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Abstract 

In this paper, we propose a component-based dynamic factor model for nowcasting GDP growth. 

We combine ideas from “bottom-up” approaches, which utilize the national income accounting identity 

through modelling and predicting sub-components of GDP, with a dynamic factor (DF) model, which is 

suitable for dimension reduction as well as parsimonious real-time monitoring of the economy. The 

advantages of the new model are twofold: (i) in contrast to existing dynamic factor models, it respects the 

GDP accounting identity; (ii) in contrast to existing “bottom-up” approaches, it models all GDP 

components jointly through the dynamic factor model, inheriting its main advantages. An additional 

advantage of the resulting CBDF approach is that it generates nowcast densities and impact 

decompositions for each component of GDP as a by-product. We present a comprehensive forecasting 

exercise, where we evaluate the model’s performance in terms of point and density forecasts, and we 

compare it to existing models (e.g. the model of Almuzara, Baker, O’Keeffe, and Sbordone (2023)) 

currently used by the New York Fed, as well as the model of Higgins (2014) currently used by the 

Atlanta Fed. We demonstrate that, on average, the point nowcast performance (in terms of RMSE) 

of the standard DF model can be improved by 15 percent and its density nowcast performance (in terms 

of log-predictive scores) can be improved by 20 percent over a large historical sample. 
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1 Introduction

Gross Domestic Product (GDP), the most important summary measure of economic activity, arrives

with a considerable delay, creating an information gap in market participants’ understanding of the

current state of the economy. Having a reliable current-quarter estimate, also known as a ‘nowcast’,

of GDP growth is therefore a crucial guide for households, firms and policymakers alike. One of the

main challenges in constructing such an estimate is determining which series to monitor and how to

effectively utilise these data, given that they are released at uneven intervals at different points throughout

the quarter and are subject to constant revisions.

The focus of this paper is on automated judgment-free nowcast models; we abstract from judgmental

forecasts, which lack a formal and systematic framework for continuously extracting signal from large

amounts of complex information. There are two broad approaches in the literature on nowcast modelling.

The first utilises dynamic factor (DF) models (e.g. Giannone, Reichlin, and Small (2008), Banbura,

Giannone, and Reichlin (2010), as well as the model of Almuzara et al. (2023) currently used by the New

York Fed) which are well-suited to adapt in real-time to handle a large-dimensional set of variables,

mixed frequency, missing observations and uneven arrival of information in a parsimonious and model-

consistent way that delivers uncertainty in the form of GDP nowcast probability density. DF models are

well established in policy institutions around the world. See Cascaldi-Garcia, Luciani, and Modugno

(2024b) for a recent review on DF models in nowcasting1. There is also a literature on other mixed-

frequency models suitable for nowcasting, such as vector autoregressions (e.g., Schorfheide and Song

(2015) and Carriero, Clark, and Marcellino (2015)). One disadvantage of existing DF and VAR nowcast

models is that, since they do not impose the national income accounting identity, they are missing

important restrictions linking key components to GDP, and, consequently, can produce counter-intuitive

results. Moreover, while data on some aggregate GDP components arrive with GDP at quarterly

frequency, data on others, such as consumption and trade, are released much earlier and at monthly

frequency. Standard DF models use information in such early component releases revising their GDP

estimate through the model’s factors and loadings; however, DF model structure lacks key accounting

restrictions on such monthly components, which, if utilised effectively, can improve the accuracy of the

GDP estimate.

The second approach in the literature, sometimes referred to as a ’bottom-up’ approach, attempts to

mimic as closely as possible the accounting formula that the Bureau of Economic Analysis (BEA) uses

when constructing the GDP estimate (e.g. the model of Higgins (2014) currently used by the Atlanta

Fed or Baffigi, Golinelli, and Parigi (2004)). This involves utilising early, realised data on some GDP

components and nowcasting all other components (typically through a set of auxiliary methods such as

simple time-series models, bridging equations, or MIDAS models) and then combining all pieces into

a GDP estimate via the national accounting identity. The disadvantage of this approach is that it lacks

1For nowcast performance of DF models in the context of different countries, see Cascaldi-Garcia, Ferreira, Giannone, and
Modugno (2024a) for the Eurozone, Anesti, Galvão, and Miranda-Agrippino (2022) for the UK, Bragoli and Modugno (2017) for
Canada and Hayashi and Tachi (2023) for Japan.
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the capacity to jointly process the data in a statistically rigorous way based on formal likelihood and

filtering through a single model. Moreover, since GDP components are often modelled using separate

methodologies, it cannot produce a model-consistent probability density around the nowcast estimate.

