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Abstract 

A limit theory is developed for the least squares estimator for mildly and purely explosive autoregressions 

under drifting sequences of parameters with autoregressive roots  satisfying 
 

 

 
 

Drifting sequences of innovations and initial conditions are also considered. A standard specification of a 

short memory linear process for the autoregressive innovations is extended to a triangular array 

formulation both for the deterministic weights and for the primitive innovations of the linear process, 

which are allowed to be heteroskedastic L1-mixingales. The paper provides conditions that guarantee the 

validity of Cauchy limit distribution for the OLS estimator and standard Gaussian limit distribution for 

the t-statistic under this extended explosive and mildly explosive framework. 
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1 Introduction

First order autoregressive processes with an explosive root, i.i.d. Gaussian
innovations and zero initial condition were �rst analysed by White (1958)
who, using a moment generating function approach, derived a Cauchy limit
theory for the maximum likelihood estimator. Using martingale methods,
Anderson (1959) arrived to the same conclusion and showed that the Cauchy
limit theory is not invariant to deviations from Gaussianity and that, in
general, the limit distribution of the OLS estimator depends on the distri-
bution of the innovation sequence. Invariance of the Cauchy least squares
regression limit theory to the distribution of the innovations can be recovered
when the explosive root approaches unity as the sample size tends to in�nity
at su¢ ciently slow rate. This invariance, �rst established by Phillips and
Magdalinos (2007a, hereafter PM2007a), allows for semiparametric inference
within the class of mildly explosive autoregressions: a property that has been
employed to construct inferential procedures for the detection and dating of
�nancial bubbles by Phillips, Wu and Yu (2011) and Phillips and Yu (2011)
among others.
The invariance result of PM2007 was extended in various directions to

include innovation sequences that are weakly dependent (Phillips and Mag-
dalinos (2007b)), strongly dependent (Magdalinos (2012)), conditionally het-
eroskedastic (Arvanitis and Magdalinos (2019)) and to a class of stationary
processes that includes long memory and antipersistence (Wang (2023)). Aue
and Horvath (2007) relaxed the moment conditions on the innovations by
considering an i.i.d. innovation sequence that belongs to the domain of at-
traction of a �-stable law and showed that, in general, the normalised and
centred OLS estimator converges to a ratio of two independent �-stable ran-
dom variables which is Cauchy distributed only when the innovation sequence
belongs to the Gaussian domain of attraction with � = 2.
All works listed above consider drifting sequences of autoregressive pa-

rameters that converge to unity from above at the mildly explosive rate.
Drifting sequences of autoregressive parameters have been employed as early
as Phillips (1987b) in the analysis of the discontinuity of inference in di¤erent
regions of the parameter space. More recent work considers certain distribu-
tional aspects of the innovation sequence of an autoregression as an in�nite
dimensional nuisance parameter: from this viewpoint, an analysis of drift-
ing sequences of innovation processes provides information on the sensitivity
of autoregressive inference to the innovations�distributional characteristics.
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Andrews and Guggenberger (2012, 2014) consider the distribution function of
a stationary innovation sequence as part of the parameter space and derive an
OLS and GLS limit theory along drifting sequences of autoregressive parame-
ters on [�1 + �; 1] for some � > 0 and along drifting sequences of innovation
processes belonging to a class of (possibly conditionally heteroskedastic) mar-
tingale di¤erences. Recent work by Magdalinos and Petrova (2023) proposes
an endogenously generated instrumental variable procedure for autoregres-
sion and predictive regression with uniform asymptotic size properties over an
autoregressive parameter space of the form [�M;M ] for some M > 0 which,
in addition to (near) stationary and unit roots, includes explosive and mildly
explosive autoregressive roots. Any attempt to introduce aspects of the in-
novation sequence as a nuisance parameter in a parameter space containing
autoregressive roots in (�1;�1] [ [1;1) would require the development of
limit distribution theory along drifting sequences of both (mildly) explosive
roots and innovation processes. Such limit theory is not available, even in
the simplest case of the OLS estimator and the current paper aims to �ll this
gap in the literature.
Given a sample t 2 f1; :::; ng, we consider a sequence of linear process

innovations un;t =
P1

j=0 cn;jen;t�j where (en;t) is a (possibly conditionally
heteroskedastic) martingale di¤erence array and (cn;j) is an array of num-
bers satisfying a short memory array condition. A law of large numbers
is derived for sample variance and covariance of (en;t) (Lemma 1). In the
mildly explosive case, j�nj ! 1, the paper employs martingale approxima-
tion in the spirit of PM2007a (Lemma 2) and provides a direct extension
of the Cauchy limit distribution result of that paper. In the purely explo-
sive case, �n ! � 2 (�1;�1) [ (1;1), the array structure of (en;t) inval-
idates the martingale convergence theorem and raises signi�cant challenges
in showing that the denominator of the ratio that arises as an approxima-
tion of the normalised and centred OLS estimator is a:s: non-zero. This
issue is dealt with by showing that (en;t;Fn;t) may be approximated by a
martingale di¤erence sequence (et;Ft) by taking et := lim infn!1 en;t and
Ft := � (lim infn!1Fn;t). This approximation may be employed to show that
the denominator of the normalised and centred OLS estimator is non-zero
with probability tending to one (Lemma 3). Lemma 4 derives new limit the-
ory for (mildly) explosive processes with a negative root �n ! � 2 (�1;�1].
Theorems 1 and 2 provide the limit distribution theory for the OLS estimator
and the t-statistic respectively. All proofs are included in the Appendix.
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2 Main Results

Consider a �rst order autoregressive process of the form

xn;t = �+Xn;t; Xn;t = �nXn;t�1 + un;t; t 2 f1; :::; ng (1)

where Xn;t is initialised at Xn;0. The intercept is introduced in the model in a
way that it may contribute but does not dominate asymptotically in the form
of a deterministic trend when �n is in a vicinity of unity; this speci�cation
goes back to Andrews (1993) and has been employed by numerous papers that
wish to introduce an intercept to nonstationary models while maintaining
their stochastic nature. It is easy to see that upon recursive substitution, (1)
can be written as

xn;t = � (1� �n) + �nxn;t�1 + un;t; xn;0 = �+Xn;0: (2)

As mentioned in the introduction, we consider a drifting sequence of inno-
vation processes (un;t) in order to provide the possibility of including some
of the distributional properties of (un;t) in a parameter space of an autore-
gression as a nuisance parameter. We do not consider drifting sequences of
intercepts since any critical region based on the OLS estimator

�̂n =

Pn
t=1 xn;txn;t�1 � n�xn;n�xn;n�1Pn

t=1 x
2
n;t�1 � n�x2n;n�1

(3)

is exactly invariant to �.
We present a formal set of assumptions on the drifting sequences of pa-

rameters �n, un;t and Xn;0 in (1)-(2).

Assumption 1 (AR root). The sequence (�n)n2N satis�es �n ! � 2
(�1;�1] [ [1;1) and n (j�nj � 1)!1

Assumption 2 (innovation sequence). For each n 2 N, the sequence
(un;t)t2N in (2) is a stationary linear process of the form

un;t =

1X
j=0

cn;jen;t�j with sup
n�1

1X
j=0

jcn;jj <1 (4)
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where (cn;j) is an array of numbers satisfying cn;0 = 1, limn!1
P1

j=0 c
2
n;j > 0

and

C (�) := lim
n!1

1X
j=0

��jcn;j 6= 0 for � 2 (�1;�1] [ [1;1) . (5)

Given a sequence of �ltrations (Fn;t)t2Z, the sequence (en;t;Fn;t)t2Z in (2) is
a martingale di¤erence array such that

lim inf
n!1

lim inf
t!1

EFn;t�1 jen;tj > 0 a:s:; (6)

max1�t�n E
�
e2n;t1

�
e2n;t > �n

	�
! 0 when �n !1, �2n := E

�
e2n;t
�
! �2 > 0

and �2n;t := EFn;t�1
�
e2n;t
�
satis�es the following:

�
�2n;t
�
t2Z is strictly station-

ary for each n with �2n;t > 0 a:s

lim sup
n!1

sup
t2N

�2n;t <1 a:s:; (7)

and there exist b > 0 and sequences of positive numbers ( m)m2N and ('n)n2N
satisfying  m ! 0 and 'n ! 0 such that

sup
t�1

EFn;t�1�m ��2n;t � �2n
�

L1
� b ( m + 'n) for all m;n � 1: (8)

In the special case of en;t being conditionally homoskedastic, �2n;t = �2n
for all t, so strict stationarity of

�
�2n;t
�
t2Z is immediate and (7) and (8) hold

trivially, the former by convergence of (�2n)n2N and the latter since the left
side of (8) is equal to 0 by the tower property of conditional expectations.

Assumption 3 (initial condition).

(i) When j�nj ! 1, Xn;0 = op

h
(�2n � 1)

�1=2
i
.

(ii) When j�nj ! j�j > 1, Xn;0 !d X0 where X0 is an F0-measurable
random variable, where F0 := � ([n2NFn;0) with (Fn;t)t2Z de�ned in
Assumption 2.

We provide some discussion of Assumptions 1-3. Assumption 1 includes
explosive roots �n ! � 2 (�1;�1) [ (1;1) and mildly explosive roots
�n ! 1 with n (�n � 1) ! 1 and �n ! �1 with n (�n + 1) ! 1; when

5



j�nj ! 1, the convergence to 1 or �1 takes place at rate strictly domi-
nated by the n�1: the local to unity rate of near nonstationary processes
(see Phillips (1987b)). Unlike much of the existing literature on mildly ex-
plosive processes (Phillips and Magdalinos (2007b), Magdalinos (2012), Ar-
vanitis and Magdalinos (2019)), the mildly explosive rate is not restricted
by a parametrisation and is allowed to be arbitrary only required to satisfy
n (j�nj � 1)!1.
Assumption 2 is an array generalisation of a stationary short memory

linear process with respect to both the non-stochastic weights cn;j and the
innovation sequence en;t which is now an array of martingale di¤erences.
Since

1X
h=0

��un (h)�� � �2n

 1X
i=0

jcn;ij
!2

; (9)

(4) implies that supn�1
P1

h=0

��un (h)�� < 1. The existence of the limits ofP1
j=0 c

2
n;j and

P1
j=0 �

�jcn;j is ensured on a subsequence (mn)n2N � N by
(4) and the Bolzano-Weierstrass (BW) theorem; this is usually enough to
establish the uniformity of asymptotic size of critical regions and con�dence
intervals, the proof of which typically relies on subsequential arguments, see
Andrews, Cheng and Guggenberger (2020). The existence of such limits along
N when conducting asymptotics of estimators along drifting sequences is typ-
ically assumed for notational economy with a proper BW analysis conducted
when computing the asymptotic size of critical regions. The same holds for
the existence of the limit of �2n, guaranteed subsequentially by stationarity
and boundedness of the sequence E

�
�2n;0

�
.

