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Abstract 

Empirical research in climate economics often relies on panel regressions of different outcomes on 

disaster damages. Interpreting these regressions requires an assumption that error terms are uncorrelated 

across counties and time, which climate science research suggests is unlikely to hold. We introduce a 

methodology to identify spatial and temporal clusters in natural disaster damages datasets, and show that 

accounting for clustering affects observed economic effects of disasters. Specifically, counties tend to 

experience 0.45% more disaster damage for every 1% increase in damage across other intra-cluster 

counties. Moreover, accounting for clustering makes some hazard types, such as droughts, appear more 

damaging. 
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In September 2024, Hurricane Helene struck the United States, triggering Federal Emergency

Management Agency (FEMA) disaster declarations across five states (Alabama, Florida,

Georgia, North Carolina, and South Carolina). CoreLogic estimated that the disaster caused

$47.5 billion in damage, including $20–$30 billion in uninsured flood losses. Mere weeks later,

Hurricane Milton also hit Florida.1 Since disaster relief resources are finite at the local level,

a storm as massive as Hurricane Helene likely inflicts more damage on a given county if its

neighboring counties have also been affected. Additionally, it is possible that since Helene

had occurred in the recent past, Florida counties may have been more adversely affected by

Hurricane Milton. In this paper, we propose a framework to account for how the effects of

disasters may be correlated across space and time. This approach can be used to answer

such questions.

In previous work in economics, most research on natural disasters has utilized county-

by-month-level data to run panel regressions of different economic outcomes on disaster

damages.2 The regressions often make use of county and time fixed effects while clustering

standard errors at the county level. Interpreting these regressions requires an assumption

that the error terms are uncorrelated across counties and months. At the same time, the

climate science literature finds consistent evidence for the idea that natural disaster occur-

rences are correlated over space and time, where disasters tend to be concentrated either in

certain regions or in short windows of time.3 Given this additional context from the climate

science literature, the tendency of disaster damages to be spatially/temporally correlated

could pose a threat to the assumption of uncorrelated error terms. This paper integrates

this potential spatial and temporal correlation in the occurrence of natural disasters, which

1CNN Business: As Hurricane Milton threatens the US, Helene could cost property owners more than
$47 billion.

2See, for example, Gallagher and Hartley (2017); Bleemer and van der Klaauw (2019); Billings et al.
(2022); Gallagher et al. (2023); Kruttli et al. (2023); Correa et al. (2022); Blickle et al. (2021); Sastry (2021);
Blickle and Santos (2022); Issler et al. (2021); Sastry et al. (2023); Deryugina (2017); Acharya et al. (2022);
Tran et al. (2020); Bakkensen and Barrage (2018)).

3See, for example, Wheater et al. (2005); Li et al. (2016); Fu et al. (2023); Merz et al. (2021); Leonard
et al. (2014); Zscheischler et al. (2018, 2020); Woodruff et al. (2013); Marsooli et al. (2019); Sarhadi et al.
(2018)).
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we refer to as “clustering,” into the economics literature.

There are numerous reasons why clustering could have important implications for eco-

nomic research. For example, if neighboring counties use the same resources to aid in re-

covery, these resources may be strained if all neighboring counties are affected by contem-

poraneous disasters. Additionally, counties may be less prepared for a disaster in the wake

of another recent disaster. On the other hand, if different counties are exposed to common

disaster risks, they can share adaptation and mitigation resources, potentially allowing them

to better prepare for disasters. To allow researchers to consider these effects, this paper

develops algorithmic approaches to identify spatial clusters (i.e., clusters across counties),

temporal clusters (i.e., clusters across time), and spatiotemporal clusters (i.e., clusters across

counties and time). To understand the implications of accounting for natural disaster clus-

tering, we compare data on natural disaster damages aggregated to the cluster level to data

on natural disaster damages aggregated to the county level.

Our analyses reveal three key facts about clusters in natural disaster damages. First,

we find a positive relationship between the relative size of a disaster cluster (measured by

the number of counties contained in the cluster) and the amount of damage. In particular,

the average logged damage for all clusters in the 60th percentile and below is about 10

($22 million). This is because there is little variation in cluster size at this point in the

distribution, with the median cluster having a size of one county. However, at around the

60th percentile of cluster size, there is a sharp increase in disaster damages, and the average

logged damage for the 95th percentile bin reaches about 15 ($3.3 billion). This suggests

that an increase in relative size predicts a sharp increase in the expected level of damage,

especially among very large clusters. Similarly, the distribution of the natural log of damages

is more positive when examining cluster-level damages than county-level damages.

Second, we find that certain hazard types appear more severe when using a clustered

approach than when using county-by-month-level data. Specifically, when examining sum-

mary statistics according to hazard type in county-level data, droughts are the ninth most
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severe hazard. However, similar summary statistics aggregated to the spatial cluster level

show that droughts are the second most severe hazard type. This illustrates that analyzing

natural disasters at the county level may have led researchers to understudy certain hazard

types.

Lastly, we find that county-level damages tend to be larger when the county is part of a

cluster that experiences more damage. In particular, a county typically experiences about

0.45% more disaster damage if all the other counties in the same disaster cluster experience

an additional 1% of damage. While not causal, this result could suggest that, because

of strained resources, counties face greater damages from disasters when their neighbors

experience the same disasters. We also find that these results are especially acute for certain

hazard types, such as floods, hurricanes and wildfires.

To summarize, this paper introduces a methodology to incorporate spatial and temporal

correlation in the occurrence of natural disasters into empirical economic research. We pro-

vide an approach to identify natural disaster clusters. We show that incorporating clustering

into analyses increases the estimated severity of the most severe natural disasters, as well

as the estimated severity of certain hazard types such as droughts. We also confirm that

county-level disaster damages are higher when the rest of the cluster also experiences higher

damages. These findings indicate that clustering could be important for assessing economic

outcomes following disasters.

In the first section, we describe the data sources used and define the clustering method-

ology. In the second section, we examine data on cluster-level damages in comparison to

data on county-level damages, and test how county-level damages are correlated to damage

experienced by other counties in the same cluster. In the third section, we discuss the im-

plications of our clustering analysis for future research. In the fourth and final section, we

conclude.
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1 Data and Methodology

1.1 Data

The primary dataset used in our analysis is the Spatial Hazard Events and Losses Database

for the United States (SHELDUS). SHELDUS provides information on the incidence of

natural disasters at the county-by-hazard type-by-month level from 2000 until 2020 across

3,249 distinct counties in the United States.4 While we focus on SHELDUS, as it is the

most widely used dataset on natural disasters in economic research, this approach could be

easily adapted to other county-level datasets on natural disaster damages. The methodology

could also readily be used for any other type of data on negative outcomes experienced due

to natural disasters by individuals, firms or municipalities.

These data include the type of natural disaster, categorized into 18 distinct hazard cate-

gories, as well as damages (divided into property and crop damages). For control variables,

we use the Quarterly Census of Employment and Wages (QCEW) county-level dataset from

the Bureau of Labor Statistics on wages, annual county-level datasets on population from

the Census Bureau’s American Community Survey (ACS) and county GDP from the Bureau

of Economic Analysis for the period between 2000 and 2020.

1.2 Methodology

Most research designs that rely on a county-by-time-level panel require an assumption that

the error terms are uncorrelated across counties and time.5 However, the climate science

literature presents several important challenges to such an assumption.6 Some counties

may be unconditionally more likely to experience certain types of disasters. For instance,

Florida counties experience more hurricanes than average, and California counties experience

4While SHELDUS also provides data at the natural disaster level, we use the county-by-disaster-type-
by-month panel as it is the format most commonly used by researchers.

5A detailed literature review on natural disasters in economics is provided in Internet Appendix IA.A.
6A detailed literature review on natural disasters in climate science is provided in Internet Appendix

IA.B.
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more wildfires than average. Additionally, if a county’s neighbor experiences a disaster, this

may raise the probability that the county itself experiences a disaster at the same time. If

both counties are hit at the same time, this simultaneity could potentially exacerbate the

strain on economic resources for each individual county. The climate science literature also

suggests that if a disaster lasts longer, this could exacerbate adverse economic consequences

of the disaster. These challenges to the assumptions of uncorrelated error terms motivate

the development of a methodology to algorithmically identify common patterns of natural

disasters, so that we can properly account for the correlation between disasters across space

and time. We thus propose the following approaches for identifying common patterns of

disasters in county-by-month-level data.

1.2.1 Spatial Clustering

Consider a given county i in a given period t. We can define the following function H(cit) as

outputting the set of hazards H i
t = {hm, ..., hn} where hm denotes a hazard experienced by

county i in time t. For example, the event experienced by Harris County, Texas in August

2017 (when Hurricane Harvey took place) can be described as H(cHarris, TX
2017m8 ) = {hurricane,

flooding, tornado, thunderstorm}. Trivially, if cit is not experiencing any hazards, this set

would be the empty set.

We identify two counties (i, j) as having a proximate common climate pattern in time t

if they are geographically contiguous and have at least one common hazard:

PCCP (i, j) =1 if counties i and j are adjacent and

H i
t ∩Hj

t ̸= ∅.

where H i
t and Hj

t are defined as above. Consider the example of two neighboring Texas coun-

ties, Harris and Montgomery, which were both hit by hurricane, wind and flooding events in

August 2017. Since Harris and Montgomery are adjacent, and HHarris, TX
2017m8 ∩HMontgomery, TX

2017m8 =
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{hurricane, flooding} ≠ ∅, we would say that PCCP (Harris, TX; Montgomery, TX) = 1.

