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Abstract 

 
We discuss the concept of core inflation and its relevance for policymakers and then review a variety of 

approaches that have been pursued for the construction of informative core measures. After illustrating 

some empirical patterns displayed by U.S. inflation data and discussing conceptual issues around 

measurement, we provide a unified framework to interpret various widely used core measures and 

compare their relative properties. 

 

JEL classification: E31, E32, E52 

Key words: inflation, core inflation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_________________ 
 
Almuzara, Sbordone: Federal Reserve Bank of New York (emails: martin.almuzara@ny.frb.org, 
argia.sbordone@ny.frb.org). This paper was prepared as a chapter on measurement and theory of core 
inflation for the Handbook of Inflation, edited by Guido Ascari and Riccardo Trezzi. 
 

This paper presents preliminary findings and is being distributed to economists and other interested 

readers solely to stimulate discussion and elicit comments. The views expressed in this paper are those of 

the author(s) and do not necessarily reflect the position of the Federal Reserve Bank of New York or the 

Federal Reserve System. Any errors or omissions are the responsibility of the author(s). 

To view the authors’ disclosure statements, visit 
https://www.newyorkfed.org/research/staff_reports/sr1115.html. 



1 
 

1. Introduction 

 

The term “core” inflation is typically associated with a particular inflation measure, the price 

changes for all items ‘excluding food and energy’ (xFE for short). In the U.S., this measure is 

reported in monthly releases of both the Consumer Price Index (CPI) 1 and the Personal 

Consumption Expenditure (PCE) Index2 alongside the ‘all items’ (or headline) measure.  

Core inflation is routinely featured in the press and in economic commentaries and is closely 

monitored by policymakers. Indeed, even though the FOMC longer-run inflation objective is 

defined in terms of the headline price index, projections for core PCE inflation are reported in 

the quarterly Summary of Economic Projections (SEP),3 which collects four times a year FOMC 

participants’ forecasts of output growth, inflation, and unemployment over the next three years. 

Most central banks around the world monitor similar “core” measures for the price index that 

defines their inflation objective, often together with a broader set of measures.4   

Why is core inflation of interest? For a bit of history, the creation of the xFE index in the 

U.S. dates to the ‘70s, a period when elevated inflation was a major economic and policy issue. 

Among many factors at play behind the persistently high readings of inflation at that time, food 

and energy shocks appeared to be the largest contributors. The Bureau of Labor Statistics (BLS) 

had introduced a CPI index for “all items less food” back in 1957, due to high volatility in food 

prices owed to seasonal and weather-related factors. Following skyrocketing energy prices in the 

early ‘70s, the BLS introduced an index for “all items less food and energy” in April 1977, with a 

historical series extending back to 1957 5. The index came to be referred to as “core CPI,” but as 

the BLS pointed out, this was an unofficial designation “created by the media and not the Bureau 

of Labor Statistics”.6 

This genesis indicates how the notion of core reflects the need of downweighing volatile and 

likely transitory factors that especially when large, make difficult the assessment of inflationary 

pressures.  As such, measures of core inflation are of utmost relevance for central banks that, 

either with an explicit or an implicit inflation target (or target range), manage monetary policy to 

achieve that goal over time:7 core inflation may help gauging the extent to which observed 

 
1 See Concepts: Handbook of Methods: U.S. Bureau of Labor Statistics (bls.gov)  

2 See Personal Consumption Expenditures Price Index, Excluding Food and Energy | U.S. Bureau of Economic 

Analysis (BEA) 

3 See Summary of Economic Projections, December 13, 2023 (federalreserve.gov) 

4 See a brief discussion of measures tracked by other central banks in section 5. 

5 The index had been requested by the Cost of Living Council, the body established by President Nixon to 

implement a wage and price stabilization program (see Executive Order 11615—Providing for Stabilization of 

Prices, Rents, Wages, and Salaries | The American Presidency Project (ucsb.edu)  

6 For more on the origin of the so-called “core”, see https://www.bls.gov/opub/btn/archive/the-so-called-core-index-

history-and-uses-of-the-index-for-all-items-less-food-and-energy.pdf.  

7 For the Federal Reserve’s goals and strategy, see Statement on Longer-Run Goals and Monetary Policy Strategy 

(federalreserve.gov) 
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departures of inflation from its stated objective are going to dissipate relatively quickly or are 

going to remain for some time.  

The degree of persistence is the relevant issue for such evaluation: the more persistent are 

inflationary pressures, the higher is the risk that they become ingrained in consumers, businesses, 

and market expectations. In turn, de-anchoring of inflation expectations would make it harder for 

policymakers to maintain inflation control. A measure of core inflation that purges the headline 

measure of high frequency variations better capture the level at which inflation will likely settle 

over the medium term. Hence, even though core measures have not gained an official status in 

most central banks’ inflation targets, they play an important role in their policy discussions and 

communications with the public.  

Since the first creation of a ‘core’, researchers in academia and at central banks have 

developed alternative methods to separate transitory from persistent inflationary movements. 

These receive particular attention when there is a bout of high inflation readings, as it happened 

following the COVID-19 pandemic episode. As in the ‘70s, the question in focus in 2021 was 

whether the observed price spikes reflected purely temporary, idiosyncratic relative price 

movements, or were the beginning of a generalized and persistent increase in inflation. With 

economists engaged in heated public debates and aligned under ‘team transitory’ and ‘team 

persistent’ banners,8 renewed attention was paid to a range of measures to pin down core 

inflation.  

 In this chapter, we set a framework to organize the definition and the measurement of core 

inflation as an indicator of inflation persistence and discuss the relation among different ways to 

approach its measurement. Although the term ‘core’ inflation is often used interchangeably with 

‘underlying’ inflation in the literature, here we refrain from using the latter term, as it doesn’t 

seem to have a uniquely understood definition. In some jurisdictions, the term underlying 

inflation conceptually “reflects medium-term inflation developments linked to the business 

cycle,” and the set of measures to track it encompasses many of the core measures we discuss 

here (Banbura et al., 2023). In others instead, the term underlying inflation is used to indicate the 

level of inflation that would prevail “in the absence of economic slack, supply shocks, 

idiosyncratic relative price changes, or other disturbances.” (Rudd, 2020) The latter would be a 

notion of longer-run trend, or steady state inflation, that is deeper than the one analyzed here and 

one for which estimation generally requires considering other macro variables; it is therefore 

outside the scope of the current analysis.9  

Our focus is on U.S. price indexes. In what follows, section 2 addresses conceptual issues 

around the measurement of core inflation, and section 3 reviews several approaches to 

constructing such measures. Section 4 discusses comparisons of core measures and conducts an 

evaluation of their relative ability to predict future inflation using a sample that includes the post-

 
8 For a recent retrospective on the debate, see Has Team Transitory really won America’s inflation debate? 

(economist.com). Recent work by Bernanke and Blanchard (2024) assigns partial victory to each side.  

9 For some estimates of long-run trend inflation in macro models see Cogley and Sbordone (2008) and Cogley et al. 

(2010).   
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pandemic period. Section 5 briefly reviews other central banks’ measures and section 6 

concludes.  

 

 

2. Conceptual issues around the measurement of core inflation 

 

Any measure of core inflation must separate the ‘signal’ from the noise in inflation data. This 

involves making decisions on how to weigh the various component of the price index in a way 

that reflects the strength of the signal that each component provides for overall inflation. 

Importantly, it should also account for whether and how much the prices of the various 

components move together. 

The ‘all items ex food and energy’ index is an appealing core measure: first, it is transparent 

and easy to communicate. Importantly, it is based on the observation that food and energy prices 

are typically more volatile than other items in the price index and therefore likely constitute 

‘noise’. Moreover, their spikes and declines are generally less related to developments in the 

domestic economy: hence, also in this respect they may provide little signal. However, the 

automatic exclusion of certain components rests on some critical assumptions: first, that the 

prices of these components are those that are most often in the tails of the distribution of price 

changes, and second, that their removal implies no loss of relevant information for evaluating 

medium-term inflationary pressures. The latter is particularly critical, because the covariance of 

price changes matters for gauging at any point in time the strength of inflationary pressures.  

