbens, and Graddy, 2000). This is caused by the aggregate-only nature of the first-stage
model, yet another illustration of the unique setting that we study in this paper.

4 Simulation study

We ran a comprehensive simulation study to verify the finite-sample robustness of the
inference procedures analyzed in Section 3. Here we provide a summary and defer
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additional detail and results to Supplemental Appendix C.

Designs. Our study relies on two different DGPs. The first is the general setup (6)–(7)
supplemented with (18)–(19) to cover the endogenous case. We begin by simulating shocks
{Xt,Zt, νt, {uit}

N
i=1} as mutually and serially independent N(0, 1) random variables, and by

drawing {θi, si}
N
i=1 independently across units. To ensure correlation between observed

and unobserved heterogeneity we use a technique described in Supplemental Appendix
C. We calibrate the distribution of {βiℓ, γiℓ, δiℓ} and the value of {bℓ, cℓ} to produce realistic
degrees of shock persistence.

Given these elements, we generate the inputs for panel LP and LP-IV procedures,
namely Yit, Xt, si, X̃t, X∗t . We also simulate the time-varying covariate sit = si + ζit (where
ζit is such that sit remains strictly exogenous) to compare panel LPs on siXt and sitXt —
this illustrates the point we made in Remark 7.

The second DGP is the VAR model (16). Again we generate shocks as i.i.d. N(0, 1) and
we simulate the heterogeneity as detailed in Supplemental Appendix C. When calibrating
the VAR parameters {Aℓ}we allow the largest AR root to be 1−c/T (we use c = 5) to capture
the essence of a near non-stationary environment.32

The results below are based on nMC = 5, 000 Monte Carlo samples. Motivated by
our survey of the empirical literature, we look at designs with T = 30 and T = 100.
We set N = 1, 000 (although we also considered experiments with larger N) and we let
κ take values consistent with R̄2(κ) ∈ {0.99, 0.66, 0.33} as defined in (4). As a reference,
R̄2(κ) = 0.66 corresponds to the one-third of aggregate fluctuations explained by micro
shocks suggested by Gabaix (2011) for GDP growth, which we take as moderate signal-
to-noise.

Inference procedures. We compare t-LAHR inference with one-way (1W), two-way
(2W), and Driscoll-Kraay (DK98) inferences. These are implemented without lag aug-
mentation, as is common practice. For illustrative purposes, we also include t-HR (the
non-lag-augmented counterpart to t-LAHR) and t-HAR alternatives.

For t-LAHR inference we use the simple lag selection rule p = min{h, (T− h)1/3
} (except

in the VAR DGP where p is known) and we apply the finite-sample refinement advocated

32We also considered experiments where (a) in the first DGP shocks are conditionally heteroskedastic,
and (b) in the VAR DGP we have unit-specific VAR parameters {Aiℓ}. We did not find any major difference
with what we report here.
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by Imbens and Kolesár (2016). The lag selection rule is motivated by Xu (2023, Section 3.3)
for fixed h and provides fairly generous lag augmentation. For t-HAR inference we use
the equally-weighted cosine approach (Müller, 2004) with the choice of tuning parameter
recommended in Lazarus et al. (2018).

Results. In Figure 1, we report pointwise coverage rates for horizons 0 ≤ h ≤ 0.25T with
T = 100. These correspond to 90% confidence intervals for panel LP and LP-IV using si to
interact the aggregate shock. Panels (a)-to-(c) display LP while (d)-to-(f) display LP-IV in
the general DGP; panels (g)-to-(i) display LP in the VAR DGP.

Figure 1 suggests four takeaways. First, t-LAHR performs best in all scenarios, with
coverage close to the nominal rate even in low-signal cases and for horizons h well beyond
p. Its mean absolute coverage distortion never exceeds 2%, whereas it is between 4% and
7% for the second best option (t-HAR) under high signal.

Second, estimating the long-run variance of the score (instead of lag augmenting) can
be challenging with small T. This is particularly true for DK98 which relies on Newey–
West. Interestingly, these approaches do better in low-signal DGPs where, as mentioned
before, there is less to gain from doing HAC.

Third, one-way clustering is very sensitive to R̄2(κ), suffering severe distortions in
intermediate- and high-R̄2(κ) cases. What is more, it is outperformed by t-LAHR even if
micro shocks explain the majority of aggregate variation. This is consistent with the view
that 1W guards against the wrong type of correlation in the score.

Finally, two-way clustering is usually close to t-HR, its non-i-clustered version; another
indication that there is no clear advantage in clustering by units. In fact, in certain
occasions (mainly low-signal and near non-stationary designs), 2W gives worse inferences
than t-HR or 1W alone. This is possibly due to the non-standard behavior of variance
estimators when there are micro (near) unit roots.

Identical takeaways emerge in experiments where we substitute si with either 1 or sit

(Supplemental Appendix C), and with a sample size T = 30 (Figure 2).
In sum, the small-sample evidence reinforces many of our theoretical results. It shows

that the large-sample approximations of Section 3 provide reliable guidance for under-
standing estimation and inference with aggregate shocks. Furthermore, it illustrates
the practical relevance of achieving uniformity with respect to κ, and it delivers a clear
methodological prescription: t-LAHR inference.
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5 Empirical illustration

We now discuss an empirical exercise that demonstrates the applicability of our methods
in a setup featuring time-varying sit and unbalanced panels, and compares our practical
recommendation to popular alternatives. The exercise is motivated by the burgeoning
literature on the role played by firm heterogeneity and financial frictions in the propagation
of monetary policy.

Data and background. Quantifying firm-level responses to exogenous changes in policy
is a key empirical goal as it is informative on the mechanisms through which monetary
policy operates. For instance, Crouzet and Mehrotra (2020) focus on the role of firm
size for investment response heterogeneity, finding larger (albeit noisy) responses for
smaller firms; Ottonello and Winberry (2020) instead focus on default risk, finding larger
responses for less risky companies.

For our empirical analysis, we construct a dataset similar to the latter based on Com-
pustat and high-frequency identified monetary policy shocks (Gürkaynak, Sack, and
Swanson, 2005; Gorodnichenko and Weber, 2016). This results in an unbalanced panel for
the period 1990Q1–2010Q4 with observations on firm-level investment, size, and lever-
age.33 In total, there are T = 80 quarters and N = 4, 187 individual companies which, net
of missing data, amount to 235,233 observations.

We consider regressions of cumulative investment changes Yi,t+h = log(ki,t+h/ki,t−1)
(kit being the capital stock) on policy shocks Xt interacted with sit, a vector containing
size, leverage, and their product. From Section 3, we know that under unrestricted
heterogeneity the population counterpart is the linear projection of firm-level impulse
responses on sit. Thus, including size and leverage together (as well as their interaction)
in sit is a way to enrich the linear approximation.

Synthetic time series representation. A fundamental insight of our paper is that the
synthetic time series form of the microdata is a sufficient statistic for the panel LP; a low

33We use the paper’s replication code to build the data and we verify that we can replicate the original
results, with minor numerical differences that can be attributed to revisions in input data. Firm size is
measured by the value of total assets held by a company while leverage is its debt-to-assets ratio. We
have also tried the distance-to-default measure in Ottonello and Winberry (2020) with qualitatively similar
results.
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impulse responses to macro shocks when rich microdata and a measurement of the shock
of interest are available. Despite the complex environment, inference is simple and robust:
it involves lag augmentation and clustering at the time level, and is valid regardless of the
relative signal of macro shocks in the microdata. Our analysis also uncovers novel tools
that allow the researcher to recover the shock of interest from an aggregate system by
leveraging a host of macroeconometric techniques, or to deal with potential measurement
error in the shock elicitation process.

Our basic framework generalizes beyond the empirical applications we have focused
on. Other, related literatures where identification comes from randomness in group level
shocks include regional-exposure and shift-share designs. In fact, impulse responses are
sometimes an object of interest too — see, for instance, the literature on cross-sectional
fiscal multipliers (Chodorow-Reich, 2019).

We also leave some interesting dimensions for future research. Quantifying signal-to-
noise (perhaps a lower bound) seems relevant in settings where uniform inference is not
possible; we expect that these issues become more salient as macroeconomists embrace the
use of microdata to sharpen identification (Nakamura and Steinsson, 2018). On a different
note, strong persistence of micro-level shocks is likely a feature of many datasets, and this
is only captured in an indirect sense by our signal-to-noise device. Formalizing the idea
of (possibly heterogeneous) non-stationarities along these lines seems promising and full
of empirical content. Finally, extensions to simultaneous inference over impulse response
horizons could be made building on the techniques in Jordà (2009) and Montiel Olea and
Plagborg-Møller (2019).
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A Proofs

Proposition 1

Let β̃(h) =
(∑N

i=1 ŝ2
i

)−1 ∑N
i=1 ŝiβih be the coefficient in the (infeasible) regression of βih on ŝi —

the finite-population counterpart to β(h). Also, define

ξit(h, κ) =
∞∑
ℓ=0

(
ιℓ(h)βiℓXt+h−ℓ + γiℓZt+h−ℓ + κδiℓui,t+h−ℓ

)
, (20)

ξt(h, κ) =
1
N

N∑
i=1

ŝiξit(h, κ) =
∞∑
ℓ=0

ιℓ(h)β̄ℓXt+h−ℓ + γ̄ℓZt+h−ℓ +
κ
N

N∑
i=1

ŝiδiℓui,t+h−ℓ


where ιℓ(h) = 1 − 1

{
h ≤ ℓ ≤ h + p

}
, β̄ℓ = N−1 ∑N

i=1 ŝiβiℓ and γ̄ℓ = N−1 ∑N
i=1 ŝiγiℓ. Finally, let

V(h, κ) = Varκ
(
Xtξt(h, κ)

∣∣∣{θi, si}
N
i=1

)
.