We define two counties (ci, cj) as sharing a common climate pattern if there is a “path,”

with a distance of n counties, from county i to county j where the intermediate counties are

(pairwise) proximate common:

CCP (ci, cj) =1 if ∃ a set of counties, {k1, · · · , kn} such that

PCCP (ci, k1) = 1 and

PCCP (k1, k2) = 1 and

· · ·

PCCP (kn, c
j) = 1.

A spatial cluster is defined as the largest possible set of counties in time t that corre-

sponds to a common climate pattern, following the inductive process until no more proximate

common climate patterns can be identified.

As an example, Figure 1 applies the spatial cluster algorithm to the case of Hurricane

Harvey. Panel (a) displays the generated spatial cluster containing Harris County, Texas,

in August 2017 (i.e., the spatial cluster associated with Hurricane Harvey), while panel (b)

shows all counties which were included in the Presidential Disaster Declaration for Hurricane

Harvey. The spatial cluster identified by our algorithm closely aligns with the Hurricane

Harvey Presidential Disaster Declaration. Most discrepancies arise from counties where a

presidential disaster was declared, but ultimately, zero damages were reported.7

7Comparing the 63 counties identified by the clustering approach in this spatial cluster to the 75 counties
identified in a Presidential Disaster Declaration (PDD) in August 2017 with the name “Harvey”, we find an
intersection of 60 counties (80% of the counties identified in the PDD). All of the 15 counties (the remaining
20%) identified in the PDD that are not a part of the cluster report zero damages in the SHELDUS dataset.
Of these, three highly populated counties that did not experience damage (Dallas, Tarrant, and Travis) were
added by Governor Abbott because they were sheltering a significant number of evacuees.

6



1.2.2 Temporal and Spatiotemporal Clustering

Much of the conceptual framework developed for identifying spatial clusters can be easily

mapped to temporal clustering. We can identify a given county as having a temporally

persistent climate pattern if it experiences the same climate hazard in at least two consecutive

time periods:

TPCP (i, t) = 1 if H i
t ∩H i

t+1. ̸= ∅

This concept can be applied to combine spatial clusters in two consecutive time periods

if at least one county experiences a temporally persistent climate pattern in both clusters.

When this link can be established, the most expansive possible set of all of the counties

experiencing proximate common and temporally persistent climate patterns is defined as

a spatiotemporal cluster. We provide an extension of the Hurricane Harvey example to a

spatiotemporal cluster in Figure IA.1, alongside the temporal evolution of this cluster in

Figure IA.2. Note that the results in the main text will focus on spatial clusters, although

the Internet Appendix contains analogous results for spatiotemporal clusters.

This approach is readily implementable in any statistical software such as Stata, Python,

R, or Matlab. When executing the clustering algorithm, we classify the 161,664 county-

months in which hazard damage occurs to 37,296 spatial clusters and 28,495 spatiotemporal

clusters.

Summary statistics on disasters, using both data at the cluster level and at the county

level, are displayed in Table IA.1. The size of the average cluster is about 4 counties. The

average cluster’s total damage is $17.5 million. On the other hand, the median total damage

is only $23,600, indicating that the distribution is positively skewed.8 The total damage

numbers include both property and crop damages, although property damages contribute to

90% of the total damage. This could lead to analyses using SHELDUS data understating

8These summary statistics include events in SHELDUS with zero damage recorded, although they look
similar when excluding the zero-damage events.
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hazard types that result in relatively more crop damage than property damage, such as heat.

All results in the main text are based on total damages, although results for specific damage

types are included in Internet Appendix IA.C.9

This section has provided a description of our new approach to identifying clusters of nat-

ural disasters using data on natural disaster damages. In the next section, we will explore

cluster-level disaster damages, to better understand how the choice of whether to exam-

ine disasters using county-level data or cluster-level data could impact the conclusions of

researchers.

2 Comparing Cluster- and County-Level Damages

In the previous section, we described the clustering methodology we developed for this

analysis. In this section, we will compare the cluster-level data on natural disaster damages

with the county-level data on natural disaster damages. We will also examine whether

counties tend to experience greater disaster damage when they are part of clusters that

experience more severe disasters.

2.1 Exploring disaster-level distributions

To visualize the distributions of damage according to the approach used, panel (a) of Figure 2

displays the histogram showing the distribution of logged damages measured at the county

level, overlaid with the distribution of logged damages at the cluster level. The right tail

of the cluster-level distribution has substantially more mass than that of the county-level

distribution.10 All appear similar to the result shown in the main text.

9Note that by construction, the cluster-level distribution of damages will have more extreme values
than the county-level distribution due to the effect of scaling. For this reason, all analysis in the paper
making comparisons between counties and clusters will use the natural log of damage, to reduce the effects
of outliers. Regression analyses also include an adjustment for the number of county-hazards experienced in
a given cluster.

10Two-sample Smirnov (1939) equality of distribution tests confirm that these two distributions are sta-
tistically different at the 1% level.
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The histograms show that the clusters with the most damage tend to have more extreme

values than the counties with the most damage. One potential explanation for this could

be that disasters covering larger areas tend to create more damage, and examining natural

disasters in the form of a cluster allows you to observe this effect. To directly study whether

disasters affecting more counties yield more damage, we study heterogeneity in cluster dam-

ages according to the cluster’s size. Specifically, we sort clusters into percentile bins according

to the number of counties contained in each cluster. Then, within each cluster, we calculate

the average logged-damage. The results are displayed in panel (b) of Figure 2. There is little

variation in disaster damage according to cluster size up until the 60th percentile, averaging

about $22 million, as all clusters up until this point only have one county. However, disaster

damage increases beyond this point, eventually reaching an average damage of $3.3 billion

at the 95th percentile. This highlights both that the cluster-level distribution of disaster

damages includes some disasters with very large amounts of damage, and that larger clus-

ters tend to have more disaster damage. Figures IA.3 and IA.4 display similar plots using

property and crop damages, and Figure IA.5 displays similar plots using spatiotemporal

clusters. All appear similar to the main set of results.

To study how disaster distributions appear differently according to the type of hazard

observed, we next examine detailed summary statistics by the type of hazard. Table 1 dis-

plays the distribution of disaster damages according to hazard type when using county-level

data. Perhaps unsurprisingly, hurricanes are the most damaging hazard in the data, followed

by earthquakes. To compare with the cluster-level data, Table 2 displays similar information

using cluster-level data. Droughts are the second-most damaging hazard type on average

in the cluster-level data, as opposed to only the ninth most damaging in the county-level

dataset. This is likely driven by the fact that in terms of the number of counties, droughts

tend to be the largest clusters. This observation underscores the notion that the damage

from hazards typically taking the form of spatial clusters affecting large numbers of counties

may be especially understated when examining county-level data. Similar summary statis-
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tics by hazard type are shown for property and crop damage, as well as for spatiotemporal

clusters in Tables IA.2, IA.3 and IA.4.

In this subsection, we have shown that there exist important differences between the

distributions of county-level data and cluster-level data. In particular, cluster-level data

exhibits greater positive skewness than county-level data, and larger clusters tend to have

greater disaster damage. We also find evidence indicating that some disaster types appear

more severe using cluster-level data than county-level data. In the next subsection, we will

study whether counties that are part of larger clusters tend to experience greater disaster

damage. We will do this by testing whether county-level disaster damage varies according

to disaster damage experienced by other counties located in the same cluster.

2.2 Relationship Between County- and Cluster-Level Damage

Distributions using cluster-level data appear more skewed than when using county-level data,

and climate events affecting more counties tend to yield higher damages. One potential ex-

planation for this is that there could be “spillover effects” of disaster damage. In particular,

it is possible that if a given county experiences a disaster at the same time that nearby

counties face disasters, this could lead to worse economic outcomes. This could be due to

strained resources to mitigate the damages, or greater degradation of shared infrastructure

between the counties. It is also possible that these spillover effects may be especially prob-

lematic for certain hazard types. On the other hand, if nearby counties experience similar

risks, this could lead them to share adaptation resources, which could result in improvements

in preparations for disasters. In this subsection, we employ a regression analysis to test this

hypothesis by examining whether counties belonging to clusters with greater disaster damage

also tend to experience more damage.

One issue in examining how county-level damage relates to cluster-level damage is that

disasters affecting more counties may mechanically have more damage. To address this

concern, we calculate another version of the cluster-level damage in order to adjust for
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mechanical increases in cluster-level damage due to the increasing size of the cluster. Specif-

ically, we calculated the median damage for any county experiencing a certain hazard type,

conditional on nonzero damage. For each county, we sum up the median hazard damage for

all hazards experienced by that county, and scale the total damage by this sum of median

hazard damages:

D̄i,t =

∑
h∈H(cit)

Di,t,h∑
h∈Hi

Dmedian
h

, (1)

where H(cit) is the set of all hazards experienced by county i in time t, Hi is the set of all

hazards experienced by county i throughout the entire sample period, Di,t,h is damages for

hazard h experienced in county i at time t, and Dmedian
h is the median damages observed

for hazard h. We refer to D̄i,t as the rescaled damage for county i at time t. A similar

measure can be calculated at the cluster level using the cluster-level damages. Accordingly,

for each county, we calculate the rescaled cluster-level damage, for the cluster it is part of,

while excluding the damage for the county of interest:

D̄−i
j,t =

∑
h∈H−i

j,t
Dj,t,h∑

h∈H−i
j

Dmedian
h

,

=

∑
h∈Hj,t

Dj,t,h −
∑

h∈Hi,t
Di,t,h∑

h∈Hj
Dmedian

h −
∑

h∈Hi
Dmedian

h

, (2)

where Hj,t is the set of all hazards experienced by cluster j at time t, and Hj is the set of

all hazards experienced by cluster j throughout the entire sample period.