In this paper, we develop a new component-based dynamic factor (CBDF) nowcast model that

combines ideas from both existing approaches in the literature by utilising a dynamic factor model to

effectively process in real-time the flow of information from a wide range of macroeconomic and financial

indicators, while at the same imposing the national accounting identity on six aggregate GDP components

in order to closely mimic the formula used by the BEA to construct GDP. The resulting DF model produces

nowcast densities for each sub-component, which are then combined through the accounting identity to

obtain nowcast density for GDP growth. We make use of market-moving indicators on manufacturing,

labour market, financial conditions, and soft data such as consumer sentiment and business outlook

surveys, as well as series on the GDP components (consumption, investment, inventories, net exports,

and government spending). The new model processes these data by combining Bayesian dynamic factor

modelling, Kalman filtering techniques, and ’bottom-up’ methods, delivering a number of advantages

over existing approaches.

First, it imposes the national accounting identity, used by the BEA, weighting the model-implied

nowcasts of individual GDP components by their respective nominal shares, in contrast to existing

dynamic factor models. Second, it models all GDP components jointly, in contrast to existing ’bottom-

up’ approaches, through a single dynamic factor model, inheriting its desirable properties: (i) effective

real-time handling of mixed frequency, missing observations and unbalanced arrival of new data; (ii)

dimensionality reduction through the use of the factors designed to capture component-specific as well

as common co-movements. Third, it provides a transparent reading of the incoming data releases

through the impact decomposition of the nowcast revisions to both GDP and its components. Finally, it

generates probability density for the nowcast of each component, combined to deliver a nowcast of GDP

growth, along with a full probability density quantifying the uncertainty around it. This is achieved

through time-varying volatility2 as well as variance outliers in the factors and idiosyncratic terms of

the DF model, providing a more accurate account of the data and parameter uncertainty around each

component and the GDP estimate.

We experiment with ways to improve the nowcast performance of the CBDF approach through vari-

ous specifications. We study the historical performance of the resulting model through a comprehensive

real-time forecasting exercise, where we evaluate the model’s performance in terms of point and density

nowcasts and we compare it to existing models (e.g. the model by Almuzara et al. (2023) currently used

by the New York Fed, and the model by Higgins (2014), currently used by the Atlanta Fed, as well as

judgement-based professional forecasts such as SPF and Blue Chip). We demonstrate that the new CBDF

model performs well and can improve on average the point nowcast performance (in terms of RMSE)

of the current NY Fed Staff Nowcast model by 15% and its density nowcast performance (in terms of

log-predictive scores) by 20% over a large historical sample.

2See, for example, Del Negro and Otrok (2008) or Mumtaz and Surico (2012) for DF models with stochastic volatility.
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The remainder of the paper is organised as follows. In Section 2.1, we provide a motivation for

the development of the new model demonstrating how it can resolve some issues with existing DF

nowcast models. In Section 2.2 we illustrate the differences between the new CBDF and the standard DF

approaches through the lens of the most recent quarter (2025:Q1). The technical details on the new model

can be found in Section 3; the forecast evaluation exercise is presented in Section 4. Section 5 concludes

and the Appendix (A) contains details on the Gibbs Sampling algorithm and prior distributions, as well

as some additional empirical results.

2 Motivation

2.1 What moves the GDP Nowcast

Standard DF nowcast models, which do not impose the accounting identity, can sometimes generate

contradictory outputs. We illustrate this point below through the model-implied impact analysis, which

decomposes each weekly GDP nowcast revision into impacts stemming from surprises in data releases

(relative to the model’s prediction), as well as data and parameter revisions. For technical details on

how these impacts are computed, refer to Section 3.5; here we provide intuition and some empirical

illustrations. In the context of the new CBDF model, the forecast revision of GDP from one week to

another is a weighted average of the forecast revisions of each component, which in turn are weighted

averages of ‘news’ during the week, with news’ being defined as the difference between released data

that week and the model’s prediction.