Questioning these assumptions has led over time to the development of alternative core 

measures. As a background for the discussion of these measures in section 3, we look at the 

distributions of monthly price changes to illustrate some relevant features: the presence of 

asymmetries and large tails, and the co-movement of price changes across components. 

 We center our analysis on the PCE price index because the U.S. Federal Reserve has framed 

its objective of price stability in terms of this index; similar measures and relative analyses exist 

also for the CPI.  The PCE price index is organized in seventeen main aggregates, which in turn 

are composed of several sub-aggregates of individual items or groups of items for a total of about 

200 goods or services.10 To illustrate some features of the distribution of price changes we 

consider a moderately disaggregated set of components, which includes 52 items (a 4th level of 

disaggregation).11  

We start by displaying the cross-sectional distribution of inflation rates over the period 

beginning in January 1960 and ending in December 2023 in figure 1. We also display headline 

and core PCE monthly annualized inflation rates as a reference.  

 
10 Documentation on the PCE price index can be found in NIPA Handbook: Concepts and Methods of the U.S. 

National Income and Product Accounts.  

11 The 52 components can be read from Figure 5 below. Data on the more detailed components of the PCE index are 

found in tables 2.4.4U of the Underlying Detail Tables section of the BEA’s website. Data at the chosen 

disaggregated level are available since 1960.   
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FIGURE 1. Cross-sectional distribution of inflation rates 

 
The first thing to highlight is the large dispersion of individual price changes: it is not rare to 

see big price increases in some items in periods of low inflation and negative price changes in 

periods of relatively high inflation (note that the price changes reported in the figure are not 

literally individual price changes, but aggregates at low level. Individual prices will be even 

more dispersed.) 

We next summarize some features of the distribution of price changes displaying statistics 

that provide evidence of changes over time in dispersion, asymmetry, and presence of heavy 

tails. These are illustrated in Figures 2-4 below. Because of the relatively small number of 

observations and the potential presence of outliers we rely on robust measures that are functions 

of the percentiles of the cross-sectional distribution (as opposed to moment-based measures).  

Let 𝑄𝑡(𝑝) be the 𝑝-th percentile of the distribution of item-wise inflation rates for month 𝑡. 

For illustrative purposes, we focus on the distribution of unweighted price changes although 

many of the observations we make extend to weighted price changes. We use the following 

measures: 

 

𝐷𝑖𝑠𝑝𝑡 = 𝑄𝑡(90) − 𝑄𝑡(10) 

 

𝐴𝑠𝑦𝑚𝑡 =
(𝑄𝑡(90) − 𝑄𝑡(50)) + (𝑄𝑡(10) − 𝑄𝑡(50))

𝑄𝑡(90) − 𝑄𝑡(10)
 

 

𝑇𝑎𝑖𝑙𝑠𝑡 =
𝑄𝑡(95) − 𝑄𝑡(5)

𝑄𝑡(90) − 𝑄𝑡(10)
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The dispersion measure is like the interquartile range except that we compare the 10th and 

90th percentile. The asymmetry measure (known as the Kelly’s measure) compares the proportion 

of positive and negative realizations relative to the median: positive (negative) values indicate 

positive (negative) skewness, and its value is bounded between -1 and 1. Finally, Tails measures 

the size of extreme realizations (5th and 95th percentiles) relative to less extreme realizations (10th 

and 90th percentiles). For reference, a normally distributed random variable with standard 

deviation 𝜎 has dispersion 2.56 × 𝜎, zero asymmetry, and tails measure 1.28.  

Figure 2 shows the dispersion of monthly price changes measured by the difference between 

the 90th and 10th percentiles of the distribution: although periods of high inflation – the ‘70s and 

‘80s -- present the highest level of dispersion, values are high throughout the period. Part of the 

observed changes over time in the dispersion are associated with the measurement of prices, as 

over time the increased availability of new sources has allowed the statistical offices to rely less 

on imputation methods. 

Figure 3 presents evidence of significant asymmetries, with left skewed distributions more 

frequent in the low inflation periods and right skewed distribution present both in the inflation 

period of the ‘70s and the most recent pandemic episode.  

 

 

FIGURE 2. Dispersion of cross-sectional distribution of inflation rates
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FIGURE 3. Asymmetry of cross-sectional distribution of inflation rates

 
Finally, Figure 4 illustrates the presence of heavy tails in the distributions. Most of the time, 

the size of the tails is not different from the reference value for the normal distribution (of around 

1.3). In a few periods, however, we observe values of 3 or above which indicate substantial 

nonnormality in the distributions. 

 

FIGURE 4. Heavy tails in the cross-sectional distribution of inflation rates 
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Next, to examine the covariance across component series we look at the correlation of each 

sector with the ex-food and energy measure and represent this with a heat map (see Figure 5), 

where we showcase the behavior across three subperiods that present different average values of 

inflation: there is significant co-movement of price changes across sectors and the strength of the 

co-movement varies over time.   

  

FIGURE 5. Correlation of sectors with Core PCE
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This evidence suggests that the removal of some predetermined categories to obtain a core 

index may not be an accurate measure of the true core, as it may remove important information 

while not necessarily removing all the noise. To improve on such measure, a variety of 

smoothing techniques have been explored using both the cross-sectional and the time series 

dimensions of the data. 

Using only the sectoral dimension of the data, smoothing is obtained by constructing an 

index that downweighs those sectors in the headline index that have more volatile prices. The 

rationale is that volatile price movements are also less persistent, and therefore do not contribute 

to the assessment of core inflation. A negative relationship between volatility and persistence is 

intuitive, but its strength is of course an empirical question.12  Exclusion measures (also referred 

to as limited-influence estimators) such as the xFE inflation are an example of this approach to 

smoothing.  

Alternatively, smoothing can be obtained by exploiting the temporal dimension of the data. 

Time-series smoothing methods can be applied to extract the ‘signal’ either in aggregate inflation 

or in sectoral inflation data: univariate or multivariate dynamic factor models belong to this 

approach. We characterize these methods more precisely in the next section. 13 

 

 

 

3. The measurement of core inflation 

 

To review approaches to constructing measures of core inflation from price (and expenditure 

share) data, we begin by introducing some notation. We use 𝜋𝑖𝑡 for the inflation rate of sector 𝑖 

during period 𝑡, that is, the rate of change of the price level in sector 𝑖 between periods 𝑡 − 1 and 

𝑡. We also use 𝑠𝑖𝑡 for the expenditure share of sector 𝑖 during time 𝑡. We denote by 𝑁 the number 

of sectors, noting that different measures rely on different levels of sectoral disaggregation and 

therefore 𝑁 is measure specific. The time unit 𝑡 is typically a month and occasionally a quarter. 

Recalling that the PCE price index is a chain-type Fisher price index, the aggregate inflation 

rate during time 𝑡 is related to the sectoral inflation rates by the equation: 

1 + 𝜋𝑡 = √
∑ 𝑠𝑖,𝑡−1(1 + 𝜋𝑖𝑡)𝑁

𝑖=1  

∑ 𝑠𝑖𝑡(1 + 𝜋𝑖𝑡)𝑁
𝑖=1

. 

If sectoral inflation rates are small, we obtain the following approximation that we will exploit 

repeatedly in this section: 

 
12 For an example, see Ehrmann et al (2018) on the relation between volatility and persistence in the annual rate of growth of 

components of the euro area HICP.  

13 We adopt a parsimonious classification of different methods that encompasses a variety of measures as those 

listed by Luciani and Trezzi (2019): “exclusion indexes, central-tendency statistical measures, variance-weighted 

indexes, regression-weighted indexes, model-based trend inflation measures, and component-smoothing indexes.” 