We then test the hypothesis that counties belonging to clusters with greater damage tend

to experience more damage themselves by estimating the following regression:
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log(D̄i,t) = β1log(D̄
−i
j,t ) + ΓXi,t + γi + τt + ϵi,t,

where log(D̄i,t) is the log of the rescaled damage of county i, at time t, log(D̄−i
j,t ) is the

log of the rescaled damage of cluster j (excluding damage for county i) at time t. Xc,t are

county-by-time controls. γi, τt are county and time level fixed effects. Specifically, to control

for whether larger, or more populated areas, are more likely to experience severe disaster

damage, we control for county GDP, population and wages. If counties tend to experience

more damage when they are part of clusters that experience significant damage, we would

expect that β1 > 0.

Results for this regression are shown in column (1) of Table 3. β1 is equal to about 0.45,

meaning for that a 1% increase in cluster-level damage is associated with a 0.45% increase in

county-level damage, indicating that counties belonging to larger clusters tend to experience

greater disaster damage. This could potentially be consistent with spillover effects related

to disaster damage.

We next explore whether there is heterogeneity in the relationship between county-level

damages and cluster-level damages according to hazard type. In particular, the previous

summary statistics showed that some hazard types appear more severe when analyzing them

in cluster-level data. Similarly, do these spillover effects appear more severe for some hazard

types than others? To test this hypothesis, we include hazard type indicator variables, and

their interactions with the cluster-level disaster damages in columns (2) through (6). We

explore damages related to droughts, heat, wildfires, floods and hurricanes. Unconditional

on the amount of damage, all explored hazard types except for heat and hurricanes tend

to be associated with more damage than the average disaster. Moreover, higher cluster-

level damage is associated with more county-level damage for all five of the explored hazard

types.11 Overall, these results are consistent with a tendency for counties to experience

11Tables IA.5 and IA.6 show similar results using property and crop damages.
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greater disaster damage when the rest of their cluster also experiences disaster damage,

and with some hazard types appearing more severe when incorporating clustering into an

analysis.

3 Implications of Clustering for Researchers

The analyses in this paper shed light on the value of accounting for clustering across space

and time in handling data on natural disaster damages. Importantly though, while this

paper only uses information on direct damages from natural disasters, problems related to

clustering should be especially important in terms of the indirect effects of natural disasters.

While it is outside the scope of the analysis in this paper, clustering may also be impor-

tant for determining the difficulty of recovering from natural disasters. Additionally, while

we examine county-level disaster damages, we expect that clustering could be important

in any analysis of negative outcomes from natural disasters faced by individuals, firms or

municipalities.

For this reason, the concept of natural disaster clustering does not necessarily call into

question previous findings in the economics literature studying how county-level outcomes

have changed in response to the direct effects of natural disasters. However, clustering of

natural disaster damages may be important to consider in any case where spillover effects

between counties may be important. In particular, if economic damages at the county level

are correlated across space and time after experiencing damages from the same natural

disaster damage cluster, effects of natural disasters on one county-month observation may

spill over to another county-month observation. These spillover effects could transmit via

shared aid resources or infrastructure, migration following disasters, or coordination by local

governments in the recovery from the disaster and from investing in adaptation measures.

Additionally, if these spillover effects have long-run ramifications, they could cause economic

outcomes for different counties to remain correlated long after disasters occur.
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The best way to approach these spillover effects in empirical work will differ based on

the question being asked. Empirical analyses, such as those introduced in Berg et al. (2021),

can be used to quantify these spillover effects. If the spillover effects appear significant,

regression analysis can control for cluster-level co-variates in order to isolate county-level

outcomes from the cluster-level outcome. In order to implement any approach of this sort,

identifying clusters of natural disasters is necessary. For large natural disasters, data from

the Federal Emergency Management Agency (FEMA) on emergency disaster declarations or

billion dollar disasters can be used to identify natural disaster clusters, but this approach has

two potential limitations. First, using FEMA emergency declarations will exclude counties

that are affected by natural disasters, but not severely enough to have a disaster declared

by FEMA. Second, using FEMA disaster declarations will exclude relatively smaller hazards

that are not large enough to warrant attention from FEMA. To our knowledge, the only way

to include these types of hazards and counties in an analysis using natural disaster clustering

would be through using the methodology introduced in this paper.

4 Conclusion

It is clear that the temporal duration and the spatial footprint of natural disasters influence

the intensity of damages that occur, and that damages from natural disasters tend to be

spatially and temporally clustered. In this paper, we provide a tool allowing researchers to

account for correlations in damages from natural disasters across counties and time. We

find that accounting for clustering increases the skewness of the distribution of disaster

damages. We also find that disaster damages in a particular county tend to be larger when

the neighboring counties in its cluster experience greater disaster damage. Although causal

inference regarding the effects of clustering on different economic outcomes is outside the

scope of this paper, the analysis provides researchers with a useful tool to further study how

natural disaster clustering can affect economic outcomes following disasters.
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The implications of this paper will be especially important in any situation where disasters

may have economically meaningful spillover effects. In this sense, accounting for clustering

of natural disaster damages may help researchers to better account for second-order effects of

natural disasters. The analyses in this paper could therefore lead to a richer understanding

of how local economies are affected by disasters.
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Figures

Figure 1: Clustering Output Example: Hurricane Harvey

(a) Spatial Cluster (b) Presidential Disaster Declaration

Notes: This figure illustrates the set of counties that are included in the Harris County
August 2017 spatial cluster as obtained in the procedure outlined in subsubsection 1.2.1
(left), and the set of counties included in the “Hurricane Harvey” Presidential Disaster
Declaration (right).

Figure 2: Distributions of Damage Across Clusters

(a) Damage Histogram (b) Size vs Log(Damage)

Notes: This figure displays information on the distribution of damages across clusters.
Panel (a) shows the distribution of the log of total damages defined at the cluster-level,
alongside the distribution of the log of total damages defined at the county-level. Panel (b)
shows the expected log damage conditional on the size of the cluster it lies in. Data on
natural disasters are sourced from SHELDUS, and run from 2000 though 2020.
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Tables

Table 1: Summary Statistics on Total Disaster Damages by Hazard – County-Level Data

All Damage (thousands of $)

Count Mean SD Median 90th Pct. 95th Pct. 99th Pct.

Hurricane 2,907 116,401.4 1,078,979.7 304.4 51,132.7 187,899.4 2,013,905.6
Earthquake 112 60,860.6 275,912.3 10,256.4 20,398.4 76,109.1 1,019,616.2
Heat 1,513 21,639.4 574,761.9 0.0 412.3 1,520.7 57,385.8
Coastal 1,539 21,458.9 481,718.2 0.0 222.0 1,517.0 23,487.4
Wildfire 2,280 18,542.7 233,944.5 85.9 4,349.4 13,983.5 285,734.3
Landslide 976 16,201.0 213,895.4 23.1 3,377.8 18,261.2 142,381.2
Tornado 11,847 11,807.7 327,615.9 140.0 3,166.9 9,929.7 108,074.9
Flooding 30,597 11,764.9 327,334.3 69.4 2,361.9 7,465.0 75,000.0
Drought 3,879 9,600.3 55,307.1 146.9 18,020.7 29,140.6 130,019.7
Lightning 9,861 4,370.6 103,756.7 38.5 627.9 1,568.6 22,275.0
Hail 13,174 4,299.6 81,688.3 57.7 1,866.3 6,447.5 54,917.8
Volcano 19 2,441.0 6,788.8 55.5 16,054.7 26,097.2 26,097.2
Tsunami 58 2,303.6 8,368.6 166.6 6,409.1 9,368.9 60,918.0
Winter 14,105 1,785.9 25,599.7 50.6 1,400.1 3,887.1 28,121.2
Wind 102,856 1,524.8 67,663.9 14.7 304.7 1,010.0 11,510.6
Thunderstorm 78,705 1,304.2 39,884.1 16.0 314.1 998.3 12,090.3
Fog 317 374.8 2,084.0 50.1 555.2 1,156.9 6,597.7
Avalanche 1,055 354.2 7,399.2 0.0 16.6 111.8 2,529.1

Notes: This table shows summary statistics of total damages from natural disasters by
hazard-type, aggregated to the county level. Damage totals are in thousands of
inflation-adjusted USD, and include property and crop damages. Damages data are
sourced from SHELDUS, and run from 2000 through 2020.
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Table 2: Summary Statistics on Total Disaster Damages by Hazard – Spatial Cluster-Level
Data

All Damage (thousands of $)

Count Mean SD Median 90th Pct. 95th Pct. 99th Pct.