Condition (5) assumes away antipersistence: the usual requirementC (1) 6=
0 needs to be extended over the entire range � 2 (�1;�1] [ [1;1) in order
to avoid degeneracy in the long run variance. When � = �1, (5) requires
that

C (�1) = lim
n!1

1X
j=0

(�1)�j cn;j = lim
n!1

 1X
j=0

cn;2j �
1X
j=0

cn;2j+1

!
6= 0:

Conditions (6) and (7) are required for the proof of the local Marcinkiewicz-
Zygmund conditions for a martingale di¤erence et that approximates en;t (see
Lemma 3 and its proof). A martingale di¤erence sequence (�t;Ht)t2N is said
to satisfy the local Marcinkiewicz-Zygmund (MZ) conditions if

lim inf
t!1

E ( j�tjjHt�1) a:s: and sup
t2N

E
�
�2t
��Ht�1

�
<1 a:s: (10)
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see Lai and Wei (1983). The local MZ conditions are used in conjunction
with Corollary 2 of Lai and Wei (1983) to show that the denominator of the
ratio that approximates the centred and normalised OLS estimator in the
explosive case is a:s: non-zero; Lemma 3 extends this approach to arrays of
martingale di¤erences to which the martingale convergence theorem and the
Lai and Wei (1983) result do not directly apply.
Assumption 2 accommodates a large class of stationary conditional het-

eroskedastic processes. Condition (8) is a slight generalisation of the L1-
mixingale array assumption of Andrews (1988). By using similar methods
to Example 1 of Arvanitis and Magdalinos (2019) and the results of Giraitis
et.al. (2000), we may show that (8) is satis�ed by an array of stationary
ARCH(1) processes. The L1-mixingale array condition (8) is useful for the
validity of a law of large numbers for (�2n � 1)

Pn
t=1 �

�2t
n �2n;t derived by Ar-

vanitis and Magdalinos (2019) and for deriving a law of large numbers for
n�1

Pn
t=1 u

2
n;t in Lemma 1 below.

Under mild explosivity, Assumption 3(i) imposes the usual order of magni-
tude on the initial condition Xn;0 that guarantees its asymptotic negligibility
from OLS asymptotics. For explosive processes with j�j > 1, Xn;0 contributes
to the limit distribution of the OLS estimator; we denote by X0 its limit in
distribution, which, in line with the discussion for the existence of the limits
of
P1

j=0 c
2
n;j and

P1
j=0 �

�jcn;j, is ensured subsequentially by tightness of the
sequence (Xn;0)n2N, in other words by the condition Xn;0 = Op (1).
Under Assumption 2, we may prove the following law of large numbers,

which is useful for deriving the asymptotic distribution of the t-statistic in

Theorem 2. Denoting by un (h) = E (un;tun;t�h) and !
2
n :=

�P1
j=0 cn;j

�2
�2n

the autocovariance function and long run variance of (un;t), (9), the identity

!2n = �2n

1X
j=0

c2n;j + 2
1X
h=1

un (h) (11)

and the convergence of the sequences
P1

j=0 cn;j,
P1

j=0 c
2
n;j and �

2
n (the former

by (5)) imply that limn!1
P1

h=1 un (h) exists in R.

Lemma 1. Let Assumption 2 hold and K be a non-negative bounded func-
tion on [0; 1] satisfying K (0) = 1. Then:

(i)
 1nPn

t=1 u
2
n;t � �2 limn!1

P1
j=0 c

2
n;j


L1
! 0.
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(ii) If, in addition,
sup
n�1

sup
h�1

��cov �e2n;t; e2n;t+h��� <1 (12)

holds, then 1n
MX
h=1

K

�
h

M

� nX
t=h+1

un;tun;t�h � lim
n!1

1X
h=1

un (h)


L1

! 0

whenever M !1 and M=n1=2 ! 0:

Note that the covariance condition (12) in part (ii) does not impose �nite
fourth moment on en;t (since h > 0) and that is it is automatically satis�ed
under conditional homoskedasticity by the law of iterated expectations. The
above law of large numbers together with the law of large numbers estab-
lished by Lemma 1 of Arvanitis and Magdalinos (2019) will be su¢ cient for
the asymptotic development of the paper. We proceed by extending the as-
ymptotic approximations that lead to the Cauchy-distributed ratio to mildly
explosive arrays. In doing so, we will require a strengthening of the summa-
bility condition (4) to

sup
n�1

1X
j=0

j� jcn;jj <1 for some � > 0: (13)

The reason for this is that, unlike the standard non-array case cn;j = cj, (4)
does not guarantee

1X
j=mn

jcn;jj ! 0 when mn !1 (14)

which is very useful in establishing approximations with mildly explosive
processes. A counterexample to (14) is easy to construct: c2n;j :=

�
�2n � 1

�
�2jn

where �n ! 1 with n (�n � 1) ! 1 satis�es (4) since
P1

j=0 c
2
n;j ! 1; tak-

ing (mn) to be any sequence satisfying mn ! 1 and mn (�n � 1) ! 0 we
obtain

Pmn�1
j=0 c2n;j ! 0 and

P1
j=mn

c2n;j ! 1. On the other hand, sinceP1
j=mn

jcn;jj � m��
n

P1
j=mn

j� jcn;jj = O
�
m��
n

�
, (14) is satis�ed under (13).

In order not to impose the summability condition (13) unnecessarily in the
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non-array case cn;j = cj, we prove Lemma 2 under (13) or under the follow-
ing dominance condition: there exists (cj)j�0 satisfying

P1
j=0 jcjj < 1 andP1

j=0 cj 6= 0 such that

jcn;jj � b jcjj for some b > 0 (15)

where b is independent of n and j.
Consider the stochastic sequences

�n =
�
�2n � 1

�1=2 nX
t=1

��tn un;t (16)

and

Xn =
�
�2n � 1

�1=2
��nn xn;n = �n +

�
�2n � 1

�1=2
Xn;0 + ��nn � (17)

Yn =
�
�2n � 1

�1=2 nX
t=1

��(n�t+1)n un;t: (18)

When �n ! � � 1, denote C (�) = limn!1
P1

j=0 �
�jcn;j (the existence of the

limit is ensured by Assumption 2) and

~Xn (�) = C (�)
�
�2n � 1

�1=2 nX
t=1

��tn en;t (19)

~Yn (�) = C (�)
�
�2n � 1

�1=2 nX
t=1

��(n�t+1)n en;t: (20)

Denote by C (1) = limn!1
P1

j=0 cn;j and by ~Xn (1) and ~Yn (1) the sequences
in (19) and (20) with C (�) replaced by C (1).

Lemma 2. Let Assumption 1 with �n ! 1 and Assumption 2 with either

(13) or (15) hold. Then
�n � ~Xn (1)


L2
! 0,

Yn � ~Yn (1)

L2
! 0 and

[Xn;Yn]!d

h
~X (1) ; ~Y (1)

i
(21)

as n ! 1, where ~X (1) and ~Y (1) are independent N (0; !2) random vari-
ables with !2 = �2C (1)2.
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It is worth noting that the martingale approximation of Yn by ~Yn (1)
is new and relaxes the summability condition

P1
j=1 j jcjj < 1 of Phillips

and Magdalinos (2007b) to (13) or the classical short memory conditionP1
j=1 jcjj <1 in the non-array case.
The next result deals with martingale approximation of sample moments

of (purely) explosive arrays. This is more challenging than the mildly explo-
sive case since the development of the theory of explosive autoregressions is
based on the martingale convergence theorem which, unlike the weak con-
vergence arguments employed in the mildly explosive case, does not admit a
triangular array generalisation. In what follows, we approximate the martin-
gale di¤erence array (en;t;Fn;t) by a martingale di¤erence sequence (et;Ft)
along a subsequence using Levy�s upward lemma for conditional expectations
(see 14.2 in Williams (1991)). The martingale di¤erence sequence (et;Ft) is
shown to satisfy the local MZ conditions (10), thus ensuring that the de-
nominator of the ratio that approximates the centred and normalised OLS
estimator is small with probability tending to 0; see Lemma 3(ii) below. The
theoretical development of Lemma 3 is new and is necessitated by the lack
of available martingale convergence theory for an array of martingale dif-
ferences en;t resulting from considering drifting sequences of autoregressive
innovations (un;t).

Lemma 3. Let Assumption 1 with �n ! � 2 (1;1), and Assumption 2
with (13) or (15) hold. For each t 2 Z let et := lim infn!1 en;t and

Gn;t := \1j=nFj;t and Ft := � ([1n=1Gn;t) = �
�
lim inf
n!1

Fn;t
�
: (22)

(i) The sequence (et;Ft)t2Z is a martingale di¤erence satisfying the local
MZ conditions (10).

(ii) For any subsequence of (Xn)n2N there exists a further subsequence
that converges in distribution. If Xkn !d X1 for some subsequence
(Xkn)n2N of (Xn)n2N, then P (X1 = 0) = 0.

(iii) lim�!0 lim supn!1 P (jXnj � �) = 0 and jYnj = jXnj = Op (1).

The next result extends the approximation results for the numerator and
denominator, (23) and (24) respectively, of the centred and normalised OLS
estimator. While (24) is a straightforward extension, the proof of (23) con-
tains new theory even for the non-array case cn;j = cj when ��nn n9 0: this
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may only occur for roots �n that lie logarithmically close to the local to unity
region: �n � 1 = O (log n=n) see (74) in the Appendix. Such rates are as-
sumed away by the polynomial parametrisation �n = 1+ c=n

� for c > 0 and
� 2 (0; 1) employed by Magdalinos (2012) and Arvanitis and Magdalinos
(2019) but are allowed by Assumption 1 which postulates mildly explosive
and explosive roots in full generality.

Lemma 4. Let Assumption 1 with �n ! � � 1, and Assumption 2 with
(13) or (15) hold. Then, as n!1,�

�2n � 1
�
��nn

Pn
t=1 xn;t�1un;t = XnYn + op (1) (23)�

�2n � 1
�2
��2nn

Pn
t=1 x

2
n;t�1 = X2

n + op (1) (24)

where Xn and Yn are given in (17) and (18).
Lemmata 2, 3 and 4 provide the essential elements for the approximation

of (�2n � 1)
�1
�nn (�̂n � �n) when �n ! � 2 [1;1). The limit theory for �n !

� 2 (�1;�1] may be derived as a mirror image of the � 2 [1;1) case by
employing the transformation xt 7! (�1)�t xt. Denoting

�xn;t = (�1)�t xn;t; �Xn;t = (�1)�tXn;t; �un;t = (�1)�t un;t; (25)

it is easy to see that �Xn;t satis�es the recursion

�Xn;t = j�nj �Xn;t�1 + �un;t: (26)

As long as we establish that the innovation sequence (�un;t) satis�es Assump-
tion 2, Lemma 4 will imply that�

�2n � 1
�
j�nj

�nPn
t=1 �xn;t�1�un;t = �Xn

�Yn + op (1) (27)�
�2n � 1

�2
��2nn

Pn
t=1 �x

2
n;t�1 = �X2

n + op (1) (28)

where ��n = (�
2
n � 1)

1=2Pn
t=1 j�nj

�t �un;t and

�
�Xn; �Yn

�
=

"
��n +

�
�2n � 1

�1=2
Xn;0;

�
�2n � 1

�1=2 nX
t=1

j�nj
�(n�t+1) �un;t

#
: (29)

The fact that

�un;t =
1X
j=0

�cn;t�en;t�j; with �en;t = (�1)�t en;t; �cn;t = (�1)�t cn;t (30)
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satis�es Assumption 2 is established in the proof of Theorem 1. Hence,
Lemma 2 and Lemma 3 continue to apply with

h
Xn; ~Xn (�)

i
replaced by�

�Xn; �Xn (�)
�
and

h
Yn; ~Yn (�)

i
replaced by

�
�Yn; �Yn (�)

�
where

�
�Xn (�) ; �Yn (�)

�
= C (j�j)

�
�2n � 1

�1=2 " nX
t=1

j�nj
�t �en;t;

nX
t=1

j�nj
�(n�t+1) �en;t

#
:

(31)
Combining Lemmata 2-4 and using (27)-(31), we arrive to the following result
for the OLS estimator in (3). Denote Cnj =

P1
t=1 �

�tcn;j+t.

