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Abstract 

We introduce a new regression diagnostic, tailored to time-series and panel-data regressions, which 

characterizes the sensitivity of the OLS estimate to distinct time-series variation at different frequencies. 

The diagnostic is built on the novel result that the eigenvectors of a random walk asymptotically 

orthogonalize a wide variety of time-series processes. Our diagnostic is based on leave-one-out OLS 

estimation on transformed variables using these eigenvectors. We illustrate how our diagnostic allows 

applied researchers to scrutinize regression results and probe for underlying fragility of the sample OLS 

estimate. We demonstrate the utility of our approach using a variety of empirical applications. 
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1 Introduction

Time-series models are the main tool for evaluating the dynamic effects of macroeconomic shocks

and policy actions. Features of economic data, such as stochastic and deterministic trends, can give

rise to spurious relationships. Moreover, economic and statistical data transformations can induce

different degrees of persistence in the model variables that may result in unbalanced regressions and

misleading inference, or mask genuine relationships. Because of the strong dependence in economic

variables, natural robustness and diagnostic checks for time-series regressions are less prevalent

than in cross-sectional models.

In a cross-sectional setting, a variety of formal and informal tools are used to scrutinize the

contribution of single or groups of observations to sample-wide estimates. However, these methods

do not extend naturally to time-series regressions because of the time ordering of observations. For

example, applied researchers, wary of influential observations affecting the external validity of their

empirical results, have, for instance, compared the OLS estimator to one that is calculated with

a single observation removed (i.e., the leave-one-out estimator). In contrast, when observations

are dependent – as is typically the case in time-series, panel-data or spatial regression models –

this approach no longer isolates the distinct contribution from a single observation on the sample

estimate. Our aim is to re-purpose this useful diagnostic approach so as to accommodate these

more general setups.

In this paper, we introduce a new regression diagnostic that is tailored to the time-series setting

and allows researchers to assess the robustness of any set of linear regression results. Our diagnostic

relies on the same leave-one-out approach as in the cross-sectional case but we apply it to data that

have been suitably rotated. To do so, we use orthornormal trigonometric basis functions generated

by the eigenvectors of the variance matrix of a random walk. Working with these rotated data

allows us to interpret leave-one-out OLS estimates as revealing the contribution from different

frequencies to the overall OLS estimate. Underpinning our approach is a new result showing that

our choice of basis functions orthogonalizes a wide class of time series processes which ensures that

each frequency’s contribution is (asymptotically) distinct. We provide “rule of thumb” bounds

to guide empirical researchers on when the contribution from a single frequency is atypical and

deserves further scrutiny.

We view our new diagnostic as a complement to existing robustness checks and other tools
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already available in the literature such as out-of-sample evaluation, sample splitting, and checking

for conventional outliers (e.g., the presence of a financial crisis in the sample). One key benefit

of our diagnostic is that it is well-suited to address longstanding problems in applied time-series

analysis such as the influence of low-frequency behavior on parameter estimates. Out-of-sample

and sub-sample analysis, by removing a large share of observations, are ill-equipped to analyze

these types of issues. As another example, the classical spurious regression problem arises because

of the “...commonality of trending mechanisms in data” (Phillips, 1998, p.1299). This suggests a

high sensitivity of parameter estimates to certain frequencies which can be easily assessed using

our diagnostic.

We demonstrate the appeal of our new diagnostic by revisiting five recent papers in the Eco-

nomics literature: Philippon and Reshef (2012), Farber et al. (2021), Barnichon and Mesters (2020),

Nakamura and Steinsson (2014), and Hazell et al. (2022). In each of these applications, our diag-

nostic highlights important properties of the estimated specification. In particular, we show how

our diagnostic can be used to assess the influence of common trending behavior on the empirical

result, can illuminate cases where a single frequency is the main driver of the empirical result,

and can highlight cases where the OLS point estimate is fragile with respect to multiple differ-

ent frequencies. We also show how our diagnostic is a more general and principled way to assess

robustness to trending behavior than the the conventional use of time polynomials.

Our paper is most related to the literature on spectral and band-pass regressions. The seminal

work in this literature is Hannan (1963a,b). In the Economics literature, Engle (1980b), and Engle

(1980a) use the discrete Fourier transform to perform estimation in the frequency domain and to

form tests comparing parameter estimates over split sub-intervals of frequencies by partitioning the

spectrum (see also Engle and Gardner, 1976; Harvey, 1978). More recently, Corbae et al. (1994)

and Corbae et al. (2002) extend the spectral regression framework to settings with stochastic and

deterministic trends. Our paper is also related to Phillips (1998) and a series of papers starting

with Müller and Watson (2008) and summarized in Müller and Watson (2024a) which exploit the

representation of a time series as weighted sum of (approximately) orthogonal trigonometric basis

functions. Phillips (1998) utilizes this property as an alternative device to understand the properties

of spurious regressions. Müller and Watson (2024a) make use of a similar set of basis functions

as in this paper but focus only on the low-frequency portion of the spectrum, developing tools for
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characterizing the low-frequency variation and co-variation in economic time series.

In this paper, we propose an alternative approach to spectral regression relying on a different

class of basis functions rather than the discrete Fourier transform. One important difference is

that the discrete Fourier transform fails to orthogonalize highly persistent time series (Corbae

et al., 2002) whereas Crump and Gospodinov (2021) show that the basis functions we use can

approximately orthogonalize a highly-persistent spatial autoregression. We generalize this result to

a wide class of time series processes including classical stationary processes.

In contrast to the existing literature, our interest lies in understanding if any single frequency

plays a prominent role in informing the estimate of parameters of a regression model. In that sense,

our paper is related, in spirit, to the leave-one-out estimation in cross-sectional applications and

their associated regression diagnostics (Belsley et al., 1980).

We formally introduce our class of basis functions and motivate the form of our regression

diagnostic in Section 2. In Section 3, we separately outline our diagnostic procedure for time-series,

panel-data and spatial models. In Section 4, we propose conservative bounds to guide the user in

the implementation of our diagnostic and in Section 5 we illustrate its application in a number of

empirical examples. Section 6 concludes. Additional technical discussion, simulation evidence, and

proofs of the main results are available in an Appendix.

2 Motivation

Consider the standard linear time-series model,

yt = α+ xtβ + εt, t = 1, . . . , T, (1)

where xt is a scalar. Here, the parameter β could represent the slope coefficient under the as-

sumption of a linear conditional expectation function (i.e., E[yt|xt] = α + xtβ) or the slope of the

best linear predictor under regularity conditions on the joint distribution of {(yt, xt)}Tt=1. In either

case, a direct implication of equation (1) is that the systematic behavior of the process yt, at all

frequencies, is pinned down by the behavior at the corresponding frequency of xt. Said differently,

the linear relation imposes tight restrictions on how yt varies at different frequencies.

We can solidify this intuition by translating the linear model in equation (1) to the frequency
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domain. Let Ψ ≡ [ψ1 · · · ψT ] be a T×T matrix which collects a set of trigonometric basis functions.

In the next section, we will formally introduce Ψ and its associated properties, but for now it suffices

to only note that Ψ is an orthonormal basis, i.e.,

ΨΨ′ = Ψ′Ψ = IT . (2)

To make things concrete, Figure 1 plots ψj for some selected values of j for T = 200.1 Each ψj

represents a sinusoidal function with different periodicities corresponding to a specific frequency.

Clearly, the first and second basis functions (shown in the top row of Figure 1) represent the very

low-frequency behavior of a series; however, as j grows the periodicity shrinks and the frequency

falls. We can observe this latter property in the bottom row of Figure 1 which shows ψ5 and ψ10.

Figure 1. Examples of Basis Functions. This figure shows selected basis functions based on the choice
of Ψ, as given by equation (8), for T = 200.

ψ1 ψ2

ψ5 ψ10

1As will be shown in the next section, Ψ changes with T , although the shapes of the basis functions stay the same.
We suppress this dependence for notational simplicity.
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If we stack equation (1) as

y = αιT +Xβ + ε, (3)

where ιT is a T × 1 vector of ones. We can then pre-multiply by Ψ′ to obtain the transformed

model,

Ψ′y = α ·Ψ′ιT +Ψ′Xβ +Ψ′ε. (4)

The model in equation (4) can be rewritten as

w = α · ζ + Zβ + u, (5)

where w = Ψ′y, ζ = Ψ′ιT , Z = Ψ′X, and u = Ψ′ε. To interpret these new objects, note that

w = Ψ′y = (Ψ′Ψ)−1Ψ′y, (6)

using equation (2). In words, w is the (T × 1) OLS coefficient obtained by regressing y on each ψj

for j = 1, . . . , T . For example, w1 is the OLS coefficient from regressing yt on ψ1,t (see the top left

plot in Figure 1) and represents the lowest frequency contribution to the process yt.

Equation (5) shows how the coefficient β, just as in the time domain, connects the yt and xt in

the frequency domain as well. However, in the frequency domain we interpret each observation in

w and z differently. In particular, consider the leave-one-out (LOO) OLS estimator, β̂(−j), obtained

by removing the jth observation in equation (5). This LOO estimator, β̂(−j), is the estimate of β

when we omit information in the frequency corresponding to the jth basis function ψj . We can

then make the comparison to β̂ by inspecting the distance,

β̂ − β̂(−j). (7)

Thus, the expression in equation (7) represents the impact of information from this specified fre-

quency on the OLS estimator. This follows because the OLS estimator of equation (3) and equation

(5) are analytically equivalent (see equation (17) below); consequently, β̂ can be used as the refer-
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ence point. If the gap in equation (7) is “large” (by some metric), then that implies the specific

frequency has an outsize influence on the OLS estimate.

2.1 A Useful Transformation

We now define our choice of Ψ. Let x = (x1, . . . , xT )
′ be a Gaussian random walk with an initial

condition of zero and innovation variance σ2. Then, it is straightforward to show that x ∼ N (0,Σ),

where Σ = σ2 · LTL
′
T and LT is a T × T lower triangular matrix of ones. Define the following

orthogonal trigonometric basis, ψj = (ψ1,j , ..., ψT,j)
′, where

ψh,j =
2√

2T + 1
sin

(
h(2j − 1)π

2T + 1

)
. (8)

Following Tanaka (2017), for example, it can be shown that

Ψ′ΣΨ = Λ, (9)

where Λ is a diagonal matrix with jth diagonal element given by

λj =
σ2

2− 2 cos
(
(2j−1)π
2T+1

) . (10)

Said differently, each ψj is an eigenvector of the matrix Σ with an associated eigenvalue of λj . Let

z = Ψ′x and note that V(z) = Λ; thus, this transformation diagonalizes the variance matrix of the

random walk.