Proof of Propositions 1. Let
∑

i,t denote summation over 1 ≤ t ≤ T − h and 1 ≤ i ≤ N. For
any ψ ∈ Rd,∑

i,t

x̂it(h)2

 (β̂(h) − β̃(h)
)
=

∑
i,t

x̂it(h)
(
Yi,t+h − β̃(h)ŝiXt − ψ

′Wit

)
=

∑
i,t

ŝiXt

(
Yi,t+h − βihXt − ψ

′Wit

)
−

∑
i,t

(π̂(h)′Wit)
(
Yi,t+h − β̃(h)ŝiXt − ψ

′Wit

)
.

The first line uses
∑

i,t x̂it(h)2 =
∑

i,t x̂it(h)ŝiXt and
∑

i,t x̂it(h)Wit = 0d×1 (to introduce ψ). The
second line uses x̂it(h) = ŝiXt − π̂(h)′Wit and

∑
i,t ŝiXt(β̃(h)ŝiXt − βihXt) = 0.

We can choose ψ so that

∑
i,t

ŝiXt

(
Yi,t+h − βihXt − ψ

′Wit

)
=

∑
i,t

ŝiXtξit(h, κ) = N
T−h∑
t=1

Xtξt(h, κ).

Here, Wit consists of p lags of ŝiXt, unit indicators, and (possibly) time indicators (so that

d = p+N+T). To chooseψ, we set the coefficient on ŝiXt−ℓ to β̃(h+ℓ) =
(∑N

i=1 ŝ2
i

)−1 ∑N
i=1 ŝiβi,h+ℓ,

the coefficient on the unit-i indicator to µi, and the coefficients on time indicators to zero.
Moreover, π̂(h)′Wit = ŝi(Xt − X̂t(h)) with X̂t(h) the residual from a regression of Xt on
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Xt−1, . . . ,Xt−p and an intercept. Then,∑
i,t

(π̂(h)′Wit)
(
Yi,t+h − β̃(h)ŝiXt − ψ

′Wit

)
=

∑
i,t

(π̂(h)′Wit)ξit(h, κ).

It follows that the standardized estimation error can be written as

β̂(h) − β̃(h)
σ̂(h)

=

∑T−h
t=1

∑N
i=1 x̂it(h)(Yi,t+h − β̃(h)x̂it(h))

N
√

(T − h)V̂(h)

=

√
V(h, κ)

V̂(h)
×

 ∑T−h
t=1 Xtξt(h, κ)√
(T − h)V(h, κ)

+ RT(h, κ)


where the remainder term is

RT(h, κ) = −
∑T−h

t=1
∑N

i=1 (π̂(h)′Wit) ξit(h, κ)

N
√

(T − h)V(h, κ)
.

To establish our uniform approximation we exploit drifting parameter sequences (see
Andrews et al. (2020) for formal results connecting the two). For simplicity we index
everything to T, including N = NT. We show that for any {κT}, as T→∞,

(A)
{
(T − h)V(h, κT)

}−1/2 ∑T−h
t=1 Xtξt(h, κT) d

−−−−−−→
PκT

N(0, 1),

(B) V̂(h)/V(h, κT)
p

−−−−−−→
PκT

1,

(C) RT(h, κT)
p

−−−−−−→
PκT

0.

Hence, for any such {κT},

β̂(h) − β̃(h)
σ̂(h)

d
−−−−−−→

PκT

N(0, 1).

We establish (A), (B) and (C) in Lemmas 1, 2 and 3 in Supplemental Appendix B. Now,
Assumptions 1(ii) and 3(iv) imply β̃(h) − β(h) = OPκT

(
N−1/2

)
whereas Lemma 2 implies

min{1, κ−1
T }σ̂(h) = OPκT

(
(T − h)−1/2

)
. Since T/N→ 0,

(β̂(h) − β(h))
σ̂(h)

=
(β̂(h) − β̃(h))

σ̂(h)
+ oPκT

(1)
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and the result follows. □

Proposition 2

Define

ξit(h, κ) =
h∑
ℓ=0

(
ιℓ(h)βiℓXt+h−ℓ + γiℓZt+h−ℓ + κδiℓui,t+h−ℓ

)
, (21)

ξt(h, κ) =
1
N

N∑
i=1

ŝiξit(h, κ) =
h∑
ℓ=0

ιℓ(h)β̄ℓXt+h−ℓ + γ̄ℓZt+h−ℓ +
κ
N

N∑
i=1

ŝiδiℓui,t+h−ℓ

 ,
and, as before, let V(h, κ) = Varκ

(
Xtξt(h, κ)

∣∣∣{θi, si}
N
i=1

)
. By recursive substitution,

Yi,t+h = mi(h) +
p∑
ℓ=1

(Aℓ(h)Yi,t−ℓ + Biℓ(h)Xt−ℓ) + βihXt + ξit(h, κ),

for some mi(h), {Aℓ(h)}, {Biℓ(h)} that depend on the VAR parameters mi, {Aℓ}, {Biℓ}.

Proof of Proposition 2. We follow exactly the same steps as for Proposition 1. The control
vector Wit includes p lags of Yit and ŝiXt in addition to unit and time effects. In the
step where we choose ψ, we set the coefficient on Yi,t−ℓ to Aℓ(h), the coefficient on ŝiXt−ℓ

to B̃ℓ(h) =
(∑N

i=1 ŝ2
i

)−1 ∑N
i=1 ŝiBiℓ(h), the coefficient on the unit-i indicator to mi(h), and the

coefficients on time indicators to zero.
The standardized estimation error can then be written as

β̂(h) − β̃(h)
σ̂(h)

=

√
V(h, κ)

V̂(h)
×

 ∑T−h
t=1 Xtξt(h, κ)√
(T − h)V(h, κ)

+ RT(h, κ)


where the remainder term is now

RT(h, κ) = −

∑T−h
t=1

∑N
i=1 (π̂(h)′Wit)

[
(βih − β̃(h)ŝi)Xt +

∑p
ℓ=1(Biℓ(h) − B̃ℓ(h)ŝi)Xt−ℓ + ξit(h, κ)

]
N

√
(T − h)V(h, κ)

.

Let ϕ < 1. In contrast to Proposition 1, instead of a single drifting parameter we now
have two. We show that for any {hT, κT} such that hT ≤ ϕT,

(A)
{
(T − hT)V(hT, κT)

}−1/2 ∑T−hT
t=1 Xtξt(hT, κT) d

−−−−−−→
PκT

N(0, 1),
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(B) V̂(hT)/V(hT, κT)
p

−−−−−−→
PκT

1,

(C) RT(hT, κT)
p

−−−−−−→
PκT

0.

We prove (A), (B) and (C) in Lemmas 8, 9 and 10 in Supplemental Appendix B. The
rest of the argument is identical to that of Proposition 1. □

Proposition 3

Using (18), substitute X̃t, X̃t−1, . . . , X̃t−p in succession into (6)–(7) to obtain

Yi,t+h = µi + βihX̃t +

p∑
ℓ=1

η̃iℓX̃t−ℓ + ξit(h, κ),

ξit(h, κ) =
∞∑
ℓ=0

(
ιℓ(h)β̃iℓXt+h−ℓ + γ̃iℓZt+h−ℓ + κδiℓui,t+h−ℓ

)
,

for some coefficients {η̃iℓ}, {β̃iℓ}, {γ̃iℓ} that depend on {βiℓ}, {γiℓ}, {bℓ}, {cℓ} and satisfy the
bound conditions in Assumption 3 for a suitable choice of Cℓ and C. Also define β̃(h) =(∑N

i=1 ŝ2
i

)−1 ∑N
i=1 ŝiβih with βih = (βih, η̃i1, . . . , η̃ip)′, ξt(h, κ) = N−1 ∑N

i=1 ŝiξit(h, κ) and V(h, κ) =

Varκ
(
X∗tξt(h, κ)

∣∣∣{θi, si}
N
i=1

)
.

Proof of Proposition 3. Following similar steps to the derivation in Proposition 1, let
∑

i,t

denote summation over 1 ≤ t ≤ T − h and 1 ≤ i ≤ N. For any ψ,∑
i,t

x̂it(h)ŝiX̃
′

t

 (β̂IV(h) − β̃(h)
)
=

∑
i,t

ŝiX
∗

t

(
Yi,t+h − X̃′t β̃ih − ψ

′Wit

)
−

∑T−h
t=1 X∗t

(T − h)

∑
i,t

ŝi

(
Yi,t+h − ŝiX̃

′

t β̃(h) − ψ′Wit

)
.