Theorem 1. Consider the process xn;t in (1)-(2) under Assumption 1, As-
sumption 2 with either (13) or (15) and Assumption 3. The following limit
theory applies to the OLS estimator in (3) as n!1:

(i) When j�nj ! 1 �
�2n � 1

��1 j�njn (�̂n � �n)!d C

where C denotes a standard Cauchy random variable.

(ii) When j�nj ! j�j > 1,�
�2n � 1

��1 j�njn (�̂n � �n) =
Yn

Xn

1 f� > 1g �
�Yn

�Xn

1 f� < �1g+ op (1)

(32)
where Xn = �n + (�

2
n � 1)

1=2
Xn;0, �Xn = ��n + (�

2
n � 1)

1=2
Xn;0, the

elements of
�
�n;
��n;Yn; �Yn

	
have the same variance for each n and

satisfy limn!1 E (�nYn) = 0 and limn!1 E
�
��n �Yn

�
= 0. In particular,

�̂n � �n = Op
�
j�nj

�n� (33)

If (en;t)t2Z is Gaussian, � (�) = limn!1
P1

j=0C
2
nj exists and Xn;0 con-

verges in distribution jointly with
P1

j=0Cnjen;�j, then�
�2n � 1

��1 j�njn (�̂n � �n)!d
�

� +X0

�
C (�)2 (�2 � 1)�1 + � (�)

	�1=2
(34)

where � and � are independent N (0; �2) random variables; if X0 = 0
a:s: the right side of (34) follows a Cauchy distribution.
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Having characterised the limit distribution of the OLS estimator, we pro-
ceed to discussing the limit distribution of the resulting t-statistic

Tn (�n) =

�Pn
t=1 (xn;t�1 � �xn;n�1)

2�1=2
!̂n

(�̂n � �n) (35)

where !̂2n = �̂2n;u+2n
�1PM

h=1K
�
h
M

�Pn
t=h+1 ûn;tûn;t�h is an estimator of the

long run variance !2; withK a kernel function satisfying the usual conditions,
�̂2n;u = n�1

Pn
t=1 û

2
n;t is an estimator of Eu2n;t = �2n

P1
j=0 c

2
n;j and ûn;t denote

the OLS residuals from (2).

Theorem 2. Consider the process xn;t in (1)-(2) under Assumption 1, As-
sumption 2 with either (13) or (15) and Assumption 3. If K satis�es the as-
sumptions of Lemma 1, M !1, M=n1=2 ! 0 and (12) holds, the t-statistic
in (35) satis�es Tn (�n)!d N (0; 1) under each of the following conditions:

(i) j�nj ! 1

(ii) j�nj ! j�j > 1, (en;t)t2Z is Gaussian and cn;j = 0 for all j � 1.

Remarks. Theorems 1 and 2 extend the scope of available limit theory on
the right side of unity to general drifting sequences of autoregressive parame-
ters, innovation sequences and initial conditions. A summary of the di¤erent
directions of this extension follows.

1. The mildly explosive speci�cation of Assumption 1 includes neighbour-
hoods of unity that may approach the boundary with local to unity
processes: for such neighbourhoods �nn is no longer guaranteed to have
an exponential rate as in the case with a polynomial root parametrisa-
tion of the form �n = 1+ c=n

� with c > 0 and � 2 (0; 1) frequently as-
sumed in the literature. Assumption 1 also includes drifting sequences
of explosive autoregressions with roots on (�1;�1) [ (1;1) as well
as drifting sequences of mildly explosive roots converging to �1. As
far as we are aware, this work is the �rst to provide a full development
of OLS limit theory for mildly explosive processes at �1, even in the
standard case of non-array autoregressive innovations.

2. Assumption 2 extends the standard speci�cation of a short memory
linear process for the autoregressive innovations to a triangular array

13



formulation both for the deterministic weights and for the primitive
innovations of the linear process. The triangular arrays of primitive
innovations are assumed to be possibly conditionally heteroskedastic
martingale di¤erences satisfying an L1-mixingale condition. To our
knowledge, our work is the �rst to introduce a triangular array for-
mulation of (short memory) linear correlation, with existing work by
Andrews and Guggenberger (2012) introducing an array framework to a
conditionally heteroskedastic (but uncorrelated) martingale di¤erence
sequence.

3. We show that the OLS estimator generated by mildly explosive au-
toregression continues to conform to central limit theory under drifting
sequences of autoregressive roots to f1;�1g and drifting sequences of
short memory autoregressive innovations. The Cauchy limit distribu-
tion for the OLS estimator and the standard normal distribution for
the corresponding t-statistic continue to hold under drifting sequences
of autoregressive roots and innovations. A direct extension is possible
since mildly explosive limit theory employs weak convergence methods
(essentially the martingale central limit theorem) which are well-known
to accommodate easily sample moments of triangular arrays of random
variables. On the other hand, the asymptotic analysis of explosive au-
toregressions with root in (�1;�1)[(1;1) depends on the martingale
convergence theorem which does not extend to sums of martingale dif-
ference arrays. For this reason, we are only able to obtain the exact
rate of convergence of the OLS estimator and the approximation in
(32) under the full generality of Assumption 2. As in the standard
non-array case, asymptotic normality of the t-statistic is only achieved
under independent, Gaussian innovation errors un;t.

4. Theorems 1 and 2 provide limit distribution theory along drifting se-
quences of parameters that may be used for interval estimation. Phillips,
Wu and Yu (2011) and Phillips and Yu (2011) apply the construction
of Cauchy con�dence intervals for the detection of �nancial bubbles.
The results of Theorems 1 and 2 could be used in order to assess the
uniformity properties of the asymptotic coverage of these con�dence
intervals, with the autoregressive innovation sequence viewed as an in-
�nite dimensional nuisance parameter.
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3 Conclusion

The paper provides generic limit theory for the OLS estimator and the asso-
ciated t-statistic for a �rst order autoregression on the explosive side of unity
under drifting sequences of parameters. A general (mildly) explosive autore-
gressive root is considered that may approach the boundary with processes
that are local to 1 and �1 at arbitrary rate. Drifting sequences for the inno-
vation processes in the autoregression are also considered that take the form
of triangular arrays of short memory linear processes with primitive errors
that are (possibly conditionally heteroskedastic) martingale di¤erence arrays.
The asymptotic development of the paper provides the necessary apparatus
for considering autoregressive innovation processes as part of the statistical
model (in the form of an in�nite dimensional nuisance parameter) and for
assessing their e¤ect on the asymptotic size of OLS-based procedures in the
explosive and mildly explosive region.

4 Proofs

This section contains the proofs of mathematical statements in the paper.
We begin by proving an extension of Proposition A1(b) of Phillips and Mag-
dalinos (2007).

Lemma A1. Under Assumption 1, for any p � 0 the following hold:

(i) [n (j�nj � 1)]
p j�nj

�n ! 0

(ii) When j�nj ! 1, (j�nj � 1)
1+pPn

t=1 t
p j�nj

�t ! � (p+ 1) :

Proof. For part (i), write

j�nj
�n = exp f�n log j�njg = exp f�n log (1 + j�nj � 1)g :

When j�nj ! j�j > 1, n j�nj
�n = n exp f�n log j�j (1 + o (1))g = o (1) since

log j�j > 0; when j�nj ! 1, log (1 + x) = x+O (x) as x! 0 implies that

j�nj
�n = exp f�n (j�nj � 1) (1 + o (1))g = o

�
[n (j�nj � 1)]

�p�
for any p � 0 as required, since n (j�nj � 1)!1 and limM!1M

pe�M = 0
for any  > 0. For part (ii), the case p = 0 is just a geometric progression. For
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p > 0, employing an Euler summation argument and the change of variables
s = (j�nj � 1) t

(j�nj � 1)
1+p

nX
t=1

tp j�nj
�t = (j�nj � 1)

1+p

Z n+1

1

btcp j�nj
�btc dt

=

Z (n+1)(j�nj�1)

j�nj�1

�
b(j�nj�1)�1sc
(j�nj�1)�1

�p
j�njb

(j�nj�1)�1sc ds (36)

Since j�nj � 1! 0; n (1� j�nj)!1 and

j�njb
(j�nj�1)�1sc = (1 + (j�nj � 1))b

(j�nj�1)�1sc

= exp
��
(j�nj � 1)

�1 s
�
log (1 + j�nj � 1)

	
= exp

��
(j�nj � 1)

�1 s
�
(j�nj � 1) [1 +O (j�nj � 1)]

	
! e�s

the dominated convergence theorem implies that the integral on the right
side of (36) converges to

R1
0
spe�sds = � (p+ 1) ; completing the proof.

Proof of Lemma 1. Writing

n�1
nX
t=1

u2n;t = n�1
1X
j=0

c2n;j

nX
t=1

e2n;t�j + 2n
�1

1X
j=0

j�1X
i=0

cn;jcn;i

nX
t=1

en;t�jen;t�i

= An + 2Bn

in order of appearance, we obtain

kBnkL1 �
1X
j=0

j�1X
i=0

jcn;jj jcn;ij
1n

nX
t=1

en;t�jen;t�i


L1

=
1P
j=0

j�1P
i=0

jcn;jj jcn;ij
 1n nP

t=1

en;t�j
�
1
�
e2n;t�j � ln

	
+ 1

�
e2n;t�j > ln

	�
en;t�i


L1

�
1X
j=0

j�1X
i=0

jcn;jj jcn;ij
1

n

nX
t=1

en;t�j1�e2n;t�j > ln
	
en;t�i


L1

+

1X
j=0

j�1X
i=0

jcn;jj jcn;ij
 1n

nX
t=1

en;t�j1
�
e2n;t�j � ln

	
en;t�i


L2

(37)
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where the last line follows by the Lyapounov inequality and (ln)n2N is a
sequence satisfying ln ! 1 and ln=n ! 0. The summand inside the above
L2 norm is an Fn;t�i-martingale di¤erence array (since i < j) so 1n

nX
t=1

en;t�j1 fjen;t�jj � lng en;t�i


L2

=

 
1

n2

nX
t=1

E
�
e2n;t�j1

�
e2n;t�j � ln

	
e2n;t�i

�!1=2

�
�
ln
n
�2n

�1=2
so the second term on the right of (37) is bounded by 

sup
n�1

1X
j=0

jcn;jj
!2

�n
p
ln=n! 0

since ln=n ! 0. For the �rst term on the right of (37), the CS inequality
givesen;t�j1�e2n;t�j > ln

	
en;t�i


L1
�
�
Ee2n;t�j1

�
e2n;t�j > ln

	�1=2 �Ee2n;t�i�1=2
so the �rst term on the right of (37) is bounded by 

sup
n�1

1X
j=0

jcn;jj
!2

�n

�
sup
j2Z

Ee2n;j1
�
e2n;j > ln

	�1=2
! 0

since
�
e2n;j
�
is a UI family. We conclude that 1n

nX
t=1

u2n;t �
1X
j=0

c2n;j
1

n

nX
t=1

e2n;t�j


L1

! 0: (38)

Let (�n)n2N and (kn)n2N be integer-valued sequences satisfying

�n !1; kn !1; �nkn=
p
n! 0: (39)

Using the identity

nX
t=1

e2n;t�j1
�
e2n;t�j � �n

	
=

kn�1X
l=0

Mn;j;l+

nX
t=1

EFn;t�j�kn
�
e2n;t�j1

�
e2n;t�j � �n

	�
17



where

Mn;j;l =
nX
t=1

�
EFn;t�j�l

�
e2n;t�j1

�
e2n;t�j � �n

	�
� EFn;t�j�l�1

�
e2n;t�j1

�
e2n;t�j � �n

	��
is a martingale array, we may write

1

n

nX
t=1

e2n;t�j =
1

n

nX
t=1

e2n;t�j1
�
e2n;t�j � �n

	
+
1

n

nX
t=1

e2n;t�j1
�
e2n;t�j > �n

	
=

1

n

kn�1X
l=0

Mn;j;l +
1

n

nX
t=1

EFt�j�kn
�
e2n;t�j1

�
e2n;t�j � �n

	�
+
1

n

nX
t=1

e2n;t�j1
�
e2n;t�j > �n

	
=

1

n

kn�1X
l=0

Mn;j;l +
1

n

nX
t=1

EFt�j�kn
�
e2n;t�j

�
+
1

n
Nn;j (40)

where Nn;j =
Pn

t=1

�
e2n;t�j1

�
e2n;t�j > �n

	
� EFt�kn

�
e2n;t�j1

�
e2n;t�j > �n

	��
.