We may combine the results thus far to obtain the following characterization of x:

x =
(
ΨΨ′)x = Ψ

(
Ψ′x

)
= Ψz =

T∑
j=1

ψjzj , (11)

where zj is the jth element of z. This implies an alternative representation of a Gaussian random

walk of length T as

x =d

T∑
j=1

ηjψj , (12)

where ηj ∼ N (0, λj) and =d denotes equivalence in distribution.
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Figure 2. Approximation of a Random Walk Process. This figure shows different approximations of
a realized random walk process (T = 200) based on the representation given in equation (12). The grey line
denotes the realized time series whereas the black line denotes the approximation using different choices for
the number of basis functions.

x̂ = η1ψ1 x̂ =
∑5

j=1 ηjψj

x̂ =
∑10

j=1 ηjψj x̂ =
∑50

j=1 ηjψj

Equation (12) demonstrates that we can represent a Gaussian random walk as a weighted linear

combination of these (deterministic) basis functions, where the weights are independent (but not

identically distributed) Gaussian variables. To cement this intuition, Figure 2 shows a particular

realization of a random walk with T = 200 for different partial sums of the summation in equation

(12). The figure illustrates how these random coefficients play the role of determining the realized

properties of the time series. With just the first basis function (top left chart of Figure 2), we

can trace the broad downward trend in the series.2 When we add the next few basis functions,

the low-frequency “cyclical” behavior becomes established (top right chart). By continuing to add

2The periodicity of each basis function can be obtained from equation (8) as 2(2T+1)
2j−1

. For example, when T = 200
and j = 10 (i.e., ψ10 from Figure 1), then the period is approximately 42. This is most easily observed by the gap
between two peaks in the bottom right chart of Figure 1.
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higher-frequencies, we can fully characterize the time-series behavior of the underlying process

(bottom row of Figure 2).

Conversely, suppose that x now follows a white noise process with innovation variance σ2 so

that x ∼ N (0,Σ), where Σ = σ2 · IT . By equation (2), we have that

Ψ′ΣΨ = σ2 · IT . (13)

Said differently, each ψj is also an eigenvector of the matrix Σ with an associated (repeated) eigen-

value of σ2. If z = Ψ′x, we have that V(z) = σ2IT ; thus, this transformation also orthogonalizes

the variance matrix of a white noise process. More generally, the following lemma shows that Ψ

asymptotically orthogonalizes a large class of weakly-dependent time series process.

Lemma 1. Let x be a strictly stationary time series with associated autocovariance function γ(r) =

Cov(xt, xt−r). Assume that ra · γ(r) → cγ as r → ∞ for |cγ | bounded and a > 1. Then, for all

j, k ∈ {1, .., T} with j ̸= k,

(i) Cov(ψ′
jx, ψ

′
kx) = O(T 1−a) when a ∈ (1, 2);

(ii) Cov(ψ′
jx, ψ

′
kx) = O(ln(T )T−1) when a = 2;

(iii) Cov(ψ′
jx, ψ

′
kx) = O(T−1) when a > 2.

Proof: See Appendix A.4.

Lemma 1 shows that for any two vectors ψj and ψk (j ̸= k), the weighted sums, ψ′
jx and ψ′

kx,

have a covariance which converges to zero with the sample size. Further, Lemma 1 characterizes

how the rate of decay of the autocovariance function affects the speed of convergence at which

the basis functions suppress covariation in the transformed process. When a is small, so that γ(r)

converges to zero relatively slowly as r grows, then the rate of convergence of Cov(ψ′
jx, ψ

′
kx) to

zero is slower. In contrast, for stationary ARMA processes which feature exponential decay in their

autocovariance function, the convergence occurs at the rate T−1. Since Lemma 1 deals with strictly

stationary processes, we can immediately conclude that Corr(ψ′
jx, ψ

′
kx) inherits the same rates as

given for Cov(ψ′
jx, ψ

′
kx).

Lemma 1 includes all stationary processes with absolutely summable autocovariances but the

assumptions rule out long-memory processes which are characterized by
∑

r |γ(r)| = ∞. However,
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a direct implication of Lemma 1 is that long-memory time series generated by independent sums

of granular short-memory processes will also be asymptotically orthogonalized by Ψ. For example,

consider the well-known result of Granger (1980) that a sum of sufficiently many independent

stationary processes exhibits long-memory. When xl,t ∼ AR(1) with autoregressive coefficient

ρl ∼ Beta(p, 2− 2d), then x̄t ≡
∑N

l=1 xl,t is approximately integrated of order d. When N = o(T ),

Lemma 1 implies that Cov(ψ′
kx̄, ψ

′
j x̄) = o(1).

Although Lemma 1 covers a wide range of processes, there are some time-series processes for

which the asymptotic orthogonalization does not completely hold. In the Appendix, we show that

autoregressive processes with a coefficient satisfying ρT = 1− c/T for c > 0 (so-called local to unity

autoregression) along with fractionally-differenced processes have some pairs, ψ′
jx and ψ′

kx for

which the correlation does not converge to zero with the sample size (see Lemma A.1 in Appendix

A.2). However, we also show that the residual correlation which remains after the transformation

is applied is small – a maximum of around 20% for ψ′
1x and ψ′

2x, and near zero for all other pairs.

In Appendix A.3, we provide a simulation exercise demonstrating that, across a range of processes,

the residual correlation is small even for modest sample sizes.

There are related trigonometric basis functions that we could consider using rather than Ψ.

For example, the discrete cosine transform (DCT) used by Müller and Watson (2008) is intimately

related to Ψ, except that each basis function is shifted to be mean zero. Consequently, the DCT

does not result in an orthonormal basis, which is a property we require in order to ensure the

invariance of the OLS estimator. Conversely, the discrete Fourier transform (DFT) does form an

orthonormal basis, but it cannot asymptotically orthogonalize persistent processes like a random

walk (Hannan, 1973; Lahiri, 2003; Dwivedi and Subba Rao, 2011). Moreover, the DFTs do not

include basis functions with pronounced low-frequency behavior as Ψ does (see Figure 1). We

illustrate the favorable performance of Ψ relative to the DFT in our simulation experiments in

Appendix A.3.

In sum, the transformation Ψ has the appeal of decomposing the time series into (asymptoti-

cally) orthogonal contributions from different frequencies. We will exploit this property in the next

section to introduce our new diagnostic.
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3 A New Regression Diagnostic

3.1 Time Series Regressions

Suppose we are interested in the coefficients β ∈ Rk of

yt = α+ x′tβ + εt, t = 1, . . . , T. (14)

Again, this model can be stacked as,

y = αιT +Xβ + ε, (15)

where ιT is a T × 1 vector of ones. As before, we can premultiply equation (15) by the basis

functions Ψ′ to obtain,

w = α · ζ + Zβ + u, (16)

where Z = Ψ′X is now a T × k matrix. By equation (2), it is immediate that the OLS estimator

is invariant to this transformation of the data. Define X = [ιT X] and Z = [ζ Z]. Then,

α̂
β̂

 = (X′X)−1X′y = (X′ΨΨ′X)−1X′ΨΨ′y = (Z′Z)−1Z′w. (17)

Based on the results of the previous section, rotating the explanatory and dependent variables

through Ψ renders the resultant variables approximately uncorrelated. As such, we can remove the

distinct contribution of a single “observation” j from our sample and compare this LOO estimate

to the full-sample OLS estimate.3

Let w(−j) and Z(−j) be w and Z with the jth row (wj and Zj , respectively) removed.4 Then,

α̂(−j)

β̂(−j)

 =
(
Z′
(−j)Z(−j)

)−1
Z′
(−j)w(−j) =

(
Z′Z− ZjZ

′
j

)−1 (
Z′w − Zjw

′
j

)
. (18)

3Of course, we could also remove more than one observation, removing the influence from multiple frequencies.
4We can use the Sherman-Morrison-Woodbury formula to write these leave-one-out estimators in a more convenient

form which allows for more efficient computation. We have that (α̂, β̂)′ − (α̂(−j), β̂(−j))
′ = (X′X)−1Zj ûj/(1 − pjj),

where pjj = Z′
j(X

′X)−1Zj .
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To provide additional intuition for this object, note that we can equivalently obtain (α̂(−j), β̂
′
(−j))

by regressing yt on a constant, xt, and ψt,j , that is, the original regressors plus the additional

control variable ψj .

Lemma 2. Let α̃(−j) and β̃(−j) be the solutions to the following:

(
α̃(−j), β̃

′
(−j), δ̃

)
= arg min

α,β,δ

T∑
t=1

∣∣yt − α− x′tβ − ψt,jδ
∣∣2. (19)

Then, α̃(−j) = α̂(−j) and β̃(−j) = β̂(−j).

Proof: See Appendix A.4.

Lemma 2 shows that, by the Frisch-Waugh-Lovell Theorem, we can obtain (α̂(−j), β̂
′
(−j)) by

residualizing y and X with respect to the jth basis function, ψj , and use the resultant series to

calculate the LOO OLS estimate. Lemma 2 holds immediately by the partition regression formula

and because Ψ forms an orthonormal basis.

Using the LOO estimate from equation (18), we can define our new regression diagnostic as

DfqBetaℓ,j =
e′ℓ

(
β̂ − β̂(−j)

)
√
e′ℓV̂β̂eℓ

, (20)

where V̂β̂ is an estimate of the variance-covariance matrix of β̂ and eℓ is a selection vector for

the element ℓ ∈ {1, ..., k}.5 In words, our diagnostic reflects the importance of a single frequency

to the estimated coefficient. We scale the difference in the numerator by the estimated standard

deviation of the coefficient estimate to provide a sense of how large this difference is in terms of the

estimator’s variability. The diagnostic is similar in spirit to the conventional regression “difference

in beta” (so-called DfBeta which is implemented in Stata as dfbeta; see Belsley et al., 1980,

for details) except that we assess the influence from the frequency associated with the jth basis

function rather than the influence from the jth observation.

We should note that there may be alternative choices of scaling (β̂ − β̂(−j)) depending on the

specific application. For example, there may be measures of distance reflecting economic significance

that would be preferred to statistical measures. As an example, in Section 5, we introduce an

5In practice, we may be interested in general linear combinations of the coefficients such as a′β. This case follows
analogously.
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application where β̂(−j) for a specific choice of j, violates the underlying economic theory, suggesting

that the empirical specification is particularly fragile as, without information from that frequency,

the model would be rejected out of hand.

Below, we consider some natural extensions to this diagnostic beyond the time-series regression

model.