Note Wit includes unit and (possibly) time effects. To choose ψ, set the coefficient on the
unit-i indicator to µi and the coefficients on time indicators to zero, so that

∑
i,t

ŝiX
∗

t

(
Yi,t+h − X̃′t β̃ih − ψ

′Wit

)
= N

T−h∑
t=1

X∗tξt(h, κ),

∑T−h
t=1 X∗t

(T − h)

∑
i,t

ŝi

(
Yi,t+h − ŝiX̃

′

t β̃(h) − ψ′Wit

)
=

∑T−h
t=1 X∗t

(T − h)

 T−h∑
t=1

ξt(h, κ).
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Thus, the standardized estimation error can be written as

β̂IV
0 (h) − β̃(h)

σ̂IV
0 (h)

=

√√√√√ (
e′1J−1

)
V(h, κ)

(
e′1J−1

)′(
e′1 ĴIV(h)−1

)
V̂ IV(h)

(
e′1 ĴIV(h)−1

)′
×


(
e′1 ĴIV(h)−1

)∑T−h
t=1 X∗t ξ̃t(h, κ)√

(T − h)
(
e′1J−1

)
V(h, κ)

(
e′1J−1

)′ + RT(h, κ)


where J = (N−1 ∑N

i=1 ŝ2
i )E

[
X∗t X̃

′

t

]
and the remainder term is

RT(h, κ) = −

{
(T − h)−1

(
e′1 ĴIV(h)−1

)∑T−h
t=1 X∗t

}∑T−h
t=1 ξt(h, κ)√

(T − h)
(
e′1J−1

)
V(h, κ)

(
e′1J−1

)′ .

As in Proposition 1, we show that for any {κT} and λ , 0(p+1)×1

(A)
{
(T − h)λ′V(h, κT)λ

}−1/2 ∑T−h
t=1 λ

′X∗tξt(h, κT) d
−−−−−−→

PκT

N(0, 1),

(B)
(
λ′V̂ IV(h)λ

)
/ (λ′V(h, κT)λ)

p
−−−−−−→

PκT

1 and ĴIV(h)
p

−−−−−−→
PκT

J,

(C) RT(h, κT)
p

−−−−−−→
PκT

0.

The technical steps for (A), (B), and (C) are stated in Lemmas 11, 12 and 13 in Supple-
mental Appendix B. The rest of the argument is as in Proposition 1. □
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B Additional proofs

We adopt the following notation in the proofs below. We use PN, EN, VarN, CovN to denote
probability, expectation, variance and covariance given {θi, si}

N
i=1 (we insert a subindex κ

or κT when necessary).
With a slight abuse of nomenclature we sometimes call Loève’s inequality to the

statement |
∑m

i=1 Xi|
r
≤ cr

∑m
i=1 |Xi|

r (with cr = 1 if r ≤ 1 and cr = mr−1 otherwise) where
X1, . . . ,Xm are random variables and not just to E

[
|
∑m

i=1 Xi|
r]
≤ cr

∑m
i=1 E

[
|Xi|

r] (which is
implied by the former). See Davidson (1994, Theorem 9.28).

Without loss of generality we assume κ ≥ 0. We also define the scaling function
g(κ) = max{1, κ} and note that g(κ)/κ = g(κ−1). In Proposition 1

V(h, κ)

g(κ2/N)
=

∑
∞

ℓ=0

{
ιℓ(h)β̄2

ℓEN

[
X2

t X2
t+h−ℓ

]
+ γ̄2

ℓEN

[
X2

t Z2
t+h−ℓ

]}
g(κ2/N)

+

∑N
i=1

∑
∞

ℓ=0 ŝ2
i δ

2
iℓEN

[
X2

t u2
i,t+h−ℓ

]
Ng(N/κ2)

is bounded below by CM2 > 0 and above by 3C4M4 < ∞ for any κ (and h). The same
applies to V(h, κ)/g(κ2/N) in Proposition 2. In Proposition 3, tr{V(h, κ)}/g(κ2/N) is bounded
below by (a2

0 + 1)CM2 > 0 and above by 6(p + 1)(a2
0 + 1)C4M4 < ∞.

*Federal Reserve Bank of New York: martin.almuzara@ny.frb.org
†CEMFI: victor.sancibrian@cemfi.edu.es
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Proposition 1

Parts (A), (B) and (C) of the proof of Proposition 1 in Appendix A are established in
Lemmas 1, 2 and 3 below. Lemmas 4 and 5 provide auxiliary results for Lemma 1, while
6 and 7 do the same for 2. At all times, we make Assumptions 1, 2 and 3 and we fix h and
p ≥ h as T,N→∞ (note we do not need T/N→ 0 here).

Lemma 1 (Asymptotic normality of the score).∑T−h
t=1 Xtξt(h, κT)√
(T − h)V(h, κT)

d
−−−−−−→

PκT

N(0, 1).

Proof. The argument relies on the martingale representation:

T−h∑
t=1

Xtξt(h, κT)√
(T − h)V(h, κT)

=

T∑
t=1

χT,t(h, κT)

where we have defined

χT,t(h, κ) =
XtΞX,t(h, κ) + ZtΞZ,t(h) + (κT/N)

∑N
i=1 uitΞU,it(h)√

(T − h)V(h, κT)

with

ΞX,t(h, κ) =
h∑
ℓ=1

1{t − ℓ ≥ 1}β̄h−ℓXt−ℓ +

∞∑
ℓ=p+1

1{t ≤ T − h}β̄h+ℓXt−ℓ

+

∞∑
ℓ=0

1{t ≤ T − h}

γ̄h+ℓZt−ℓ +
κ
N

N∑
i=1

ŝiδi,h+ℓui,t−ℓ

 ,
ΞZ,t(h) =

h∑
ℓ=1

1{t − ℓ ≥ 1}γ̄h−ℓXt−ℓ,

ΞU,it(h) =
h∑
ℓ=1

1{t − ℓ ≥ 1}ŝiδi,h−ℓXt−ℓ.

Under Assumption 2, it can be readily verified that {χT,t(h, κT)}Tt=1 is a martingale
difference array adapted to the natural filtration {FT,t}

T
t=1,

FT,t = σ
(
{Xτ,Zτ, {uiτ}

N
i=1}τ≤t, {θi, si}

N
i=1

)
,

2



that is, χT,t(h, κT) is FT,t-measurable and EκT

[
χT,t(h, κT)

∣∣∣FT,t−1

]
= 0.

By construction,
∑T

t=1 EκT

[
χT,t(h, κT)2

]
= 1 and we can show (Lemmas 4 and 5)

T∑
t=1

χT,t(h, κT)2 p
−−−−−−→

PκT

1 and lim
T→∞

T∑
t=1

EκT

[
χT,t(h, κT)4

]
= 0.

By Davidson (1994, Theorems 23.11, 23.16 and 24.3), the Lemma follows. □

Lemma 2 (Consistency of the standard error).

V̂(h)
V(h, κT)

p
−−−−−−→

PκT

1.

Proof. Since V(h, κT) > 0 holds PκT
-a.s., it suffices to show that

V̂(h) − V(h, κT)

g(κ2
T/N)

p
−−−−−−→

PκT

0.

Write

V̂(h) − V(h, κT)

g(κ2
T/N)

= DT,1(h, κT) +DT,2(h, κT),

where we have defined

DT,1(h, κT) =
T−h∑
t=1

(
X2

t ξt(h, κT)2
− EκT

[
X2

t ξt(h, κT)2
∣∣∣{θi, si}

N
i=1

])
(T − h)g(κ2

T/N)
,

DT,2(h, κT) =
T−h∑
t=1


(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)2
− X2

t ξt(h, κT)2

(T − h)g(κ2
T/N)

 .
Next, using (x2

− y2) = (x − y)(x + y) and the Cauchy-Schwarz inequality,

∣∣∣DT,2(h, κT)
∣∣∣ ≤ √

D−T,2(h, κT)
√

D+T,2(h, κT),

with

D−T,2(h, κT) =
T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
− Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

,
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D+T,2(h, κT) =
T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
+ Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

.

Adding and subtracting Xtξt(h, κT) within the squares in D+T,2(h, κT) and applying Loève’s
inequality,

D+T,2(h, κT) ≤ 2D−T,2(h, κT) + 8|DT,1(h, κT)| +
8V(h, κT)

g(κ2
T/N)

.

We can show (Lemmas 6 and 7) that DT,1(h, κT) = oPκT
(1) and D−T,2(h, κT) = oPκT

(1). Given

that V(h, κT)/g(κ2
T/N) is bounded PκT

-a.s., D+T,2(h, κT) = OPκT
(1) which implies DT,2(h, κT) =

oPκT
(1) and the Lemma follows. □

Lemma 3 (Negligibility of the reminder).

RT(h, κT)
p

−−−−−−→
PκT

0.

Proof. Let x̄t(h) = (Xt−1 − X̄1(h), . . . ,Xt−p − X̄p(h))′ where X̄ℓ(h) = (T − h)−1 ∑T−h
t=1 Xt−ℓ. Since

either ŝi was demeaned or time effects were not included as controls,

π̂(h)′Wit = π̂0,i(h) +
p∑
ℓ=1

π̂X,ℓ(h)ŝiXt−ℓ = ŝi
(
X̄0(h) + π̂X(h)′x̄t(h)

)
,

where {π̂0,i(h)}, πX(h) = (π̂X,1(h), . . . , π̂X,p(h))′ are the coefficients from the regression of siXt

on unit fixed effects and p lags of ŝiXt. Furthermore, it is readily seen that π̂X(h) are also
the coefficients in a regression of Xt on x̄t(h),

π̂X(h) =

T−h∑
t=1

x̄t(h)x̄t(h)′

−1 T−h∑

t=1

x̄t(h)Xt.