Wynne (2008) provides a review of the literature. 
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𝜋𝑡 ≈ ∑ 𝑠̃𝑖𝑡𝜋𝑖𝑡

𝑁

𝑖=1

 

where the shares are 𝑠̃𝑖𝑡 = (𝑠𝑖,𝑡−1 + 𝑠𝑖𝑡)/2. Inflation is sometimes expressed in annual rate, by 

setting for example 𝜋𝑡
𝐴𝑅 = (1 + 𝜋𝑡)12 − 1 ≈ 12𝜋𝑡 if 𝑡 is a month. This only affects the scale of 

inflation. Another transformation usually applied is to compute 12-month rates of change by 

doing 𝜋12,𝑡 = ∏ (1 + 𝜋𝑡−𝑟+1)12
𝑟=1 − 1 ≈ ∑ 𝜋𝑡−𝑟+1

12
𝑟=1 . This is a more substantive transformation 

as it affects the smoothness of the inflation series. Unless otherwise stated, we will focus on 

inflation data that are not temporally aggregated. The same applies to sectoral inflation rates.  

      We will use 𝜏̂𝑡 to denote a measure of core inflation and  𝜏̃𝑡 to denote its target value (i.e., the 

value it would achieve in the absence of noise) in their multiple forms. We divide the different 

approaches in three classes. Cross-sectional approaches make 𝜏̂𝑡 a function of the disaggregated 

data {𝜋𝑖𝑡}𝑖=1
𝑁  for the same period 𝑡. Time series approaches make  𝜏̂𝑡 a function of the aggregated 

data {𝜋𝑟}𝑟=1
𝑇  for different periods (perhaps covering all the history). Finally, a third class of 

approaches exploits both the cross-section and the time series dimensions of the data by 

setting 𝜏̂𝑡 as a function of {{𝜋𝑖𝑡}𝑖=1
𝑁 }𝑡=1

𝑇 .  

       There are at least two questions we wish to ask about each approach to core inflation. First, 

what each method is designed to estimate. Second, what are the method’s properties in the actual 

data when seen as an assessment of current and future inflationary pressures. We leave the 

second question to the next section. As for the first, we address it as we describe in turn the 

different approaches.  

        Of course, to be able to characterize the target of a given measure, we need to introduce 

some statistical assumptions. These will be motivated by the empirical patterns we reported in 

the previous section about the joint distribution of sectoral inflation rates. 

        The starting point is the following decomposition: 

𝜋𝑖𝑡 = 𝜏𝑖𝑡 + 𝜀𝑖𝑡 , 

where 𝜏𝑖𝑡 is the trend (or persistent) component and 𝜀𝑖𝑡 is the noise (or transitory) component of 

the sectoral inflation rate 𝜋𝑖𝑡. The persistent component is intended to capture movements in 

inflation that are long-lasting, reflecting aggregate and sectoral shocks that propagate over many 

periods. The noise component, on the other hand, represents a combination of pure transitory 

shocks and measurement error or outliers.14  

        It is reasonable to assume that core components are uncorrelated with the noise components 

for each sector and period. Based on the properties of inflation data we documented before, one 

should expect (i) cross-sectional correlation in both 𝜏𝑖𝑡 and 𝜀𝑖𝑡, (ii) strong serial correlation in the 

core components, and (iii) non-normality in the noise components. Finally, defining the 

 
14 As discussed in the previous chapter of the Handbook, the measurement of inflation is a challenging task that 

relies on surveying a vast number of price-setting units. Moreover, imputation rules are applied for some items that 

are inherently difficult to measure. It is therefore natural to expect that part of the quarter-to-quarter or month-to-

month variations we observe in inflation is the result of measurement error. 
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aggregate core and noise components as 𝜏𝑡 = ∑ 𝑠̃𝑖𝑡𝜏𝑖𝑡
𝑁
𝑖=1  and 𝜀𝑡 = ∑ 𝑠̃𝑖𝑡𝜀𝑖𝑡

𝑁
𝑖=1  and using the 

approximate aggregation formula, we have 

𝜋𝑡 = 𝜏𝑡 + 𝜀𝑡 . 

        The goal of any measure of core inflation is to capture 𝜏𝑡 and eliminate 𝜀𝑡. However, as will 

become clear below, a given measure 𝜏̂𝑡  may have a target value  𝜏̃𝑡 that is not necessarily equal 

to the aggregate core component 𝜏𝑡. This is because in practice, to reduce the role of the noise 

component, 𝜏̂𝑡 typically needs to exclude or downweigh a subset of sectors with low signal 

value. As an example, food and energy contribute to the persistent component of aggregate 

inflation 𝜏𝑡 but PCE inflation excluding food and energy targets a different weighted average of 

persistent components, 𝜏̃𝑡. Hence the need to maintain a notational distinction between 𝜏𝑡 

and  𝜏̃𝑡. 

 

3.1.  Cross-sectional approaches 

 

     The simplest form of cross-sectoral smoothing is obtained by removing certain components 

from the aggregate index, as the already mentioned xFE index, or indexes excluding other items. 

These indexes are defined by permanent exclusions. Two other popular measures under this 

heading are defined by temporary exclusions.  

     The trimmed mean measure removes at any time 𝑡 only those components that experience the 

largest positive or negative rates of change. The weighted median, also an exclusion measure, 

defines instead the core as the median price change at each time 𝑡. Both measures are motivated 

by the statistical case for using robust central-tendency measures when the distribution of price 

changes has heavy tails. 

     These measures can be represented as follows. Let 𝐼𝑡 be the subset of cross-sectoral indexes 

{1, … , 𝑁} to be included in the calculation for month 𝑡. The corresponding estimate of core 

inflation is: 

𝜏̂𝑡 =
∑ 𝑠̃𝑖𝑡𝜋𝑖𝑡𝑖∈𝐼𝑡

∑ 𝑠̃𝑖𝑡𝑖∈𝐼𝑡

=
∑ 𝑠̃𝑖𝑡𝜏𝑖𝑡𝑖∈𝐼𝑡

∑ 𝑠̃𝑖𝑡𝑖∈𝐼𝑡

+
∑ 𝑠̃𝑖𝑡𝜀𝑖𝑡𝑖∈𝐼𝑡

∑ 𝑠̃𝑖𝑡𝑖∈𝐼𝑡

 

which targets the quantity: 

𝜏̃𝑡 =
∑ 𝑠̃𝑖𝑡𝜏𝑖𝑡𝑖∈𝐼𝑡

∑ 𝑠̃𝑖𝑡𝑖∈𝐼𝑡

. 

For PCE inflation excluding food and energy, 𝐼𝑡 is the same set over time and contains precisely 

all the components of PCE that do not belong in the food or energy categories. For the trimmed 

mean inflation rate, the set 𝐼𝑡 changes over time and is obtained by excluding a fraction 𝜙𝑙 of the 

price changes at the lower end of the distribution and another fraction 𝜙𝑢 of the price changes at 

the higher end. Finally, for the median inflation rate, 𝐼𝑡 consists of a single index – the one in the 

middle of the distribution of price changes.  

      This calculation makes clear what the target and the estimation error of 𝜏̂𝑡 are – they are 

weighted averages of sectoral persistent and noise components. Removing the most volatile 

components helps to reduce the variance of the error term: 
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𝜏̂𝑡 − 𝜏̃𝑡 =
∑ 𝑠̃𝑖𝑡𝜀𝑖𝑡𝑖∈𝐼𝑡

∑ 𝑠̃𝑖𝑡𝑖∈𝐼𝑡

. 