3.2 Extension to Panel Data Models

Consider the following balanced panel data model,

yit = αi + x′itβ + ϵit, i = 1, . . . , n, t = 1, . . . , T,

where αi is a unit-specific constant (fixed effect) and xit ∈ Rk are a vector of covariates.6 We can

stack the model as,

Y =
(
y1,1, . . . , y1,T , y2,1, . . . , y2,T , . . . , yn,1, . . . , yn,T

)′
= (α⊗ ιT ) +Xβ + ϵ.

In order to apply our transformation to this model, we define an altered set of basis functions

ΨNT = (IN ⊗Ψ) =


Ψ

.. .

Ψ

 .

As the basis remains orthonormal since Ψ′
NTΨNT = INT , the model and (full-sample) OLS estimate

remain invariant to this transformation. Then, we can apply this transformation to obtain

Ψ′
NTY = (α⊗ ζT ) + Ψ′

NTXβ +Ψ′
NT ϵ,

where, for example,

Ψ′
NTY =

(
Ψ′(y1,1, . . . , y1,T )

′,Ψ′(y2,1, . . . , y2,T )
′, . . . ,Ψ′(yn,1, . . . , yn,T )

′
)′
. (21)

6In practice, we always recommend including unit-specific constants when utilizing the diagnostic.
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Equation (21) shows that applying the transformation Ψ′
NT is equivalent to applying Ψ′ to the time

series for each individual i. To calculate the diagnostic in the panel data case, we remove the jth

observation from each Ψ′(yi,1, . . . , yi,T )
′ for i = 1, . . . , N . Thus, we are removing N observations

reflecting the contribution from the frequency associated with the jth basis function ψj across all

NT observations; thus, β̂(−j) is based on N(T−1) observations. We can then compute our influence

measure DfqBetaℓ,j as before.

Intuitively, applying this transformation has the effect of orthogonalizing the data (Y,X) across

time periods, within each unit. Consequently, we can think of omitting identifying variation at

certain frequencies jointly for all units as means of assessing the fragility of our estimate.7

In the case of balanced panels a generalization of Lemma 2 holds and the LOO estimate, β̂(−j),

retains the property of being equivalent to the OLS estimate, obtained from a model with ψj as an

additional control for each individual; i.e.,

(
α̂(−j), β̂

′
(−j), γ̂1, . . . , γ̂N

)
= arg min

α,β,γ1,...,γN

N∑
i=1

∣∣yi − αiιT −X ′
iβ − ψjγi

∣∣2,
where yi = (yi,1, . . . , yi,T )

′ and similarly for Xi.
8

In practice, panels may be unbalanced, that is we may not observe all time periods for all units.

In order to handle this, we define a selection matrix S ∈ RN̄×(n·T ), where N̄ is the number of

observations in the unbalanced panel.9 We then redefine our basis as

Ψ̃NT = SΨNT ,

such that Ψ̃NT ∈ RN̄×(n·T ). Using these basis functions, we can then compute our influence measure

DfqBetaℓ,j as before.

3.3 Extension to Instrumental Variable Models

We can also naturally extend our influence measure to instrumental variable (IV) models. Specifi-

cally, consider the case where we have a time series IV model (panel IV models are accommodated

7The LOO estimate here is β̂(−j) = (X ′X)−1Z′
j(IN − Pj)

−1ûj , where Pj = Zj(X
′X)−1Z′

j .
8When the panel is unbalanced, this equivalence breaks down, but in most applications the difference between

β̂(−j) and the estimate obtained from the control approach is small.
9A selection matrix resembles an identity matrix with ones on the indices that are observed. Trivially, when

N̄ = n · T , S = InT .
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with slight modifications, as shown above). This can be expressed as

yt = α+ x′tβ + ϵt

xt = g(rt) + vt,

where rt – the instrument vector – satisfies the standard relevance and exogeneity conditions. Let X

and R be the stacked matrices collecting xt and rt, respectively. This model is typically estimated

via two-stage least squares (2SLS); i.e.,

β̂2SLS = (X̂ ′X̂)−1X̂ ′y,

where X̂ = Γ̂R and Γ̂ collects the sample estimates of the best linear predictor of xt given (1, r′t)
′.

We can then define Z = Ψ′X̂ and w = Ψ′y and proceed as in Section 3.1. As is the case for OLS,

the 2SLS estimator, β̂2SLS, is also invariant to the transformation using Ψ.10

3.4 Extension to Spatial Data

We can also consider forms of dependence in the data beyond the simple time series case. In

fact, it straightforward to modify our procedure to spatial series X ∈ RN2
that follows a d = 2

Levy-Brownian motion (as in Müller and Watson, 2024b). Here, N is the cardinality of the sets

X ,Y ∈ RN . Correspondingly, the index set C = X × Y has cardinality N2, where C(i) defines the

location or coordinate where Xi is observed for all i ∈ {1, ..., N2}.

Given that X follows a Levy-Brownian motion, we can describe its covariance matrix Σ ∈

RN2×N2
as

Σi,j =
1

2
(|C(i)|+ |C(j)| − |C(i)− C(j)|),

where |x| =
√
x′x. We can find the matrix Ψ such that

Ψ′ΣΨ = Λ,

10While, in principle, we can consider how the coefficients of the first stage, Γ̂, are affected by the omission of
certain sources of variation, these coefficients are usually not of independent interest and so we do not pursue this
alternative further.
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where Λ is diagonal by performing a numerical eigendecomposition as the solution is not available

in closed form.

More generally, we may have that Nx ̸= Ny, or that the cardinality of the set X is not equal to

the cardinality of the set Y (i.e., when we observe data for a rectangular gridded region). In this

case, the above goes through with minimal alteration.

Even more generally, we may have that C ̸= X ×Y (i.e., when we observe data that is irregularly

sampled over a grid). To deal with this, we can define a set C̃ ≡ X ×Y and a selection matrix S ∈

R(Nx·Ny)×N̄ , where N̄ is the cardinality of C. Then, we can construct a matrix Σ̃ ∈ R(Nx·Ny)×(Nx·Ny),

perform an eigendecomposition on this matrix, and recover Ψ = S′Ψ̃, which provides a linear

transformation that can be used to orthognalize X.

Now, consider the spatial regression model

y = αιN̄ +Xβ + ϵ,

where y, ϵ ∈ RN̄ and X ∈ RN̄×k. As before, we can apply the linear transformation Ψ̃ to this model

and compute DfqBetaℓ,j for ℓ ∈ {1, ..., k} and j ∈ {1, ..., (Nx ·Ny)}.

4 Conservative Bounds for the Diagnostic

To make any diagnostic operational, some guidance on what constitutes an “unusual” value of the

measure must be provided. In this section, we will motivate a “rule-of-thumb” value for DfqBeta

which, when exceeded, invites further scrutiny by the researcher.

First, consider the case where (yt, x
′
t) are strictly stationary. Under regularity conditions, it can

be shown that the numerator of DfqBeta,
(
β̂ − β̂(−j)

)
, is Op(T

−1). Furthermore, by standard

properties of OLS, the denominator is of order Op(T
−1/2). It follows that DfqBeta is Op(T

−1/2),

which suggests that large values should become increasingly rare as T grows. Under cointegration

(i.e., when xt follows a multivariate random walk, and ϵt is white noise), it can be shown that

both the numerator and the denominator are Op(T
−1), so that DfqBeta is Op(1). This suggests

that the degree of persistence of the data plays a key role in establishing the behavior of the

DfqBeta. Moreover, it also suggests that the asymptotic results will be model dependent. In the

spirit of existing regression diagnostics, we will take a conservative approach to constructing our
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recommended bounds, focusing on worst-case scenarios.

Since prediction and forecasting is a primary motivation of empirical macroeconomics and fi-

nance, we will focus on the simple workhorse triangular model of the form:

yt = α+ xtβ + εt (22)

xt = µ+ ρxt−1 + νt. (23)

The two key parameters are β and ρ and for different choices of these parameters and the error

processes, εt and νt, this setup nests the standard cointegration model, the spurious regression

model, and the classical predictive regression model.

We will use this model to guide the choice of our recommended bounds. As most economic time

series are dominated by their low frequency components, we will focus on the first twenty values of

the DfqBeta. As we will see in the next section, this appears sufficient for economic applications.

Figure 3 presents the pointwise 2.5th and 97.5th quantiles of each of the first twenty DfqBeta

values for different values of ρ. We vary the sample size T to be either 50, 100 or 200. The top

row of the figure presents the results for ρ = 0.3 and ρ = 0.5. In these cases, where the dependence

is weak, we can observe that the pointwise quantiles are approximately flat across the different

frequencies. Furthermore, the values are comfortably below 0.5. When the degree of persistence

is moderate to strong, with values of ρ = 0.7 and ρ = 0.9, then we can observe that the envelope

begins to widen at the lower frequencies, especially for smaller sample sizes (see middle row of

Figure 3). Finally, when the degree of persistence becomes extreme, then this widening becomes

more pronounced at the lowest frequencies, peaking for the first DfqBeta at around 3 when ρ = 1

(see bottom row of Figure 3). We can also observe that the results are no longer dependent on the

sample size for either the local-to-unity case or when ρ = 1.

Figure 3 shows that the case of ρ = 1 generates the widest range of values for the lowest

frequency basis functions whereas for smaller values of ρ, the behavior is more uniform across basis

functions. Our proposed bounds are informed by these observations. In Figure 4, we present the

results for T = 200 but now grouped by the values of ρ and set against our recommended thresholds

(see Appendix A.1 for the specific values). The left chart presents the results for ρ ∈ {0.3, 0.5, 0.7}

which we label “weak and moderate” persistence whereas the right chart presents the results for ρ ∈

{0.9, 0.99, 1} which we label “strong and extreme” persistence. We also present our recommended
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Figure 3. Marginal Quantiles of the Regression Diagnostic. This figure presents the 97.5th and
2.5th pointwise quantiles of the DfqBeta using OLS standard errors for the first twenty basis functions.
The data generating process is described by equations (22)–(23) with independent standard Gaussian white
noise errors and β = 1. Results are based on 10, 000 simulations.

ρ = 0.3 ρ = 0.5

ρ = 0.7 ρ = 0.9

ρ = 1− 2/T ρ = 1

guidance bounds for which observations deserve further scrutiny from the researcher.

Comparing the bounds to the pointwise quantiles in the weak and moderate persistence case

emphasizes the conservativeness of our approach as the bounds are substantially wider across all of
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Figure 4. Marginal Quantiles of the Regression Diagnostic. This figure presents the 97.5th and
2.5th pointwise quantiles of the DfqBeta using OLS standard errors for the first twenty basis functions.
The data generating process is described by equations (22)–(23) with independent standard Gaussian white
noise errors and β = 1. The dashed lines denote our recommended thresholds which are given in Appendix
A.1. Results are based on 10, 000 simulations.