Note that E
[
Xt−ℓ

]
= E

[
Xt−ℓXt

]
= 0 and that Var

(∑T−h
t=1 Xt−ℓ

)
,Var

(∑T−h
t=1 Xt−ℓXt

)
are bounded

by a constant (M2 and M4, respectively) times (T − h) under Assumptions 1, 2 and 3. Also
note that (T − h)−1 ∑T−h

t=1 x̄t(h)x̄t(h)′ = E
[
X2

t

]
× Ip + oPκT

(1). All of this is independent of κT. It
follows that

X̄0(h) = OPκT

(
(T − h)−1/2

)
, π̂X(h) = OPκT

(
(T − h)−1/2

)
.
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Write

RT(h, κT) = −
X̄0(h)

∑T−h
t=1 ξt(h, κT)√

(T − h)V(h, κT)
−
π̂X(h)′

∑T−h
t=1 x̄t(h)ξt(h, κT)√

(T − h)V(h, κT)
.

To obtain RT(h, κT) = oPκT
(1), we show

{
(T − h)V(h, κT)

}−1/2 ∑T
t=1 ξt(h, κT) = OPκT

(1) and{
(T − h)V(h, κT)

}−1/2 ∑T
t=1 x̄t(h)ξt(h, κT) = OPκT

(1). We do so by direct calculation.
First,

EN,κT


T−h∑

t=1

ξt(h, κT)


2 = EN


T−h∑

t=1

∞∑
ℓ=0

ιℓ(h)β̄ℓXt+h−ℓ


2 + EN


T−h∑

t=1

∞∑
ℓ=0

γ̄ℓZt+h−ℓ


2

+
κ2

T

N2 EN


T−h∑

t=1

N∑
i=1

∞∑
ℓ=0

ŝiδiℓui,t+h−ℓ


2

≤ 2(T − h)
[  ∞∑
ℓ=0

ιℓ(h)|β̄ℓ|


2

EN

[
X2

t

]
+

 ∞∑
ℓ=0

|γ̄ℓ|


2

EN

[
Z2

t

]
+
κ2

T

N2

N∑
i=1

 ∞∑
ℓ=0

|ŝiδiℓ|


2

EN

[
u2

it

] ]
≤ (T − h) × 2(2 + κ2

T/N)C4M2,

where the last line uses Assumption 3(i)–(iv).1 By iterated expectations and Chebyshev’s
inequality, for any ε > 0,

PκT


∣∣∣∣∣∣∣

∑T
t=1 ξt(h, κT)√

(T − h)V(h, κT)

∣∣∣∣∣∣∣ > ε
 = EκT

PN,κT


∣∣∣∣∣∣∣

∑T
t=1 ξt(h, κT)√

(T − h)V(h, κT)

∣∣∣∣∣∣∣ > ε



≤
1
ε2 EκT

[
2(2 + κ2

T/N)C4M2

V(h, κT)

]
≤

1
ε2

6C4M2

CM2 < ∞,

where the bound on (2 + κ2
T/N)/V(h, κT) = ((2 + κ2

T/N)/g(κ2
T/N)) × (g(κ2

T/N)/V(h, κT)) uses

1We also used the fact that for any linear process ωt =
∑
∞

ℓ=0 φℓεt−ℓ where {φℓ} are absolutely summable
and {εt} is white noise with E

[
εt
]
= 0 and E

[
ε2

t

]
= 1,

E


 T∑

t=1

ωt


2 = T−1∑

m=−(T−1)

(T − |m|)
∞∑
ℓ=0

φℓφℓ+|m| ≤ T
∞∑
ℓ=0

|φℓ|
∞∑

m=−∞

|φℓ+|m|| ≤ 2T

 ∞∑
ℓ=0

|φℓ|


2

.
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(2 + κ)/g(κ) ≤ 3 and V(h, κT)/g(κ2
T/N) ≥ CM2.

Similarly for any k = 1, . . . , p,

EN,κT


T−h∑

t=1

Xt−kξt(h, κT)


2 ≤ (T − h)

 ∞∑
ℓ=0

ιℓ(h)β̄2
ℓEN

[
X2

t−kX
2
t+h−ℓ

]
+

∞∑
ℓ=0

γ̄2
ℓEN

[
X2

t−kZ
2
t+h−ℓ

]
+
κ2

T

N2

N∑
i=1

∞∑
ℓ=0

ŝ2
i δ

2
iℓEN

[
X2

t−ku
2
i,t+h−ℓ

]
+ 2

h+k∑
ℓ=1

ιh+k−ℓ(h)ιh+k+ℓ(h)|β̄h+k−ℓβ̄h+k+ℓ|EN

[
X2

t−kX
2
t−k−ℓ

]
≤ (T − h) × (4 + κ2

T/N)C4M4,

where we used the autocovariances of Xt−kξt(h, κT) and Assumption 3(i)–(iv) again. By
iterated expectations and Chebyshev, for any ε > 0,

PκT


∣∣∣∣∣∣∣
∑T

t=1 Xt−rξt(h, κT)√
(T − h)V(h, κT)

∣∣∣∣∣∣∣ > ε
 ≤ 1
ε2 EκT

[
(4 + κ2

T/N)C4M4

V(h, κT)

]
≤

1
ε2

5C4M4

CM2 < ∞.

Thus, RT(h, κT) = oPκT
(1) and the Lemma follows. □

Lemma 4. Under the conditions of Lemma 1,

T∑
t=1

χT,t(h, κT)2 p
−−−−−−→

PκT

1.

Proof. We show VarN,κT

(∑T
t=1 χT,t(h, κT)2

)
≤ V̄/(T − h) for a constant V̄ independent of κT.

Since EN,κT

[∑T
t=1 χT,t(h, κT)2

]
= 1, by iterated expectations and Chebyshev’s inequality, for

any ε > 0,

PκT


∣∣∣∣∣∣∣

T∑
t=1

χT,t(h, κT)2
− 1

∣∣∣∣∣∣∣ > ε
 = EκT

PN,κT


∣∣∣∣∣∣∣

T∑
t=1

χT,t(h, κT)2
− 1

∣∣∣∣∣∣∣ > ε



≤
V̄

ε2(T − h)
→ 0.

As argued at the beginning of the section, V(h, κ)/g(κ2/N) is bounded away from zero
and infinity uniformly over κ. Thus, it suffices to show

VarN,κT

 T∑
t=1

V(h, κT)χT,t(h, κT)2

g(κ2
T/N)

 ≤ V̄
T − h

,
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PκT
-a.s., for some constant V̄ independent of κT. We do this by a direct calculation. Define

χ̄T,t(h, κT) = χT,t(h, κT)
{
(T − h)V(h, κT)/g(κ2

T/N)
}1/2

so that

g
(
κT
√

N

)
χ̄T,t(h, κT) = XtΞX,t(h, κ) + ZtΞZ,t(h) +

κT

N

N∑
i=1

uitΞU,it(h)

=

∞∑
ℓ=1

bt,ℓXtXt−ℓ︸         ︷︷         ︸
≡g(κT/

√
N)ζ1,t

+

∞∑
ℓ=0

ct,ℓXtZt−ℓ︸         ︷︷         ︸
≡g(κT/

√
N)ζ2,t

+

h∑
ℓ=1

c̃t,ℓZtXt−ℓ︸         ︷︷         ︸
≡g(κT/

√
N)ζ3,t

+
κT

N

N∑
i=1

∞∑
ℓ=0

dit,ℓXtui,t−ℓ︸                    ︷︷                    ︸
≡g(κT/

√
N)ζ4,t

+
κT

N

N∑
i=1

h∑
ℓ=1

d̃it,ℓuitXt−ℓ︸                    ︷︷                    ︸
≡g(κT/

√
N)ζ5,t

(B.1)

for some {bt,ℓ, ct,ℓ, c̃t,ℓ, {dit,ℓ, d̃it,ℓ}
N
i=1} that depend on {θi, si}

N
i=1 (and h). Note that the coeffi-

cients depend on t only via the indicator functions 1{t − ℓ ≤ 1} and 1{t ≤ T − h}. It will be
convenient to define {bℓ, cℓ, c̃ℓ, {di,ℓ, d̃i,ℓ}

N
i=1} as the coefficients we would get by setting the

indicators to one. This implies |bt,ℓ| ≤ |bℓ|, |ct,ℓ| ≤ |cℓ|, and so on. By Assumption 3(iv),
|bℓ|, |cℓ|, |c̃ℓ|, |diℓ|, |d̃iℓ| ≤ C̄ℓ almost surely for finite constants C̄ℓ such that C̄ =

∑
∞

ℓ=1 C̄ℓ < ∞ (in
fact, we can take C̄ ≤ C2 independent of h).

Consider the variance

VarN,κT

 T∑
t=1

V(h, κT)χT,t(h, κT)2

g(κ2
T/N)

 = ∑T
t=1

∑T
τ=1 ΓT(t, τ)

(T − h)2

where (omitting the dependence on h, κT and {θi, si}
N
i=1)

ΓT(t, τ) = CovN,κT

(
χ̃T,t(h, κT)2, χ̃T,τ(h, κT)2

)
.