In general, however, averaging and removing volatile sectors does not eliminate the estimation 

error completely. One possible explanation is the presence of cross-sectional correlation in the 

noise components. For example, suppose  𝜀𝑖𝑡 = 𝛼𝜀,𝑖𝜀𝑐̅𝑡 + 𝜀𝑖̅𝑡 where the common component 𝜀𝑐̅𝑡 

and the sector-specific component 𝜀𝑖̅𝑡 have zero mean and are independent of each other. We 

obtain the following: 

𝜏̂𝑡 − 𝜏̃𝑡 = (
∑ 𝑠̃𝑖𝑡𝛼𝜀,𝑖𝑖∈𝐼𝑡

∑ 𝑠̃𝑖𝑡𝑖∈𝐼𝑡

) 𝜀𝑐̅𝑡 +
∑ 𝑠̃𝑖𝑡𝜀𝑖̅𝑡𝑖∈𝐼𝑡

∑ 𝑠̃𝑖𝑡𝑖∈𝐼𝑡

. 

So, even if the second term is small (it is an average of independent zero mean random 

variables), the first term need not be. To mitigate this problem, it is customary to use time series 

averages of  𝜏̂𝑡, either by computing 6-month or 12-month measures or by exploiting the filtering 

techniques we discuss in subsequent sections. 

       We now discuss in more detail the construction of trimmed mean and weighted median 

measures of core inflation for the US. 

 

a. Trimmed-mean measures. 

 

The trimmed-mean PCE inflation is one of the core measures routinely monitored for the 

U.S. It was introduced by Dolmas (2005), applying to the Fed’s preferred inflation gauge 

previous research on the CPI price index.15 While the rationale to consider a trimmed-mean 

measure was intuitive: “simply excluding all food and energy items [….] fails to exclude some 

highly volatile items, while potentially throwing out some useful information” (Dolmas, 2005, p. 

3), from a statistical point of view, Dolmas noted, a trimmed mean is a robust measure of 

location.16  

      The trimmed-mean PCE inflation is published by the Federal Reserve Bank of Dallas, with 

series for the 1-month and 6-month (annualized) and 12-month measures starting from 1977. 

This measure is constructed as a weighted average of the rate of change in the prices of a subset 

of the PCE index, determined by discarding a certain fraction of the most extreme observations 

at both ends of the distribution. The trimmed-mean inflation rate is then calculated as a weighted 

average of the remaining components with appropriately renormalized weights. In terms of the 

notation we established, the fractions of price changes 𝜙𝑙 and 𝜙𝑢 that are dropped from the lower 

 
15 See Bryan and Cecchetti, 1994; Cecchetti, 1997. 

16 Ball and Mankiw (1995) show that the observed feature of the distribution of price changes are easily generated in 

models with costs of price adjustments. In such models, relative-price changes matter for aggregate inflation only if 

they are unusually large. A tail of unusually large relative price increases skews the distribution to the right, hence 

raising aggregate inflation, while a tail of unusually large price declines skews it to the left, lowering aggregate 

inflation. 
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and upper tails are 24 and 31 percent, respectively.17 These cut-off points have been determined 

as those that produce the ‘best fit’ in the sense of minimizing the distance of the trimmed-mean 

from an ideal underlying trend.18 The intuition for why an optimal trimming is asymmetric rests 

on the asymmetry of the distribution of monthly price changes. If this distribution across PCE 

categories has negative skewness (or a fat left tail), a trimming that removes more observations 

from the top of the distribution corrects for the potential bias that would result from removing 

too much of the influence of the lower tail. As we have documented in figure 2, there are strong 

asymmetries in the distributions of price changes, at least for the sectors and the sample we 

considered; however, the extent of these asymmetries varies over time, so it is not clear that the 

same asymmetric trim is optimal across periods. Compared to permanent exclusion indexes, the 

items excluded from the trimmed-mean index vary over time and are not limited to, nor include 

all food and energy items.  

 

b. Median PCE Inflation  

 

      In the same spirit of the trimmed-mean measure, also the median PCE inflation, developed 

from an original suggestion of Bryan and Pike (1991), intends to be less sensitive to observations 

in the tails. It could be considered as an extreme trimming measure, where all observations in 

both tails except the price change in the middle are trimmed.  

      The median PCE inflation measure, published by the Federal Reserve Bank of Cleveland, is 

defined as the one-month inflation rate of the component whose expenditure weight is in the 50th 

percentile of price changes. The measure is constructed using all 200 components in the BEA 

index, similarly to the trimmed mean PCE inflation, and is tracked for both monthly and 12-

month rates. Details of its computation are found on the Cleveland Fed’s website. The website 

reports also a median CPI inflation, computed on 44 CPI components with the same 

methodology. 19   

 

 

3.2.  Time series smoothing approaches 

 

      As we mentioned, forming time series averages is an attractive way of filtering out the noise 

component to obtain measures of core inflation. In this section, we discuss the basic principle of 

 
17 These cut-offs were adjusted in 2009 after the BEA release of the comprehensive revision to the US national 

income and product account, that included a reorganization of underlying data on component-level PCE prices and 

quantities (see The 2009 revision to the trimmed mean PCE inflation series PCE inflation series - FRB Dallas 

(dallasfed.org). 

18 Since this trend is unobservable, Dolmas (2005) documents robustness of the measure to different candidate 

choices for the underlying trend. 

19 See Median PCE Inflation (clevelandfed.org). The weighted CPI median was first introduced by Bryan and 

Cecchetti (1994). 
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time series filtering abstracting from the cross-sectional dimension we discussed above. We turn 

to approaches that combine both dimensions in the next section.  

     We focus here on aggregate inflation data 𝜋𝑡 observed over time. This may be headline PCE 

inflation or PCE inflation excluding food and energy. Recall the decomposition of the inflation 

rate 𝜋𝑡 into a persistent and a noise component, 

𝜋𝑡 =  𝜏𝑡 + 𝜀𝑡 . 

      The idea of decomposing a time series into persistent and transitory components has a long 

tradition in economics. It has been used, for example, in the analysis of rational expectations 

(Muth, 1961) or the empirics of life-cycle earnings (MaCurdy, 1981).20 The question is how to 

transform data {𝜋𝑡} into estimates of the unobserved persistent component {𝜏𝑡}. When only the 

time series dimension can be exploited, assumptions on the dynamics of 𝜏𝑡 and 𝜀𝑡 are needed to 

achieve this. 

     To illustrate the point, let us assume the following simple model for the persistent and the 

noise components: 

𝜏𝑡 = 𝜏𝑡−1 + 𝜎Δ𝜏𝜂Δ𝜏,𝑡 , 

𝜀𝑡 = 𝜎𝜀𝜂𝜀,𝑡 , 

where the shocks 𝜂Δ𝜏,𝑡 and 𝜂𝜀,𝑡 are mutually and serially independent 𝑁(0, 1) random variables, 

and the initial condition is 𝜏0 ∼ 𝑁(𝜇0, 𝜎0
2), independent of {𝜂Δ𝜏,𝑡 , 𝜂ε,𝑡}. The parameters are the 

volatilities of the persistent and the transitory shocks, 𝜎Δ𝜏 and 𝜎ε, which govern the proportion of 

signal-to-noise in inflation. This model is usually referred to as the local-level model since 𝜏𝑡 

acts as a time-varying level of inflation. 

      This specification implies that Δ𝜋𝑡 is an MA(1) process (or, equivalently, 𝜋𝑡 is an IMA(1, 1) 

process). That is, changes in inflation should not be correlated beyond a single period. Moreover, 

the first-order autocorrelation of Δ𝜋𝑡 should be negative since 

𝐶𝑜𝑣(Δ𝜋𝑡, Δ𝜋𝑡−1) =  −𝜎𝜀
2 < 0. 

Hence, checking the autocorrelation patterns of Δ𝜋𝑡 provides a quick diagnostic of the 

restrictions imposed by this model. 

       Turning to the estimation of {𝜏𝑡}, we assume for now that we know (σΔτ, σε).21 The model is 

a particular case of a linear state-space model (see, e.g., Hamilton, 1994, Durbin and Koopman, 

2012) and, therefore, we can apply the Kalman filter to learn about the latent state {τt}. 