Hurricane 251 1,515,411.8 9,206,264.8 402.4 717,977.0 5,183,330.6 28,754,559.3
Drought 316 282,780.4 1,467,953.3 6,648.5 468,473.7 1,023,147.6 7,404,489.6
Earthquake 28 243,551.9 855,175.1 1,387.6 775,056.4 800,000.0 4,468,203.6
Heat 756 217,200.3 3,502,643.5 0.0 14,184.5 81,492.4 2,725,001.8
Landslide 548 191,678.5 1,657,752.1 63.1 33,485.2 193,630.8 4,468,203.6
Coastal 967 177,302.4 3,219,685.8 0.0 4,499.4 28,905.7 1,168,300.2
Tornado 4,443 95,185.1 2,154,472.4 217.1 19,371.8 76,109.1 947,638.0
Wildfire 1,061 65,565.3 644,749.1 256.4 24,307.3 94,620.1 1,624,240.5
Flooding 7,836 64,262.7 1,674,410.3 87.4 9,133.1 38,130.5 479,159.0
Hail 4,359 58,071.9 1,579,582.4 103.7 18,369.7 74,124.2 617,133.1
Lightning 5,684 55,398.8 1,465,435.3 54.2 5,016.8 29,528.4 468,473.7
Thunderstorm 15,783 30,499.4 1,166,570.8 26.8 1,783.0 8,963.9 194,103.9
Avalanche 333 29,874.3 410,041.4 0.0 998.8 11,759.7 230,797.9
Fog 158 28,271.8 165,974.5 126.4 13,243.5 98,944.2 870,080.4
Wind 19,136 25,842.4 1,059,512.1 24.0 1,509.5 7,407.6 169,508.6
Tsunami 32 21,282.6 37,244.0 2,451.9 93,238.3 123,556.2 126,338.0
Winter 2,227 19,724.0 204,289.9 61.1 10,131.0 41,626.6 395,161.7
Volcano 11 4,216.2 8,645.4 444.0 16,054.7 26,097.2 26,097.2

Cluster Size (# of Counties)

Tsunami 32 44.7 77.6 3.5 189.0 233.0 270.0
Drought 316 29.7 88.5 6.5 55.0 89.0 368.0
Hurricane 251 24.0 63.8 2.0 47.0 171.0 309.0
Heat 756 19.8 76.2 1.0 33.0 99.0 380.0
Landslide 548 18.2 66.8 1.0 27.0 55.0 384.0
Tornado 4,443 14.9 53.1 1.0 30.0 71.0 242.0
Hail 4,359 14.4 52.1 1.0 30.0 62.0 240.0
Fog 158 13.4 74.0 2.0 20.0 39.0 90.0
Coastal 967 13.3 67.2 1.0 13.0 46.0 309.0
Avalanche 333 12.4 76.9 3.0 11.0 17.0 240.0
Winter 2,227 12.3 39.9 2.0 31.0 52.0 173.0
Lightning 5,684 11.8 46.9 1.0 22.0 53.0 216.0
Flooding 7,836 11.1 41.4 1.0 23.0 47.0 185.0
Wildfire 1,061 11.0 56.2 1.0 18.0 34.0 208.0
Thunderstorm 15,783 7.0 29.8 1.0 11.0 26.0 106.0
Wind 19,136 6.6 27.4 1.0 11.0 24.0 91.0
Earthquake 28 4.2 14.5 1.0 4.0 9.0 78.0
Volcano 11 1.7 2.1 1.0 2.0 8.0 8.0

Notes: This table shows summary statistics of damages and cluster sizes from natural
disasters by hazard-type, aggregated to the spatial cluster level. Damage totals are in
thousands of inflation-adjusted USD, and include property and crop damages. Damages
data are sourced from SHELDUS, and run from 2000 through 2020.
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Table 3: Differences in Total Damages According to Hazard Type

D̄i,t

(1) (2) (3) (4) (5) (6)

Drought 0.319**
(0.129)

Drought × D̄−i
j,t 0.299***

(0.070)

Heat -0.531***
(0.124)

Heat × D̄−i
j,t 0.183**

(0.082)

Wildfire 0.264***
(0.088)

Wildfire × D̄−i
j,t 0.200***

(0.042)

Flooding 0.239***
(0.031)

Flooding × D̄−i
j,t 0.142***

(0.021)

Hurricane -0.594***
(0.177)

Hurricane × D̄−i
j,t 0.147***

(0.041)

D̄−i
j,t 0.445*** 0.428*** 0.444*** 0.441*** 0.405*** 0.440***

(0.013) (0.012) (0.013) (0.013) (0.016) (0.014)

Log GDP -0.018 -0.012 -0.016 -0.016 -0.019 -0.022
(0.073) (0.071) (0.073) (0.074) (0.074) (0.074)

Average Wages -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log Population -0.054 -0.081 -0.049 -0.070 -0.083 -0.054
(0.219) (0.213) (0.220) (0.219) (0.223) (0.219)

Constant 0.005 0.228 -0.064 0.146 0.281 0.087
(2.169) (2.147) (2.172) (2.155) (2.169) (2.162)

County FE Yes Yes Yes Yes Yes Yes

Date FE Yes Yes Yes Yes Yes Yes

Observations 115,712 115,712 115,712 115,712 115,712 115,712
R2 0.339 0.344 0.339 0.340 0.347 0.339

Notes: This table shows the results of a regression of log of total damages for both
county-level aggregates on indicators for the presence of a hazard in a given county/cluster
along with an interaction of the damage indicator with the log of damage of that county’s
spatial cluster excluding that county. Damages are aggregated to the county/cluster level,
and are in inflation-adjusted USD. Damages data are sourced from SHELDUS, and run
from 2000 through 2020. Standard errors are double-clustered at the county- and
month-level. *, **, and *** indicate 10%, 5%, and 1% significance, respectively.

23



Internet Appendix

IA.A Economics Literature

This internet appendix contains a broad review of the literature on natural disasters in
finance and economics.IA.1 Many of these studies take the form of panel regressions using
data aggregated at the county-by-period (e.g., month, quarter, year) level, while others
isolate a single natural disaster event (e.g., Hurricane Katrina) and examine how geographic
variation in exposure to that event is linked to economic outcomes. Researchers tend to
agree that natural disasters have broadly negative consequences for households in the short
term. However, the results vary significantly according to demographic characteristics, and
are more mixed over the long run. Much of the research on natural disasters has focused on
hurricanes since they tend to be disproportionately damaging.

IA.A.1 Natural Disasters and Household Credit

It is natural to expect that natural disasters could affect household credit outcomes. On the
one hand, damages from natural disasters could lead households to demand more credit. At
the same time, disasters may lead to income shocks, inhibiting the ability of borrowers to
repay debt. Several papers attempt to understand the overall effect of disasters on household
borrowing. Numerous papers have investigated a specific natural disaster event in order to
understand the impacts of natural disaster exposure on households.

Several papers examine how Hurricane Katrina affected households. For instance, Gal-
lagher and Hartley (2017) show that in the short run, more severe flooding from Hurricane
Katrina was associated with temporary increases in credit card debt and debt delinquencies,
as well as temporary drops in credit scores. On the other hand, they also show that in the
long run, flooding led to decreases in total debt, which the authors attribute to the use of
flood insurance payouts to pay down mortgage debt. Furthermore, they find that two years
after the event, non-local lenders tend to exit the market, while local lenders tend to recover
to pre-Katrina levels of lending. In a subsequent analysis, Bleemer and van der Klaauw
(2019) find that a decade after Hurricane Katrina, homeownership and credit insolvency
rates in flooded neighborhoods remain persistently lower than in non-flooded neighborhoods.
However, they find that residents in the surrounding region were better off on net, as indi-
cated by higher rates of consumption and homeownership, lower levels of debt, and lower
rates of bankruptcy and foreclosure. They find that these effects tend to favor younger and
low-income residents.

Researchers found similar effects when studying Hurricane Harvey. Billings et al. (2022)
use variation in flooding from Hurricane Harvey to understand the impacts of flood losses on
household credit. They find that credit-constrained homeowners in flooded areas experienced
significant increases in bankruptcies and delinquencies relative to those not in flooded areas,
but that flood insurance ameliorated these effects. In a follow-up paper, Gallagher et al.
(2023) find that for college-aged adults, the likelihood of having student debt is reduced in

IA.1See Botzen et al. (2019) for another useful review of the economics literature on natural disasters.
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areas that experienced flooding compared to areas that did not, and that local university
enrollment appears to drop in the Texas counties that were more affected by hurricane
damage. The authors propose that households experiencing flooding are less able to secure
credit for additional schooling, causing them to opt out of human capital investments.

IA.A.2 Effects of Disasters on Financial Assets and Banks

Beyond the household effects, there is a literature examining the effects of natural disasters on
local firms and asset prices. The literature finds evidence that firms are negatively affected
by natural disasters, and this is reflected in financial markets. Collier et al. (2024) find,
using a sample of credit reports and FEMA flooding estimates data, that in the aftermath of
Hurricane Harvey, business credit delinquencies doubled in areas exposed to more flooding
damage, and that these effects are driven by independent businesses. Kruttli et al. (2023) find
that the implied volatility of stock options of firms increased in advance of hurricanes affecting
regions the firm has a presence in. Comparing the implied volatility to the eventual realized
volatility indicates that investors underreact, although estimates of this underreaction have
decreased following Hurricane Sandy.

While natural disasters have been shown to affect financial markets, the effects are less
clear for banks. Correa et al. (2022) show that corporate loan spreads for borrowers located in
areas at high risk of experiencing a hurricane increase following hurricanes in other regions.
This could indicate that lenders incorporate beliefs about the likelihood and severity of
hurricanes in loan pricing. On the other hand, Blickle et al. (2021) find that banks are not
significantly impacted by disasters. They find, using a county-level analysis, that disasters
increase the demand for loans, offsetting losses and increasing profits at larger banks, while
local banks seem to avoid lending in areas in which flooding is more common than official
estimates. This finding is consistent with the idea that local firms can make use of local
knowledge to more efficiently account for natural disaster risk. Similarly, Koetter et al. (2020)
show that local German banks lend to firms affected by flooding and Berg and Schrader
(2012) show that relationships between banks and borrowers can mitigate reductions in
access to credit after volcanic eruptions in Ecuador.