The resulting CBDF models’s impact weights assigned to news (surprises) in monthly component

series are the result of three modelling choices: (i) the nominal shares each component receives in the

accounting equation, (ii) the disproportionate weights each month receives in the computation of the

QoQ growth rate for each component (and hence GDP), and (iii) the joint dynamic structure stemming

from the underlying factor model. Standard DF models’ impact weights only feature in the model

structure through the factors, loadings and idiosyncratic terms, missing the first two effects due to the

absence of an imposed national accounting structure. The first issue leads to muted impact weights on

surprises in component series that matter greatly for the computation of GDP growth, relative to what

the nominal shares in the national accounting identity would imply. In fact, in some cases, e.g. import

growth, the weights generated by the standard DF model have a counter-intuitive sign. While positive

surprises in import series may affect all other series in the multivariate DF model through various

channels and in different directions via the factor structure, their aggregate effect on GDP growth is

largely expected to be negative, since imports enter the accounting identity with a negative sign. The

new CBDF model is designed to address this by allowing the import series to affect all other series

through the common factor structure, but crucially imposing it to enter the GDP equation with negative

sign and weight given by the nominal share of imports.

In Figure 1, we display the weekly impact weights that nominal monthly import growth and import
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FIGURE 1. Average GDP impact weights of nominal imports (top) and import prices (bottom) across a quarter

inflation surprises receive when revising the QoQ GDP nowcast for the model by Almuzara et al. (2023)

(currently used by the New York Fed), which we label DF model, and our new CBDF model3 (the figure

displays weekly weights within a quarter averaged across 75 quarters from 2006:Q2-2024:Q4). Since

these monthly series are released with a lag, the figure also indicates approximately when each monthly

observation is released in the quarter. As is clear from Figure 1, in contrast to the standard DF model,

the new CBDF model features negative impact weights on surprises from releases of nominal import

growth and positive weights on import prices (consistent with the GDP accounting identity).

The second issue with the standard DF model is that the resulting shape of the impact weights for

important monthly GDP components throughout the quarter does not reflect the formula for computing

QoQ growth rate in which some months receive more weight than others (see equation 1 in Section 3.1

for details on the exact formula). Hence, surprises in more important months receive equal weights

to surprises in less relevant months. In contrast, our CBDF model addresses this issue, since our GDP

nowcast is computed by imposing the national accounting identity on the QoQ growth rates for the

components, which for components arriving at monthly frequency (such as consumption and trade

data) are computed from the MoM growth rate releases. In Figure 1, the impact weights of the CBDF

model reflect closely the QoQ formula evolving throughout the quarter. As expected, the impact weights

peak when the series for the first month of the reference quarter arrives, in line with the formula for

3Technical details on the model’s equations, data and factor structure can be found in Section 3.

5



FIGURE 2. Average GDP impact weights of consumption

FIGURE 3. Absolute sum of soft data impact weights on GDP

QoQ growth rate which gives this month the largest weight. Since the import price data arrive a month

earlier, the corresponding weights peak earlier, in line with the formula. We illustrate the above points

with another example: the impact weights on surprises in monthly personal consumption expenditure

(PCE), which, with a nominal share of around 70% of GDP, provides an early and invaluable signal

for current quarter GDP. In Figure 2, we display the weekly impact weights on GDP from surprises in

PCE growth data. The standard DF model attributes positive weights for the series, however, these are

small and do not correctly reflect the great importance of this component on GDP. Moreover, surprises

in different monthly releases receive similar weights. In contrast, the CBDF model assigns large positive

weights to surprises in consumption releases, in line with the nominal share of consumption, and as

expected, assigns larger weights to the first month of the reference quarter, in line with the QoQ formula.

Finally, in Figure 3 we display the weekly impact weights that both the standard DF and the novel

CBDF models assign to soft survey data revisions; these include the Michigan Consumer Sentiment

survey as well as ISM, the Philadelphia Fed and the Empire State manufacturing surveys4. In the figure,

we display the sum of absolute values of impact weights for all survey data series5, in order to access

4For the full list of the series in this category, refer to Table 1 in Section 3.4.
5We take absolute value to avoid cancellation since weights can move in opposite directions.
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FIGURE 4. 2025:Q1 Evolution for DF (left) and new CBDF models (right)

how important they are for the two models, given that they do not enter the accounting identity but can

provide early signal on the state of the economy. We find that both models have similar impact weights,

suggesting that the CBDF model, by imposing the GDP accounting identity, does not mute the effect that

such important leading indicators may have on GDP through the factor structure of the model. Crucially,

we find that surprises in soft data matter considerably more at the beginning of each quarter and their

impact weights decline to zero towards the end of the quarter when hard data become available.