Weak and Moderate Persistence Strong and Extreme Persistence

the twenty basis functions. But we also want to be robust to higher persistence and so in the right

chart of Figure 4 we compare the bounds to the ρ = 1 case. The bounds are still sufficiently wide to

comfortably envelop the pointwise quantiles. In fact, when the linear model holds and T = 200, the

cutoffs are exceeded at least once in less than 5% of simulations when ρ = 1, 2.5% of simulations

when ρ = 0.99 and less than 0.4% when ρ = 0.7.11 In contrast, in the classical spurious regression

setting, using the Newey-West estimator of Lazarus et al. (2018), the cutoffs are exceeded at least

once 38% of the time for a sample of size T = 200.

Given the disparate behavior of DfqBeta across different degrees of persistence, one might ask

why we do not recommend different bounds for “stationary” data. In practice, we want to remain

agnostic about the true degree of dependence (since it is unknown) and so we provide bounds that

can be utilized in all applications without pre-testing for unit roots or other similar assessments.

We will see in the next section, that despite our conservative approach, the bounds can still be

informative for studying the stability of the OLS estimator in common applications.

5 Empirical Examples

In this section, we demonstrate the usefulness of our new regression diagnostic across a number

of different empirical applications from recent papers in the Economics literature. In order to

11The cutoffs are exceeded more than once only (4,2,0) times out of 10,000 simulations for ρ = (1, 0.99, 0.7),
respectively.
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operationalize the DfqBeta, we use the standard error associated with the regression coefficient

of interest provided in each paper. We take this choice as given as it provides the appropriate

magnitude to assess the LOO estimates in light of the original OLS results.

Philippon and Reshef (2012)

Philippon and Reshef (2012) study the relation between deregulation in the financial services indus-

try and the increases in wages for workers in that industry. To test for this proposed relationship,

the authors estimate the following time series model on US data

yfint = α+Xt−5β + ϵt, (24)

where yfint is a measure of wages in the financial services industry relative to the average private

wage, and Xt is an index of legislated deregulatory actions. The parameter of interest here is β,

which describes the elasticity of relative wages to (lagged) deregulatory actions. Their reported

value of β̂ is 0.17 with a standard error estimate of 0.0096, obtained as Newey-West standard

errors with a choice of five lags. Consequently, they estimate a highly statistically significant

positive relationship, with a p-value of less than 1%.

What are the important features of the data that give rise to this tight positive relationship? As

this specification represents a univariate time series regression, we can easily visualize the data to

gain some intuition for the properties of the estimate. As can be seen in Figure 5 (and discussed in

Figure 5. Relative Wages and Financial Deregulation. This figure presents the dependent and independent
variables from the regression described by equation (24) from Philippon and Reshef (2012).
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the original paper), the dependent and explanatory variables exhibit a common “U”-shape. While
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this “U”-shape may well be an artifact of the true joint data-generating process, researchers are

typically skeptical of regressions estimated on data with strong, seemingly deterministic trend-like

behavior, as spurious correlations could arise. Consequently, we might want to understand if the

results of this regression are in large part driven by this common trend-like behavior, or if in fact,

the relationship holds even upon controlling for the trend.

Calculating the DfqBeta allows one to control for a variety of flexible periodic functions in a

principled manner (see Lemma 2). We should expect to see movement in the 3rd basis function –

which correpsonds to the “U”-shape – if the estimate of β̂ is in large part informed by variation at

that frequency.

Figure 6. LOO Estimates. This figure presents the LOO estimates of β (see equation (24)) using the main
application in Philippon and Reshef (2012). The left chart presents the ratio of the LOO estimate of β for the first
twenty basis functions relative to β̂ (in percentage terms). The right chart presents the the LOO estimate for the
first twenty basis functions relative to the reported standard error, multiplied by the sign of the original OLS
estimate. Dashed lines denote the recommended bounds.
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Looking at the plots generated by our diagnostic, it is clear that, in fact, the estimate of β

reported in the paper is driven by the deterministic “U”-shape. If we were to control for this basis

function, β̂ would be 60% of the original estimate, which represents an ≈ 8 standard deviation

movement (taking the original standard errors as given). This easily exceeds our recommended

thresholds, which suggest that greater care should be taken in interpreting the estimate that comes

out of the original specification.

That said, the results of applying the diagnostic, are, on the whole, constructive. While the

estimated relationship based on the specification which includes a “U”-shaped trend is not as large
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as the original, it still remains positive and statistically significant at the 1% level. We can assess

the robustness of this relationship to the inclusion of the trend by plotting the residualized time

series (with respect to a constant and ψ3) of the independent and dependent variable, as we do in

Figure 7.12 We observe that even with the “U” shape removed, there is a clear commonality in the

behavior of the two series.

Figure 7. Residualized Relative Wage and Financial Deregulation. This figure presents the residualized
(with respect to ψ3) dependent and independent variables from the regression utilized in Philippon and Reshef
(2012) (see equation (24)).

1920 1940 1960 1980 2000
Year

0.2

0.1

0.0

0.1

0.2

Re
l. 

W
ag

e

1.5

1.0

0.5

0.0

0.5

1.0

1.5

L(
5)

 Fi
n.

 D
er

eg
.

This example shows how our diagnostic can be used to gauge the influence of common trending

behavior on the empirical result.

Farber, Herbst, Kuziemko, and Naidu (2021)

We next revisit the work by Farber et al. (2021) which investigates the relation between income

inequality and the decreasing share of workers that are members of a union (declining union density).

They estimate the following time series regression for the United States

LaborSharet = α+ βUnionDensityt +Xtγ + ϕ1t+ ϕ2t
2 + ϕ3t

3 + ϵt, (25)

where LaborSharet is the labor share of income, UnionDensityt is the share of workers in a union,

andXt is a vector of controls. The last three regressors in equation (25) allow for a cubic polynomial

in time, likely added to account for the trending behavior observed in some variables such as union

density. The parameter of interest is β, or the elasticity of the labor share of income with respect

12A regression of these two series on each other recovers the estimate presented in DfqBeta1,3 by Lemma 2 and
the Frisch-Waugh-Lovell theorem.
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to union density. Farber et al. (2021) report a β̂ of 39.43 with a standard error estimate of 13.21,

robust to heteroskedasticity and serial correlation.

Figure 8 presents the results from our diagnostic to this time-series regression. We first note

that the inclusion of up to cubic polynomials in time has eliminated most of the variation in the

four lowest frequencies. This makes intuitive sense, as linear combinations of the first four basis

functions can be made to resemble a cubic polynomial. However, this does not preclude higher

frequency behavior from playing a key role in driving the value of the OLS estimate. In fact,

Figure 8 shows that the sensitivity to the 17th basis function is high, with the corresponding LOO

estimate about 60% of the initial OLS estimate. The right chart of Figure 8 confirms the unusual

sensitivity as the DfqBeta is 1.1 which exceeds the corresponding bound. Taking the standard

errors as given, this would imply that the estimate goes from being significant at the 1% level, to

marginally significant at the 10% level.

How can we interpret the 17th basis function? Recall that we can obtain the periodicity of the

basis function as 2(2T+1)
2j−1 . Here, we have j = 17 and T = 75 which corresponds to a periodicity of

9.1 years. This is approximately the average length of the business cycle in the post-war US period.

Said differently, the OLS estimator appears to be disproportionately affected by information at the

business-cycle frequency in this application.

Figure 8. LOO Estimates. This figure presents the LOO estimates of β (see equation (25)) using the main
application in Farber et al. (2021). The left chart presents the ratio of the LOO estimate of β for the first twenty
basis functions relative to β̂ (in percentage terms). The right chart presents the the LOO estimate for the first
twenty basis functions relative to the reported standard error, multiplied by the sign of the original OLS estimate.
Dashed lines denote the recommended bounds.
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This example illustrates how our diagnostic is more general and more principled than the
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conventional use of time polynomials that are routinely used to control for trending behavior.

Further, the example shows that higher frequency behavior may also play an influential role in

OLS estimates.

Barnichon and Mesters (2020)

Our next empirical illustration is based on Barnichon and Mesters (2020). In this paper, the

authors estimate the slope of the Phillips Curve. To do so, they employ the following standard

New Keynesian Phillips Curve, estimated using quarterly US data

πt = γbπ
4
t−1 + γfE[π4t+4] + βuct + ϵst , (26)

where πt is annualized quarter-to-quarter inflation, π4t−1 = 1
4(πt−1 + πt−2 + πt−3 + πt−4) is a four-

quarter moving average of inflation, and uct is the detrended unemployment rate.13 They instrument

this equation with g(ϵmt:t−20), a vector of nonlinear transformations of the Romer and Romer (2004)

monetary policy shocks, and estimate the model via 2SLS.14 The coefficient of interest here is β,

which is the slope of the Phillips curve, and, according to theory, should be negative. The authors

report a value of β̂ of −0.42, with a 95% confidence band of [−1.61,−.05], significantly different

from zero.

As discussed in Section 3.3, to apply our diagnostic to an instrumental variables setting, we

take X̂ as given, and assess the sensitivity of the IV estimator of β to information from different

frequencies of y and X̂. Figure 9 presents the LOO estimates of β for this application. The left

chart shows that the LOO estimates range from approximately double the original point estimate

to half the size with the opposite sign. In fact, when the second basis function is removed, the point

estimate shifts from a value of −0.42 to positive 0.22; importantly, this value directly contradicts

the sign restriction implied by standard macroeconomic theory.

In the right chart, we present the LOO estimates directly. Since Barnichon and Mesters (2020)

rely on non-standard asymptotic theory (based on an inversion of a test statistic), there is not a

standard error available as would commonly be the case. Instead, the chart presents the upper

13In the baseline specification, Barnichon and Mesters (2020) use an HP-filter with parameter equal to 1600 to
detrend the unemployment rate.

14Barnichon and Mesters (2020) employ the Almon parametrization which has g(ϵmt:t−20) ≡
[
∑20

l=0 ϵ
m
t−l,

∑20
l=0 lϵ

m
t−l,

∑20
l=0 l

2ϵmt−l].
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2SLS regresssion (left chart and right chart, respectively). Specifically, we residualize quarterly

inflation and the instrumented detrended unemployment rate with respect to the other instrumented

variables. By the Frisch-Waugh-Lovell Theorem, this residualization leaves the estimated coefficient

unchanged at −0.42. In Figure 10, we also show the second basis function, ψ2, scaled by the loading

on each variable. The left chart shows that the second basis function represents the downward trend

in inflation which occurred from the 1970s to the end of the sample. The right chart shows that

the instrumented unemployment gap loads negatively on the second basis function. The positive

loading on the second basis function in the left chart and the negative loading in the right chart is

the source of the the negative sign of the 2SLS estimate. Once removed, we obtain an estimated

positive β using the information from all the other frequencies.15

This example shows how our diagnostic can highlight cases where a single frequency is the main

driver of the empirical result.