Expanding the square of χ̃T,t(h, κT) and using the linearity of the covariance we can express
ΓT(t, τ) as the sum of covariancesΓT,k1k2k3k4

(t, τ) = CovN,κT

(
ζk1,t
ζk2,t
, ζk3,τ

ζk4,τ

)
where k1, k2, k3, k4

range over the five terms in (B.1). Moreover, if k1 = k2, ΓT,k1k2k3k4
(t, τ) can only be non-zero

if k3 = k4, while if k1 , k2, only if either k1 = k3 and k2 = k4 or k1 = k4 and k2 = k3. Then, by
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the triangle inequality,

∣∣∣ΓT(t, τ)
∣∣∣ =

∣∣∣∣∣∣∣∣
5∑

k1=1

5∑
k2=1

5∑
k3=1

5∑
k4=1

ΓT,k1k2k3k4
(t, τ)

∣∣∣∣∣∣∣∣
≤

5∑
k1=1

5∑
k3=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ + 2
5∑

k1=1

5∑
k2=1

∣∣∣ΓT,k1k2k1k2
(t, τ)

∣∣∣ . (B.2)

We begin with
∑T

t=1
∑T
τ=1 ΓT,k1k1k3k3

(t, τ). Consider k1 = k3 = 1:

g
(
κ4

T

N2

) ∣∣∣ΓT,1111(t, τ)
∣∣∣ = ∣∣∣∣∣∣∣CovN


 ∞∑
ℓ=1

bt,ℓXtXt−ℓ

2

,

 ∞∑
ℓ=1

bτ,ℓXτXτ−ℓ

2
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

bt,ℓ1
bt,ℓ2

bτ,ℓ3bτ,ℓ4CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXτ−ℓ3Xτ−ℓ4

)∣∣∣∣∣∣∣
≤

∞∑
ℓ1=1

∞∑
ℓ3=1

b2
ℓ1

b2
ℓ3

∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2
τX

2
τ−ℓ3

)∣∣∣∣
+ 2

∞∑
ℓ1=1

∑
ℓ2,ℓ1

|bℓ1bℓ2bℓ1+τ−tbℓ2+τ−t|

∣∣∣∣CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXt−ℓ1

Xt−ℓ2

)∣∣∣∣ .
The inequality uses the fact that by Assumption 2, CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXτ−ℓ3Xτ−ℓ4

)
can

only be non-zero if ℓ1 = ℓ2 and ℓ3 = ℓ4 or, with ℓ1 , ℓ2, if either ℓ3 = ℓ1 + τ − t and
ℓ4 = ℓ2 + τ − t or ℓ3 = ℓ2 + τ − t and ℓ4 = ℓ1 + τ − t.2 We also use |bt,ℓ| ≤ |bℓ|.

For the first double sum, now summing over t and τ,

T∑
t=1

T∑
τ=1

∞∑
ℓ1=1

∞∑
ℓ3=1

b2
ℓ1

b2
ℓ3

∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2
τX

2
τ−ℓ3

)∣∣∣∣
≤ 2T

T−1∑
m=0

∞∑
ℓ1=1

∞∑
ℓ3=1

C̄2
ℓ1

C̄2
∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2

t−mX2
t−m−ℓ3

)∣∣∣∣
≤ 2TC̄2

∞∑
ℓ1=1

C̄2
ℓ1

 ∞∑
j1=−∞

∞∑
j2=−∞

∣∣∣∣CovN

(
X2

t X2
t−ℓ1
,X2

t−mX2
t−m−ℓ3

)∣∣∣∣


2This is similar to the proof of Montiel Olea and Plagborg-Møller (2021, Lemma A.6)
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≤ 2TC̄2K̄
∞∑
ℓ1=1

C̄2
ℓ1
≤ 2TC̄4K̄

for some constant K̄ that can be shown to exist as by Assumption 3(iii) the fourth-order
cumulants of X2

t conditional on {θi, si}
N
i=1 are absolutely summable.

Turning to the second double sum, by Assumption 2, since ℓ1 , ℓ2,∣∣∣∣CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXτ−ℓ1Xτ−ℓ2

)∣∣∣∣ = ∣∣∣∣EN

[
X2

t X2
τX

2
t−ℓ1

X2
t−ℓ2

]∣∣∣∣ ≤ EN

[
X8

t

]
≤M8,

where M8 is the moment bound from Assumption 3(i). Then,

2
T∑

t=1

T∑
τ=1

∞∑
ℓ1=1

∑
ℓ2,ℓ1

|bℓ1bℓ2bℓ1+τ−tbℓ2+τ−t|

∣∣∣∣CovN

(
X2

t Xt−ℓ1
Xt−ℓ2

,X2
τXt−ℓ1

Xt−ℓ2

)∣∣∣∣
≤ 4TM8

T−1∑
m=0

∞∑
ℓ1=1

∑
ℓ2,ℓ1

|bℓ1bℓ2bℓ1+mbℓ2+m|

≤ 4TM8

∞∑
ℓ1=1

∞∑
ℓ2=1

|bℓ1 ||bℓ2 |

 ∞∑
m=0

|bℓ1+m||bℓ2+m|


≤ 4TM8

∞∑
ℓ1=1

∞∑
ℓ2=1

|bℓ1 ||bℓ2 |

 ∞∑
m1=1

|bm1
|
2
∞∑

m2=1

|bm2
|
2


1/2

≤ 4TC̄4M8,

where the second inequality increases the range of summation over ℓ2 and m, the third
uses Cauchy-Schwarz and the fourth follows from Assumption 3(iv).

Putting these calculations together and using g(κ) ≥ 1,∑T
t=1

∑T
τ=1

∣∣∣ΓT,1111(t, τ)
∣∣∣

(T − h)2 ≤
T × 2C̄4(K̄ + 2M8)

g(κ4
T/N

2)(T − h)2 ≤
2C̄4(K̄ + 2M8)

(1 − h/T)(T − h)
.

In fact, the same bound works for
∑T

t=1
∑T
τ=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ for any k1, k3 ∈ {1, 2, 3}.
Next consider k1 = k3 = 4:

g
(
κ4

T

N2

) ∣∣∣ΓT,4444(t, τ)
∣∣∣

(κ4
T/N

4)
=

∣∣∣∣∣∣∣∣CovN


 N∑

i=1

∞∑
ℓ=1

dit,ℓXtui,t−ℓ


2

,

 N∑
i=1

∞∑
ℓ=1

diτ,ℓXτui,τ−ℓ


2
∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣ N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di2t,ℓ2

di3τ,ℓ3
di4τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui2,t−ℓ2

,X2
τui3,τ−ℓ3

ui4,τ−ℓ4

) ∣∣∣∣∣∣
≤

N∑
i1=1

N∑
i3=1

∣∣∣∣∣∣ ∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di1t,ℓ2

di3τ,ℓ3
di3τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui1,t−ℓ2

,X2
τui3,τ−ℓ3

ui3,τ−ℓ4

) ∣∣∣∣∣∣
+

N∑
i1=1

N∑
i2=1

∣∣∣∣∣∣ ∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di2t,ℓ2

di1τ,ℓ3
di2τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui2,t−ℓ2

,X2
τui1,τ−ℓ3

ui2,τ−ℓ4

) ∣∣∣∣∣∣
+

N∑
i1=1

N∑
i2=1

∣∣∣∣∣∣ ∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

di1t,ℓ1
di2t,ℓ2

di2τ,ℓ3
di1τ,ℓ4

× CovN

(
X2

t ui1,t−ℓ1
ui2,t−ℓ2

,X2
τui2,τ−ℓ3

ui1,τ−ℓ4

) ∣∣∣∣∣∣.
The inequality uses the fact that CovN

(
X2

t ui1,t−ℓ1
ui1,t−ℓ2

,X2
τui3,τ−ℓ3

ui3,τ−ℓ4

)
can only be non-zero

if i1 = i2 and i3 = i4, or i1 = i3 and i2 = i4, or i1 = i4 and i2 = i3.
Summing over t and τ and applying to each of the three summands on the right hand

side the same steps as the case k1 = k3 = 1,∑T
t=1

∑T
τ=1

∣∣∣ΓT,4444(t, τ)
∣∣∣

(T − h)2 ≤
3N2
× κ4

T/N
4
× 2C̄4(K̄ + 2M8)

g(κ4
T/N

2)(1 − h/T)(T − h)
≤

6C̄4(K̄ + 2M8)
(1 − h/T)(T − h)

.

Repeating the calculation for the remaining cases (and noting that this bound is three
times larger than the one we computed for k1 = k3 = 1) we conclude that 6C̄4(K̄+2M8)/(1−
h/T)(T − h) works for any k1, k3 ∈ {1, 2, 3, 4, 5}. By similar reasoning, the bound also works
for

∑T
t=1

∑T
τ=1 ΓT,k1k2k1k2

(t, τ) whenever k1 , k2. We then get

∑T
t=1

∑T
τ=1 ΓT(t, τ)

(T − h)2 ≤
V̄

(T − h)
,

where V̄ = 75 × 6C̄4(K̄ + 2M8)/(1 − h/T) does not depend on κT (75 is the number of
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covariances in (B.2)). This establishes
∑T

t=1 χT,t(h, κT)2 = 1 + oPκT
(1). □

Lemma 5. Under the conditions of Lemma 1,

lim
T→∞

T∑
t=1

EκT

[
χ4

T,t

]
= 0.