2.2 Recent Example 2025:Q1

Having discussed how key components affect the novel GDP nowcast, we now focus on a concrete

example: the most recent quarter (2025:Q1), in order to illustrate how the output of the new CBDF

model differs from that of the standard DF model. In Figure 4, we display the 2025:Q1 nowcast for the

annualised QoQ GDP growth of the component-based approach (right) against the standard DF model

by Almuzara et al. (2023) currently used by the New York Fed (left). From the figure, it is clear that, as of

Friday 04/18/2025, the nowcast of the CBDF model is -3.16 which is not as optimistic as the DF model’s

estimate of 2.58.

Ordinarily both models perform similarly (see Section 4 for historical evaluation of their relative

nowcast performance). However, the divergence between the two in 2025:Q1 is a result of sizeable drops

in the realised monthly component contributions (consumption, exports and imports in particular),

which in the CBDF model are directly imposed on GDP through the accounting identity, while in the DF

model can only indirectly affect the GDP estimate through the factors and loadings.

In Figure 5, we include plots of the 2025:Q1 nowcasts for the annualised QoQ growth rate of each of

the six GDP components (the inventory contribution to GDP growth is modelled directly). It is worth

providing a brief discussion of how these QoQ component growth rates are computed. In particular,
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for series like consumption and trade, which arrive at a monthly frequency, the QoQ growth rate for

2025:Q1 is computed as:

2025:Q1% ≈
1
3

2024:M11% +
2
3

2024:M12% +
3
3

2025:M1% +
2
3

2025:M2% +
1
3

2025:M3%. (1)

To provide a concrete example, on 02/28/2025 when 2025:M1 series for consumption arrives, our model

uses this number together with the numbers for 2024:M11 and 2024:M12 directly in the formula above

combining them with the model-implied nowcasts for 2025:M2 and 2025:M3 to compute the QoQ

consumption growth nowcast for 2025:Q1. This QoQ nowcast is then weighted by the nominal share

of consumption and combined with the other components through the national accounting identity

to produce the nowcast for GDP (see Section 3.4 for technical details). This not only contributes to

more timely and accurate nowcasts for monthly components but also reduces the model’s GDP nowcast

uncertainty as more of these monthly component series arrive.

In order to understand the evolution of the CBDF model’s nowcast throughout the quarter, we make

use of the impact decomposition analysis (see Section 3.5 for technical details) which allows us to directly

trace the source of each weekly movement of the nowcast throughout 2025:Q1. In particular, the largest

weekly impacts on the component-based GDP estimate are:

• 02/07/2025: –0.53% due to 2024:M12 nominal export growth6 and –0.36% due to 2024:M12 nominal

import growth

• 02/14/2025: -0.55% due to 2025:M1 export price growth

• 02/28/2025: -1.84% due to 2025:M1 consumption growth

• 03/07/2025: -2.01% due to 2025:M1 nominal import growth.

The exceptionally strong import growth in 2024:M12 and 2025:M1, responsible for the sizeable downward

revisions of the component-based GDP nowcast, could be due to recent tariff uncertainty and companies

stockpiling on goods prior to tariffs taking effect. Some of these imported goods, if neither consumed nor

used in production in 2025:Q1, will likely end up as a one-to-one increase in inventories either in 2025:Q1

or in future quarters, dampening the negative effect of import growth on GDP. While it is difficult to

know exactly what proportion of import growth’s effect on final GDP may be cancelled through higher

inventories7, the impact decomposition of the CBDF model allows us to quantify precisely these effects

and conduct counterfactual analysis by ‘switching off’ some channels. For example, if we were to assume

that import growth surprises in 2024:M12 and 2025:M1 were driven solely by stockpiling and would be

fully offset in the final GDP number, and we therefore entirely remove their impact on our GDP estimate

(which are –0.36 for 2024:M12 and –2.01 for 2025:M1), our 2025:Q1 GDP nowcast would be -0.79 instead

of -3.16.
6The export and import data from Census is adjusted for non-monetary gold, since gold is not included in the BEA’s calculation

of quarterly real exports and imports, refer to Table 1 for details on the data and transformations.
7At the time of writing, we do not have the 2025:Q1 BEA Advance GDP release or the Advance release for inventories, which

become available on 30 April 2025.
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FIGURE 5. 2025:Q1 Evolution of the Nowcasts for GDP Components