Nakamura and Steinsson (2014) and Hazell, Herreño, Nakamura, and Steinsson (2022)

Last, we compare the results from the diagnostic in two related settings where the researchers use

IV panel regressions relying on data from individual states. We will show that the researcher draws

very different conclusions on the fragility of the estimates in these two different applications.

In the first paper, Nakamura and Steinsson (2014) use a panel of U.S. states to estimate the

following model:

Yit − Yit−2

Yit−2
= αi + γt + β

Git −Git−2

Yit−2
+ ϵit, (27)

where Yit is per capita output by state and Git is per capita military procurement by state. The

coefficient of interest is β which represents the fiscal multiplier. Nakamura and Steinsson (2014)

instrument this specification with state dummies interacted with national changes in military pro-

curement (i.e., Gt−Gt−2

Yt−2
). As before, we treat the first stage of the IV estimator as fixed and apply

the diagnostic to the second-stage regression. Nakamura and Steinsson (2014) report an IV estimate

of β of 1.43 with associated standard error of 0.36.

Figure 11 presents the leave-out estimates and diagnostic results for this application. Unlike

in the previous examples, we observe that multiple frequencies are associated with a value of

15In fact, if we drop the first year of data, the estimated β moves to 0.5.
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Figure 11. Leave-Out Estimates. This figure presents the leave-out estimates of β (see equation (27)) using the
main application in Nakamura and Steinsson (2014). The left chart presents the ratio of the leave-out estimate of β
for the first twenty basis functions relative to β̂ (in percentage terms). The right chart presents the the leave-out
estimate for the first twenty basis functions relative to the reported standard error, multiplied by the sign of the
original OLS estimate. Dashed lines denote the recommended bounds.
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DfqBeta that is near or exceeding the bound. For example, after removing the 4th basis function,

the parameter of interest goes to 44% of the original estimate, a value of 0.63, corresponding to

a 2.2 standard deviation change and resulting in a fiscal multiplier estimate below one. A similar

result is obtained by removing the 5th basis function. In contrast, when the 9th basis function

is removed, the fiscal multiplier estimate jumps to 1.97 and the associated DfqBeta exceeds the

recommended bound. The OLS estimate of the fiscal multiplier appears fragile as there are multiple

large DfqBeta values.

We can reinforce the conclusions in the previous application by comparing them to a paper

with a similar empirical strategy. Hazell et al. (2022), using quarterly U.S. state data, estimate a

Phillips Curve via the following specification:

πNit = αi + γt − β
20∑
j=0

ρjui,t+j − λ
20∑
j=0

ρj p̂Ni,t+j + ϵNit , (28)

where πNit is the state-level inflation rate for non-tradeable goods, ρ is a discounting parameter (set

to 0.99), uit is the state-level unemployment rate, and p̂Nit are relative prices of non-tradeable goods.

The parameter of interest here is β, the slope of the Phillips Curve. They estimate the model via

two-sample 2SLS, instrumenting the first stage with four-quarter lagged unemployment ui,t−4 and
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four-quarter lagged relative prices of non-tradeable goods p̂Ni,t−4. In their preferred specification,

they obtain a point estimate of β̂ of 0.0062 and a standard error estimate of 0.0025.16

Figure 12. Leave-Out Estimates. This figure presents the leave-out estimates of β (see equation (28)) using the
main application in Hazell et al. (2022). The left chart presents the ratio of the leave-out estimate of β for the first
twenty basis functions relative to β̂ (in percentage terms). The right chart presents the the leave-out estimate for
the first twenty basis functions relative to the reported standard error, multiplied by the sign of the original OLS
estimate. Dashed lines denote the recommended bounds.
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Figure 12 provides the leave-out estimates and diagnostic values for this application. In contrast

to the case of Nakamura and Steinsson (2014), the leave-out estimates hew closely to the OLS

estimate, especially when scaled by the reported standard error (see right chart). This application

shows remarkable stability of the OLS estimate across frequencies.17

These examples reveal how our diagnostic can illuminate cases where the OLS point estimate

is fragile with respect to multiple different frequencies.

6 Conclusion

Regression diagnostics have proved invaluable to applied researchers as a means to assess the reli-

ability and robustness of their empirical results. Fewer diagnostic procedures are available for the

challenging setting of time series, panel data, and spatial regressions where the data might feature

substantial dependence across space and time. We introduce a novel approach to constructing

regression diagnostics in these settings. For time-series and panel data regressions, the diagnostic

16Standard errors are adjusted for two-sample 2SLS using Chodorow-Reich and Wieland (2020).
17One source of the stability may be the exponential smoothing which dampens the variability of the regressors.
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characterizes the contribution to the OLS estimate from different frequencies. Our proposed diag-

nostic relies on a new result which demonstrates the appealing orthogonalization properties of the

eigenvectors of the variance matrix of a random walk and facilitates the clean interpretation of our

new regression diagnostic.

To remain agnostic about the underlying properties of the true data generating process, we have

proposed conservative thresholds to guide the applied researcher on which values of the diagnostic

signal the need for further scrutiny of the empirical results. We demonstrate the wide applicability

and usefulness of our new approach in five different empirical applications taken from recent papers

in the Economics literature. In each of these applications, our diagnostic highlights important

properties of the estimated specification such as the influence of common trending behavior or the

disproportionate influence of information at certain frequencies.

In general economic settings, the object of interest is the regression coefficient and this has

been the focus of the paper. In other settings, such as empirical asset pricing, the object of

interest is the regression fitted value, which represents the estimated risk premia, or nonlinear

transformations of regression coefficients, which represent the estimated price of risk. We introduce

regression diagnostics tailored for these use cases in a companion paper, Crump et al. (2024b).

The techniques which underpin the regression diagnostics can also be used to construct variance

estimators for time-series, panel-data, and spatial regressions (see Crump et al., 2024a).
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Appendix

A.1 Bounds

The bounds introduced in Section 4, are:

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Upper 4 3.3 2.7 2.2 1.8 1.5 1.3 1.2 1.1 1 1 1 1 1 1 1 1 1 1 1

Lower -4 -3.3 -2.7 -2.2 -1.8 -1.5 -1.3 -1.2 -1.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

A.2 Results for Other Time Series Processes

We consider two additional time series processes. The first one is a modified local-to-unity process

(e.g., Chan and Wei, 1988; Phillips and Magdalinos, 2007), where ρT,a = 1− c
Ta and

xt = ρT,axt−1 + ϵt. (A.1)

When a = 1, this is the conventional local-to-unity process. In Lemma A.1, we describe the

orthogonalization properties of our basis functions for this class of time series processes.

Lemma A.1. Let x be a modified local-to-unity process (as in equation (A.1)) with autoregressive

coefficient ρT,a = 1− c
Ta for c, a > 0. Then, for all j, k ∈ {1, .., T} with j ̸= k,

(i) Cov(ψ′
jx, ψ

′
kx) = O(Tmin(3a−1,3−a));

(i) Corr(ψ′
jx, ψ

′
kx) = O(T−|1−a|).

Proof: See Appendix A.4.

Lemma A.1 readily implies that Corr(ψ′
jx, ψ

′
kx) → 0 as T → ∞ so long as a ̸= 1. When a = 1,

Lemma A.1 instead implies that Corr(ψ′
jx, ψ

′
kx) = O(1) for at least one pair j and k. Numerically,

we can show that the maximum correlation across (j, k) pairs occurs at (1, 2) and is highest when

c ≈ 2, peaking at a value of around 0.20. For all other pairs, the correlation is much closer to zero

(see Section A.3).

The second time series process we consider is an ARFIMA(0, d, 0) model:

(1− L)dxt = ϵt, (A.2)

where x ∼ I(d) for d ∈ R. As in the modified local-to-unity case, we have that Corr(ψ′
jx, ψ

′
kx) =

O(1) for at least one pair j and k. Recall that for d = 0 or d = 1, Corr(ψ′
jx, ψ

′
kx) = 0. Numerically,

we can show that the maximum correlation across (j, k) pairs occurs at (1, 2) and is highest when

d = .5, peaking at a value around 0.23, as shown in Figure A.1. For all other pairs, the correlation

is much closer to zero.
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Figure A.1. Maximum Correlation for Fractionally Integrated Models. This chart shows the maximum
correlation (which occurs at (j, k) = (1, 2)) for different values of d for the fractionally integrated model given in
equation (A.2)

.
Maximum Correlation

A.3 Finite-Sample Evidence

In this subsection, we provide finite-sample evidence regarding the orthogonalization properties of

our choice of basis functions. We consider the following time-series models to generate the data

x = (x1, . . . , xT )
′.

1. AR(1): xt = ρ · xt−1 + ϵt;

2. AR(3): xt = ρ · xt−1 − 0.9ρ · xt−2 + 0.81ρ · xt−3 + ϵt;

3. VAR(1): (xt, yt)
′ = Φ(xt−1, yt−1)

′ + (ϵxt , ϵ
y
t )

′ with Φ =

[
0 1− ρ

0 ρ

]
;

4. LTU (Modified local-to-unity): xt = (1− c
Ta ) · xt−1 + ϵt with a = 0.5, 1 and 1.5;

5. ARFIMA(0, d, 0): (1− L)dxt = ϵt.

We consider two distributions for the error term: standard Gaussian or chi-square with 1 degree

of freedom, properly recentered and rescaled to have mean zero and variance one. For the VAR

model, the errors are drawn from a bivariate standard Gaussian or transformed independent chi-

square(1) random variables with a correlation coefficient of 0.3. All processes are initialized at

zero.

Tables A.1 and A.2 present results for the correlation coefficient, Corr(ψ′
jx, ψ

′
kx), and the two

error distributions. We report the maximum correlation along with the average absolute correlation

across all (j, k) pairs, calculated over 100,000 simulations. As a benchmark for comparison, we also

report the results using the discrete Fourier transform (DFT) to transform the data rather than

the basis functions introduced in Section 2.1.