Specifically, letting π = (π1, … , πT)′ and 𝜏 =  (𝜏1, … , 𝜏𝑇)′, we have  

𝜏|𝜋 ∼ 𝑁(𝜇𝜏, Σ𝜏), 

 
20 In the context of life-cycle earnings, the importance of distinguishing between permanent and temporary income 

shocks was originally motivated by the permanent income hypothesis that predicts different consumption effects of 

shocks of different durability (Friedman, 1957, Hall and Mishkin, 1982). 

21 Of course, to implement the approaches we discuss below, we need estimates of (σΔτ, σε). Pseudo-maximum 

likelihood (PML) estimates are straightforward to obtain using the Kalman filter to evaluate the log-likelihood 

function of the data {πt}t=1
𝑇 . See, e.g., Hamilton (1994) or Durbin and Koopman (2012). 
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where the mean vector 𝜇𝜏 and the covariance matrix Σ𝜏 come from the Kalman recursions.22 The 

point estimate for the persistent component of inflation is then given by 𝜏̂ =  (𝜏̂1, … , 𝜏̂𝑇)′ = 𝜇𝜏. 

      To gain some intuition, it is useful to connect the Kalman filter estimate with the 

exponentially weighted moving average (EWMA) obtained when we apply the so-called steady 

state filter.23 Allowing ourselves to use infinitely many past observations {𝜋𝑠}𝑠=−∞
𝑇 , we obtain 

𝜏̂𝑇 ≈ ∑(1 − 𝜅)ℓ𝜅𝜋𝑇−ℓ

∞

ℓ=0

, 

where, having defined the signal-to-noise ratio 𝑞 = 𝜎Δτ
2 /𝜎𝜀

2, 𝜅 is: 

𝜅 = (1 +  
2/q

1 + √1 + 4/𝑞
)

−1

. 

       The trend estimate 𝜏̂𝑇 is a weighted average of all available data with weights that sum to 

one (since ∑ (1 − 𝜅)ℓ = 1/𝜅∞
ℓ=0 ). It discounts past data more heavily (𝜅 is closer to 1) when the 

signal-to-noise ratio 𝑞 is high, while it tends to be more backward-looking when 𝑞 is low. This is 

to be compared with the usual practice of computing 3-, 6- and 12-month inflation rates, that are 

equivalent to constant weights within a fixed window. In other words, time series smoothing 

adjusts the weight that 𝜏̂𝑇 gives to past data as a function of the relative importance of persistent 

versus transitory shocks. 

       This basic model can be enriched in many ways. An empirically important extension is 

allowing the volatilities of persistent and transitory shocks (and, therefore, the signal-to-noise 

ratio) to evolve over time as in Stock and Watson (2007, 2008). Namely, one can assume: 

 

𝜏𝑡 = 𝜏𝑡−1 + 𝜎Δ𝜏,𝑡𝜂Δ𝜏,𝑡 , 

𝜀𝑡 = 𝜎𝜀,𝑡𝜂𝜀,𝑡 , 

 

and let the volatility processes to evolve as in Kim, Shephard, and Chib (1998): 

 

Δ ln 𝜎Δτ,t = γΔτ νΔτ,t, 

Δ ln 𝜎ε,t = γε νε,t, 

 

where the innovations 𝜈Δ𝜏,𝑡 and 𝜈𝜀,𝑡 are mutually and serially independent 𝑁(0, 1) random 

variables, independent of {𝜂Δ𝜏,𝑡 , 𝜂𝜀,𝑡} and 𝜏0. Allowing for time-varying parameters is 

particularly important when analyzing long datasets as the properties of persistent and transitory 

shocks are likely to change over time. 

 

 
22 The conditional distribution of 𝜏 given 𝜋 is normal because we assumed normality of the initial condition 𝜏0 and 

the shocks {𝜂Δτ,t, 𝜂𝜀,𝑡}. Without that, 𝜇𝜏 and Σ𝜏 can still be interpreted as the best linear predictor of 𝜏 given 𝜋 and its 

mean-square error matrix, respectively. 

23 The connection between the local-level model and exponential smoothing was noted by Muth (1960). See, e.g., 

Durbin and Koopman (2012) for a detailed discussion. 



15 
 

3.3. Combining cross-sectional and time series approaches 

 

      To summarize, cross-sectional approaches assign weights to components of PCE inflation as 

a function of their variability. Time series approaches, on the other hand, assign weights not to 

specific components but to different periods as a function of the noisiness of the series. Both 

dimensions are potentially informative to extract the core inflation concept we are after in this 

chapter. In this section, we explore approaches that combine them. The technique of choice is 

that of dynamic factor models.24 

     We start from the decomposition of the inflation rate 𝜋𝑖𝑡 of sector 𝑖 during time 𝑡 that we 

outlined at the beginning of the section: 

𝜋𝑖𝑡 = 𝜏𝑖𝑡 + 𝜀𝑖𝑡 . 

Recall that our target is the persistent component of aggregate inflation, 

𝜏𝑡 = ∑ 𝑠̃𝑖𝑡𝜏𝑖𝑡 

𝑁

𝑖=1

 

and our goal is to estimate 𝜏𝑡 from data {{𝜋𝑖𝑡}𝑖=1
𝑁 }𝑡=1

𝑇 . 

    A first question is how to model the correlation of persistent and transitory shocks across 

sectors. Defining the 𝑁-vectors  𝜏𝑡 =  (𝜏1𝑡 , … , 𝜏𝑁𝑡)′ and  𝜀𝑡 = (𝜀1𝑡 , … , 𝜀𝑁𝑡)′, we assume the 

following: 

Δ𝜏𝑡 ∼ 𝑖. 𝑖. 𝑑. 𝑁(0𝑁×1, ΣΔ𝜏), 

𝜀𝑡 ∼ 𝑖. 𝑖. 𝑑. 𝑁(0𝑁×1, Σε), 

and also assume that Δ𝜏𝑡 and 𝜀𝑡 are mutually independent and independent of the initial 

condition 𝜏0 ∼  𝑁(𝜇0, Σ0). To begin, we leave the covariance matrices ΣΔ𝜏 and Σ𝜀 unrestricted. If 

we let 𝜋⃗⃗𝑡  =  (𝜋1𝑡 , … , 𝜋𝑁𝑡)′, the measurement equation becomes: 𝜋⃗⃗𝑡 = 𝜏𝑡 + 𝜀𝑡 . 

     As before, this is a linear state-space model: we can use the Kalman filter to characterize the 

conditional distribution of {𝜏𝑡}𝑡=1
𝑇  given {𝜋⃗⃗𝑡}𝑡=1

𝑇  and obtain:  

𝜏𝑡|{𝜋⃗⃗𝑡}𝑡=1
𝑇 ∼ 𝑁 (𝜇(𝜏, 𝑡|𝑇), Σ(𝜏, 𝑡|𝑇)). 

The point estimate of the persistent component of aggregate inflation is given by:  

𝜏̂𝑡  = 𝑠𝑡
′ 𝜇(𝜏, 𝑡|𝑇)  

where  𝑠𝑡 = (𝑠̃1𝑡 , … , 𝑠̃𝑁𝑡)′ is the vector of expenditure shares used in the construction of the price 

index. 

      We note that in the absence of cross-sectional correlation (i.e., if ΣΔ𝜏 and Σ𝜀 are diagonal), 

𝜇(𝜏, 𝑡|𝑇) reduces to a vector with each entry given by the univariate model formula discussed in 

the previous section. In that case, each sector will contribute to the trend estimate in proportion 

to (i) its expenditure share and (ii) its individual signal-to-noise ratio. In general, however, one 

 
24 An early estimate of a core measure using a dynamic factor index model, applied to the CPI index, is Cecchetti 

(1997), based on Stock-Watson (1991).   
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should expect correlation across sectors: a parsimonious way of introducing correlation is 

through a common factor structure. To be specific, let 

𝜏𝑖𝑡 = 𝛼𝜏,𝑖 𝜏̅𝑐𝑡 + 𝜏̅𝑖𝑡 , 𝑖 = 1, … , 𝑁, 

𝜀𝑖𝑡 = 𝛼𝜀,𝑖 𝜀𝑐̅𝑡 + 𝜀𝑖̅𝑡 , 𝑖 = 1, … , 𝑁, 

where the persistent components are 

𝜏̅𝑐𝑡 = 𝜏̅𝑐,𝑡−1 + 𝜎Δ𝜏,𝑐  𝜂Δ𝜏,𝑐𝑡 , 

𝜏̅𝑖𝑡 = 𝜏̅𝑖,𝑡−1 + 𝜎Δ𝜏,𝑖 𝜂Δ𝜏,𝑖𝑡 , 

and the transitory components are 

𝜀𝑐̅𝑡 = 𝜎ε,𝑐  𝜂ε,𝑐𝑡, 

𝜀𝑖̅𝑡 = 𝜎ε,𝑖 𝜂ε,𝑖𝑡. 