IA.A.3 Disasters and Housing, Mortgage, and Insurance Markets

Given that natural disasters can adversely affect household credit, it is important to under-
stand how they affect housing markets, as well as mortgage and insurance markets. This
subsection discusses effects of natural disasters on these markets, and how they can affect
households’ location decisions.

Several papers use FEMA flood map data to show that government mandates to purchase
homeowner insurance can reduce borrower access to credit. These flood maps are partic-
ularly useful as lags in updates to the flood maps provide researchers an opportunity for
identification. Sastry (2021) uses highly granular data on flood maps, home- and loan-level
mortgage data, and data on insurance coverage and construction costs. Using an estimation
strategy relying on the fact that government-backed flood insurance has a strict limit, they
find that insurers offload flood risk both to the government through subsidized policies and
to borrowers through requirements of higher down payments. They also show that updates
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to flood maps lead banks to reduce loan-to-value ratios while interest rates remain roughly
the same. Blickle and Santos (2022) use Home Mortgage Disclosure Act (HMDA) data along
with FEMA flood map data to investigate how banks adjust lending in response to levels
of and changes to insurance requirements. They find that banks are less willing to lend in
areas after flood maps are extended. They also find that local banks are less responsive to
updates to flood zone maps, suggesting that they use local knowledge to more responsively
monitor true risk exposure relative to the insurance requirements. These results suggest
that mandatory insurance standards may unintentionally harm low-income and low-credit
borrowers.

It is not clear that insurers will continue to be willing to bear this risk. Issler et al. (2021)
combine a game theoretic framework with closely matched data on fire burn areas to consider
how wildfires affect housing and mortgage markets in California. Consistent with the model
predictions, they find that insurance payouts cause increases in square footage and decreases
in mortgage terminations in the aftermath of a fire, suggesting that insurance payouts lead
to a general improvement in the value of homes. They further argue that perverse incentives
to improve homes in high fire-risk areas may jeopardize the ability of insurance companies
to bear the risks in the absence of the ability to raise prices. Sastry et al. (2023) use
county- and zip code-level data on insurance to construct a comprehensive picture of how
insurers respond to increases in hurricanes in Florida. They find that traditional insurers
exit following increases in natural disasters. This leads to the entry of riskier insurers, who
offload the risk to both the government and mortgage lenders.

The exit of insurers is especially troubling as households are likely to demand more in-
surance as disaster-risk increases. Gallagher (2014) uses a community-level dataset with
information on presidential disaster declarations to understand how affected households re-
spond to flooding in their communities and unaffected households respond to flooding in
other communities in their television media markets. Flooded households have a sharp spike
in sign-ups for flood insurance and unaffected households in flooded media markets have
a significant, though smaller increase in sign-ups. These findings indicate that households
respond to information about floods by purchasing insurance. Similarly, theoretical research
argues that household location decisions and home values are driven by a combination of
households’ beliefs about the level of flood risk and their preferences for waterfront living
(Bakkensen and Barrage, 2018).

IA.A.4 Macroeconomic Effects of Natural Disasters

Intuitively, one would expect natural disasters to be a negative local shock to local economies,
and there is some literature supporting this conjecture. Deryugina (2017) finds that local
government expenditures appear to increase significantly in the decade of a hurricane. They
also find that on average, disaster aid is not sufficient to cover the present value of natural
disasters, although victims appear to be better insured than previously thought. Jerch et al.
(2023) similarly find that hurricanes reduce city- and county-level government tax revenues
in the following decade. They also find that hurricanes raise municipal bond default risk,
leading to ratings downgrades, further increasing municipal costs of capital. Similarly, Auh
et al. (2022) show that natural disasters reduce returns of uninsured municipal bonds in the
weeks following a disaster. The authors also find heterogeneities in this effect according to
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disaster severity, federal aid, and local economic conditions. Similarly, Acharya et al. (2022)
find that municipal bond pricing is affected by heat stress.

Nonetheless, it is not always the case that natural disasters are a net drag on the economy,
because the negative economic consequences from disasters may be offset by disaster aid and
private insurance payouts. Using county-level disaster declarations data from FEMA, Tran
et al. (2020) find that total and per-capita income increase in the 8 years following natural
disasters, with a temporary local employment boost followed by a long-term increase in
wages. This effect appears to be increasing in the size of the disaster. Additionally, house
prices tend to increase while population remains roughly constant, particularly in areas with
inelastic housing supply. Similarly, Deryugina et al. (2018) find that households exposed to
Katrina appear to experience transitory reductions in income, while they actually increase
their incomes over the longer term. This increase in income is especially concentrated among
movers out of New Orleans. This finding on mobility is consistent with Boustan et al. (2020),
which show that severe disasters increase out-migration, although unlike Tran et al. (2020),
these authors find housing costs and income growth decreased in the decade after disasters.
In contrast, Kim et al. (2022) find that severe weather shocks are associated with persistent
reductions in aggregate industrial production growth, and increases in unemployment and
inflation.

Researchers have also examined macroeconomic effects of disasters at the country level.
Skidmore and Toya (2002) find that exposure to repeated climate disasters leads to a substi-
tution of physical capital investment towards human capital investment, while also prompting
a more frequent updating of the capital stock. Surprisingly then, higher frequency of natural
disasters can boost total factor productivity. Cavallo et al. (2013) provide one explanation
for the boost in total factor productivity by showing that while very large natural disas-
ters reduce output, small disasters do not affect economic growth. These effects disappear,
however, when controlling for major negative political events in the wake of these disasters.
Bakkensen and Barrage (2018) also show that cyclone risk is largest for small island nations,
and otherwise is only modestly underestimated.

Overall, the economics literature finds mixed evidence on the economic consequences of
natural disasters. While several papers show evidence consistent with negative effects of
disasters on the economy, there is also significant work showing no strong effect, and even
some work showing a positive effect. Of course, these findings are typically based on analyses
from panel data, which requires an assumption that that natural disaster risk in one location
is uncorrelated with natural disaster risk in another location. In the next section, we will
review the climate science literature on natural disasters, which will allow us to interrogate
whether this assumption is consistent with the realities observed by the scientific community.
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IA.B Climate Science Literature

In this Internet Appendix section, we describe the scientific literature related to climate
change. There is an extensive climate literature relating to the societal impacts of natu-
ral disasters which aims to understand the mechanisms and impacts of natural disasters
historically, as well as to model future natural disasters and their impacts on society.

IA.B.1 Distributions of Severe Disasters Across Time and Space

A large strand of the climate literature has been devoted to understanding the spatial and
temporal distributions of natural disaster damages. Much of these papers provide evidence
that natural disasters are spatially and temporally linked, and can amplify the effects of
subsequent disasters in nonlinear ways. One of the first papers to consider the spatial and
temporal correlation between disasters was Wheater et al. (2005), which critiques methods
that model individual rainstorms as discrete events. They propose that a methodology using
more temporally and spatially continuous measures would provide better estimates of the
true geographic distribution of flood risks.

A substantial body of literature also aims to understand the determinants of flood risk,
and broadly shows that damage from flooding is conditional on local infrastructure, previous
weather conditions, and the climate of nearby regions. Li et al. (2016) find when looking in
Africa, that several factors determine how destructive and deadly a storm will be, conditional
on the severity of rainfall. In particular, higher levels of forest coverage, as well as lower
levels of urbanization and economic development were associated with an increase in the
frequency of catastrophic flooding events. Fu et al. (2023) find that there have historically
been significant heterogeneities in the levels and seasonality of flood risk across China, and
over time. They show that the simultaneous increases in the frequency and severity of both
drought and rainfall are linked via the same large-scale climate factors.

Janizadeh et al. (2021) model future flood risks in northwestern Iran using ensemble
machine learning models. They find that granular data about geography (e.g., elevation,
slope and proximity to rivers) as well as precipitation is important for predicting flood risk.
More broadly, Merz et al. (2021) find that the rate of disastrous flooding has increased in
severity with population and economic growth, as well as the frequency of severe storms.
However, they suggest that the increase in the severity of storms is often partially offset
by more effective flood mitigation and adaptation strategies. They suggest that, over the
longer term, unanticipated floods due to anomalous atmospheric conditions interacting with
an ill-equipped built environment are likely to be the largest source of damage and fatalities.

IA.B.2 Compound Events and Their Societal Effects

In the previous subsection, we discussed how disasters tend to be correlated across space and
time. We now explore how the effects of different hazard types may be correlated. There
is a significant literature studying how the co-occurrence of natural disasters can lead to
“compound effects,” where the downstream consequences of multiple disasters are greater
than the sum of their parts. This could occur because experiencing multiple disasters could
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strain natural and institutional systems, leading them to breakdown. Much of the work re-
lating to compound effects has been theoretical. Leonard et al. (2014) propose a framework
for considering the risks and consequences of natural disasters, which rejects the conven-
tional approach that natural disaster risks from multiple hazard types are independently
distributed. They suggest that the causes of seemingly disparate hazard types are linked,
which would lead compound events to be more frequent and more destructive than under
existing models. The authors note that natural disasters can have long-term effects on a re-
gion’s climate or conditions that can compound the effects of future disasters.IA.2 Similarly,
natural disasters can alter conditions in regions far away from where the disaster actually
occurs.