We start by noting that there is very little difference in the results for Gaussian (Table A.1)

and chi-square(1) (Table A.2) errors which suggests that the results are insensitive to innovations
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with densities that deviate substantially from Gaussianity.18 For AR and VAR processes, the

correlations for both DFT and Ψ basis functions tend to increase with the persistence parameter ρ

although the correlations for the Ψ basis functions are generally much smaller and go to zero faster

as the sample size increases. The differences between the two methods are especially large for the

LTU (with a = 1 and a = 1.5) and the ARFIMA processes. The results for the Ψ basis functions

are in line with the numbers reported in Section A.2 with the average absolute correlations being

essentially zero for all specifications. This is in contrast to the DFT where both the maximum and

average correlations remain non-zero and large in magnitude even when T = 800.

18Results for a Student-t distribution with 3 degrees of freedom and a GARCH(.05, .25, .7) process are also very
similar to those in Tables A.1–A.2 and are not reported.
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Table A.1. Orthogonalization Properties (Gaussian Innovations). This table presents the maximum
absolute correlation and average absolute correlation across all pairs {(j, k) : j, k = 1, . . . , T} where the data have
been transformed using either the jth and kth discrete Fourier transform (DFT) or ψj and ψk.

Discrete Fourier Transform (DFT) Eigenvectors of Random Walk (Ψ)

Max. Abs. Corr. Avg. Abs. Corr. Max. Abs. Corr. Avg. Abs. Corr.

AR(1)
T\ρ .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95

50 0.04 0.08 0.23 0.34 0.02 0.03 0.09 0.17 0.03 0.06 0.16 0.2 0.01 0.01 0 0
100 0.02 0.04 0.14 0.24 0.01 0.02 0.05 0.09 0.02 0.03 0.1 0.16 0 0 0 0
200 0.02 0.03 0.07 0.14 0 0.01 0.03 0.05 0.01 0.02 0.05 0.09 0 0 0 0
400 0.01 0.02 0.04 0.07 0 0 0.01 0.03 0.02 0.02 0.03 0.06 0 0 0 0
800 0.01 0.01 0.02 0.04 0 0 0.01 0.01 0.02 0.02 0.02 0.03 0 0 0 0

AR(3)
T\ρ .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95

50 0.16 0.21 0.34 0.37 0.03 0.04 0.07 0.08 0.16 0.22 0.32 0.33 0.03 0.03 0.04 0.05
100 0.08 0.11 0.16 0.2 0.02 0.02 0.03 0.04 0.08 0.11 0.18 0.2 0.01 0.02 0.02 0.02
200 0.04 0.05 0.08 0.11 0.01 0.01 0.02 0.02 0.04 0.06 0.09 0.1 0.01 0.01 0.01 0.01
400 0.02 0.03 0.04 0.05 0 0.01 0.01 0.01 0.03 0.03 0.05 0.05 0 0 0.01 0.01
800 0.02 0.02 0.03 0.03 0 0 0.01 0.01 0.02 0.02 0.03 0.03 0 0 0 0

VAR(1)
T\ρ .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95

50 0.06 0.1 0.25 0.36 0.02 0.02 0.08 0.16 0.05 0.06 0.15 0.18 0.02 0.02 0.02 0.02
100 0.03 0.05 0.15 0.25 0.01 0.01 0.04 0.09 0.03 0.04 0.09 0.15 0.01 0.01 0.01 0.01
200 0.02 0.03 0.08 0.15 0.01 0.01 0.02 0.04 0.02 0.02 0.05 0.09 0 0.01 0 0
400 0.02 0.02 0.04 0.08 0 0 0.01 0.02 0.02 0.02 0.03 0.05 0 0 0 0
800 0.01 0.02 0.02 0.04 0 0 0.01 0.01 0.02 0.02 0.02 0.03 0 0 0 0

LTU (a = 0.5)
T\c 5 2 1 .5 5 2 1 .5 5 2 1 .5 5 2 1 .5

50 0.02 0.09 0.17 0.28 0.01 0.03 0.07 0.13 0.02 0.06 0.12 0.19 0 0.01 0 0
100 0.02 0.07 0.14 0.24 0.01 0.03 0.05 0.09 0.02 0.05 0.1 0.16 0 0 0 0
200 0.02 0.05 0.1 0.19 0.01 0.02 0.04 0.07 0.02 0.04 0.06 0.13 0 0 0 0
400 0.02 0.04 0.08 0.14 0.01 0.01 0.02 0.05 0.02 0.03 0.05 0.09 0 0 0 0
800 0.02 0.03 0.05 0.11 0 0.01 0.02 0.03 0.02 0.02 0.04 0.07 0 0 0 0

LTU (a = 1)
T\c 5 2 1 .5 5 2 1 .5 5 2 1 .5 5 2 1 .5

50 0.22 0.37 0.47 0.55 0.09 0.2 0.31 0.39 0.15 0.2 0.16 0.11 0 0 0 0
100 0.24 0.38 0.48 0.55 0.09 0.2 0.3 0.39 0.16 0.2 0.16 0.1 0 0 0 0
200 0.24 0.38 0.48 0.55 0.09 0.2 0.3 0.39 0.16 0.2 0.16 0.1 0 0 0 0
400 0.24 0.39 0.49 0.56 0.09 0.2 0.3 0.39 0.16 0.19 0.16 0.1 0 0 0 0
800 0.24 0.39 0.49 0.56 0.09 0.2 0.3 0.39 0.17 0.2 0.16 0.1 0 0 0 0

LTU (a = 1.5)
T\c 5 2 1 .5 5 2 1 .5 5 2 1 .5 5 2 1 .5

50 0.51 0.58 0.61 0.62 0.35 0.44 0.47 0.49 0.13 0.06 0.04 0.01 0 0 0 0
100 0.55 0.6 0.62 0.63 0.39 0.46 0.48 0.49 0.1 0.04 0.02 0.02 0 0 0 0
200 0.58 0.62 0.63 0.63 0.42 0.47 0.48 0.49 0.08 0.03 0.02 0.01 0 0 0 0
400 0.6 0.62 0.63 0.64 0.44 0.48 0.49 0.49 0.07 0.02 0.01 0.01 0 0 0 0
800 0.61 0.63 0.64 0.64 0.46 0.48 0.49 0.5 0.05 0.02 0.02 0.01 0 0 0 0

ARFIMA
T\d .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95

50 0.28 0.43 0.58 0.62 0.03 0.11 0.33 0.42 0.22 0.16 0.05 0.05 0.02 0.02 0.02 0.02
100 0.27 0.42 0.58 0.62 0.02 0.08 0.3 0.4 0.23 0.19 0.07 0.03 0.01 0.01 0.01 0.01
200 0.27 0.42 0.57 0.61 0.01 0.05 0.27 0.38 0.23 0.19 0.08 0.04 0.01 0.01 0 0
400 0.26 0.41 0.57 0.61 0.01 0.04 0.25 0.37 0.24 0.19 0.08 0.04 0 0 0 0
800 0.26 0.41 0.57 0.61 0 0.03 0.22 0.35 0.23 0.19 0.08 0.04 0 0 0 0
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Table A.2. Orthogonalization Properties (Chi-Square Innovations). This table presents the maximum
absolute correlation and average absolute correlation across all pairs {(j, k) : j, k = 1, . . . , T} where the data have
been transformed using either the jth and kth discrete Fourier transform (DFT) or ψj and ψk.

Discrete Fourier Transform (DFT) Eigenvectors of Random Walk (Ψ)

Max. Abs. Corr. Avg. Abs. Corr. Max. Abs. Corr. Avg. Abs. Corr.

AR(1)
T\ρ .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95

50 0.04 0.08 0.23 0.33 0.02 0.03 0.09 0.17 0.03 0.06 0.15 0.2 0.01 0.01 0 0
100 0.02 0.04 0.14 0.23 0.01 0.02 0.05 0.09 0.02 0.03 0.09 0.16 0 0 0 0
200 0.02 0.02 0.07 0.14 0 0.01 0.03 0.05 0.02 0.02 0.05 0.1 0 0 0 0
400 0.01 0.02 0.04 0.08 0 0 0.01 0.02 0.02 0.02 0.03 0.05 0 0 0 0
800 0.01 0.01 0.02 0.04 0 0 0.01 0.01 0.02 0.01 0.02 0.03 0 0 0 0

AR(3)
T\ρ .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95

50 0.16 0.21 0.34 0.38 0.03 0.04 0.07 0.08 0.16 0.23 0.31 0.33 0.03 0.03 0.04 0.05
100 0.08 0.11 0.16 0.2 0.02 0.02 0.04 0.04 0.08 0.12 0.18 0.2 0.01 0.02 0.02 0.02
200 0.04 0.05 0.08 0.11 0.01 0.01 0.02 0.02 0.05 0.06 0.09 0.1 0.01 0.01 0.01 0.01
400 0.02 0.03 0.05 0.05 0 0.01 0.01 0.01 0.03 0.04 0.05 0.05 0 0 0.01 0.01
800 0.02 0.02 0.02 0.03 0 0 0.01 0.01 0.02 0.02 0.03 0.03 0 0 0 0

VAR(1)
T\ρ .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95

50 0.06 0.1 0.25 0.36 0.02 0.02 0.08 0.16 0.06 0.06 0.14 0.18 0.02 0.02 0.02 0.02
100 0.03 0.05 0.15 0.25 0.01 0.01 0.04 0.09 0.03 0.04 0.1 0.16 0.01 0.01 0.01 0.01
200 0.02 0.03 0.08 0.15 0.01 0.01 0.02 0.04 0.02 0.02 0.05 0.1 0.01 0.01 0.01 0.01
400 0.01 0.02 0.04 0.08 0 0 0.01 0.02 0.02 0.02 0.03 0.05 0 0 0 0
800 0.01 0.02 0.03 0.04 0 0 0.01 0.01 0.02 0.02 0.02 0.03 0 0 0 0

LTU (a = 0.5)
T\c 5 2 1 .5 5 2 1 .5 5 2 1 .5 5 2 1 .5

50 0.02 0.08 0.17 0.28 0.01 0.03 0.07 0.13 0.02 0.06 0.12 0.18 0 0.01 0.01 0
100 0.02 0.07 0.13 0.24 0.01 0.03 0.05 0.09 0.02 0.05 0.08 0.16 0 0 0 0
200 0.02 0.05 0.11 0.19 0.01 0.02 0.03 0.07 0.02 0.04 0.07 0.13 0 0 0 0
400 0.02 0.04 0.08 0.14 0.01 0.01 0.02 0.05 0.02 0.03 0.05 0.1 0 0 0 0
800 0.02 0.03 0.06 0.11 0 0.01 0.02 0.03 0.02 0.02 0.04 0.07 0 0 0 0