The innovations 𝜂 are mutually and serially uncorrelated 𝑁(0, 1) random variables. The terms 

𝜏̅𝑐𝑡 and 𝜀𝑐̅𝑡 are common components, while 𝜏̅𝑖𝑡 and 𝜀𝑖̅𝑡 are their sector-specific counterparts. This 

is a particular case of the unrestricted model we discussed before and therefore can be estimated 

with linear state-space model techniques as well. In fact, 

ΣΔ𝜏 = 𝜎Δ𝜏,𝑐
2 𝛼⃗𝜏𝛼⃗𝜏

′ +  𝑑𝑖𝑎𝑔(𝜎⃗Δ𝜏
2 ), 

Σε = 𝜎ε,𝑐
2 𝛼⃗𝜀𝛼⃗𝜀

′ +  𝑑𝑖𝑎𝑔(𝜎⃗ε
2), 

where we have defined vectors 𝛼⃗𝜏 =  (𝛼𝜏,1, … , 𝛼𝜏,𝑁)′, 𝛼⃗𝜀 =  (𝛼𝜀,1, … , 𝛼𝜀,𝑁)′, 𝜎⃗Δ𝜏
2 =

 (𝜎Δ𝜏,1
2 , … , 𝜎Δ𝜏,𝑁

2 )′ and 𝜎⃗𝜀
2 =  (𝜎𝜀,1

2 , … , 𝜎𝜀,𝑁
2 )′.  

       As before, we can use the Kalman filter to estimate 𝜏𝑖𝑡 and its common and sector-specific 

subcomponents, 𝜏̅𝑐𝑡 and 𝜏̅𝑖𝑡. From these, we derive the common and sector-specific constituents 

of the persistent component of aggregate inflation 𝜏𝑡 as 

𝜏𝑐,𝑡 =  ∑ 𝑠̃𝑖𝑡𝛼𝜏,𝑖𝜏̅𝑐𝑡

𝑁

𝑖=1

, 

𝜏𝑠𝑠,𝑡 = ∑ 𝑠̃𝑖𝑡𝜏̅𝑖𝑡

𝑁

𝑖=1

 

      An important comment is due about identification. If we let the parameters 𝛼⃗𝜏, 𝜎⃗Δ𝜏,𝑐 , 𝛼⃗𝜀 , 𝜎⃗𝜀,𝑐 

unrestricted, they are not point identified from the autocovariance structure of the data. This is 

because we can multiply the loadings by a constant 𝑘 and divide 𝜏̅𝑐𝑡, 𝜀𝑐̅𝑡 (and therefore the 

volatilities 𝜎⃗Δ𝜏,𝑐 , 𝜎⃗𝜀,𝑐) by 𝑘 without altering the data. In a similar vein, we can add a constant 𝑘 to 

𝛼𝜏,𝑖𝜏̅𝑐𝑡 and subtract the same constant from 𝜏̅𝑖𝑡 without affecting the data. Hence, the levels of 

the common and sector-specific components are not pinned down (although their changes over 

time are). 

      Finally, when analyzing a long dataset, it is important to allow loadings and volatilities to 

change over time. Moreover, when using disaggregated inflation data, one needs to be aware of 

the presence of outliers. This motivated Stock and Watson (2016) to extend the model to 

incorporate both time-varying parameters and outliers. Specifically, they augment the common 

factor structure introduced above: 
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𝜏𝑖𝑡 = 𝛼𝜏,𝑖𝑡 𝜏̅𝑐𝑡 + 𝜏̅𝑖𝑡, 𝑖 = 1, … , 𝑁, 

𝜀𝑖𝑡 = 𝛼𝜀,𝑖𝑡 𝜀𝑐̅𝑡 + 𝜀𝑖̅𝑡 , 𝑖 = 1, … , 𝑁, 

by including stochastic volatility in the persistent components  

𝜏̅𝑐𝑡 = 𝜏̅𝑐,𝑡−1 + 𝜎Δ𝜏,𝑐𝑡 𝜂Δ𝜏,𝑐𝑡 , 

𝜏̅𝑖𝑡 = 𝜏̅𝑖,𝑡−1 + 𝜎Δ𝜏,𝑖𝑡 𝜂Δ𝜏,𝑖𝑡 , 

and modeling the transitory components as: 

𝜀𝑐̅𝑡 = 𝜎ε,𝑐𝑡 𝑜𝜀,𝑐𝑡 𝜂ε,𝑐𝑡, 

𝜀𝑖̅𝑡 = 𝜎ε,𝑖𝑡 𝑜𝜀,𝑖𝑡 𝜂ε,𝑖𝑡 , 

where 𝑜𝜀,𝑐𝑡 and 𝑜𝜀,𝑖𝑡 are outlier indicators in the common and the sector-specific transitory 

components, respectively. The time-varying parameters are modeled as 

Δ𝛼𝜏,𝑖𝑡 = 𝜆𝜏,𝑖 𝜐𝜏,𝑖𝑡 , 

Δ ln 𝜎Δτ,ct = γΔτ,c νΔτ,ct, 

Δ ln 𝜎Δτ,it = γΔτ,i νΔτ,it, 

Δ𝛼𝜀,𝑖𝑡 = 𝜆𝜀,𝑖 𝜐𝜀,𝑖𝑡, 

Δ ln 𝜎ε,ct = γε,c νε,ct, 

Δ ln 𝜎ε,it = γε,i νε,it. 

The innovations 𝜐 and 𝜈 are mutually and serially uncorrelated 𝑁(0, 1) random variables. The 

outlier indicators, on the other hand, are modeled as 𝑜𝜀,𝑐𝑡 = 1 with probability 𝑝𝑐 and 𝑜𝜀,𝑐𝑡 ∼

 𝑈[1, 𝑠̅] with probability 1 − 𝑝𝑐, and similarly for 𝑜𝜀,𝑖𝑡. 

     A further extension allows the transitory component to display moving average dynamics, 

𝜀𝑐̅𝑡 = (1 + 𝜃𝑐1𝐿 + ⋯ + 𝜃𝑐𝑝𝐿𝑝)𝜎ε,𝑐𝑡 𝑜𝜀,𝑐𝑡 𝜂ε,𝑐𝑡 , 

𝜀𝑖̅𝑡 = (1 + 𝜃𝑖1𝐿 + ⋯ + 𝜃𝑖𝑝𝐿𝑝)𝜎ε,𝑖𝑡 𝑜𝜀,𝑖𝑡 𝜂ε,𝑖𝑡. 

where 𝐿 is the lag operator. This is particularly important when applying the model to monthly 

data because it allows for some prolonged effect of the shocks. This is the approach taken by the 

Multivariate Core Trend (MCT) inflation measure developed at the New York Fed for the PCE 

price index and updated regularly on its website after every official PCE price releases.25 

 

 

4. Comparing measures 

 

Figure 6 depicts the three cross-sectional smoothing measures (their 12-month version) and 

the MCT measure, constructed, as discussed, following an approach that combines both cross-

sectional and time series smoothing to estimate core inflation. They are all plotted against 12-

month headline PCE inflation. While all measures broadly move together, the figure shows 

notable differences in their dynamics. For example, the rise of the trimmed mean and the median 

in 2021 lag core PCE inflation, while the MCT measure leads the surge. Also, the median tends 

to be higher than the other measures in the low inflation period preceding the pandemic. 