By the triangle inequality and the Jensen inequality for conditional expecta-
tions,  1nNn;j


L1

� 2 sup
j2Z

E
�
e2n;j1

�
e2n;j > �n

	�
: (41)

By the Lyapounov inequality and the martingale property of Mn;j 1n
kn�1X
l=0

Mn;j;l


L1

� 1

n

kn�1X
l=0

kMn;j;lkL2

=
1

n

kn�1P
l=0

�
nP
t=1

�
EFn;t�j�l

�
e2n;t�j1

�
e2n;t�j � �n

	�
� EFn;t�j�l�1

�
e2n;t�j1

�
e2n;t�j � �n

	��2�1=2
� 1

n
kn
�
�2nn

�1=2
= kn�n=

p
n: (42)
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Since the bounds in (41) and (42) are independent of j,
1X
j=0

c2n;j

 
1

n

kn�1X
l=0

Mn;j;l +
1

n
Nn;j

!
L1

�
1X
j=0

c2n;j

  1n
kn�1X
l=0

Mn;j;l


L1

+

 1nNn;j

L1

!

�
�
2 sup
j2Z

E
�
e2n;j1

�
e2n;j > �n

	�
+
kn�np
n

�
sup
n�1

1X
j=0

c2n;j

= o (1)

by (39) and UI of
�
e2n;j
�
j2Z. Hence, (38) and (40) imply that 1n

nX
t=1

u2n;t �
1X
j=0

c2n;j
1

n

nX
t=1

EFt�j�kn
�
e2n;t�j

�
L1

! 0: (43)

Note that EFt�j�kn
�
e2n;t�j

�
= EFt�j�knEFt�j�1

�
e2n;t�j

�
= EFt�j�kn�

2
n;t�j by the

tower property. (43) implies that the lemma will follow from
1X
j=0

c2n;j
1

n

nX
t=1

�
EFt�j�kn�

2
n;t�j � �2n

�
L1

! 0: (44)

Using the mixingale property (8),
1X
j=0

c2n;j
1

n

nX
t=1

�
EFt�j�kn�

2
n;t�j � �2n

�
L1

�
1X
j=0

c2n;j
1

n

nX
t=1

�EFt�j�kn�2n;t�j � �2n
�

L1

� b
�
 kn + 'n

�
sup
n�1

1X
j=0

c2n;j = o (1)

as required, since kn !1 by (39).
For part (ii), write

1

n

nX
t=h+1

un;tun;t�h =
1X
j;i=0

cn;jcn;i
1

n

nX
t=h+1

en;t�jen;t�(i+h)

=
1X
i=0

cn;i
X
j 6=i+h

cn;j
1

n

nX
t=h+1

en;t�jen;t�(i+h)

+
1X
i=0

cn;icn;i+h
1

n

n�hX
t=1

e2n;t�i:
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When j 6= i+ h, the martingale di¤erence property of (en;t) gives1n
nX

t=h+1

en;t�jen;t�(i+h)


2

L2

=
1

n2

nX
t=h+1

Ee2n;t�je2n;t�(i+h)

=
1

n2

nX
t=h+1

Ee2n;t�j
�
e2n;t�(i+h) � �2n

�
+
n� h

n2
�4n

=
1

n2

nX
t=h+1

e2n;t (i+ h� j) +
n� h

n2
�4n

� 1

n
sup
h�1

���e2n;t (h)���+ 1

n
�4n = O

�
1

n

�
:

Since supr2[0;1]K (r) <1, the above implies that
MX
h=1

K (h=M)
1X
i=0

jcn;ij
X
j 6=i+h

jcn;jj
 1n

nX
t=h+1

en;t�jen;t�(i+h)


L1

= O

�
M

n1=2

�
= o (1)

by the choice of M . Hence 1n
MX
h=1

K (h=M)
nX

t=h+1

un;tun;t�h �
MX
h=1

K (h=M)
1X
i=0

cn;icn;i+h
1

n

n�hX
t=1

e2n;t�i


L1

= O

�
M

n1=2

�
:

Using the same argument employed to show (43) and (44),
MX
h=1

K (h=M)
1X
i=0

cn;icn;i+h
1

n

n�hX
t=1

�
e2n;t�i � �2n

�
L1

! 0: (45)

It remains to determine the limit of the sequence

wn := �2n

MX
h=1

K

�
h

M

� 1X
i=0

cn;icn;i+h

�
1� h

n

�
:

Recalling that un (h) = �2n
PM

h=1K
�
h
M

�P1
i=0 cn;icn;i+h for h � 0 and that

K is bounded and K (0) = 1, write

wn =
MX
h=1

K

�
h

M

�
un (h) +O

�
M

n

�

=
1X
h=1

un (h) +
X
h>M

un (h) +
MX
h=1

(K(
h

M
)� 1)un (h) +O(

M

n
):(46)
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Since
P1

h=M+1

��un (h)�� � �2n
P1

i=0 jcn;ij
P1

h=M+1 jcn;hj = O
�
M��� by (13),

the second term of (46) tends to 0 as M ! 1; for the third term, since
supr2[0;1] jK (r)j <1, we obtain

MX
h=1

����K � h

M

�
� 1
���� ��un (h)�� �

 
sup
r2[0;1]

jK (r)j+ 1
!
sup
n�1

1X
h=1

��un (h)�� <1
so the fact that K (0) = 1 and the dominated convergence theorem imply
that

lim
n!1

MnX
h=1

�
K

�
h

Mn

�
� 1
�
un (h) = 0:

Finally, from the discussion preceding Lemma 1, the convergence of the se-
quences

P1
j=0 cn;j,

P1
j=0 c

2
n;j and �

2
n by Assumption 2 imply that limn!1

P1
h=1 un (h)

exists in R; hence wn ! limn!1
P1

h=1 un (h) and completes the proof.

Proof of Lemma 2. Write

�n =
�
�2n � 1

�1=2 nX
t=1

��tn

t�1X
j=0

cn;jen;t�j +
�
�2n � 1

�1=2 nX
t=1

��tn

1X
j=t

cn;jen;t�j

=
�
�2n � 1

�1=2 n�1X
j=0

��jn cn;j

n�jX
t=1

��tn en;t +
1X
j=0

Cn;jen;�j (47)

where Cn;j := (�2n � 1)
1=2Pn

t=1 �
�t
n cn;j+t. For the second term on the right of

(47),
1X
j=0

Cn;jen;�j


2

L2

= �2n

1X
j=0

C2n;j = �2n
�
�2n � 1

� 1X
j=0

 
nX
t=1

��tn cn;j+t

!2

� �2n
�
�2n � 1

� 1X
j=0

nX
t=1

j�nj
�t jcn;j+tj

nX
s=1

j�nj
�s jcn;j+sj

� �2n

1X
s=1

jcn;sj
�
�2n � 1

� nX
t=1

j�nj
�t

1X
j=t

jcn;jj

= �2n

1X
s=1

jcn;sj
�
�2n � 1

� mn�1X
t=1

j�nj
�t

1X
j=t

jcn;jj+
nX

t=mn

j�nj
�t

1X
j=t

jcn;jj
!

= b1n + b2n
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in order of appearance, where (mn) is a sequence chosen to satisfy mn !1
and mn (�n � 1)! 0. Now

b1n � �2n

 
sup
n�1

1X
s=1

jcn;sj
!2

mn

�
�2n � 1

�
! 0

and

b2n � �2n

1X
s=1

jcn;sj
1X

j=mn

�
j

mn

��
jcn;jj

�
�2n � 1

� nX
t=mn

j�nj
�t

� 1

m�
n

�2n

 
sup
n�1

1X
j=1

j� jcn;jj
! 

sup
n�1

1X
s=1

jcn;sj
!�

�2n � 1
� nX
t=mn

j�nj
�t

= O

�
1

m�
n

�
:

We conclude that the second term on the right of (47) tends to 0 in L2. For
the �rst term��2n � 1�1=2

n�1X
j=0

��jn cn;j

nX
t=n�j+1

��tn en;t


L2

�
�
�2n � 1

�1=2 n�1X
j=0

��jn jcn;jj


nX
t=n�j+1

��tn en;t


L2

=
�
�2n � 1

�1=2
�n

n�1X
j=0

��jn jcn;jj
 

nX
t=n�j+1

��2tn

!1=2

= �n�
�n
n

n�1X
j=0

jcn;jj
 �
�2n � 1

� jX
t=1

��2tn

!1=2
= O

�
��nn
�

so (47) implies that�n �
 
n�1X
j=0

��jn cn;j

!�
�2n � 1

�1=2 nX
t=1

��tn en;t


L2

! 0: (48)

Since supn�1
(�2n � 1)1=2Pn

t=1 �
�t
n en;t

2
L2
<1, the approximation

�n � ~Xn (1)

L2
!

0 will follow from (48) if

lim
n!1

n�1X
j=0

��jn cn;j = lim
n!1

1X
j=0

cn;j.
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Choosing again mn !1 and mn (�n � 1)! 0, write�����
n�1X
j=0

��jn cn;j �
1X
j=0

cn;j

����� �
n�1X
j=0

����jn � 1
�� jcn;jj

�
mn�1X
j=0

����jn � 1
�� jcn;jj+ 2 n�1X

j=mn

jcn;jj

� sup
0�k<mn

�
1� ��kn

�mn�1X
j=0

jcn;jj+
2

m�
n

n�1X
j=mn

j� jcn;jj

�
�
sup

0�k<mn

�
1� ��kn

�
+

2

m�
n

�
sup
n�1

1X
j=0

j� jcn;jj :

Since m�
n ! 1, it is enough to show that sup0�k<mn

�
1� ��kn

�
! 0. Apply

the mean value theorem to the function x 7! ��xn around (0; k): there exists
k0 2 (0; k) such that 1� ��kn = k��k0n log �n, i.e.

sup
0�k<mn

�
1� ��kn

�
� mn log �n = mn log (1 + �n � 1) = mnO (�n � 1) = o (1)

from the choice of (mn), where we used the fact that log (1 + x) = O (x)

as x ! 0. This completes the proof of
�n � ~Xn (1)


L2
! 0, which, by

Assumption 3(i) and (17), implies that Xn = ~Xn (1) + op (1).
For the approximation for Yn, write

Yn =
�
�2n � 1

�1=2 nX
t=1

��tn un;n�t+1 =
�
�2n � 1

�1=2 1X
j=0

cn;j

nX
t=1

��tn en;n�t�j+1

=
�
�2n � 1

�1=2 1X
j=0

�jncn;j

n+jX
t=j+1

��tn en;n�t+1

=
�
�2n � 1

�1=2 n�1X
t=1

��tn en;n�t+1

t�1X
j=0

�jncn;j +
1X
t=n

��tn en;n�t+1

t�1X
j=t�n

�jncn;j

!