In a later paper, Zscheischler et al. (2018) argue that it is important to model different
hazard types as being driven by different factors. Subsequently, Zscheischler et al. (2020)
identify broad categories of natural disaster compounding, including temporal compounding
(i.e., multiple hazards occurring in succession) and spatial compounding (i.e., hazards in
multiple connected locations). These hazards may be driven by a related cause, which can
lead to greater damage. Moreover, destructive natural feedback loops and the failure of
important infrastructure can result from hazards occurring nearby each other.

Some researchers have focused specifically on the compounding effects driving flooding.
Wahl et al. (2015) demonstrate that the combination of tidal surge and heavy rain is es-
pecially likely to lead to coastal flooding. They also find that the risk of both tidal surge
and heavy rain is especially severe on the US Atlantic/Gulf coast, and that the risk of these
hazards has increased in recent years. In another investigation of flooding as an outcome
of other compound events, Lian et al. (2013) find that upstream rainfall can strain water
drainage systems, leading to unanticipated flooding from high tides. Zhang et al. (2018)
investigate the meteorological phenomena surrounding Hurricane Harvey, and show that ur-
banization exacerbated both the severity of rainfall as well as the flood risk, and that these
effects combined to amplify the severity of the flooding.

IA.B.3 Future Projections of Climate Disasters

The previous subsections reviewed literature on correlations between the effects of disaster
damage across space, time and hazard type. This subsection will review how scientists expect
natural disaster risks to evolve in the future. Much of the literature attempts to understand
how the evolution of climate change could affect realizations of natural disaster risk. These
papers consider a variety of global temperature rise scenarios, incorporating knowledge on
the compound effects of natural disasters.

Woodruff et al. (2013) show that under the expected rates of sea level rise, the severity
of hurricanes is expected to increase, even holding constant the frequency of hurricanes.
They suggest that changes in land use may ameliorate these increases, and that geography
is a crucial determinant of the level of property loss given a particular event. Marsooli
et al. (2019) find, modeling the trajectory of hurricane risks under anticipated sea level rise,
that the compound effects of these hazards together would cause 100-year flooding to occur

IA.2Lange et al. (2020) also provide evidence that the frequency of compound hazards has increased as
global average temperatures have risen.
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annually in the Atlantic and Gulf cost regions. Lin et al. (2012) use a general circulation
model (GCM) in combination with a hydrodynamic model to simulate possible surge events
under different projections of climate change. They show that due to increased surge events,
100-year floods are likely to occur between 1-in-3 and 1-in-20 years by the late 2020s.

Work has also been done to understand the likelihood of the co-occurrence of extreme
temperature and drought events. Ridder et al. (2022) model future changes to the spatial
correlations of heatwaves and drought as well as extreme winds and precipitation. Their
models suggest that these compound events will occur more frequently under all emissions
scenarios, with substantial regional heterogeneity. Further examining heat-drought, Bevac-
qua et al. (2022) use ensemble climate models to predict the future co-occurrence of hot-dry
events. Their models seem to suggest that precipitation is the main driver of the occurrence
of hot-dry events because the conditional probability of at least moderate heat given drought
becomes extremely high with even 2°C of warming.

On a broader level, researchers have tried to use some of the relationships between exist-
ing disaster types in order to assess the types of disaster risk increases that would be most
damaging to society. Sarhadi et al. (2018) simulate the likelihood of spatial and temporal
co-occurrence of natural disasters in an attempt to understand the downstream effects of
a nonstationary climate, and find that climate change is likely to double the joint proba-
bility of the co-occurence of heat and dought in the same region, and broadly that it will
increase the likelihood of the simultaneous co-occurrence of these stresses in multiple regions
simultaneously. Zhou et al. (2023) model the future statistical dependence of temperature
and precipitation extremes, and demonstrates a significant spatial correlation of these ex-
treme events. According to their model, there is likely to be a significant increase in the
simultaneous occurrence of extreme drought and flooding events that, together, will make
adaptation to climate change more costly and difficult. Their findings suggest that the con-
current nature of extreme precipitation and temperature events poses substantial risks to
natural ecosystems’ abilities to self-regulate and act as a carbon sink, further amplifying
climate change. They argue that “although future risks of climate extremes vary geograph-
ically, they are becoming more strongly interlinked through further warming with increased
climate variability and spatial dependence of climate extremes.” Anticipating and modeling
the ways in which future disaster risks are likely to increase under plausible climate change
scenarios is very important because of the threats these hazards can pose towards human
society.

IA.B.4 Projected Societal Implications of Increasingly Severe Dis-
asters

Future changes in the probabilities of extreme natural disasters are expected to have serious
socioeconomic effects. Climate change is likely to threaten the reliability of the energy grid,
and the spatial correlation of temperature shocks appear to be a key driver of this. Do et al.
(2023) analyze power outages in the United States between 2018 and 2020 and find that
outages are pervasive and widespread across the country, and that the most severe outages
frequently co-occur with severe weather events. Counties within 100 miles of a tropical
cyclone appear to be the most prone to power outages relative to other severe weather
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incidents, suggesting that natural disasters can have consequences outside of the places they
most directly impact. Perera et al. (2020) model the impacts of a potential increase in the
frequency of extreme heat and cold on the energy system in Sweden. They find that these
extreme weather demands will lead to shocks both to energy demand and energy supply.
Because of the spatial correlation of these weather shocks, strain on the entire energy system
is likely to increase. Stone Jr et al. (2021) examine the potential for electrical grid failure
under extreme heat events in the United States. They find that in recent years, power grid
blackouts have increased in frequency as simultaneous heatwaves in multiple regions have
placed unanticipated strain on energy systems. Under modeled heatwave scenarios, their
findings suggest that spatial compounding is likely to play a significant role in triggering a
rise in the frequency of widespread blackouts. Ultimately, their findings suggest that a much
greater share of the urban population is likely to face an elevated risk of heat exhaustion
and heat stroke relative to the present.

Climate change can also threaten food production systems due to both heat and drought
events. Tigchelaar et al. (2018) argue corn production will likely be adversely affected by
increased global frequencies of heat-drought events. Their research suggests that, absent
technological change enabling the growth of corn under higher heat scenarios, major disrup-
tions in the global supply of corn would become a regular occurrence under a 4°C warming
scenario, with especially severe consequences for low- and middle-income countries. Thiery
et al. (2021) take a more holistic approach, investigating how many extreme events the av-
erage person in a given generation will expect to experience over their lifetime. They find
that expected lifetime exposure to heat waves, crop failures, droughts, and river flooding has
increased significantly for current birth cohorts (those born after 2020). However, they note
that the degree of these increases is highly sensitive to the degree of warming, and suggest
that failing to take into account compounding effects may lead to underestimating the true
increase in severe disaster risk.

Many models of future climate risks aim to understand the potential threat of multiple
simultaneous shocks to key economic systems. Climate change is expected to compromise
the reliability of energy grids, with spatially correlated temperature extremes increasing both
energy demand and supply challenges. Additionally, the compounding effects of heat and
drought are likely to significantly impact food production, such as for crops like corn, with
potential disruptions becoming more common under higher warming scenarios. Ultimately,
the cumulative effects of extreme climate events, amplified by compounding effects, are
expected to increase significantly for future generations.

31



IA.C Additional Tables and Figures

Figure IA.1: Spatiotemporal Cluster Containing Harris County, April-October 2017

This figure illustrates the entire set of counties that are included in the Harris County
April-October 2017 spatiotemporal cluster, obtained following the process outlined in
subsubsection 1.2.2.

Figure IA.2: Temporal Evolution of Harris County Spatiotemporal Cluster, 04-10/2017

(a) 2017m4 (b) 2017m5 (c) 2017m6 (d) 2017m7

(e) 2017m8 (f) 2017m9 (g) 2017m10
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Figure IA.3: Distribution of Property Damage Across Spatial Clusters

(a) Property Damage Histogram (b) Size vs Log(Property Damage)

Notes: Panel (a) compares the distributions of the log of property damages, based on
whether they are aggregated to the county level or to the spatial cluster level, following the
process outlined in subsubsection 1.2.1. Panel (b) shows the expected log property
damages conditional on the size of the spatiotemporal cluster it lies in. Data on natural
disasters are sourced from SHELDUS, and run from 2000 though 2020.

Figure IA.4: Distribution of Crop Damage Across Spatial Clusters

(a) Crop Damage Histogram (b) Size vs Log(Crop Damage)

Notes: Panel (a) compares the distributions of the log of crop damages, based on whether
they are aggregated to the county level or to the spatial cluster level, following the process
outlined in subsubsection 1.2.2. Panel (b) shows the expected log crop damages conditional
on the size of the spatiotemporal cluster it lies in. Data on natural disasters are sourced
from SHELDUS, and run from 2000 though 2020.
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Figure IA.5: Distribution of Total Damage Across Spatiotemporal Clusters

(a) Damage Histogram (b) Size vs Log(Damage)

Notes: Panel (a) compares the distributions of the log of total damages, based on whether
they are aggregated to the county level or to the spatiotemporal cluster level, following the
process outlined in subsubsection 1.2.1. Panel (b) shows the expected log total damage
conditional on the size of the spatiotemporal cluster it lies in. Data on natural disasters are
sourced from SHELDUS, and run from 2000 though 2020.

34



Table IA.1: Summary Statistics

Counties

Count Mean SD Median 90th Pct. 95th Pct. 99th Pct.