LTU (a = 1)
T\c 5 2 1 .5 5 2 1 .5 5 2 1 .5 5 2 1 .5

50 0.22 0.37 0.48 0.54 0.09 0.2 0.31 0.39 0.16 0.19 0.16 0.11 0 0 0 0
100 0.24 0.38 0.48 0.55 0.09 0.2 0.3 0.39 0.16 0.19 0.15 0.1 0 0 0 0
200 0.24 0.38 0.48 0.56 0.09 0.2 0.3 0.39 0.16 0.2 0.16 0.1 0 0 0 0
400 0.24 0.39 0.48 0.55 0.09 0.2 0.3 0.39 0.16 0.2 0.16 0.11 0 0 0 0
800 0.24 0.39 0.49 0.56 0.09 0.2 0.3 0.39 0.16 0.2 0.16 0.1 0 0 0 0

LTU (a = 1.5)
T\c 5 2 1 .5 5 2 1 .5 5 2 1 .5 5 2 1 .5

50 0.51 0.58 0.61 0.62 0.35 0.44 0.47 0.49 0.13 0.06 0.03 0.02 0 0 0 0
100 0.55 0.6 0.62 0.63 0.39 0.46 0.48 0.49 0.1 0.05 0.03 0.01 0 0 0 0
200 0.58 0.61 0.63 0.63 0.42 0.46 0.48 0.49 0.08 0.04 0.02 0.01 0 0 0 0
400 0.59 0.62 0.63 0.64 0.44 0.48 0.49 0.49 0.06 0.03 0.01 0.01 0 0 0 0
800 0.61 0.63 0.64 0.64 0.46 0.48 0.49 0.5 0.04 0.02 0.02 0.02 0 0 0 0

ARFIMA
T\d .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95 .5 .7 .9 .95

50 0.28 0.43 0.58 0.62 0.03 0.11 0.33 0.41 0.21 0.18 0.05 0.05 0.02 0.02 0.02 0.02
100 0.27 0.42 0.57 0.61 0.02 0.08 0.3 0.4 0.22 0.18 0.07 0.03 0.01 0.01 0.01 0.01
200 0.27 0.42 0.58 0.61 0.01 0.05 0.27 0.38 0.23 0.19 0.07 0.04 0.01 0.01 0 0
400 0.27 0.42 0.57 0.61 0.01 0.04 0.25 0.37 0.23 0.2 0.08 0.04 0 0 0 0
800 0.26 0.42 0.57 0.61 0 0.03 0.22 0.35 0.23 0.19 0.08 0.04 0 0 0 0
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A.4 Proofs

Proof of Lemma 1

Proof. By definition, we have

Cov(ψ′
jx, ψ

′
kx) =

4

2T + 1

∑
t,s

sin

(
πt(2k − 1)

2T + 1

)
sin

(
πs(2j − 1)

2T + 1

)
γ(t− s),

where γ(·) is the autocovariance function of xt. Since sin(A) sin(B) = 1
2
(cos(A − B) − cos(A + B)), we can write

Cov(ψ′
jx, ψ

′
kx) as

2

2T + 1

T−1∑
r=1−T

γ(r)
∑

s∈I(r)

cos

(
π[(2k − 1)r + 2s(k − j)]

2T + 1

)
− cos

(
π[(2k − 1)r + 2s(k + j − 1))]

2T + 1

)

=
2

2T + 1

T−1∑
r=1−T

γ(r)g(r),

where

I(r) =


{1, ..., T} r = 0

{1, ..., T − r} r > 0

{r + 1, ..., T} r < 0.

Using that cos(A+B) = cos(A) cos(B)− sin(A) sin(B), we can express the weight function g(r) as

g(r) =
∑

s∈I(r)

cos

(
π[(2k − 1)r + 2s(k − j)]

2T + 1

)
− cos

(
π[(2k − 1)r + 2s(k + j − 1))]

2T + 1

)

=cos

(
π(2k − 1)r

2T + 1

) ∑
s∈I(r)

cos

(
π2s(k − j)

2T + 1

)
− cos

(
π2s(k + j − 1)

2T + 1

)

− sin

(
π(2k − 1)r

2T + 1

) ∑
s∈I(r)

sin

(
π2s(k − j)

2T + 1

)
− sin

(
π2s(k + j − 1)

2T + 1

)
.

First, when r = 0, g(r) reduces to

T∑
s=1

cos

(
π2s(k − j)

2T + 1

)
− cos

(
π2s(k + j − 1)

2T + 1

)
= 0.

Second, when r > 0, g(r) is equivalent to

cos

(
π(2k − 1)r

2T + 1

) T−r∑
s=1

cos

(
π2s(k − j)

2T + 1

)
− cos

(
π2s(k + j − 1)

2T + 1

)

− sin

(
π(2k − 1)r

2T + 1

) T−r∑
s=1

sin

(
π2s(k − j)

2T + 1

)
− sin

(
π2s(k + j − 1)

2T + 1

)
=(−1)j−k+1 1

2
sin

(
πr(2j − 1)

2T + 1

)[
csc

(
π(j − k)

2T + 1

)
+ csc

(
π(j + k − 1)

2T + 1

)]
+

1

2
sin

(
πr(2k − 1)

2T + 1

)[
cot

(
π(j − k)

2T + 1

)
+ cot

(
π(j + k − 1)

2T + 1

)]
.

Third, when r < 0, g(r) is equivalent to

cos

(
π(2k − 1)r

2T + 1

) T∑
s=1−r

cos

(
π2s(k − j)

2T + 1

)
− cos

(
π2s(k + j − 1)

2T + 1

)

− sin

(
π(2k − 1)r

2T + 1

) T∑
s=1−r

sin

(
π2s(k − j)

2T + 1

)
− sin

(
π2s(k + j − 1)

2T + 1

)
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=(−1)j−k+1 1

2
sin

(
πr(2k − 1)

2T + 1

)[
csc

(
π(j − k)

2T + 1

)
− csc

(
π(j + k − 1)

2T + 1

)]
+

1

2
sin

(
πr(2j − 1)

2T + 1

)[
cot

(
π(j − k)

2T + 1

)
− cot

(
π(j + k − 1)

2T + 1

)]
.

Returning to our object of interest, as γ(r) = γ(−r) under strict stationarity, we have

2

2T + 1

T−1∑
r=1−T

γ(r)g(r) =
2

2T + 1

T−1∑
r=1

γ(r)(g(r) + g(−r)) = 2

2T + 1

T−1∑
r=1

γ(r)w(r),

where w(r)

=
1

2
csc

(
π(j − k)

2T + 1

)[
(−1)j−k + cos

(
π(j − k)

2T + 1

)][
− sin

(
πr(2j − 1)

2T + 1

)
+ sin

(
πr(2k − 1)

2T + 1

)]
+

1

2
csc

(
π(j + k − 1)

2T + 1

)[
(−1)j+k−1 + cos

(
π(j + k − 1)

2T + 1

)][
sin

(
πr(2j − 1)

2T + 1

)
+ sin

(
πr(2k − 1)

2T + 1

)]
.

We consider separately the case where j, k are fixed and then the case where j, k are a function of T .

Case 1: j, k are fixed. By a series expansion at (y = ∞), we can show that

csc(y−1) = y +O(y−1) = O(y)

cos(y−1) = 1−O(y−2) = O(1),

i.e., for any functions f1(·), f2(·)

f1(y) = O(f2(y)) ⇐⇒ |f1(y)| ≲ f2(y) ∀ y ≥ y0.

This implies that, uniformly over r,

w(r) ≲ T

(
− sin

(
πr(2j − 1)

2T + 1

)
+ sin

(
πr(2k − 1)

2T + 1

))
+ T

(
sin

(
πr(2j − 1)

2T + 1

)
+ sin

(
πr(2k − 1)

2T + 1

))
≲ T sin

(
T−1r

)
.

Now, by the assumed convergence properties of γ(r), ∀ r ≥Mϵ

c−
ra

≤ γ(r) ≤ c+
ra
,

where c− = cγ − ϵ and c+ = cγ + ϵ. Using this, we can divide our term into a component with the number of
summands growing in the sample size, and another with a bounded number of summands.

2

2T + 1

T−1∑
r=1

w(r)γ(r) =
2T

2T + 1

[
1

T

T−1∑
r=Mϵ

w (r) γ (r) +
1

T

Mϵ−1∑
r=1

w (r) γ (r)

]
.

Consider the second summand, where r is bounded by construction. Here, we have that w(r) = O(T sin(T−1)). We
can, therefore, consider a series expansion at (y = ∞) of,

w(y) = O(y sin(y−1)) = 1−O(x−2) = O(1).

Further, as Mϵ is fixed and γ(r) is bounded, we can conclude that

1

T

Mϵ−1∑
r=1

w (r) γ (r) = O(T−1).

Turning to the first summand, since γ(r) ∀r ≥Mϵ, then the summand lies in the interval

[FT · c−, FT · c+],

where

FT =
2T

2T + 1

(
1

T

T−1∑
r=Mϵ

∣∣∣∣(T rT )−a

w
(
T
r

T

)∣∣∣∣
)
.
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Moreover, as w(r) is continuous, we can bound FT by(
2T

2T + 1

)
1

T

T−1∑
r=Mϵ

∣∣∣∣(T rT )−a

w
(
T
r

T

)∣∣∣∣ ≤ 2T

2T + 1

∫ 1−1/T

Mϵ/T

∣∣(Tx)−a w (Tx)
∣∣ dx[1 +O(T−1)]

=
2

T a−1(2T + 1)

∫ 1−1/T

Mϵ/T

x−a |w (Tx)| dx[1 +O(T−1)].

Next, we simplify this integral further. Inspecting our expression for w(r), it is clear that it only depends on r through
its dependence on sin(·), so we only have to integrate over this part:

2

T a−1(2T + 1)

∫ 1−1/T

Mϵ/T

x−a

∣∣∣∣sin(πTx(2j − 1)

2T + 1

)∣∣∣∣ dx
=

2

T a−1(2T + 1)

(
πT (2j − 1)

2T + 1

)a ∫ 1−1/T

Mϵ/T

(
πTx(2j − 1)

2T + 1

)−a ∣∣∣∣sin(πTx(2j − 1)

2T + 1

)∣∣∣∣ dx
=

2

T a−1(2T + 1)

(
πT (2j − 1)

2T + 1

)a−1 ∫ π(T−1)(2j−1)
2T+1

πMϵ(2j−1)
2T+1

u−a |sin(u)| du

=
2

T a−1(2T + 1)

(
πT (2j − 1)

2T + 1

)a−1

Va(u)|
2T+1

π(T−1)(2j−1)
2T+1

πMϵ(2j−1)

,

where

Va(u) =
−sgn(sin(u−1))

2
((−i)aΓ(1− a,−iu−1) + iaΓ(1− a, iu−1))

and Γ(·, ·) is the upper incomplete Gamma function. Note that Va(u) is real and positive. Taking a series expansion
at (y = ∞) we know that

(−i)aΓ(1− a,−iy−1) = (−i)aΓ(1− a)− iya−1

a− 1
+
ya−2

a− 2
+

iya−3

2a− 6
+O(ya−4)

iaΓ(1− a, iy−1) = iaΓ(1− a) +
iya−1

a− 1
+
ya−2

a− 2
− iya−3

2a− 6
+O(ya−4),

so in the vicinity of (u = ∞)

Va(u) = −sgn(sin(u−1))

[
cos
(πa

2

)
Γ(1− a) +

ua−2

a− 2
+O(ua−4)

]
.