Proof. Using the notation of Lemma 4 and Loève’s inequality,

EN

[
χ̄T,t(h, κT)4

]
≤ 53

5∑
k=1

EN

[
ζ4

k,t

]
. (B.3)

Each of the five terms in (B.3) is under Assumption 3(i)–(iv) bounded by a constant that
does not depend on κT. For k = 1,

g
(
κ4

T

N2

)
EN

[
ζ4

1,t

]
= EN


 ∞∑
ℓ=1

bt,ℓXtXt−ℓ

4
≤

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

|bt,ℓ1
bt,ℓ2

bt,ℓ3
bt,ℓ4
|

∣∣∣∣EN

[
X4

t Xt−ℓ1
Xt−ℓ2

Xt−ℓ3
Xt−ℓ4

]∣∣∣∣
≤M8

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

|bℓ1bℓ2bℓ3bℓ4 | ≤M8

 ∞∑
ℓ=1

|bℓ|

4

≤M8C̄4,

where C̄ is the constant we defined in the first part. The same bound works for k = 2 and
k = 3 in (B.3). For k = 4,

g
(
κ4

T

N2

) EN

[
ζ4

4,t

]
(κ4

T/N
4)
= EN


 N∑

i=1

∞∑
ℓ=1

dit,ℓXtui,t−ℓ


4

≤

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

∞∑
ℓ1=1

∞∑
ℓ2=1

∞∑
ℓ3=1

∞∑
ℓ4=1

|di1t,ℓ1
di2t,ℓ2

di3t,ℓ3
di4t,ℓ4
|

×

∣∣∣∣EN

[
X4

t ui1,t−ℓ1
ui2,t−ℓ2

ui3,t−ℓ3
ui4,t−ℓ4

]∣∣∣∣
≤ 3

N∑
i1=1

N∑
i2=1

∞∑
ℓ1=1

∞∑
ℓ2=1

|d2
i1t,ℓ1

d2
i2t,ℓ2
|

∣∣∣∣EN

[
X4

t u2
i1,t−ℓ1

u2
i2,t−ℓ2

]∣∣∣∣
≤ 3N2M8

∞∑
ℓ1=1

∞∑
ℓ2=1

d2
ℓ1

d2
ℓ2
≤ 3N2M8C̄4,
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where the second inequality uses that for EN

[
X4

t ui1,t−ℓ1
ui2,t−ℓ2

ui3,t−ℓ3
ui4,t−ℓ4

]
to be non-zero we

need i1 = i2 and i3 = i4, or i1 = i3 and i2 = i4, or i1 = i4 and i2 = i3 because of Assumptions
1(ii) and 2. The same bound applies to k = 5 in (B.3).

Putting these bounds together,

T∑
t=1

EN

[
χT,t(h, κT)4

]
=

∑T
t=1 EN

[
χ̄T,t(h, κT)4

]
g(κ4

T/N
2)

(T − h)2V(h, κT)2 ≤
9M8C̄4g(κ4

T/N
2)

(1 − h/T)(T − h)V(h, κ2
T)2 .

Since V(h, κT)2/g(κ4
T/N

2) ≥ CM2 > 0, we conclude
∑T

t=1 EκT

[
χT,t(h, κT)4

]
= o(1) by iterated

expectations where the convergence is uniform over κT. □

Lemma 6. Under the conditions of Lemma 2,

T−h∑
t=1

X2
t ξt(h, κT)2

− EκT

[
X2

t ξt(h, κT)2
∣∣∣{θi, si}

N
i=1

]
(T − h)g(κ2

T/N)

p
−−−−−−→

PκT

0.

Proof. The proof is analogous to that of Lemma 4. We will show that for a constant V̄
independent of κT, VarN,κT

(∑T
t=1 X2

t ξt(h, κT)2/g(κ2
T/N)

)
≤ V̄(T− h). By iterated expectations

and Chebyshev’s inequality it will follow that, for any ε > 0,

PκT


∣∣∣∣∣∣∣

T∑
t=1

X2
t ξt(h, κT)2

− EN,κT

[
X2

t ξt(h, κT)2
]

(T − h)g(κ2
T/N)

∣∣∣∣∣∣∣ > ε
 ≤ V̄
ε2(T − h)

→ 0.

We can write

Xtξt(h, κT) =
∞∑
ℓ=0

ιℓ(h)β̄ℓXtXt+h−ℓ +

∞∑
ℓ=0

γ̄ℓXtZt+h−ℓ +
κT

N

N∑
i=1

∞∑
ℓ=0

ŝiδiℓXtui,t−ℓ

=

∞∑
ℓ=0

bℓXtXt+h−ℓ︸           ︷︷           ︸
≡g(κT/

√
N)ζ1,t

+

∞∑
ℓ=0

cℓXtZt+h−ℓ︸          ︷︷          ︸
≡g(κT/

√
N)ζ2,t

+
κT

N

N∑
i=1

∞∑
ℓ=0

diℓXtui,t+h−ℓ︸                      ︷︷                      ︸
≡g(κT/

√
N)ζ3,t

. (B.4)

for some coefficients {bℓ, cℓ, {diℓ}
N
i=1} that depend on {θi, si}

N
i=1 (and h). By Assumption 3(iv),

we have |bℓ|, |cℓ|, |diℓ| ≤ Cℓ almost surely for some positive finite constants Cℓ such that
C =

∑
∞

ℓ=1 Cℓ < ∞. Note that the coefficients, constants and variables ζ1,t, ζ2,t, ζ3,t are
different from the ones in the proof of Lemma 4.
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Consider the variance

VarN,κT

 T∑
t=1

X2
t ξt(h, κT)2

g(κ2
T/N)

 = T−h∑
t=1

T−h∑
τ=1

ΓT(t, τ)

where (omitting the dependence on h, κT and {θi, si}
N
i=1)

ΓT(t, τ) = CovN,κT

X2
t ξt(h, κT)2

g(κT/
√

N)
,

X2
τξτ(h, κT)2

g(κT/
√

N)

 .
As in the proof of Lemma 4, we expand the square of X2

t ξt(h, κT)2 to express ΓT(t, τ) as the
sum of covariances ΓT,k1k2k3k4

(t, τ) = CovN,κT

(
ζk1,t
ζk2,t
, ζk3,τ

ζk4,τ

)
where k1, k2, k3, k4 range over

the three terms in (B.4). If k1 = k2, ΓT,k1k2k3k4
(t, τ) can only be non-zero if k3 = k4, while if

k1 , k2, only if either k1 = k3 and k2 = k4 or k1 = k4 and k2 = k3. Then,

∣∣∣ΓT(t, τ)
∣∣∣ = 3∑

k1=1

3∑
k2=1

3∑
k3=1

3∑
k4=1

∣∣∣ΓT,k1k2k3k4
(t, τ)

∣∣∣
=

3∑
k1=1

3∑
k3=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ + 2
3∑

k1=1

3∑
k2=1

∣∣∣ΓT,k1k2k1k2
(t, τ)

∣∣∣ . (B.5)

By calculations similar to that of Lemma 4, for any k1, k2, k3 ∈ {1, 2, 3},

T−h∑
t=1

T−h∑
τ=1

∣∣∣ΓT,k1k1k3k3
(t, τ)

∣∣∣ ≤ 6C4(K̄ + 2M8) × (T − h),

T−h∑
t=1

T−h∑
τ=1

∣∣∣ΓT,k1k2k1k2
(t, τ)

∣∣∣ ≤ 6C4(K̄ + 2M8) × (T − h).

We therefore arrive at

T∑
t=1

T∑
τ=1

ΓT(t, τ) ≤ V̄(T − h),

with V̄ = 27× 6C4(K̄+ 2M8) independent of κT (27 is the number of terms in (B.5)). Hence,
{(T − h)g(κ2

T/N)}−1 ∑T
t=1

(
X2

t ξt(h, κT)2
− EN,κT

[
X2

t ξt(h, κT)2
])
= oPκT

(1). □
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Lemma 7. Under the conditions of Lemma 2,

T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
− Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

p
−−−−−−→

PκT

0.

Proof. We begin by writing

x̂it(h) = ŝi(Xt − X̂t(h)), X̂t(h) = X̄0(h) + π̂X(h)′x̄t(h), (B.6)

with X̄0(h), π̂X(h) and x̄t(h) = (Xt−1 − X̄1(h), . . . ,Xt−p − X̄p(h))′ as in the proof of Lemma 3.
As argued, X̄0(h) = OPκT

(
(T − h)−1/2

)
and π̂X(h) = OPκT

(
(T − h)−1/2

)
.

Next, we write η̂(h)′Wit = η̂0,i(h) + η̂X(h)′x̄t(h)ŝi and ηX,ih = (βi,h+1, . . . , βi,h+p)′ so that

ξ̂it(h) − ξit(h, κT) =

µi − η̂0,i(h) +
p∑
ℓ=1

βi,h+ℓX̄ℓ(h)

 + (βih − β̂(h)ŝi)Xt + (ηX,ih − η̂X(h)ŝi)
′x̄t(h)

and we note β̂(h)
η̂X(h)

 =
T−h∑

t=1

Xt − X̄0(h)
x̄t(h)

 Xt − X̄0(h)
x̄t(h)

′

−1 T−h∑

t=1

Xt − X̄0(h)
x̄t(h)

 Ŷt+h

=

 β̃(h)
η̃X(h)

 +
T−h∑

t=1

Xt − X̄0(h)
x̄t(h)

 Xt − X̄0(h)
x̄t(h)

′

−1 T−h∑

t=1

Xt − X̄0(h)
x̄t(h)

 ξt(h, κT)

(N−1 ∑N
i=1 ŝ2

i )

where Ŷt+h = (
∑N

i=1 ŝ2
i )−1 ∑N

i=1 ŝiYi,t+h and η̃X(h) = (
∑N

i=1 ŝ2
i )−1 ∑N

i=1 ŝiηX,ih. Since the least
squares denominator matrix when scaled by (T − h)−1 converges to E

[
X2

t

]
× Ip+1 in proba-

bility uniformly over κT, the calculations in Lemma 3 imply that

(N−1 ∑N
i=1 ŝ2

i )(β̂(h) − β̃(h))

g(κT/
√

N)
= OPκT

(
(T − h)−1/2

)
,

(N−1 ∑N
i=1 ŝ2

i )(η̂X(h) − η̃X(h))

g(κT/
√

N)
= OPκT

(
(T − h)−1/2

)
.