=
�
�2n � 1

�1=2 n�1X
t=1

��tn en;n�t+1

"
t�1X
j=0

cn;j +
t�1X
j=0

�
�jn � 1

�
cn;j

#
+

1X
t=0

�Cnjen;�(t�1)

!
= Y1n + Y2n + Y3n
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in order of appearance, where �Cnj = (�2n � 1)
1=2Pn�1

j=0 �
�(n�j)
n cn;j+t. SincePn�1

j=0 �
�(n�j)
n =

Pn
j=1 �

�j
n , it is easy to see

P1
j=0

�C2nj has the same upper
bound as

P1
j=0C

2
nj so that that kY3nk

2
L2
! 0. For Y2n, note that �n ! 1

implies that log �n ! 0; choosing a sequence mn ! 1 and mn log'2n ! 0
and using the inequality

�jn � 1 � j�jn log �n (49)

obtained by applying the mean value theorem to the increasing function
x 7! �xn around (0; j), we can write

kY2nk2L2 = �2n
�
�2n � 1

� n�1X
t=1

��2tn

 
t�1X
j=0

�
�jn � 1

�
cn;j

!2

� �2n
�
�2n � 1

�
(log �n)

2
n�1X
t=1

��2tn

 
t�1X
j=0

j�jn jcn;jj
!2

= �2n
�
�2n � 1

�
(log �n)

2
n�1X
t=1

��2tn

t�1X
j=0

j�jn jcn;jj
t�1X
i=0

i�in jcn;ij

= �2n (log �n)
2
n�2X
j=0

j�jn jcn;jj
n�2X
i=0

i�in jcn;ij
�
�2n � 1

� n�1X
t=(j_i)+1

��2tn

= �2n (log �n)
2
n�2X
j=0

j�jn jcn;jj
n�2X
i=0

i�in jcn;ij ��2(j_i)n

�
�2n � 1

� n�(j_i)�1X
t=1

��2tn

�
 
log �n

n�2X
j=0

j��jn jcn;jj
!2

O (1)

�
 
mn log �n

mnX
j=0

jcn;jj+
n�2X

j=mn+1

log �jn
�jn

jcn;jj
!2

O (1)

�
 
O (mn log �n) +

n�2X
j=mn+1

jcn;jj
!2

O (1) = o (1)
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from the inequality log x � x for x � 1. Finally,Y1n � ��2n � 1�1=2
n�1X
j=0

cn;j

n�1X
t=1

��tn en;n�t+1


2

L2

= �2n
�
�2n � 1

� n�1X
t=1

��2tn

 
n�1X
j=t

cn;j

!2

�
 
n�1X
j=kn

jcn;jj
!2

O (1) +O
�
kn
�
�2n � 1

��
= o (1)

by writing
Pn�1

t=1 �
�2t
n

�Pn�1
j=t cn;j

�2
=
�Pn�1

t=kn
+
Pkn�1

t=1

�
��2tn

�Pn�1
j=t jcn;jj

�2
with kn !1 and kn (�2n � 1)! 0. We conclude that

Yn � ~Yn (1)

L2
�
�����C (1)�

n�1X
j=0

cn;j

�����
��2n � 1�1=2

n�1X
t=1

��tn en;n�t+1


L2

+o (1) = o (1)

since
Pn�1

j=0 cn;j ! C (1) by Assumption 2.
To show (21), write h

~Xn (1) ; ~Yn (1)
i0
=

nX
t=1

�n;t

where �n;t := C (1) (�2n � 1)
1=2
h
��tn ; �

�(n�t+1)
n

i0
en;t is a Fn;t-martingale dif-

ference array. We apply a standard martingale central limit theorem (e.g.
Corollary 3.1 of Hall and Heyde (1980)):

nX
t=1

EFn;t�1
�
�n;t�

0
n;t

�
= C (1)2

�
(�2n � 1)

Pn
t=1 �

�2t
n �2n;t (�2n � 1) ��n�1n

Pn
t=1 �

2
n;t

(�2n � 1) ��n�1n

Pn
t=1 �

2
n;t (�2n � 1)

Pn
t=1 �

�2(n�t+1)
n �2n;t

�
= C (1)2 �2I2 + op (I2) (50)

since
(�2n � 1) ��n�1n

Pn
t=1 �

2
n;t


L1
� (�2n � 1) ��n�1n nmax1�t�n Ee2n;t ! 0

and the law of large numbers in Lemma 1(ii) of Arvanitis and Magdalinos
with an;t = (�2n � 1) ��2tn and yt = �2n;t � E�2n;t gives

�
�2n � 1

� nX
t=1

��2tn �2n;t =
�
�2n � 1

� nX
t=1

��2tn E�2n;t + op (1) = �2 + op (1)
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and the same result with an;t = (�2n � 1) �
�2(n�t+1)
n implies that

�
�2n � 1

� nX
t=1

��2(n�t+1)n �2n;t =
�
�2n � 1

� nX
t=1

��2(n�t+1)n E�2n;t+op (1) = �2+op (1) :

For the Lindeberg condition,�n;t2 = C (1)2
�
�2n � 1

� �
��2tn + ��2(n�t+1)n

�
e2n;t

� C (1)2
�
�2n � 1

� �
��2tn + ��2(n�t+1)n

� �
�n + 1

�
e2n;t > �n

	�
and we may write

Ln (�) =
nX
t=1

E
��n;t2 1��n;t > �

	�
� max

1�t�n

�
�nP

��n;t > �
�
+ E

�
e2n;t1

�
e2n;t > �n

	�	
2C (1)2

�
�2n � 1

� nX
t=1

��2tn

� 2C (1)2
�
1

�2
�n max

1�t�n
E
�n;t2 + max

1�t�n
E
�
e2n;t1

�
e2n;t > �n

	��
� 2C (1)2

�
1

�2
C (1)2

�
�2n � 1

�
�n max

1�t�n
Ee2n;t + max

1�t�n
E
�
e2n;t1

�
e2n;t > �n

	��
:

Choosing �n ! 1 and (�2n � 1)�n ! 0, the �rst term tends to 0 by the
choice of �n and the second term tends to 0 by the uniform integrability of
the sequence

�
e2n;t : t 2 Z; n 2 N

	
. Having proved the Lindeberg condition

Ln (�) ! 0 for all � > 0, (21) follows by (50) and Corollary 3.1 of Hall and
Heyde (1980) (since the limit in (50) is non-random, the martingale CLT
holds without the requirement that Fn;t is increasing in n).

Proof of Lemma 3. We show that

et := lim inf
n!1

en;t = lim
n!1

ekn;t exists a:s: in R and in L2 for each t 2 Z (51)

for some subsequence (kn)n2N of N. Almost sure convergence of (ekn;t)n2N
in [�1;1] for each t along a subsequence (kn)n2N follows since the limit
inferior of (en;t)n2N is an accumulation point. By the Fatou lemma,

E jetj � lim inf
n!1

E jen;tj � sup
n2N

E jen;tj <1
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which implies that P (jetj <1) = 1, showing that et in (51) exists a:s: in R.
For L2 convergence,

E (ekn;t � ekm;t)
2 � E

�
(ekn;t � ekm;t)

2 1
�
(ekn;t � ekm;t)

2 � �
	�

+E
�
(ekn;t � ekm;t)

2 1
�
(ekn;t � ekm;t)

2 > �
	�

� E
�
(ekn;t � ekm;t)

2 1
�
(ekn;t � ekm;t)

2 � �
	�
+ 2 sup

n;t2N
E
�
e2n;t1

�
e2n;t > �=2

	�
:

Since limn!1 E
�
(ekn;t � ekm;t)

2 1
�
(ekn;t � ekm;t)

2 � �
	�
= 0 for all � > 0 and

t 2 Z by the bounded convergence theorem and

lim sup
n!1

E (ekn;t � ekm;t)
2 � 2 lim sup

�!1
sup
n2N

sup
t2Z
E
�
e2n;t1

�
e2n;t > �=2

	�
= 0

by the uniform integrability of the
�
e2n;t : n 2 N; t 2 Z

	
in Assumption 2.

Convergence in L2 of (ekn;t)n2N follows and implies that Ee
2
t < 1, com-

pleting the proof of (51). Recall the de�nitions in (22) and the fact that
A 2 lim infn!1Fn;t if and only if A 2 Fn;t for all but �nitely many n
for any A � 
. Since ekn;t is Fkn;t-measurable for each t and there exists
n0 2 N such that Fkn;t � Ft for all n � n0, ekn;t is Ft-measurable for for
all n � n0 which implies that et = limn!1 ekn;t is Ft-measurable for each t.
Since supt2Z Ee2t < 1, (et;Ft)t2Z will be a martingale di¤erence sequence if
E (etj Ft�1) = 0 a:s: for each t. To prove this, we use the fact that Gn;t is an in-
creasing sequence of �-algebras in n so that the sequenceMn = E (etj Gn;t�1)
is a uniformly integrable martingale with respect to Gn;t�1 for each t and
employ Levy�s upward theorem (see 14.2 in Williams (1991)) which, in our
context, states that: for each t 2 Z

E (etj Gn;t�1)! E (etj Ft�1) (n!1) a:s: and in L2 (52)

with Gn;t and Ft de�ned in (22). While en;t is not a Gn;t-martingale di¤erence
(it is not Gn;t-adapted), Gn;t�1 � Fn;t�1 so the tower property of conditional
expectations implies that

E (en;tj Gn;t�1) = E ( [E (en;tj Fn;t�1)]j Gn;t�1) = 0: (53)

We conclude that for each t 2 Z

kE (etj Ft�1)kL1 � kE (etj Gkn;t�1)� E (etj Ft�1)kL1 + kE (etj Gkn;t�1)kL1
= kE (etj Gkn;t�1)� E (etj Ft�1)kL1 + kE (et � ekn;tj Gkn;t�1)kL1
� kE (etj Gkn;t�1)� E (etj Ft�1)kL1 + kekn;t � etkL1 (54)

27



where the equality follows from E (ekn;tj Gkn;t�1) = 0 in (53) and the last
inequality by the Jensen inequality and the law of iterated expectations.
Taking limits as n ! 1; the �rst term on the right of (54) tends to 0 by
(52) ((kn)n2N is a subsequence of N) and the second term tends to 0 by (51);
hence, the right side of (54) tends to 0 as n ! 1 pointwise for each t 2 Z
which implies that kE (etj Ft�1)kL1 = 0 for each t. Hence, E (etj Ft�1) = 0
a:s: for each t as required.
We now show that the martingale di¤erence sequence (et;Ft) satis�es the

local MZ conditions (10). To this end, we �rst prove that
�
�2n;t : n 2 N; t 2 Z

	
is a uniformly integrable sequence. Denote

� (x) = sup
n2N

sup
t2Z
E
�
e2n;t1

�
e2n;t > x

	�
:

The Fn;t�1-measurability of �2n;t implies that

E
�
�2n;t1

�
�2n;t > �

	�
= E

�
E
�
e2n;t1

�
�2n;t > �

	��Fn;t�1�� = E �e2n;t1��2n;t > �
	�

� E
�
e2n;t1

n
e2n;t � �1=2

o
1
�
�2n;t > �

	�
+ E

�
e2n;t1

n
e2n;t > �1=2

o�
� �1=2P

�
�2n;t > �

�
+ �

�
�1=2

�
� ��1=2 sup

n2N
E
�
�2n;1

�
+ �

�
�1=2

�
by the Markov inequality. Since the right side is independent of n and t and
lim�!1 �

�
�1=2

�
= 0 by the uniform integrability of

�
�2n;t : n 2 N; t 2 Z

	
taking � ! 1 shows that

�
�2n;t : n 2 N; t 2 Z

	
is a UI sequence. Next we

show that lim sup
n!1

�2n;t


L1

<1 for each t 2 N: (55)