Property Damage 161,664 3,613.9 154,580.5 15.8 450.6 1,425.3 18,249.3
Crop Damage 161,664 413.8 9,368.8 0.0 0.0 51.4 6,320.9
Total Damage 161,664 4,027.6 155,071.3 19.5 666.0 2,455.1 28,129.6
Injuries 161,664 0.3 6.8 0.0 0.0 1.0 5.0
Fatalities 161,664 0.1 1.8 0.0 0.0 0.0 1.0
Size 161,664 1.0 0.0 1.0 1.0 1.0 1.0
GDP 149,031 8,495.4 27,857.5 1,369.3 18,730.0 41,368.7 109,829.3
Population 159,101 158,076.2 416,648.7 40,234.0 371,839.0 748,626.0 1,975,076.0
Wages 149,416 3,237.9 2,352.2 2,792.8 5,387.5 6,556.6 9,859.4

Spatial Clusters

Property Damage 37,296 15,664.7 765,883.9 21.9 1,032.6 4,144.2 74,840.0
Crop Damage 37,296 1,793.5 44,856.2 0.0 0.0 40.5 7,990.4
Total Damage 37,296 17,458.2 777,418.7 23.6 1,230.1 5,555.8 116,869.9
Injuries 37,296 1.5 25.8 0.0 1.0 3.0 23.0
Fatalities 37,296 0.3 6.0 0.0 1.0 1.0 5.0
Size 37,296 4.3 20.0 1.0 6.0 13.0 58.0
GDP 34,380 32,175.4 115,593.6 3,040.0 65,681.8 149,291.7 510,954.1
Population 36,712 643,224.6 2,388,171.1 79,821.5 1,236,064.0 2,869,672.0 9,996,678.0
Wages 34,753 3,550.8 2,103.3 3,186.9 5,731.4 6,768.5 9,436.6

Notes: This table shows summary statistics of the fatalities, injuries, property damage,
crop damage, and total (property and crop) damage from natural disasters, aggregated to
the county- and spatial cluster-levels, as well as the average GDP, population, size, and
wages in each of these units of aggregation. GDP totals are annual, and in millions of
USD. Wage totals are quarterly per-capita. Population figures are annual. Damage totals
are in thousands of inflation-adjusted USD, and include property and crop damages.
Damages, injuries, and fatalities data are sourced from SHELDUS, and run from 2000
through 2020. GDP data are sourced from the Bureau of Economic Analysis. Population
data are sourced from the US Census Bureau’s Annual Community Survey (ACS). Wages
data are sourced from the Quarterly Census of Employment and Wages (QCEW).
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Table IA.2: Summary Statistics on Property and Crop Damage by Hazard – County-Level
Data

Property Damage (thousands of $)

Count Mean SD Median 90th Pct. 95th Pct. 99th Pct.

Hurricane 2,907 112,289.2 1,077,798.3 250.0 38,958.3 152,580.2 2,013,503.0
Earthquake 112 60,860.6 275,912.3 10,256.4 20,398.4 76,109.1 1,019,616.2
Coastal 1,539 21,328.7 481,720.0 0.0 181.2 1,105.2 21,839.3
Heat 1,513 21,048.3 574,728.6 0.0 263.6 891.1 7,663.8
Wildfire 2,280 17,486.0 232,077.7 71.7 3,918.6 12,004.1 167,726.4
Landslide 976 16,027.6 213,651.8 22.3 3,222.1 17,673.4 142,381.2
Tornado 11,847 11,393.6 327,218.8 132.7 2,764.8 8,444.6 100,010.0
Flooding 30,597 11,279.9 327,081.6 61.1 1,822.5 5,689.9 64,808.0
Lightning 9,861 4,176.0 102,742.3 37.0 585.6 1,404.0 16,584.0
Hail 13,174 3,699.5 81,315.2 36.4 890.5 3,019.8 50,086.5
Tsunami 58 2,272.5 8,345.2 166.6 6,409.1 8,739.7 60,918.0
Drought 3,879 1,650.0 25,061.3 0.0 153.8 742.6 18,035.0
Wind 102,856 1,330.7 67,297.1 14.1 260.0 740.0 7,548.2
Winter 14,105 1,233.8 23,502.2 38.1 765.5 2,250.4 20,770.5
Thunderstorm 78,705 1,124.3 39,481.4 15.2 261.0 712.3 7,400.3
Volcano 19 888.1 3,672.9 55.5 148.0 16,054.7 16,054.7
Fog 317 355.6 2,057.4 49.4 527.8 1,118.3 4,792.8
Avalanche 1,055 353.9 7,399.2 0.0 15.3 101.1 2,529.1

Crop Damage (thousands of $)

Drought 3,879 7,950.3 47,015.1 53.6 16,813.5 28,144.6 80,528.3
Hurricane 2,907 4,112.2 27,523.2 0.0 805.3 20,877.1 98,255.6
Volcano 19 1,552.8 5,958.6 0.0 1,221.8 26,096.4 26,096.4
Wildfire 2,280 1,056.7 28,018.1 0.0 6.4 64.6 10,930.4
Hail 13,174 600.0 5,852.0 0.0 284.9 1,165.3 15,670.2
Heat 1,513 591.2 7,613.5 0.0 0.0 58.3 4,661.2
Winter 14,105 552.1 10,092.5 0.0 0.0 114.2 7,585.1
Flooding 30,597 485.0 7,629.4 0.0 21.5 291.3 10,267.4
Tornado 11,847 414.0 8,837.4 0.0 12.0 159.6 3,653.6
Lightning 9,861 194.6 4,272.9 0.0 0.0 1.1 728.5
Wind 102,856 194.1 6,049.6 0.0 0.0 6.1 1,221.8
Thunderstorm 78,705 179.8 4,449.4 0.0 0.0 12.2 1,460.9
Landslide 976 173.3 2,023.8 0.0 0.0 11.1 8,668.0
Coastal 1,539 130.1 1,787.8 0.0 0.0 0.0 534.2
Tsunami 58 31.1 237.2 0.0 0.0 0.0 1,806.2
Fog 317 19.2 214.8 0.0 0.0 5.7 177.6
Avalanche 1,055 0.3 6.6 0.0 0.0 0.0 0.0
Earthquake 112 0.0 0.0 0.0 0.0 0.0 0.0

Notes: This table shows summary statistics of property and crop damage from natural
disasters by disaster-type, aggregated to the county level. All Damage totals are in
thousands of inflation-adjusted USD, and include property and crop damages. Damages
data are sourced from SHELDUS, and run from 2000 through 2020.
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Table IA.3: Summary Statistics on Property and Crop Damage by Hazard – Spatial Cluster-
Level Data

Property Damage (thousands of $)

Count Mean SD Median 90th Pct. 95th Pct. 99th Pct.

Hurricane 251 1,462,571.6 9,084,690.0 394.5 522,450.1 4,801,737.6 28,750,380.8
Earthquake 28 243,551.9 855,175.1 1,387.6 775,056.4 800,000.0 4,468,203.6
Heat 756 202,426.9 3,493,693.1 0.0 11,140.8 47,055.8 2,585,458.1
Drought 316 180,844.7 1,394,458.6 78.1 51,741.9 250,909.5 7,374,072.0
Landslide 548 176,903.6 1,634,845.8 59.0 30,544.8 152,162.3 3,952,581.3
Coastal 967 170,655.9 3,212,088.4 0.0 3,988.4 21,839.3 725,038.6
Tornado 4,443 89,816.8 2,125,857.4 207.0 14,818.4 57,143.5 685,012.1
Flooding 7,836 60,000.2 1,650,261.5 78.8 7,516.9 30,128.2 444,015.0
Wildfire 1,061 57,019.4 634,813.8 210.2 18,868.0 62,445.5 1,101,922.2
Hail 4,359 52,252.7 1,544,189.1 67.2 11,298.9 49,137.7 523,857.4
Lightning 5,684 52,187.6 1,435,860.8 53.2 4,069.0 21,042.6 435,289.3
Avalanche 333 28,903.4 406,824.0 0.0 890.5 8,991.5 230,797.9
Thunderstorm 15,783 28,062.6 1,151,054.8 26.0 1,503.0 6,815.9 137,272.2
Wind 19,136 23,621.1 1,045,298.5 22.8 1,260.3 5,661.0 112,254.9
Tsunami 32 20,738.0 37,323.7 412.9 91,432.1 123,556.2 126,338.0
Fog 158 18,664.6 94,003.5 119.7 9,952.0 98,931.9 536,298.6
Winter 2,227 15,783.8 196,678.6 52.0 6,008.5 23,240.9 267,988.3
Volcano 11 1,534.0 4,817.8 11.4 444.0 16,054.7 16,054.7

Crop Damage (thousands of $)