3 Methodology

3.1 The State Space Dynamic Factor Model

The dynamic factor model specification follows closely the model of Almuzara et al. (2023) currently

used by the New York Fed, which builds on the Legacy Staff Nowcast of Bok, Giannone, Caratelli,

Sbordone, and Tambalotti (2018); we include details of the state space model for reference below. The

main state equation of the model is given by

yt = µ + ιgt + Λ ft + et, (2)

where yt is an n × 1 vector of monthly series yt = [y1,t, ..., yn,t]
′, ft is an n f × 1 vector of common factors,

et = [e1,t, ..., en,t]
′ is an n × 1 vector of idiosyncratic terms, gt is an ng × 1 vector of time-varying trends8,

µ, ι and Λ are n × 1, n × n f and n × ng parameters respectively. The trend gt (scalar process in our setup)

follows a simple random walk equation of the form:

gt = gt−1 + γgvg,t, vg,t|Ft−1 ∼ N (0, 1) .

The factors follow a VAR
(
p
)

model of the form:

ft =
∑p

j=1
Φ j ft− j +ΩtStϵ f ,t, ϵ f ,t|Ft−1 ∼ N

(
0, In f

)
,

8For our final CBDF model, the trend gt is a scalar process and loads only on the equation for government spending; see
Appendix A.2 for alternative specifications.
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where Φ j are n f × n f autoregressive matrices for j = 1, ..., p, Ωt is an n f × n f p.d. diagonal matrix with

time-varying diagonal elements given by σi, f ,t and St is an n f × n f p.d. diagonal matrix with discrete

outlier terms given by s f ,t = diag(St).

The idiosyncratic elements ei,t for i = 1, ...,n follow univariate AR
(
q
)

processes9 of the form:

ei,t =
∑q

j=1
ϕ jei,t− j + σi,e,tsi,e,tϵi,e,t, ϵi,e,t|Ft−1 ∼ N (0, 1) ,

where ϕ j are AR coefficients for j = 1, ..., q, σi,e,t are time-varying volatilities and si,e,t are discrete outlier

terms. Distributional assumptions on ϵ f ,t and ϵi,e,t are required for full information Bayesian estimation;

we impose Gaussianity for convenience10.

The stochastic volatility in the innovations of the factors and the idiosyncratic terms are modelled as

smooth geometric random walks of the form:

log
(
σi, f ,t

)
= log

(
σi, f ,t

)
+ γi, f vi, f ,t, vi, f ,t|Ft−1 ∼ N (0, 1) for i = 1, ...,n f

log
(
σi,e,t

)
= log

(
σi,e,t

)
+ γi,evi,e,t, vi,e,t|Ft−1 ∼ N (0, 1) for i = 1, ...,n.

The discrete outlier terms s f ,t and si,e,t in the factor and idiosyncratic terms are equal to one in most

periods and are designed to switch to values higher than one in unusual periods, in order to allow for

more abrupt changes in the error volatility, facilitating periods characterised by outliers and large data

spikes, such as the Covid-19 pandemic, for example. Finally, the measurement equation is given by

Yi,t =

 yi,t if Yi,t is monthly

Hyi,t if Yi,t is quarterly,
(3)

where H = 1
3

(
1 + 2L + 3L2 + 2L3 + 1L4

)
yi,t and L denotes the lag operator Lyi,t = yi,t−1. The formula above

is a linear approximation of the QoQ growth rate as a weighted sum of MoM growth rates to the exact

nonlinear formula (see Mariano and Murasawa (2003)). The model is estimated with Bayesian methods

through a standard Gibbs sampling algorithm. Details on the sampling algorithm as well as priors

distributions of the parameters can be found in Appendix A.1.

3.2 The Data and Factor Structure

9For our final CBDF model, the choice for the number of lags is p = 1 and q = 1, but we have experimented with various lag
orders; see Appendix A.2 for alternative specifications.