Since lim supn!1 �
2
n;t is an accumulation point of

�
�2n;t : n 2 N

	
, there exists

a subsequence (mn)n2N � N such that lim supn!1 �2n;t = limn!1 �
2
mn;t; using

the uniform integrability of the sequence
�
�2n;t : n 2 N

	
to interchange limit

and expectation, we may writelim sup
n!1

�2n;t


L1

=
 lim
n!1

�2mn;t


L1

= lim
n!1

�2mn;t


L1
= lim

n!1
�2mn

= �2

showing (55).
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We now show the second part of (10) for (et;Ft). Since e2t is integrable
and Gm;t�1 " Ft�1 as m!1, Levy�s upward theorem and the Fatou lemma
give

E
�
e2t
��Ft�1� = lim

m!1
E
�
e2t
��Gm;t�1� = lim

m!1
E
�
lim inf
n!1

e2n;t

���Gm;t�1�
� lim

m!1
lim inf
n!1

E
�
e2n;t
��Gm;t�1�

= lim
m!1

lim inf
n!1

E
�
E
�
e2n;t
��Fn;t�1���Gm;t�1� (56)

for all n � m, by the tower property of conditional expectations since
Gm;t�1 � Gn;t�1 � Fn;t�1 when n � m. The uniform integrability of

�
�2n;t : n 2 N

	
and the reverse Fatou lemma ensure that

lim inf
n!1

E
�
E
�
e2n;t
��Fn;t�1���Gm;t�1� � E� lim sup

n!1
E
�
e2n;t
��Fn;t�1�����Gm;t�1�

for each m, so (56) gives

E
�
e2t
��Ft�1� � lim

m!1
E
�
lim sup
n!1

E
�
e2n;t
��Fn;t�1�����Gm;t�1� : (57)

The integrability in (55) implies that Levy�s upward theorem applies to the
right side of (57) and gives

lim
m!1

E
�
lim sup
n!1

E
�
e2n;t
��Fn;t�1�����Gm;t�1� = E

�
lim sup
n!1

E
�
e2n;t
��Fn;t�1�����Ft�1�

= lim sup
n!1

E
�
e2n;t
��Fn;t�1� a:s: (58)

because Fn;t�1 � Ft�1 for all but �nitely many n. Combining (57) and (58),
we obtain

E
�
e2t
��Ft�1� � lim sup

n!1
E
�
e2n;t
��Fn;t�1� a:s:

for each t 2 N. We conclude that

sup
t2N

E
�
e2t
��Ft�1� � lim sup

n!1
sup
t2N

E
�
e2n;t
��Fn;t�1� a:s:

and (7) implies that supt2N E (e2t j Ft�1) < 1 a:s:, showing the second part
of (10).
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Next, we show the �rst part of (10) for (et;Ft). Levy�s upward theorem,
the fact that lim infn!1 jen;tj is the limit of a subsequence (ern;t)n2N and the
dominated convergence theorem imply that for some subsequence (rn)n2N of
N,

E ( jetjj Ft�1) = lim
m!1

E ( jetjj Gm;t�1) = lim
m!1

E
�
lim inf
n!1

jen;tj
���Gm;t�1�

= lim
m!1

E
�
lim
n!1

jern;tj
���Gm;t�1� = lim

m!1
lim
n!1

E ( jern;tjj Gm;t�1)

= lim
m!1

lim
n!1

E (E ( jern;tjj Frn;t�1)j Gm;t�1) (59)

for all rn � m, by the tower property. Now for each m, the monotone
convergence theorem implies that

lim
n!1

E (E ( jern;tjj Frn;t�1)j Gm;t�1) � lim
n!1

E
�
inf
j�rn

E ( jej;tjj Fj;t�1)
����Gm;t�1�

= E
�
lim
n!1

inf
j�rn

E ( jej;tjj Fj;t�1)
����Gm;t�1�

= E
�
lim inf
n!1

E ( jern;tjj Frn;t�1)
���Gm;t�1�

� E
�
lim inf
n!1

E ( jen;tjj Fn;t�1)
���Gm;t�1�

since (rn)n2N is a subsequence of N. Substituting into (59) and using the inte-
grability of lim infn!1 E ( jen;tjj Fn;t�1) (guaranteed by (55)), Levy�s upward
theorem gives

E ( jetjj Ft�1) � lim
m!1

E
�
lim inf
n!1

E ( jen;tjj Fn;t�1)
���Gm;t�1�

= E
�
lim inf
n!1

E ( jen;tjj Fn;t�1)
���Ft�1�

= lim inf
n!1

E ( jen;tjj Fn;t�1) a:s:

for each t, which implies that

lim inf
t!1

E ( jetjj Ft�1) � lim inf
n!1

lim inf
t!1

E ( jen;tjj Fn;t�1) > 0 a:s:

by (6). This shows that (et;Ft)t2Z is a martingale di¤erence sequence that
satis�es the local MZ condition (10) and completes the proof of part (i).
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For part (ii), we begin by showing that for each t 2 N�����
knX
t=1

��tknekn;t �
knX
t=1

��tet

�����!a:s: 0 (60)

as n ! 1 along the same subsequence (kn) for which convergence in (51)
obtains. We �rst show that

Rn :=
P1

j=1 j
2
����jn � ��j

��! 0: (61)

We apply the mean value theorem to the function x 7! x�j: ��jn � ��j =
� (�n � �) j��j�1n for some �n ! �; hence, we may choose � 2 (0; �� 1) and
n0 (�) 2 N such that for all n � n0 (�): �n > �� � which implies thatP1

j=1 j
2
����jn � ��j

�� = j�n � �j
P1

j=1 j
3��j�1n � j�n � �j

P1
j=1 j

3 (�� �)�j�1 ! 0

since ��� > 1 from the choice � 2 (0; �� 1) implies that
P1

j=1 j
3 (�� �)�j�1 <

1. Having established (61), write�����
knX
t=1

��tknekn;t �
knX
t=1

��tet

����� �
�����
knX
t=1

��tknekn;t �
knX
t=1

��tekn;t

�����+
�����
knX
t=1

��tekn;t �
knX
t=1

��tet

�����
�

1X
t=1

t
����tkn � ��t

�� jekn;tj
t

+
1X
t=1

��t jekn;t � etj

� R1=2n

 1X
t=1

e2kn;t
t2

!1=2
+

1X
t=1

��t jekn;t � etj : (62)

Since
P1

t=1 t
�2 < 1, dominated convergence implies that

P1
t=1 t

�2e2kn;t !P1
t=1 t

�2e2t <1 a:s: since
P1

t=1 t
�2Ee2t <1, so the �rst term of (62) tends

to 0 a:s: by (61). The second term of (62) tends to 0 a:s: since
P1

t=1 �
�t <1

by (51) and dominated convergence. This completes the proof of (60).

Using (61) we have
�n � (�2 � 1)1=2Pn

t=1 �
�tun;t


L1
! 0 when � > 1;
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also,

nX
t=1

��tun;t =
nX
t=1

��t
t�1X
j=0

cn;jen;t�j +

nX
t=1

��t
1X
j=t

cn;jen;t�j

=

n�1X
j=0

cn;j

nX
t=j+1

��ten;t�j +

nX
t=1

��t
1X
j=t

cn;jen;t�j

=

n�1X
j=0

��jcn;j

n�jX
t=1

��ten;t +
nX
t=1

��t
1X
j=t

cn;jen;t�j

=
n�1X
j=0

��jcn;j

nX
t=1

��ten;t � ��n
n�1X
j=0

cn;j

jX
t=1

��ten;t+n�j +
nX
t=1

��t
1X
j=0

cn;j+ten;�j

and
��nPn�1

j=0 cn;j
Pj

t=1 �
�ten;t+n�j


L1
= O (��n) imply that

Xn = ~Xn (�) +Gn;0 (�) + op (1) (63)

where

Gn;0 =
�
�2 � 1

�1=2 nX
t=1

��t
1X
j=0

cn;j+ten;�j +Xn;0

!
: (64)

is an Fn;0-measurable random variable. Consider an arbitrary subsequence
(Xmn)n2N � (Xn)n2N. Let ~et := lim infn!1 emn;t; by part (i) applied to
the martingale di¤erence array (emn;t;Fmn;t) and ~Ft := � (lim infn!1Fmn;t),�
~et; ~Ft

�
t2N

is a martingale di¤erence sequence satisfying the local MZ con-

ditions (10). Also, there exists a subsequence (kn)n2N � (mn)n2N such that
(60) applies with et replaced by ~et, so that

~Xkn (�)!a:s:

1X
t=1

�t~et; �t := C (�)
�
�2 � 1

�1=2
��t (65)

by the martingale convergence theorem. Since (Xn;0)n2N converges in distri-
bution and

sup
n2N


nX
t=1

��t
1X
j=0

cn;j+ten;�j


L1

� 1

�� 1 supn2N
ken;0kL1 sup

n2N

1X
j=0

jcn;jj <1;
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fGn;0 (�) : n 2 Ng is a tight sequence; since tightness extends to the subse-
quence fGkn;0 (�) : n 2 Ng with (kn)n2N satisfying (65), there exists a sub-
sequence (rn)n2N � (kn)n2N such that Grn;0 (�) !d G0 (�) where G0 (�) is
F0-measurable, since each Grn;0 (�) is Frn;0-measurable and Frn;0 � F0 for
all but �nitely many n. Since (65) obtains along the subsequence (rn)n2N,
we conclude from (63) that: for any subsequence (mn)n2N � N there exists
a further subsequence (rn)n2N � (mn)n2N such that

Xrn !d X1 :=
1X
t=1

�t~et +G0 (�) and P (X1 = 0) = 0 (66)

where the distribution of X1 may depend on the subsequence (rn)n2N : The
fact that X1 6= 0 a:s: follows by by Corollary 2 of Lai and Wei (1983)

since
�
~et; ~Ft

�
t2N

is a martingale di¤erence sequence satisfying the local MZ

conditions (10), �t 6= 0 for all t and G0 (�) is F0-measurable. Since (Xmn)n2N
is an arbitrary subsequence of (Xn)n2N, part (ii) follows.
Since the limit superior is an accumulation point of the real sequence

fP (jXnj � �) : n 2 Ng, there exists a subsequence (mn)n2N � N such that

lim sup
n!1

P (jXnj � �) = lim
n!1

P (jXmnj � �) : (67)

By (66), there exists a subsequence (rn)n2N � (mn)n2N such that

lim
n!1

P (jXrnj � x) = P (jX1j � x) =: F1 (x)

at all continuity points x of the distribution function F1 (�) of jX1j. Since
P (X1 = 0) = 0, F1 (x) = 0 for all x � 0 so F1 is left-continuous (and
hence continuous) at x = 0; since 0 is a continuity point of F1 and F1 has
countably many points of discontinuity, there exists �0 > 0 such that

lim
n!1

P (jXrnj � �) = P (jX1j � �) for all � < �0: (68)

Since fP (jXrnj � �) : n 2 Ng is a subsequence of the convergent sequence
fP (jXmnj � �) : n 2 Ng ; (67) and (68) imply that

lim sup
n!1

P (jXnj � �) = P (jX1j � �) for all � < �0

so the continuity of F1 at 0 implies that

lim
�!0

lim sup
n!1

P (jXnj � �) = P (jX1j � 0) = P (jX1j = 0) = 0
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as required.
For the last part, jYnj = jXnj = Op (1) is equivalent to

lim
�!1

lim sup
n!1

P (jYnj = jXnj � �) = 0: (69)

To prove this �x � 2 (0; 1) and write

P (jYn=Xnj � �) = P
�
jYn=Xnj � �; jXnj > ���

�
+ P

�
jYn=Xnj � �; jXnj � ���

�
� P

�
jYnj
���

� �

�
+ P

�
jXnj � ���

�
= P

�
jYnj � �1��

�
+ P

�
jXnj � ���

�
� 1

�1��
sup
n2N

E jYnj+ P
�
jXnj � ���

�
:

Since lim�!1 lim supn!1 P
�
jXnj � ���

�
= 0, � 2 (0; 1) and supn2N E jYnj <

1, (69) follows.