Drought 316 101,935.7 309,370.8 1,869.4 260,039.3 545,714.6 1,223,556.7
Hurricane 251 52,840.1 336,693.7 0.0 15,434.6 186,448.2 1,009,937.9
Landslide 548 14,774.9 166,374.8 0.0 33.6 786.8 257,959.0
Heat 756 14,773.4 143,724.6 0.0 14.8 2,062.6 347,932.6
Fog 158 9,607.2 101,568.8 0.0 71.2 14,278.9 79,876.5
Wildfire 1,061 8,545.9 109,268.7 0.0 54.8 1,300.2 134,452.9
Coastal 967 6,646.4 75,376.8 0.0 0.0 188.7 69,204.8
Hail 4,359 5,819.2 73,221.0 0.0 693.9 4,478.9 82,608.6
Tornado 4,443 5,368.3 64,822.3 0.0 114.2 1,954.9 79,876.5
Flooding 7,836 4,262.5 80,100.5 0.0 37.5 753.1 47,258.0
Winter 2,227 3,940.2 50,781.1 0.0 0.0 379.3 75,201.3
Lightning 5,684 3,211.2 49,983.3 0.0 4.2 337.6 41,063.0
Volcano 11 2,682.2 7,783.2 0.0 1,221.8 26,096.4 26,096.4
Thunderstorm 15,783 2,436.8 50,999.0 0.0 0.6 107.3 15,049.7
Wind 19,136 2,221.4 48,236.5 0.0 0.0 58.8 13,471.7
Avalanche 333 970.9 14,317.7 0.0 0.0 0.0 1,129.4
Tsunami 32 544.7 2,408.9 0.0 0.0 2,151.3 13,471.7
Earthquake 28 0.0 0.0 0.0 0.0 0.0 0.0

Notes: This table shows summary statistics of injuries and fatalities from natural disasters
by disaster-type, aggregated to the spatial cluster level. All Damage totals are in
thousands of inflation-adjusted USD, and include property and crop damages. Damages
data are sourced from SHELDUS, and run from 2000 through 2020.
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Table IA.4: Summary Statistics on Total Disaster Damages by Hazard – Spatiotemporal
Cluster-Level Data

All Damage (thousands of $)

Count Mean SD Median 90th Pct. 95th Pct. 99th Pct.

Hurricane 205 1,963,249.8 10,233,478.9 770.2 2,479,581.6 9,103,685.5 28,836,436.1
Drought 287 898,143.5 6,440,464.2 34,090.7 1,006,839.9 2,137,319.8 22,814,845.2
Heat 581 321,479.4 4,020,061.0 0.0 86,286.5 330,235.7 7,884,366.7
Coastal 914 293,508.1 3,474,335.0 0.0 47,078.6 289,351.0 7,427,618.9
Landslide 531 281,027.7 1,876,897.3 142.0 119,935.3 516,826.3 7,884,366.7
Earthquake 28 244,245.6 854,974.6 10,090.4 775,056.4 800,000.0 4,468,203.6
Tornado 3,601 140,534.5 2,473,059.3 208.6 33,286.5 147,319.8 1,446,102.8
Hail 3,275 110,779.0 1,970,065.6 110.6 40,033.3 158,066.1 1,436,114.5
Wildfire 1,010 97,283.6 752,906.6 353.6 41,583.8 236,637.1 2,283,272.1
Flooding 5,647 92,928.0 1,987,866.1 78.3 15,826.3 70,442.4 910,873.6
Lightning 4,318 89,451.9 1,743,610.9 50.2 10,003.3 70,677.2 1,053,624.8
Fog 155 61,794.1 252,195.4 380.5 121,939.8 280,777.7 1,810,372.9
Tsunami 28 51,198.7 92,339.7 11,410.7 170,003.3 171,338.9 426,637.6
Thunderstorm 11,598 44,486.3 1,374,608.5 23.3 2,111.5 14,613.0 349,048.6
Wind 14,399 36,436.1 1,233,626.1 20.9 1,538.8 10,623.7 288,607.9
Winter 1,914 33,297.2 267,370.3 62.9 19,040.3 86,601.0 688,621.7
Avalanche 324 32,434.4 417,199.3 0.1 3,135.3 21,368.4 264,194.4
Volcano 11 4,216.2 8,645.4 444.0 16,054.7 26,097.2 26,097.2

Cluster Size

Drought 287 123.7 230.0 16.0 429.0 641.0 1,038.0
Tsunami 28 90.8 136.7 7.0 297.0 321.0 510.0
Hurricane 205 80.4 169.4 2.0 356.0 527.0 633.0
Heat 581 62.5 174.5 2.0 205.0 492.0 854.0
Landslide 531 47.7 147.4 2.0 86.0 342.0 842.0
Coastal 914 46.2 148.1 1.0 77.0 403.0 754.0
Fog 155 40.9 126.9 4.0 68.0 333.0 546.0
Hail 3,275 27.8 100.1 1.0 43.0 145.0 552.0
Tornado 3,601 26.9 97.2 1.0 40.0 144.0 545.0
Wildfire 1,010 25.0 108.9 2.0 24.0 86.0 567.0
Winter 1,914 21.4 68.9 2.0 46.0 103.0 358.0
Lightning 4,318 21.4 88.1 1.0 23.0 91.0 510.0
Flooding 5,647 19.4 78.9 1.0 26.0 76.0 451.0
Avalanche 324 17.1 87.7 4.0 16.0 27.0 456.0
Thunderstorm 11,598 10.7 55.9 1.0 10.0 27.0 277.0
Wind 14,399 9.4 50.4 1.0 10.0 23.0 215.0
Earthquake 28 6.0 15.2 1.0 17.0 23.0 78.0
Volcano 11 1.7 2.1 1.0 2.0 8.0 8.0

Notes: This table shows summary statistics of damages and cluster sizes from natural
disasters by disaster-type, aggregated to the spatiotemporal cluster level, conditional on
the presence of the given hazard. All Damage totals are in thousands of inflation-adjusted
USD, and include property and crop damages. Damages data are sourced from SHELDUS,
and run from 2000 through 2020.
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Table IA.5: Differences in Property Damages According to Hazard Type

D̄i,t

(1) (2) (3) (4) (5) (6)

Drought -0.051
(0.202)

Drought × D̄−i
j,t -0.180*

(0.103)

Heat -0.550***
(0.170)

Heat × D̄−i
j,t 0.136*

(0.080)

Wildfire 0.234***
(0.082)

Wildfire × D̄−i
j,t 0.215***

(0.038)

Flooding 0.203***
(0.030)

Flooding × D̄−i
j,t 0.175***

(0.021)

Hurricane -0.536***
(0.184)

Hurricane × D̄−i
j,t 0.184***

(0.040)

D̄−i
j,t 0.392*** 0.397*** 0.391*** 0.387*** 0.343*** 0.383***

(0.012) (0.012) (0.012) (0.012) (0.015) (0.014)

Log GDP 0.011 0.012 0.013 0.011 0.012 0.004
(0.069) (0.069) (0.069) (0.070) (0.069) (0.069)

Average Wages -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log Population -0.053 -0.046 -0.049 -0.067 -0.095 -0.053
(0.211) (0.213) (0.211) (0.210) (0.211) (0.211)

Constant -0.390 -0.478 -0.454 -0.235 -0.004 -0.277
(2.135) (2.142) (2.138) (2.121) (2.118) (2.129)

County FE Yes Yes Yes Yes Yes Yes

Date FE Yes Yes Yes Yes Yes Yes

Observations 111,827 111,827 111,827 111,827 111,827 111,827
R2 0.297 0.298 0.297 0.298 0.309 0.298

Notes: This table shows the results of a regression of log of property damages for both
county-level aggregates on indicators for the presence of a hazard in a given county/cluster
along with an interaction of the damage indicator with the log of property damage of that
county’s spatial cluster excluding that county. Damages are aggregated to the
county/cluster level, and are in inflation-adjusted USD. Damages data are sourced from
SHELDUS, and run from 2000 through 2020. Standard errors are double-clustered at the
county- and month-level. *, **, and *** indicate 10%, 5%, and 1% significance,
respectively.
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Table IA.6: Differences in Crop Damages According to Hazard Type

D̄i,t

(1) (2) (3) (4) (5) (6)

Drought 2.840***
(0.413)

Drought × D̄−i
j,t -0.014

(0.068)

Heat -0.994
(0.639)

Heat × D̄−i
j,t -0.046

(0.252)

Wildfire -0.235
(0.482)

Wildfire × D̄−i
j,t -0.080

(0.143)

Flooding -0.016
(0.184)

Flooding × D̄−i
j,t 0.015

(0.058)

Hurricane -1.983*
(1.196)

Hurricane × D̄−i
j,t 0.025

(0.219)

D̄−i
j,t 0.402*** 0.396*** 0.404*** 0.405*** 0.397*** 0.416***

(0.042) (0.036) (0.042) (0.042) (0.048) (0.043)

Log GDP -0.113 -0.009 -0.111 -0.124 -0.114 -0.064
(0.258) (0.244) (0.258) (0.257) (0.258) (0.255)

Average Wages 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log Population -1.682** -1.616** -1.715** -1.652** -1.682** -1.562**
(0.770) (0.805) (0.773) (0.767) (0.771) (0.783)

Constant 17.039** 14.358* 17.355** 16.900** 17.061** 15.188**
(7.545) (8.052) (7.544) (7.496) (7.553) (7.568)

County FE Yes Yes Yes Yes Yes Yes

Date FE Yes Yes Yes Yes Yes Yes

Observations 11,775 11,775 11,775 11,775 11,775 11,775
R2 0.657 0.688 0.658 0.658 0.657 0.662

Notes: This table shows the results of a regression of log of crop damages for both
county-level aggregates on indicators for the presence of a hazard in a given county/cluster
along with an interaction of the damage indicator with the log of crop damage of that
county’s spatial cluster excluding that county. Damages are aggregated to the
county/cluster level, and are in inflation-adjusted USD. Damages data are sourced from
SHELDUS, and run from 2000 through 2020. Standard errors are double-clustered at the
county- and month-level. *, **, and *** indicate 10%, 5%, and 1% significance,
respectively.
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