Because Wit includes unit effects,
∑N

i=1 x̂it(h)(η̂0,i(h) − µi +
∑p
ℓ=1 βi,h+ℓX̄ℓ(h)) = 0 and,

N−1
N∑

i=1

x̂it(h)(ξ̂it(h) − ξit(h, κT)) =

N−1
N∑

i=1

ŝ2
i

 (β̃(h) − β̂(h))Xt(Xt − X̂t(h))
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+

N−1
N∑

i=1

ŝ2
i

 (η̃X(h) − η̂X(h))′x̄t(h)(Xt − X̂t(h)). (B.7)

To prove the Lemma, add and subtract N−1 ∑N
i=1 x̂it(h)ξit(h, κT) within the squares and

use Loève’s inequality to obtain

T−h∑
t=1

[(
N−1 ∑N

i=1 x̂it(h)ξ̂it(h)
)
− Xtξt(h, κT)

]2

(T − h)g(κ2
T/N)

≤ 2DπT,2(h, κT) + 2DηT,2(h, κT),

where

DπT,2(h, κT) =
T−h∑
t=1

[
N−1 ∑N

i=1(ŝiXt − x̂it(h))ξit(h, κT)
]2

(T − h)g(κ2
T/N)

,

DηT,2(h, κT) =
T−h∑
t=1

[
N−1 ∑N

i=1 x̂it(h)(ξ̂it(h) − ξit(h, κT))
]2

(T − h)g(κ2
T/N)

.

Inserting (B.6) into the first term and using Loève’s inequality,

DπT,2(h, κT) ≤ 2

X̄0(h)2
∑T−h

t=1 ξt(h, κT)2

(T − h)g(κ2
T/N)

+ ∥π̂X(h)∥2
∑T−h

t=1 ∥x̄t(h)ξt(h, κT)∥2

(T − h)g(κ2
T/N)

 ,
where ∥ · ∥ is Euclidean norm. From calculations similar to those in Lemma 3,∑T−h

t=1 ξt(h, κT)2

(T − h)g(κ2
T/N)

= OPκT
(1) and

∑T−h
t=1 ∥x̄t(h)ξt(h, κT)∥2

(T − h)g(κ2
T/N)

= OPκT
(1) ,

which allows us to conclude that DπT,2(h, κT) = oPκT
(1).

Inserting (B.7) into the second term and using Loève’s inequality,

DηT,2(h, κT) ≤ 2


 (N−1 ∑N

i=1 ŝ2
i )(β̃(h) − β̂(h))

g(κT/
√

N)

2 ∑T−h
t=1 X2

t (Xt − X̂t(h))2

T − h

+

∥∥∥∥∥∥
 (N−1 ∑N

i=1 ŝ2
i )(η̃X(h) − η̂X(h))

g(κT/
√

N)

∥∥∥∥∥∥
2 ∑T−h

t=1 ∥x̄t(h)(Xt − X̂t(h))∥2

T − h

 .
Under Assumption 3(i), we can show that (T − h)−1 ∑T−h

t=1 X2
t (Xt − X̂t(h))2 = OPκT

(1) and

(T − h)−1 ∑T−h
t=1 ∥xt(h)(Xt − X̂t(h))∥2 = OPκT

(1). Thus, DηT,2(h, κT) = oPκT
(1). □
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Proposition 2

Parts (A), (B) and (C) of the proof of Proposition 2 in Appendix A are established in
Lemmas 8, 9 and 10 below. The argument closely resembles the proof of Proposition 1
and, therefore, in order to conserve space we only sketch the steps. Again, we adopt
Assumptions 1, 2 and 3, we fix p and assume hT/T ≤ ϕ < 1 as T,N→∞.

Lemma 8 (Asymptotic normality of the score).∑T−hT
t=1 Xtξt(hT, κT)√
(T − hT)V(hT, κT)

d
−−−−−−→

PκT

N(0, 1).

Proof. The proof given for Lemma 1 goes through with the following adjustment: we can
remove the terms β̄ℓ, γ̄ℓ, δiℓ from ΞX,t(h, κ) whenever ℓ > h. That is, we set

ΞX,t(h, κ) =
h∑
ℓ=1

1{t − ℓ ≥ 1}β̄h−ℓXt−ℓ + 1{t ≤ T − h}

γ̄hZt +
κ
N

N∑
i=1

ŝiδihuit

 .
The calculations in Lemmas 4 and 5 apply with the same adjustment. In Lemma 4,
V̄ ≤ 75 × 6C8(K̄ + 2M8)/(1 − ϕ), which does not depend on κT or hT. Similarly, in Lemma
5,

∑T
t=1 EN

[
χT,t(hT, κT)4

]
≤ 9M8C8/(1 − ϕ)2CM2T, which tends to zero as T → ∞ uniformly

over κT and hT. □

Lemma 9 (Consistency of the standard error).

V̂(hT)
V(hT, κT)

p
−−−−−−→

PκT

1.

Proof. The proofs of Lemma 2 and auxiliary Lemma 6 go through without change. To
establish the equivalent to Lemma 7 in this context, define x̄t(hT) as in its proof and let
ȳit(hT) = (Ŷi,t−1(hT), . . . , Ŷi,t−p(hT)) with Ŷi,t−ℓ(hT) the residual from regressing g(κT)−1Yi,t−ℓ

on unit and time effects. We can write

π̂(hT)′Wit = ŝiX̄0(hT) + ŝiπ̂X(hT)′x̄t(hT) + π̂Y(hT)′ ȳit(hT),

η̂(hT)′Wit = η̂0,i(hT) + ŝiη̂X(hT)′x̄t(hT) + η̂Y(hT)′ ȳit(hT).

Scaling Yi,t−ℓ by g(κT)−1 leaves the least square predictions π̂(hT)′Wit and η̂(hT)′Wit un-
changed, but it helps bound them in probability uniformly over κT.

16



Calculations similar to those in Lemma 3 deliver
X̄0(hT)
π̂X(hT)
π̂Y(hT)

 = OPκT

(
(T − hT)−1/2

)
,

g
(
κT
√

N

)−1


(β̂(hT) − β̃(hT))
(η̂X(hT) − η̃X(hT))
(η̂Y(hT) − η̃Y(hT))

 = OPκT

(
(T − hT)−1/2

)
,

where η̃X(hT) = (B̃1(hT), . . . , B̃p(hT))′ and η̃Y(hT) = g(κT)(A1(hT), . . . ,Ap(hT))′ with Aℓ(h) and
B̃ℓ(h) as defined in the proof of Proposition 2 in Appendix A.

The rest of the proof follows the steps of Lemma 7. The convergence is uniform in both
κT and hT because T − hT ≤ (1 − ϕ)T with ϕ < 1. □

Lemma 10 (Negligibility of the remainder).

RT(hT, κT)
p

−−−−−−→
PκT

0.

Proof. We begin by defining x̄t(hT) and ȳit(h) as in Lemma 9, by writing

π̂(hT)′Wit = ŝiX̄0(hT) + ŝiπ̂X(hT)′x̄t(hT) + π̂Y(hT)′ ȳit(hT),

and by noting again that 
X̄0(hT)
π̂X(hT)
π̂Y(hT)

 = OPκT

(
(T − hT)−1/2

)
.

Next, we write rit(hT) = (βih − β̃(h)ŝi)Xt +
∑p
ℓ=1(Biℓ(h) − B̃ℓ(h)ŝi)Xt−ℓ and

RT(hT, κT) = −
X̄0(hT)

∑T−hT
t=1 ξt(hT, κT)√

(T − hT)V(hT, κT)
−
π̂X(hT)′

∑T−hT
t=1 x̄t(hT)ξt(hT, κT)√

(T − hT)V(hT, κT)

−
π̂Y(hT)′

∑N
i=1

∑T−hT
t=1 ȳit(hT)(rit(hT) + ξit(hT, κT))

N
√

(T − hT)V(hT, κT)

The rest of the argument mimics the proof of Lemma 3. □
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Proposition 3

Parts (A), (B) and (C) of the proof of Proposition 3 in Appendix A are stated in Lemmas
11, 12 and 13 below. The proofs are virtually identical to their counterparts in Proposition
1 with some minor differences. Here we make Assumptions 4 and we hold h and p ≥ h
fixed as T,N→∞.

Lemma 11 (Asymptotic normality of the score).∑T−h
t=1 λ

′X∗tξt(h, κT)√
(T − h)λ′V(h, κT)λ

d
−−−−−−→

PκT

N(0, 1).

Proof. The arguments given for Lemma 1 and auxiliary Lemmas 4 and 5 apply with the
obvious change in notation. □

Lemma 12 (Consistency of the standard error and OLS denominator).

λ′V̂ IV(h)λ
λ′V(h, κT)λ

p
−−−−−−→

PκT

1 and ĴIV(h)
p

−−−−−−→
PκT

J.

Proof. The first part follows from arguments analogous to those given for Lemma 2 and
auxiliary Lemmas 6 and 7 (with obvious notational changes). For the second part, note
VarN,κT

(
X∗tX̃t

)
≤ V̄/(T − h) for some constant V̄ independent of κT under Assumption

4(ii), so that
∥∥∥ĴIV(h) − J

∥∥∥ = oPκT
(1) follows from iterated expectations and Chebyshev’s

inequality. □

Lemma 13 (Negligibility of the remainder).

RT(h, κT)
p

−−−−−−→
PκT

0.