Proof of Lemma 4. Recursing (2) we obtain

xn;t = �+Xn;0�
t
n + �n;t; �n;t :=

Pt
j=1 �

t�j
n un;j (70)

where �n;t is the restriction of xn;t when � = Xn;0 = 0 and satis�es�
�2n � 1

�1=2
��nn �n;n = �n

in (16). We �rst prove (23). Using (70), we obtain

�
�2n � 1

�
��nn

nX
t=1

xn;t�1un;t =
�
�2n � 1

�
��nn

nX
t=1

�n;t�1un;t+Xn;0

�
�2n � 1

�1=2
Yn+op (1)

(71)

since (�2n � 1) ��nn
Pn

t=1 un;t = Op
�
n1=2 (�2n � 1) ��nn

�
= op

�
(�2n � 1)

1=2
�
by

Lemma A1. By Assumption 3, the second term of (71) will be op (1) when
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�n ! 1 but will contribute asymptotically when �n ! � > 1. Writing

nX
t=1

�n;t�1un;t =
nX
t=1

 
t�1X
i=1

�t�1�in un;i

!
un;t

=

nX
t=1

�t�1n

 
t�1X
i=1

��in un;i

!
un;t

=

n�1X
i=1

��in un;i

nX
t=i+1

�t�1n un;t

=
n�1X
i=1

��in un;i

nX
t=1

�t�1n un;t �
n�1X
i=1

��in un;i

iX
t=1

�t�1n un;t;

showing that

Nn =
�
�2n � 1

�
��nn

n�1X
i=1

��in un;i

iX
t=1

�t�1n un;t = op (1) (72)

will imply that

�
�2n � 1

�
��nn

nX
t=1

�n;t�1un;t = �nYn + op (1) (73)

and (23) will follow by combining (71) and (73) and using the de�nition of
Xn in (17). It remains to prove (72). When ��nn n! 0, the proof is easy:

kNnkL1 �
�
�2n � 1

�
��nn

n�1X
i=1

��in

iX
t=1

�t�1n E jun;iun;tj

�
�
�2n � 1

�
��nn

n�1X
i=1

��in

iX
t=1

�t�1n

�
Eu2n;i

�1=2 �Eu2n;t�1=2
� max

1�j�n
Eu2n;j

�
�2n � 1

�
��nn

n�1X
i=1

��in

iX
t=1

�t�1n

= max
1�j�n

Eu2n;j
�2n � 1
�n � 1

��nn

 
n�

n�1X
i=1

��in

!
= O

�
n��nn

�
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showing (72) when ��nn n ! 0. When ��nn n 6! 0 we show that, for all but
�nitely many n

�n � 1 � c
log n

n
for all c > 1. (74)

To see this, write

n��nn = n
n
(1 + �n � 1)

(�n�1)�1
o�n(�n�1)

� ne�n(�n�1)

as n!1 so that n��nn is a decreasing function of �n � 1 for all but �nitely
many n. When �n�1 = c log n=n for some c > 0, n��nn � ne�c logn = n1�c !
0 for all c > 1; since n��nn eventually decreases as �n� 1 increases, n��nn ! 0
whenever �n � 1 � c log n=n eventually for some c > 1, which proves (74).
Hence, when ��nn n 6! 0,�

�2n � 1
�
��nn � 2��nn

log n

n
=
log n

n
o
�
(n (�n � 1))

�2�
=

log n

n
o
�
(log n)�2

�
= o

�
1

n log n

�
since ��nn = o

h
(n (�n � 1))

�k
i
for all k 2 N by Lemma A1. Therefore in

order to prove (72) when ��nn n 6! 0, it is su¢ cient to show that

N 0
n =

1

n log n

n�1X
i=1

��in un;i

iX
t=1

�t�1n un;t = op (1) : (75)

Letting Sn;t :=
Pt

j=1 un;j and using the summation by parts formula in the
spirit of Phillips (1987b), we can write

N 0
n =

1

n log n

n�1X
i=1

��in un;i

iX
t=1

�t�1n �Sn;t

=
1

n log n

n�1X
i=1

un;iSn;i �
1

n log n
(�n � 1)

n�1X
i=1

��in un;i

iX
t=1

Sn;t�
t�1
n :(76)

The �rst term on the right is Op
�
(log n)�1

�
since

1

n

n�1X
i=1

un;iSn;i =
1

n

n�1X
i=1

u2n;i +
1

n

n�1X
i=1

un;iSn;i�1 = Op (1)
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by Lemma 1 and the standard result n�1
Pn�1

i=1 Sn;i�1un;i !d

R 1
0
B (t) dB (t)

(Phillips (1987a)) where is a Brownian motion with variance C (1)2 �2 arising
from the FCLT

n�1=2
bntcX
i=1

un;i ) B (t) on D [0; 1] (77)

(see e.g. Jacod and Shiryaev (2003) for the triangular array formulation).
For the second term of (76), (74) implies that it is enough to show that

N 00
n =

1

n2

n�1X
i=1

��in un;i

iX
t=1

Sn;t�
t�1
n = op (1) : (78)

Denoting �n := (�n � 1)
�1 for brevity, write

N 00
n =

1

n2

 
n�1X
i=1

��in un;i

iX
t=1

Sn;t�1�
t�1
n +O (�n � 1)

n�1X
i=1

u2n;i

!

=
1

n2

nX
i=2

��(i�1)n un;i�1

Z i�1

0

Sn;btc�
btc
n dt+Op

�
n�1
�

=
�n
n2

nX
i=2

��i�1n

 Z (i�1)��1n

0

Sn;b�ntc�
b�ntc
n dt

!
�Sn;i�1 +Op

�
n�1
�

=
�n
n2

Z n

1

��brcn

Z brc��1n

0

Sn;b�ntc�
b�ntc
n dtdSn;brc +Op

�
n�1
�

=
� 2n
n2
In +Op

�
n�1
�

where the weak convergence theory of Kurtz and Protter (1991) gives

In =

Z n��1n

��1n

��b�nrcn

 Z b�nrc��1n

0

Sn;b�ntc

�
1=2
n

�b�ntcn dt

!
d

�
Sn;b�nrc

�
1=2
n

�
!d

Z 1

0

e�r
�Z r

0

etB (t) dt

�
dB (r) :

It is easy to see that the limit stochastic integral has zero mean and �nite
variance, so In = Op (1) and N 00

n = Op
�
n�2 (�n � 1)

�2� = op (1) as required.
This completes the proof of (72) and (23).
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The argument for (24) is standard: the recursion in (1) gives the identity�
�2n � 1

� nX
t=1

�2n;t�1 = �2n;n � 2�n
nX
t=1

�n;t�1un;t �
nX
t=1

u2n;t

= �2nn
�
�2n � 1

��1
�2n +Op

h�
�2n � 1

��1
�nn

i
+Op (n)

by (23) and Lemma 1. Since �2n = Op (1) exactly and n (�2n � 1) ��nn ! 0 by
Lemma A1, we conclude that (�2n � 1)

2
��2nn

Pn
t=1 �

2
n;t�1 = �2n + op (1). Now

(70) gives

�
�2n � 1

�2
��2nn

nX
t=1

x2n;t�1 = �2n+
�
�2n � 1

�2
��2nn

(
2Xn;0

nX
t=1

�n;t�1�
t�1
n +X2

n;0

�2nn
�2n � 1

)
+Op

�
��nn
�

since
Pn

t=1 �n;t�1 = (1 + op (1)) (�n � 1)
�1 �n;n = Op

�
(�2n � 1)

�2
�nn

�
. Now

nX
t=1

�n;t�1�
t�1
n =

nX
t=1

t�1X
i=1

�2(t�1)�in un;i =
n�1X
t=0

�2tn

n�1X
i=1

��in un;i+
nX
t=1

n�1X
i=t

�2(t�1)�in un;i

and (�2n � 1)
2
��2nn

Pn
t=1

Pn�1
i=t �

2(t�1)�i
n un;i


L1
= O (��nn ) implies that

�
�2n � 1

�2
��2nn

nX
t=1

x2n;t�1 = �2n + 2
�
�2n � 1

�1=2
Xn;0�n +

�
�2n � 1

�
X2
n;0 +Op

�
��nn
�

=
h
�n +

�
�2n � 1

�1=2
Xn;0

i2
+ op (1)

and (24) follows by (17).

Proof of Theorem 1.

(a) Let �n ! � 2 [1;1).
By (17),�

�2n � 1
�1=2

��nn xn;n = Xn = �n +
�
�2n � 1

�1=2
Xn;0 + op (1) : (79)

We begin by proving

(�n � 1)
3=2 ��nn

nX
t=1

xn;t�1 = Xn + op (1) ; �xn;n�1 = Op

�
n�1 (�n � 1)

�3=2 �nn

�
:

(80)
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Summing (2) over t 2 f1; :::; ng gives

(�n � 1)
3=2 ��nn

nX
t=1

xn;t�1 =
�
�2n � 1

�1=2
��nn

(
xn;n � xn;0 � n� (1� �n)�

nX
t=1

un;t

)
=

�
�2n � 1

�1=2
��nn xn;n +Op

�
��nn n (�n � 1)

�
= Xn + op (1)

showing the �rst part; the second part follows from the �rst since Xn =
Op (1). Next, we show that�
�2n � 1

�2
��2nn n�x2n;n�1 = op (1) and

�
�2n � 1

�
��nn n�xn;n�1�un = op (1) : (81)

For the �rst part, (80) implies that (�2n � 1)
2
��2nn n�x2n;n�1 = Op

�
n�1 (�n � 1)

�1�;
for the second part, �un = Op

�
n�1=2

�
by the CLT, so (??) implies that�

�2n � 1
�
��nn n�xn;n�1�un = Op

�
(�n � 1)

�1=2
�
�un = Op

�
n�1=2 (�n � 1)

�1=2
�
:

For the OLS estimator, we may write�
�2n � 1

��1
�nn (�̂n � �n) =

(�2n � 1) ��nn (
Pn

t=1 xn;t�1un;t � n�xn;n�1�un)

(�2n � 1)
2 ��2nn

�Pn
t=1 x

2
n;t�1 � n�x2n;n�1

�
=

(�2n � 1) ��nn
Pn

t=1 xn;t�1un;t

(�2n � 1)
2 ��2nn

Pn
t=1 x

2
n;t�1

+ op (1)

=
XnYn

X2
n

+ op (1) =
Yn

Xn

+ op (1) (82)

where the second line follows by (81) and the third line by Lemma 4.
When �n ! 1, (�2n � 1)

1=2
Xn;0 !p 0, so Lemma 2 implies that�

�2n � 1
��1

�nn (�̂n � �n) =
Yn

Xn

+ op (1) =
~Yn (1)
~Xn (1)

+ op (1)!d C

where convergence in distribution follows by (21). This proves part (i) when
� � 1.
In the explosive case �n ! � > 1, (82) and Lemma 3(iii) imply that

j�̂n � �nj = Op (�
�n
n ). To prove that �n and Yn are asymptotically uncorre-

lated, letting

�Gn;0 = Gn;0 �
�
�2 � 1

�1=2
Xn;0 =

�
�2 � 1

�1=2 nX
t=1

��t
1X
j=0

cn;j+ten;�j;
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(63) and (17) imply that

�n = ~X 0
n (�) +

�Gn;0 + op (1)

~X 0
n (�) =

�
�2 � 1

�1=2 n�1X
j=0

��jcn;j

bn=2cX
t=1

��ten;t (83)

because
Pn�1

j=0 �
�jcn;j

P
t>bn=2c �

�ten;t


L1
= O

�
��bn=2c

�
; also

Yn =
�
�2 � 1

�1=2 1X
j=0

cn;j

nX
t=1

��ten;n�t�j+1

=
�
�2 � 1

�1=2 bn=4cX
j=0

cn;j

bn=4cX
t=1

��ten;n�t�j+1 + op (1) (84)

because
P1

j=0 cn;j
P

t>bn=4c �
�ten;n�t�j+1


L1
= O

�
��bn=4c

�
and


X

j>bn=4c

cn;j

bn=4cX
t=1

��ten;n�t�j+1


L1

� ken;1kL2
1

�� 1
X

j>bn=4c

jcn;jj = O
�
n��
�
:

Comparing (83) and (84), we conclude that �n = �0n+ op (1) and Yn = Y
0
n+

op (1), where E (�0nY0
n) = 0 so �n and Yn are asymptotically uncorrelated.