 
25 See Multivariate Core Trend Inflation - FEDERAL RESERVE BANK of NEW YORK (newyorkfed.org) 
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A set of metrics have been used in the literature to compare different measures of core 

inflation, based on properties that are generally desirable for such a measure. Some metrics are 

qualitative in nature, such as the simplicity to compute or explain to a broader audience. Other 

are quantitative, as for example the bias, the degree of smoothness, the ability to track the long-

run trend of headline inflation, or the ability to predict future values of inflation.26 

  

 

FIGURE 6: Measures of core inflation 

 

 
 

  
 Ideally, one would like to quantify the error in tracking the trend component of inflation. The 

difficulty is that this trend component is unobservable, so researchers typically use for an 

approximation two-sided moving average filters of headline inflation with weights that reflect 

the choice between a medium-run and a very long-run notion of trend inflation. 

Alternative measures are generally evaluated against the benchmark of the PCE index 

excluding food and energy. For example, Luciani and Trezzi (2019) compare trimmed-mean 

PCE inflation and PCExFE measure over the 1977-2018 period. They document that both 

indexes can reduce the variance of inflation, although the trimmed mean is better than the xFE 

index at smoothing across large idiosyncratic episodes. On the other hand, the trimmed mean 

appears to have been consistently higher than the xFE measure since the 1990s, as it can be seen 

 
26 For an earlier proposal of different metrics for comparing core measures for the CPI price index see Clark (2001). 
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also in figure 6 above; that suggests caution when interpreting current core levels.27 To further 

assess the relative performance of the two measures, the authors run a real-time forecasting 

exercise. They compare root mean-squared forecast errors (RMSEs) for various horizons and 

using the core measure defined over alternative monthly intervals. The message is that both 

measures are better forecast of headline inflation than headline itself, but there is no clear 

winner. Another dimension investigated by Luciani and Trezzi is the sensitivity to data revisions, 

measured as the difference between current vintage estimates and real time estimates. On this, 

they found that revisions for the trimmed mean are both smaller and less volatile.   

As for the median inflation as a core measure, its properties have been recently discussed by 

Ball and Mazumder (2019) relative to the standard core measure, and by Carroll and Verbrugge 

(2019) in a three-way comparison also including the trimmed mean.  

The latter analysis is conducted over a sample covering 1984 to 2016 and its main results can 

be summarized as follows. All three measures are simple to compute and relatively easy to 

explain (except for the rationale for the asymmetric trimming). Both trimmed mean and median 

are smoother measures than standard core and are all significantly less volatile than headline. 

Trimmed mean and median inflation present some modest upward bias – measured as the 

difference from the average headline measure, but such bias is stable, while standard core 

exhibits an unstable bias over time. 

As for each measure’s ability to track inflation trend historically, where for a measure of 

historical trend they use a 2-stage centered moving average trend (2SMA),28 the results appear 

sensitive to whether one considers monthly versus 12-month movements. The trimmed mean 

provides a best tracking of trend on a monthly basis, while the xFE core is more accurate as a 

year over year measure. 

Carroll and Verbrugge (2019) also compare the relative forecasting ability of the three 

measures: they evaluate out-of-sample predictability of headline PCE on horizons of 6, 12 and 

24 months via rolling-window regressions. In this exercise, the median PCE inflation has better 

forecasting ability at longer horizons before mid-2007, but xFE core does better post mid-2007, 

at all horizons.   

Overall, these results point out that it is difficult to systematically improve upon simple core 

measures: however, there are differences in performance depending on time aggregation (i.e., 

whether a 6-month or a 12-month average is a better choice), on the sample period and on the 

measure. 

The comparative studies discussed so far evaluate only cross-sectional core measures and 

cover pre-pandemic samples. We next conduct our own comparison of all the core measures 

discussed in this chapter using a long sample and focusing on these measures’ ability to predict 

future inflation. 

 
27 In a similar comparison, Dolmas and Koenig (2019) find that mean inflation rates computed from first-releases of 

the two measures against the mean headline PCE figure (computed from the latest-vintage) show a small downward 

bias of the PCExFE. 

28 This measure was one of those considered in Higgins and Verbrugge (2015). 
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4.1. A new comparison of core measures including the COVID-19 pandemic 

 

  The sample we use for this analysis begins in January 1978 (the earliest date for which all 

the measures are available) and ends in December 2023. Importantly, our sample includes the 

COVID-19 pandemic and the subsequent inflation surge, in addition to cover the high-inflation 

period of the late 70s as well as periods of more stable prices.   

        To illustrate the impact of the inflation regime on the properties of the measures, we also 

report comparisons based on three subsamples. These are (i) a Great Moderation sample (from 

January 1984 to December 2007), (ii) a pre-pandemic sample (from January 1984 to December 

2019), and (iii) a high-inflation sample (from January 1978 to December 1983 and from January 

2020 to December 2023).  

        As metric for comparison, we look at the ability of different measures of core inflation to 

predict future inflation in real time. To understand why this is informative, consider again our 

decomposition of observed aggregate inflation into its persistent and noise components: 

𝜋𝑡 = 𝜏𝑡 + 𝜀𝑡 . 

We are interested in comparing the estimate of core inflation at the end of the sample 𝜏̂𝑇 with the 

out-of-sample average inflation for some horizon 𝐻, 

𝜋̅𝑇(𝐻) =
1

𝐻
∑ 𝜋𝑇+ℎ

𝐻

ℎ=1

=
1

𝐻
∑ 𝜏𝑇+ℎ

𝐻

ℎ=1

+
1

𝐻
∑ 𝜀𝑇+ℎ

𝐻

ℎ=1

. 

Since 𝜏𝑡 is persistent and 𝜀𝑡 is not, 𝜋̅𝑇(𝐻) should be close to true core inflation at the end of the 

sample 𝜏𝑇 for moderate-to-large 𝐻. The choice of 𝐻 is non-trivial. Higher values reduce the role 

of the noise components (thanks to their averaging out to their zero mean) but increases the 

probability of shocks that affect out-of-sample values of 𝜏𝑡. Below, we look at horizons of 𝐻 =

6, 12 and 24 month out of the sample. 

        For the cross-sectional measures, as mentioned before, an important choice is the level of 

time aggregation. To explore the consequences of this choice, we will use 1-month, 6-month and 

12-month rates for PCE inflation excluding food and energy (PCExFE) and trimmed-mean PCE 

inflation. For the median PCE inflation rate, since it has no official 6-month version we report 

only 1-month and 12-month rates. 

       In addition to the cross-sectional measures, we report results for the MCT inflation estimate 

computed by the New York Fed. As we said before, this measure belongs to the approach that 

combines both cross-sectional and time series smoothing to estimate core inflation. All measures 

are compared by means of the root mean-square error (RMSE).   

        The results are organized as follows: Full sample RMSEs are in table 1, while those for the 

three subsamples are respectively in table 2 (Great Moderation); table 3 (Pre-pandemic period); 

and table 4 (High-inflation sample).  

 

       A summary of the patterns we find is as follows: 
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(i) The predictability of inflation (measured by the minimum RMSE) changes significantly 

across sub-periods, with inflation being more predictable in the Great Moderation sample and 

less predictable in the High-inflation sample. 

 

(ii) The optimal level of time aggregation for the cross-sectional measures varies across sub-

periods. In the Great Moderation sample, for instance, 12-month or 6-month cross-sectional 

measures tend to perform better than the 1-month measures. In the High-inflation sample 

instead, for some of the cross-sectional measures the 1-month rate dominates.29 This suggests 

that in periods of high inflation, compared to periods of price stability, the variance of shocks 

to the core component of inflation tends to be higher relative to the noise component. 