10Posterior inference on the conditional mean parameters continues to be valid for large samples even if the true distribution
of the innovations is non-Gaussian, as long as the first two conditional moments of the innovations are correctly specified (see, e.g.
Petrova (2022)).
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TABLE 1. Data Series that enter the Components-Based Dynamic Factor Model

Data Series Block Transformation
g G C I T Cv

All employees: Total nonfarm □ ■ ■ □ □ ■ Level change (thousands)
JOLTS: Total job openings □ ■ ■ □ □ ■ Level change (thousands)
Civilian unemployment □ ■ ■ □ □ ■ Ppt. change
ADP nonfarm private payroll employment □ ■ ■ □ □ ■ Level change (thousands)
Nonfarm business sector: Unit labor cost □ ■ □ □ □ ■ QoQ % change (annual)
ISM mfg.: PMI composite index □ ■ □ ■ □ ■ Index
ISM non-mfg.: NMI composite index □ ■ □ ■ □ ■ Index
ISM mfg.: Prices index □ ■ □ ■ □ □ Index
ISM mfg.: Employment index □ ■ □ ■ □ ■ Index
Empire State Mfg. Survey: General business conditions □ ■ □ □ □ ■ Index
Philly Fed Mfg. Business Outlook: Current activity □ ■ □ □ □ ■ Index
University of Michigan: Consumer sentiment □ ■ ■ □ □ □ Index
Industrial production index □ ■ □ □ □ ■ MoM % change
Manufacturers’ new orders: Durable goods □ ■ □ ■ □ ■ MoM % change
Merchant wholesalers: Inventories: Total □ ■ □ ■ □ ■ MoM % change
Total business inventories □ ■ □ ■ □ ■ MoM % change
Manufacturers’ shipments: Durable goods □ ■ □ ■ □ ■ MoM % change
Manufacturers’ unfilled orders: All industries □ ■ □ □ □ □ MoM % change
Manufacturers’ inventories: Durable goods □ ■ □ ■ □ □ MoM % change
Real Private Nonresidential Fixed Investment: Structures □ ■ □ ■ □ ■ QoQ % change
Real private non-residential fixed investment: Equipment □ ■ □ ■ □ ■ QoQ % change
Real private non-residential fixed investment: IPP □ ■ □ ■ □ ■ QoQ % change
Real private residential fixed Investment □ ■ □ ■ □ ■ QoQ % change
Real private fixed investment □ ■ □ ■ □ ■ QoQ % change
Change in private inventories: Contribution to real GDP □ ■ □ ■ □ ■ QoQ % Level
New single-family houses sold □ ■ □ □ □ ■ MoM % change
Housing starts □ ■ □ ■ □ ■ MoM % change
Value of construction put in place □ ■ □ □ □ ■ MoM % change
Building permits □ ■ □ ■ □ ■ Level change (thousands)
Retail sales and food services □ ■ ■ □ □ ■ MoM % change
Real personal consumption expenditures □ ■ ■ □ □ ■ MoM % change
Real government consumption & investment ■ ■ □ □ □ ■ QoQ % change
Real disposable personal income □ ■ □ □ □ ■ MoM % change
Real gross domestic income □ ■ ■ □ □ ■ QoQ % change (annual)
Exports: Goods and services* □ ■ □ □ ■ ■ MoM % change
Imports: Goods and services* □ ■ □ □ ■ ■ MoM % change
Import price index □ ■ □ □ ■ □ MoM % change
Export price index □ ■ □ □ ■ ■ MoM % change
S&P GSCI commodity index □ ■ □ □ ■ ■ MoM % change
Real FRB trade-weighted dollar index □ ■ □ □ ■ □ MoM % change
CPI-U: All items □ ■ ■ □ □ ■ MoM % change
PCE: Chain price index □ ■ ■ □ □ □ MoM % change
Moody’s seasoned BAA corporate bond yield relative to 10-Year □ ■ □ ■ □ □ Level

Labor Production Construction Income
Surveys Consumption Trade Prices

The colour-coded squares refer to the category each series belongs to. Filled squares in the "Block"
column indicate each series’ restrictions on the factor loadings, with g, G, C, I, T, and Cv indicating the
trend, global, consumption, investment, trade, and Covid-19 factors, respectively. Series used in the
accounting identity are highlighted in bold.

*We subtract balance of payments based non-monetary gold data, released monthly by the BEA, from
nominal levels of exports and imports before computing MoM growth rates which enter into the model
directly.
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The new CBDF model features four factors11, as well as a temporary Covid-specific factor which

is switched on for the periods 2020:M3-2020:M9. The data consists of 43 series and the restrictions

we impose on the factor loadings of these series allow us to label the factors as component-specific.