Finally, denoting by un (h) = E (un;tun;t�h) the autocovariance function of
(un;t), it is easy to see that

var (Yn) =
�
�2n � 1

� nX
t=1

nX
s=1

��(n�t+1)�(n�s+1)n un (t� s)

=
�
�2n � 1

� nX
t=1

nX
s=1

��t�sn un (s� t)

= var (�n)

so that the zero mean random variables Yn and �n have the same variance
for all n.

(b) Let �n ! � 2 (�1;�1].
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We �rst prove that the sequence (�un;t) in (30) satis�es Assumption 2.
Note that (�en;t;Fn;t)t2Z is a martingale di¤erence sequence with the same
conditional variance EFn;t�1

�
�e2n;t
�
= �2n;t as en;t; in particular, (8) holds for

�en;t. Since the requirements on uniform integrability of the squared process,
(6) and (4) are the same for �en;t and en;t, Assumption 2 is satis�ed with en;t
replaced by �en;t. Since j�cn;jj = jcn;jj and �c2n;j = c2n;j, the only thing left to

prove is (5), namely that the limit of the sequence
nP1

j=0 j�j
�j �cn;j : n 2 N

o
exists and is non-zero. Since j�j = ��,

1X
j=0

j�j�j �cn;j =
1X
j=0

(��)�j (�1)�j cn;j =
1X
j=0

��jcn;j ! C (�) 6= 0

by the original condition (5) of Assumption 2. This completes the proof that
�un;t = (�1)�t un;t satis�es Assumption 2. Hence, (27) and (28) hold by (26)
and Lemma 4.
Since

�xn;t = �Xn;t + j�nj
tXn;0 + (�1)�t � (85)

the sample mean n�1
Pn

t=1 �xn;t�1 has the same order of magnitude as �xn;n�1
in (80) with �n replaced by j�nj and�
�2n � 1

�1=2 j�nj�n �xn;n =
�
�2n � 1

�1=2 j�nj�n �Xn;n +
�
�2n � 1

�1=2
Xn;0 + op (1)

= ��n +
�
�2n � 1

�1=2
Xn;0 = �Xn + op (1) :

We conclude that�
�2n � 1

��1 j�njn (�̂n � �n) =
(�2n � 1) j�nj

�n (
Pn

t=1 xn;t�1un;t � n�xn;n�1�un)

(�2n � 1)
2 ��2nn

�Pn
t=1 x

2
n;t�1 � n�x2n;n�1

�
=

� (�2n � 1) j�nj
�n
�Pn

t=1 �xn;t�1�un;t � n�1
Pn

t=1 �xn;t�1
Pn

j=1 �un;j

�
(�2n � 1)

2 ��2nn

�Pn
t=1 �x

2
n;t�1 � n�1 (

Pn
t=1 �xn;t�1)

2
�

= �(�
2
n � 1) j�nj

�nPn
t=1 �xn;t�1�un;t

(�2n � 1)
2 ��2nn

Pn
t=1 �x

2
n;t�1

+ op (1)

= �
�Yn

�Xn

+ op (1) : (86)

When �n ! �1, (�2n � 1)
1=2
Xn;0 = op (1) and Lemma 2 and (21) imply that�

�Yn; �Xn

�
=
�
�Xn (�1) ; �Yn (�1)

�
+ op (1)!d

�
�X (�1) ; �Y (�1)

�
(87)
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where are de�ned in (31) with C (�) = C (�1) and �X (�1) ; �Y (�1) are in-
dependent N

�
0; �2C (�1)2

�
random variables. Combining (86) and (87) im-

plies that �
�2n � 1

��1 j�njn (�̂n � �n)!d C for � � �1
(using the symmetry of the Cauchy distribution) and completes the proof of
part (i).
In the explosive case �n ! � < �1, (86) and Lemma 3(ii) applied to �Xn

and �Yn (this is permissible since j�nj ! j�j > 1 and (�un;t) in (30) satis�es
Assumption 2) imply that j�̂n � �nj = Op

�
j�nj

�n�. The argument leading
to (83) and (84) also applies to ��n and �Yn and shows that ��n = ��

0
n + op (1)

and �Yn = �Y0
n + op (1) where E��

0
n
�Y0
n = 0. Finally, it is easy to verify that

var
�
��n
�
= var

�
�Yn

�
in the same way as in (a).

Under Gaussianity of (en;t) ; �n and Yn are zero mean asymptotically
independent Gaussian processes, so (�n;Yn) will converge in distribution if
and only if the common variance of �n and Yn

E�2n = E ~Xn (�)
2 +

�
�2 � 1

�
Ee2n;0

1X
j=0

 
nX
t=1

��tcn;j+t

!2

=
�
�2 � 1

�
�2n

(
C (�)2

�2 � 1 +
1X
j=0

C2nj

)
+ o (1) (88)

converges as n ! 1, i.e. if and only if the sequence
nP1

j=0C
2
nj : n 2 N

o
converges. By (83), Xn = ~X 0

n (�)+ �Gn;0+(�
2
n � 1)

1=2
Xn;0+op (1) with ~X 0

n (�)
independent of

�
�Gn;0; Xn;0

�
, and ~X 0

n (�) and �Gn;0 converging in distribution
by Gaussianity and existence of the limit � (�) and Xn;0 !d X0 by Assump-
tion 3, where X0 is F0-measurable, so Xn;0 is independent of ~X 0

n (�); hence,
joint convergence in distribution of

�
�Gn;0; Xn;0

�
guarantees convergence in

distribution of (Xn) and asymptotic independence of (Xn) and (Yn) implies
convergence in distribution of the ratio in (34).

Proof of Theorem 2. The OLS residuals can be written as

ûn;t = un;t � �un � (�̂n � �n) (xn;t�1 � �xn�1) ; (89)
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so, since �̂n��n = Op (�
�n
n (�2n � 1)),

Pn
t=1 (xn;t�1 � �xn�1)

2 = Op

�
�2nn (�

2
n � 1)

�2
�
,Pn

t=1 (xn;t�1 � �xn;n�1) (ut � �un) = Op

�
�nn (�

2
n � 1)

�1
�
and �un;n = Op

�
n�1=2

�
,

we obtain

�̂2n =
1

n

nX
t=1

û2n;t =
1

n

nX
t=1

u2n;t � �u2n + (�̂n � �n)
2 1

n

nX
t=1

(xn;t�1 � �xn�1)2

�2 (�̂n � �n)
1

n

nX
t=1

(xn;t�1 � �xn�1) (un;t � �un)

=
1

n

nX
t=1

u2n;t +Op

�
1

n

�
which, combined with Lemma 1(i) show that �̂2n !p �

2 limn!1
P1

j=0 c
2
n;j.

We now show that
!̂2n !p !

2 = �2C (1)2 : (90)

Using (89) we may write

1

n

nX
t=h+1

ûn;tûn;t�h =
1

n

nX
t=h+1

un;tun;t�h � �un�un�h

� 1
n
(�̂n � �n)

 
nX

t=h+1

un;txn;t�h�1 +
nX

t=h+1

xn;t�1un;t�h

!
+(�̂n � �n) (�xn�1�un�h + �un�xn�h�1)

+ (�̂n � �n)
2 (
1

n

nX
t=h+1

xn;t�1xn;t�h�1 � �xn�1�xn�h�1):(91)

Since �un;n�un;n�h = Op (n
�1) and (80) implies that

(�̂n � �n) (�xn�1�un�h + �un�xn�h�1) = Op

�
n�3=2 (�n � 1)

�1=2
�
= Op

�
n�1
�

and (�̂n � �n)
2 �xn�1�xn�h�1 = Op

�
n�2 (�n � 1)

�1� = Op (n
�1), all terms in-

volving �un;n and �xn;n�1 in (91) are Op (n�1) uniformly over h. Also,

(�̂n � �n)
2 1

n

�����
nX

t=h+1

xn;t�1xn;t�h�1

����� � (�̂n � �n)
2 1

n

 
nX

t=h+1

x2n;t�1

!1=2 n�hX
t=1

x2n;t�1

!1=2

� (�̂n � �n)
2 1

n

nX
t=1

x2n;t�1 = Op

�
1

n

�
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uniformly over h,

1

n
j�̂n � �nj

�����
nX

t=h+1

un;txn;t�h�1 +

nX
t=h+1

xn;t�1un;t�h

����� � 1

n
j�̂n � �nj

 
nX
t=1

x2n;t�1

!1=2 nX
t=1

u2n;t

!1=2
=

1

n
Op
�
n1=2

�
= Op

�
n�1=2

�
uniformly over h. We conclude that

max
1�h�M

����� 1n
nX

t=h+1

ûn;tûn;t�h �
1

n

nX
t=h+1

un;tun;t�h

����� = Op
�
n�1=2

�
(92)

which implies that

1

n

MX
h=1

K

�
h

M

� �����
nX

t=h+1

ûn;tûn;t�h �
nX

t=h+1

un;tun;t�h

����� � Op
�
n�1=2

� MX
h=1

K

�
h

M

�
= Op

�
Mn�1=2

�
:

Since Mn�1=2 ! 0 by assumption, the law of large number of Lemma 1(ii)
implies that

1

n

MX
h=1

K

�
h

M

� nX
t=h+1

ûn;tûn;t�h =
1

n

MX
h=1

K

�
h

M

� nX
t=h+1

un;tun;t�h +Op
�
Mn�1=2

�
= lim

n!1

1X
h=1

un (h) + op (1)

completing the proof of (90).
The approximations of (82) and (86) and (90) yield the following for the

t-statistic in (35):

Tn (�n) = (1 + op (1))
1

!

�
Yn1 f� � 1g � �Yn1 f� � �1g

�
: (93)

In the mildly explosive case of part (i), j�j = 1, Lemma 2 implies that bothYn

and �Yn are asymptotically normally distributed with mean 0 and common
asymptotic variance equal to !2 = �2C (1)2 by (31). Part (i) of the theorem
follows by (93). For part (ii), (93) still holds but the asymptotic variance
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of Yn (and of �Yn) is given by (88) and is no longer to !2; we may recover
the correct asymptotic variance only when the (Gaussian) sequence (un;t) is
independent, i.e. when cn;j = 0 for all j � 1 and !2 = �2. In this case,
Tn (�n) !d N (0; 1) follows immediately from (93) with Yn and �Yn being
identically distributed zero mean Gaussian sequences for each n with (88)
giving

var (Yn) = �2nC (�)
2 = �2n lim

n!1

 
cn;0 +

1X
j=1

��jcn;j

!2
= �2n lim

n!1
c2n;0 ! �2

completing the proof of the theorem.
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