Proof. For any λ , 0(p+1)×1, by the same calculations as in Lemma 3,

∑T−h
t=1 λ

′X∗t
(T − h)

= OPκT

(
(T − h)−1/2

)
and

∑T−h
t=1 ξt(h, κT)√

(T − h)λ′V(h, κT)λ
= OPκT

(1) .

Since ĴIV(h) = J + oPκT
(1) by the second part of Lemma 12, the result follows. □
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C Details of simulation study

Here we complement Section 4 with additional details. First, we describe how we simulate
the heterogeneity. Second, we specify the calibration of our DGPs. Third and last, we
present further simulation results.

Simulation of observable and unobservable heterogeneity. A primary feature is the
correlation between si and {βi, γi.δi}.

3 We begin by drawing the vector

(si, sγ,i, sδ,i)
′
∼ N

(
13×1, (1 − ρ)I3 + ρ13×3

)
for some ρ , 0. Next, we set a very large L̄ and compute

βiℓ = siβ̆iℓ, γiℓ = sγ,iγ̆iℓ, δiℓ = sδ,iδ̆iℓ,

where {β̆iℓ, γ̆iℓ, δ̆iℓ}
L̄
ℓ=0 are obtained by (a) drawing the roots of ARMA polynomials from

Beta distributions, (b) computing their MA(∞) representations, (c) truncating them at L̄,
and (d) normalizing them so that

∑L̄
ℓ=0 β̆

2
iℓ =

∑L̄
ℓ=0 γ̆

2
iℓ =

∑L̄
ℓ=0 δ̆

2
iℓ = 1.4

To generate time-varying heterogeneity we set sit = si + ζit with ζit ∼ N(0, 1), i.i.d.
over units and time, and independent of si and everything else. This ensures sit remains
exogenous with respect to aggregate and idiosyncratic shocks.

Finally, in the VAR DGP, we set

Biℓ = siB̆iℓ, Ci0 = sγ,i, Di0 = sδ,i.

where {B̆iℓ}
L̄
ℓ=0 are obtained in the same way as {β̆iℓ}

L̄
ℓ=0 above.

Our method does not satisfy Assumption 3(iv), although responses are bounded with
sufficiently high probability that it does not seem to make a difference.

3Instead, µi (and mi in the VAR setup) does not play a big role and we simply draw it as N(0, 1).
4The advantage of this representation is that it separates the scale and persistence. For example, if Xt is

white noise with unit variance conditional on {βiℓ}
L̄
ℓ=0, the variance of

∑L̄
ℓ=0 βiℓXt−ℓ is

∑L̄
ℓ=0 β

2
iℓ = s2

i while the
ratio of long-run variance to variance of

∑L̄
ℓ=0 βiℓXt−ℓ (a measure of persistence) is(∑L̄
ℓ=0 βiℓ

)2

∑L̄
ℓ=0 β

2
iℓ

=

(∑L̄
ℓ=0 β̆iℓ

)2

∑L̄
ℓ=0 β̆

2
iℓ

,

which does not depend on si.
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D A survey of empirical applications

Below, we survey relevant empirical applications by the method used to calculate standard
errors. The list reflects the recent surge in applications (with the oldest paper dated 2018)
and includes both published work and working papers. We have aimed to make the list
comprehensive, but it is possible that some might have been inadvertently omitted. When
different methods were used, we favored the one used in the main specification and the
one used in estimation of dynamic effects (non-zero horizons). We classified as one-way
clustering (within units) applications that cluster at a higher level of aggregation than
primary units; say, at the industry (or industry-time) level when units are firms. While
allowing for sector-level shocks, these still rule out economy-wide spatial dependence.
See the Introduction for additional details.

By method

Two-way clustering (within
units and time)

Ippolito, Ozdagli, and Perez-Orive (2018), Jeenas (2019), Ottonello and Winberry
(2020), Amberg, Jansson, Klein, and Rogantini Picco (2022), Palazzo and Ya-
marthy (2022), Paz (2022), Bellifemine, Couturier, and Jamilov (2023), Cascaldi-
Garcia, Vukotić, and Zubairy (2023), Drechsel (2023), Durante, Ferrando, and
Vermeulen (2022), Duval, Furceri, Lee, and Tavares (2023), Ferreira, Ostry, and
Rogers (2023), González, Nuño, Thaler, and Albrizio (2023), Lakdawala and
Moreland (2023), Singh, Suda, and Zervou (2023), Thürwächter (2023), Zhou
(2023), Anderson and Cesa-Bianchi (2024), Berthold, Cesa-Bianchi, Di Pace, and
Haberis (2024), Caglio, Darst, and Kalemli-Özcan (2024), Camêlo (2024), Gulyas,
Meier, and Ryzhenkov (2024), Paranhos (2024), Lakdawala and Moreland (forth-
coming)

Clustering within units Wu (2018), Ozdagli (2018), Crouzet and Mehrotra (2020), Singh, Suda, and Zervou
(2022), Albrizio, González, and Khametshin (2023), Andersen, Johannesen, Jør-
gensen, and Peydró (2023), Camara and Ramirez Venegas (2023), Ghomi (2023),
Indarte (2023), Bardóczy, Bornstein, Maggi, and Salgado (2024), Jeenas (2024),
Jeenas and Lagos (2024), Lo Duca, Moccero, and Parlapiano (2024), Paranhos
(2024), Ruzzier (2024)

Driscoll and Kraay (1998)
standard errors

Holm, Paul, and Tischbirek (2021), Bahaj, Foulis, Pinter, and Surico (2022),
Cloyne, Ferreira, Froemel, and Surico (2023), Fagereng, Gulbrandsen, Holm, and
Natvik (2023), Gorea, Kryvtsov, and Kudlyak (2023), Bilal and Känzig (2024),
Cao, Hegna, Holm, Juelsrud, König, and Riiser (2024)

Clustering within time Gürkaynak, Karasoy-Can, and Lee (2022)
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González, B., G. Nuño, D. Thaler, and S. Albrizio (2023): “Firm Heterogeneity, Capital Misallo-

cation and Optimal Monetary Policy.” Working paper.

Gorea, D., O. Kryvtsov, and M. Kudlyak (2023): “House Price Responses to Monetary Policy

Surprises: Evidence from the U.S. Listings Data.” Working paper, European Investment Bank,

Bank of Canada, Federal Reserve Bank of San Francisco.

Gulyas, A., M. Meier, andM. Ryzhenkov (2024): “Labor Market Effects of Monetary Policy Across

Workers and Firms.” European Economic Review, 166.

Gürkaynak, R., H. G. Karasoy-Can, and S. S. Lee (2022): “Stock Market’s Assessment of Monetary

Policy Transmission: The Cash Flow Effect.” Journal of Finance, 77, 2027–2073.

Holm, M. B., P. Paul, and A. Tischbirek (2021): “The Transmission of Monetary Policy under the

Microscope.” Journal of Political Economy, 129, 2861–2904.

Indarte, S. (2023): “Financial Crises and the Transmission of Monetary Policy to Consumer Credit

Markets.” Review of Financial Studies, 36, 4045–4087.

Ippolito, F., A. K. Ozdagli, and A. Perez-Orive (2018): “The Transmission of Monetary Policy

through Bank Lending: The Floating Rate Channel.” Journal of Monetary Economics, 95, 49–71.

Jeenas, P. (2019): “Monetary Policy Shocks, Financial Structure, and Firm Activity: A Panel

Approach.” Working paper.

——— (2024): “Firm Balance Sheet Liquidity, Monetary Policy Shocks, and Investment Dynamics.”

Working paper.

Jeenas, P. and R. Lagos (2024): “Q-Monetary Transmission.” Journal of Political Economy, 132.

Lakdawala, A. and T. Moreland (2023): “The Effect of Monetary Policy on Firm-Level Uncer-

tainty.” Economics Letters, 232.

——— (forthcoming): “Firm-Level Uncertainty and the Transmission of Monetary Policy.” Review
of Economics and Statistics.

LoDuca, M., D. Moccero, andF. Parlapiano (2024): “The Impact of Macroeconomic and Monetary

Policy Shocks on Credit Risk in the Euro Area Corporate Sector.” Working paper.

24



Montiel Olea, J. and M. Plagborg-Møller (2021): “Local Projection Inference is Simpler and

More Robust Than You Think.” Econometrica, 89, 1789–1823.

Ottonello, P. and T. Winberry (2020): “Financial Heterogeneity and the Investment Channel of

Monetary Policy.” Econometrica, 88, 2473–2502.

Ozdagli, A. K. (2018): “Financial Frictions and the Stock Price Reaction to Monetary Policy.” Review
of Financial Studies, 31, 3895–3936.

Palazzo, B. and R. Yamarthy (2022): “Credit Risk and the Transmission of Interest Rate Shocks.”

Journal of Monetary Economics, 130, 120–136.

Paranhos, L. (2024): “How Do Firms’ Financial Conditions Influence the Transmission of Monetary

Policy? A Non-parametric Perspective.” Working paper.

Paz, P. (2022): “Bank Capitalization Heterogeneity and Monetary Policy.” Working paper.

Ruzzier, G. (2024): “Specialized Banks and the Transmission of Monetary Policy: Evidence from

the U.S. Syndicated Loan Market.” Working paper.

Singh, A., J. Suda, and A. Zervou (2022): “Monetary Policy, Labor Market, and Sectoral Hetero-

geneity.” AEA Papers and Proceedings, 112, 491–495.

——— (2023): “Heterogeneity in labor market response to monetary policy: small versus large

firms.” Working paper.
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