Taking a series expansion at (y = 0), we know that

(−i)aΓ(1− a,−iy−1) = exp(−i/y)
[
ya − iaya+1 +O(ya+2)

]
iaΓ(1− a, iy−1) = exp(i/y)

[
ya + iaya+1 +O(ua+2)

]
so in the vicinity of (u = 0)

Va(u) = −sgn(sin(u−1)) cos(u−1)
[
ua +O(ua+2)

]
.

We now consider three subcases depending on the value of a.

Subcase 1: If a ∈ (1, 2),

Va(u)|O(1)

O(T ) ≤
∣∣∣cos(πa

2

)
Γ(1− a)

∣∣∣+O(T a−2) + |cos(O(1)) ·O(1)| = O(1).

It follows that

2

T a−1(2T + 1)

(
πT (2j − 1)

2T + 1

)a−1

Va(u)|
2T+1

π(T−1)(2j−1)
2T+1

πMϵ(2j−1)

= O(T−a)O(1)O(1) = O(T−a).

Finally, multiplying by the terms that did not depend on r in w(r) we conclude

FT ≤ O(T )O
(
T−a) = O

(
T 1−a) .
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This, in turn, implies that

Cov(ψ′
jx, ψ

′
kx) = O(T 1−a).

Next we consider the case where a > 2.

Subcase 2: a ∈ (2,∞). Suppose first that a ∈ (2,∞)\Z. Then,

Va(u)|O(1)

O(T ) ≤
∣∣∣cos(πa

2

)
Γ(1− a)

∣∣∣+O(T a−2) + |cos(O(1)) ·O(1)|

= O(T a−2).

It follows that

2

T a−1(2T + 1)

(
πT (2j − 1)

2T + 1

)a−1

Va(u)|
2T+1

π(T−1)(2j−1)
2T+1

πMϵ(2j−1)

= O(T−a)O(1)O(T a−2) = O(T−2).

Finally, multiplying by the terms that do not depend on r in w(r), we conclude

FT ≤ O(T )O
(
T−2) = O

(
T−1) ,

which in turn implies the result. As we can always find some ã < a where ã ∈ (2,∞)\Z, and [FT · c−, FT · c+] ⊂
[F̃T · c−, F̃T · c+], we can then conclude that the result holds for all a > 2.

Subcase 3: If a = 2,

Va(u) = sgn(sin(u−1))(Ci(u−1)− u sin(u−1)),

where Ci(·) is the Cosine integral, which is bounded for all positive arguments. By a series expansion at (y = ∞),
we know that

Ci(u−1) = γ◦ − ln(y) +O(y−2)

y sin(y−1) = 1−O(y−2),

where γ◦ is the Euler-Mascharoni constant. It follows that

Va(u)|O(1)

O(T ) ≤ |γ◦|+ | ln(T )|+ |1|+O(T−2) = O(ln(T )).

Thus,

2

T (2T + 1)

(
πT (2j − 1)

2T + 1

)
Va(u)|

2T+1
π(T−1)(2j−1)

2T+1
πMϵ(2j−1)

= O(T−2)O(1)O(ln(T )) = O(ln(T )T−2).

Finally, multiplying by the terms that do not depend on r in w(r), we conclude

FT ≤ O(T )O
(
ln(T )T−2) = O

(
ln(T )T−1)

which in turn implies the result.

Case 2: j or k are O(f(T )), where f ′(T ) > 0 and O(f(T )) ≤ O(T ). We know that

w(r) = O

(
T

f(T )
sin

(
f(T )r

T

)
.

)
In the second summand, where r is bounded,

1

T

Mϵ∑
r=1

w (r) γ (r) =
1

T

Mϵ∑
r=1

O

(
f(T )

T
· T

f(T )

)
γ (r)

= O(T−1).

We again split into subcases dependending on the value of a.

Subcase 1: For a ∈ (1, 2),

Va(u)|O(f(T )−1)

O(T/f(T )) ≤
∣∣∣cos(πa

2

)
Γ(1− a)

∣∣∣+O

((
T

f(T )

)a−2
)

+ | cos(f(T )) · f(T )−a| = O(1).

39



It follows that

2

T a−1(2T + 1)

(
πT (2j − 1)

2T + 1

)a−1

Va(u)|
2T+1

π(T−1)(2j−1)
2T+1

πMϵ(2j−1)

= O(T−a)O(f(T )a−1)O(1) = O

(
f(T )a−1

T a

)
.

Finally, multiplying by the terms that did not depend on r in w(r) we conclude

FT ≤ O

(
T

f(T )

)
O

(
f(T )a−1

T a

)
= O

(
f(T )a−2

T a−1

)
≤ O(T 1−a).

We next consider the case where a > 2.

Subcase 2: a ∈ (2,∞). First, assume that a ∈ (2,∞)\Z so that

Va(u)|O(f(T )−1)

O(T/f(T )) ≤ O

((
T

f(T )

)a−2
)
.

It follows that

2

T a−1(2T + 1)

(
πT (2j − 1)

2T + 1

)a−1

Va(u)|
2T+1

π(T−1)(2j−1)
2T+1

πMϵ(2j−1)

≲ T−af(T )a−1

(
T

f(T )

)a−2

= f(T )−1T−2.

Finally, multiplying by the terms that do not depend on r in w(r), we conclude

FT ≤ O

(
T

f(T )

)
O
(
f(T )−1T−2) = O

(
T−1) .

By similar arguments as above, we can conclude that the result holds for all a > 2.

Subcase 3: a = 2. In this case,

Va(u)|O(f(T )−1)

O(T/f(T )) ≤ |γ◦|+
∣∣∣∣ln( T

f(T )

)∣∣∣∣+ |1|+O

((
T

f(T )

)−2
)

= O

(
ln

(
T

f(T )

))
.

It follows that

2

T (2T + 1)

(
πT (2j − 1)

2T + 1

)
Va(u)|

2T+1
π(T−1)(2j−1)

2T+1
πMϵ(2j−1)

≲ T−2f(T ) ln

(
T

f(T )

)
.

Finally, multiplying by the terms that do not depend on r in w(r), we conclude

FT ≲ ln

(
T

f(T )

)
T−1 ≲ ln (T )T−1.

Taking the two cases together, we have that the result holds uniformly over j and k such that j ̸= k.

Proof of Lemma 2

Proof. As discussed in the main text, the result in Lemma 2 holds immediately by the partition regression formula
and because Ψ forms an orthonormal basis. By the partition regression formula we have,(

α̃(−j)

β̃(−j)

)
= (X′(IT − ψjψ

′
j)X)−1X′(IT − ψjψ

′
j)y = (X′X− ZjZ

′
j)

−1(X′y − Zjwj

)
.

Then, since Ψ is an orthonormal matrix we have that X′X = Z′Z′ and X′y = Z′w which shows the equivalence with
equation (18).

Proof of Lemma A.1

Proof. Let V be the variance-covariance matrix of the process, and Ṽ be the approximate variance-covariance matrix
Ṽ = ΨΛΨ′, where Λ is a diagonal matrix with diagonal elements

λ̃j = σ2

(
1 + ρ2T,a − 2ρT,a cos

(
π(2n− 1)

2T + 1

))−1

, (A.3)
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as in Lemma 2 of Crump and Gospodinov (2021). It follows that

Cov(ψ′
jx, ψ

′
kx) = ψ′

jV ψk = ψ′
j Ṽ ψk + ψ′

j(V − Ṽ )ψk = R1 +R2.

For R1, when j ̸= k, then ψ′
j Ṽ ψk = λ̃jψ

′
jψk = 0. When j = k, ψ′

j Ṽ ψj = λ̃jψ
′
jψj = λ̃j . Since σ

2 ≲ 1, then

λ̃j ≲

(
1 + ρ2T,a − 2ρT,a cos

(
π(2n− 1)

2T + 1

))−1

≲

(
1 +

(
1− c

T a

)2
− 2

(
1− c

T a

) (
1− T−2/2

))−1

=
(
c2T−2a + 2T−2 − 2cT−2−a)−1

≲ Tmin(2a,2).

Thus, R1 = O(Tmin(2a,2)). Next, consider R2. For all j, k, we have

ψ′
j(V − Ṽ )ψk = −ψ′

jνν
′ψj ,

where

ψ′
jνν

′ψk =

(
ρT,a(1− ρT,a)

σ2 + ρT,a(1− ρT,a)
∑N

n=1 λ̃nψ2
T,n

)
×
(
λ̃j λ̃kψT,jψT,k

)
.

The second factor is

λ̃j λ̃kψT,jψT,k =
4

2T + 1
sin

(
T (2j − 1)

2T + 1

)
sin

(
T (2k − 1)

2T + 1

)
λ̃j λ̃k ≲ Tmin(4a−1,3).

For the first factor, note that

N∑
n=1

λ̃nψ
2
T,n =

4

2T + 1

T∑
n=1

σ2

1− ρ2T,a + 2ρT,a cos
(

(2n−1)π
2T+1

) · sin2

(
T (2n− 1)

2T + 1

)
≲ T−1

T∑
n=1

λ̃n ≲ Tmin(a,1),

so that

ρT,a(1− ρT,a)

σ2 + ρT,a(1− ρT,a)Tmin(a,1)
≲

c/T a − c2/T 2a

σ2 + cTmin(0,1−a) − c2Tmin(−a,1−2a)
≲ T−a.

Putting this together, we have that ψ′
jνν

′ψk = O(Tmin(3a−1,3−a)). Thus, when j ̸= k,

Cov(ψ′
jx, ψ

′
kx) = ψ′

jV ψk = O(Tmin(3a−1,3−a)),

and when j = k,

ψ′
jV ψj = O(Tmin(2a,2)) +O(Tmin(3a−1,3−a)).

This implies that

Corr(ψ′
jx, ψ

′
kx) = O(T−|1−a|).
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