 

(iii) Trimmed mean and PCExFE inflation rates tend to outperform the median PCE. 

 

(iv)  Time series smoothing usually achieves the best performance in all the subsamples. This 

suggests that weighting the data as a function of their signal-to-noise ratio is generally a good 

idea. 

 

 

TABLE 1. Full sample (Jan1978-Dec2023) 

 

MEASURE 𝐻 = 6 𝐻 = 12 𝐻 = 24 

PCExFE 

• 1-month 

• 6-month 

• 12-month 

 

• 1.82 

• 1.44 

• 1.54 

 

• 1.72 

• 1.36 

• 1.44 

 

• 1.77 

• 1.39 

• 1.45 

Trimmed-mean PCE 

• 1-month 

• 6-month 

• 12-month 

 

• 1.52 

• 1.48 

• 1.55 

 

• 1.38 

• 1.34 

• 1.41 

 

• 1.33 

• 1.28 

• 1.34 

Median PCE 

• 1-month 

• 12-month 

 

• 1.63 

• 1.65 

 

• 1.49 

• 1.50 

 

• 1.41 

• 1.42 

MCT inflation • 1.46 • 1.35 • 1.35 

 

 

 

 
29 This result is consistent with the result of McCraken and Ngan (2024) on the ‘content horizon’ of core 

PCE inflation as forecast of headline PCE inflation. They find that the forecast accuracy of core PCE is 

high at shorter time horizons, and increased in the post 2021 period, when inflation started to accelerate. 



22 
 

TABLE 2. Great Moderation (Jan1984-Dec2007) 

 

MEASURE 𝐻 = 6 𝐻 = 12 𝐻 = 24 

PCExFE 

• 1-month 

• 6-month 

• 12-month 

 

• 1.57 

• 1.00 

• 1.02 

 

• 1.51 

• 0.92 

• 0.90 

 

• 1.47 

• 0.81 

• 0.81 

Trimmed-mean PCE 

• 1-month 

• 6-month 

• 12-month 

 

• 1.08 

• 0.93 

• 0.94 

 

• 0.98 

• 0.82 

• 0.81 

 

• 0.90 

• 0.70 

• 0.72 

Median PCE 

• 1-month 

• 12-month 

 

• 1.21 

• 1.08 

 

• 1.11 

• 0.96 

 

• 1.04 

• 0.91 

MCT inflation • 0.99 • 0.90 • 0.75 

 

 

 

 

TABLE 3. Pre-pandemic period (Jan1984-Dec2019) 

 

MEASURE 𝐻 = 6 𝐻 = 12 𝐻 = 24 

PCExFE 

• 1-month 

• 6-month 

• 12-month 

 

• 1.60 

• 1.22 

• 1.23 

 

• 1.43 

• 0.99 

• 0.94 

 

• 1.36 

• 0.84 

• 0.82 

Trimmed-mean PCE 

• 1-month 

• 6-month 

• 12-month 

 

• 1.30 

• 1.21 

• 1.22 

 

• 1.05 

• 0.95 

• 0.94 

 

• 0.92 

• 0.77 

• 0.77 

Median PCE 

• 1-month 

• 12-month 

 

• 1.43 

• 1.36 

 

• 1.20 

• 1.10 

 

• 1.06 

• 0.94 

MCT inflation • 1.22 • 0.95 • 0.79 
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TABLE 4. High-inflation sample (Jan1978-Dec1983 & Jan2020-Dec2023) 

 

MEASURE 𝐻 = 6 𝐻 = 12 𝐻 = 24 

PCExFE 

• 1-month 

• 6-month 

• 12-month 

 

• 2.47 

• 2.08 

• 2.37 

 

• 2.57 

• 2.31 

• 2.60 

 

• 2.99 

• 2.73 

• 2.92 

Trimmed-mean PCE 

• 1-month 

• 6-month 

• 12-month 

 

• 2.18 

• 2.21 

• 2.43 

 

• 2.27 

• 2.32 

• 2.53 

 

• 2.44 

• 2.50 

• 2.69 

Median PCE 

• 1-month 

• 12-month 

 

• 2.21 

• 2.45 

 

• 2.31 

• 2.52 

 

• 2.42 

• 2.67 

MCT inflation • 2.14 • 2.34 • 2.69 

 

 

 

 

 

5. Core measures tracked in other jurisdictions 

 

Central banks in most advanced economies also rely on a variety of core measures to assess 

the persistence of inflationary pressures building into their targeted price index. The type of 

measures, as well as the frequency by which these measures feature in official communications 

varies.  

As in the U.S., core measures in other economies often include both exclusion-based 

measures and model-based measures. The European Central Bank (ECB) for example, where the 

inflation objective is stated in terms of the Harmonized Index of Consumer Prices (HICP), uses 

several ‘underlying’ inflation measures (a term they use as more general than core to indicate 

measures of persistent pressures) for its comprehensive assessment of inflation.30 In addition to 

variants of the standard ex-food and energy measure (such as excluding only energy, only energy 

and unprocessed food), other measures monitored by the ECB follow either a cross-sectional 

smoothing approach, such as trimmed-means and weighted medians, or a model-based approach 

to provide a more solid theoretical ground for the assessment of persistence. 

Two measures of the latter kind are the Persistent and Common Component of Inflation 

(PCCI) and the Supercore. The PCCI is a measure derived from a dynamic factor model 

 
30 The term underlying inflation is recurrent and well-defined in ECB public communication: see for 

example Lane, 2023.  
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estimated on a large set of HICP items from twelve euro area countries: the model extracts 

common and persistent components from this set and aggregates them using HICP weights. A 

version of the PCCI that excludes energy is also computed. The PCCI is based only on price data 

and its theoretical framework is similar to that of the MCT model we discussed for the U.S. The 

Supercore belongs instead to a class of measures that include more than just price components 

for their construction: based on models that link inflationary pressures to domestic demand, the 

Supercore is obtained by aggregating core HICP items that are sensitive to economic slack.  

The metrics used by ECB staff for evaluating the measures’ performance are also similar to 

those discussed for the U.S. Overall, while most measures provide useful signal for assessing 

euro area inflation over the medium term, their relative forecasting performance varies over time. 

Importantly, recent assessments covering the pandemic-related inflation episode find that more 

slowly reverting transitory element can cloud the readings of underlying inflation measures.31  

A range of exclusion-based measures is also tracked by the Bank of England32 and the 

Norges Bank for CPI inflation,33 and by the Riksbank for the CPIF (CPI with fixed interest rate); 

they are either variously reported in official publications of the central banks, or regularly 

published on their websites.  

Interestingly, only the Bank of Canada indicates explicitly the use of core inflation measures 

as operational guides for its inflation-control strategy.34 

 

6. Concluding remarks 

 

In this chapter we introduce the concept of core inflation and discuss issues around its 

measurement. We provide a unified framework to interpret some widely used core measures in 

the U.S. and elsewhere and compare their relative properties.  

Our analysis of core measures for the U.S. PCE inflation over a sample covering the 

pandemic inflation episode suggests that weighting the data as a function of the signal-to-noise 

ratio provides a good core measure. 

 

 

 

 
31 Banbura et al (2023) provides a recent discussion of underlying inflation measures for the euro area. For more 

detail on the various measures, see Ehrmann et al. (2018). 

32 See Monetary Policy Report - February 2024 | Bank of England 

33 An important underlying inflation indicator used by the Norges Bank in its inflation assessment is the 

CPI adjusted for tax changes and excluding energy products (CPI-ATE), see Norges Bank’s monetary policy 

strategy statement (norges-bank.no)  

34 “The Bank’s two “preferred measures of core inflation are the CPI-trim, which excludes CPI components whose 

rates of change in a given month are the most extreme, and CPI-median, which corresponds to the price change 

located at the 50th percentile (in terms of basket weight) of the distribution of price changes.” Canada’s inflation-

control strategy in Monetary Policy Report - January 2024 (bankofcanada.ca) 
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