We choose to label one of the factors as ‘global’, loading all 43 series on it. In addition, we allow for

consumption-specific, investment-specific and trade-specific blocks. The full list of the series, as well

as the applied data transformation and details on the precise factor loading restrictions can be found in

Table 1. PCE, labour series as well as consumer sentiment data and retail sales load on the consumption

factor. Investment sub-component series, as well as manufacturing data and surveys, and corporate

bond spread load on the investment-specific factor. In alternative specifications, we experimented

with adding stock market returns, various bond yields and spreads, as well as mortgage rates to the

investment block, but we found that these add more noise than signal to the resulting GDP nowcast;

see Appendix A.2 for further details. Inventories (measured as contribution to GDP) also load on the

investment block. Monthly trade data load on the trade-specific block, alongside effective USD exchange

rate and commodity price inflation. The quarterly series for government spending loads on the global

and Covid factors only. Figure 6 and 7 display the Kalman-smoothed factors of our model and their

corresponding volatilities over time.

FIGURE 6. Factors

3.3 The GDP Nowcast Constructed via the Accounting Identity

The novel idea behind our component-based approach is to remove the series for GDP growth from the

state and measurement equations (2) and (3) and construct the nowcast for GDP through the model-

implied nowcasts of individual GDP components via the use of the national accounting identity. In

particular, denoting by NGDP
t nominal GDP, the national identity is given by:

NGDP
t = NC

t +NI
t +NG

t +NX
t −NM

t + ∆NV
t (4)

11We have experimented with the number of factors as well as the structure of the loadings, see Appendix A.2 for alternative
specifications.
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FIGURE 7. Volatilities with 68% probability band

where NC
t ,N

I
t ,N

G
t ,N

X
t ,N

M
t and∆NV

t = NV
t −NV

t−1 denote nominal quantities for consumption, investment,

government spending, exports, imports and change in inventories12. Denoting the corresponding real

quantities and prices of each component k by Qk
t and Pk

t respectively, the usual identity holds Qk
t = Nk

t /P
k
t .

We let Gk
t = Qk

t/Q
k
t−1 and denote the corresponding nominal shares by wk,t = Nk

t /N
GDP
t . Since inventories

enter (4) in first difference, we have wV,t = ∆NV
t /N

GDP
t and GV

t = ∆QV
t /∆QV

t−1 instead. Additionally, since

imports enter with a negative sign, we define wM,t := −NM
t /N

GDP
t . The Laspeyres equation for real GDP

is given by:

GGDP,L
t =

∑6

k=1
wk,t−1Gk

t . (5)

Since the nominal shares sum up to one by construction,
∑6

k=1 wk,t−1 = 1, the Laspeyres equation for the

real GDP growth rate is given as a weighted sum of the real growth rates of the individual components:

gGDP
t =

∑6

k=1
wk,t−1gk

t , (6)

where gk
t =
(
Qk

t −Qk
t−1

)
/Qk

t−1 = Gk
t − 1 is the real rate of growth for each component.

The GDP formula used by the BEA combines the Laspeyres weighting in (5) with a Paasche weighting

(
GGDP,P

t

)−1
=
∑6

k=1
wk,t

(
Gk

t

)−1

via a geometric mean, in order to compute the Fisher equation

GGDP,F
t =

√
GGDP,L

t GGDP,P
t .

Notice that the nominal component shares used in the Laspeyres equation are lagged while the nominal

shares used in the Paasche weighting are timed at t rather than (t − 1). Since nominal shares are very

persistent and approximately constant over time, and since our DF model is not suitable to nowcast such

12The negative sign on nominal imports ensures that imported goods and services that may be included in domestic consump-
tion or production are subtracted from GDP.
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persistent quantities, we choose to use previous period weights, setting ŵk,t = wk,t−1. The Laspeyres,

Paasche and Fisher weighting equations result into nearly identical values for GGDP
t with wk,t = wk,t−1;

we therefore limit our attention to the Laspeyres equation, due to its convenience and linearity.

Since the nominal shares are available at (t − 1), using equation (6), we can construct a QoQ GDP

growth nowcast ĝGDP
t as a weighted sum of the QoQ growth nowcast for each component ĝk

t :

ĝGDP
t =

∑6

k=1
wk,t−1 ĝk

t , (7)

where ĝk
t are obtained through the dynamic factor model in (2) and (3). In practice, for each draw from

the posterior of the model-implied component nowcasts, a posterior draw for GDP is obtained through

equation (7), giving rise to a full posterior distribution of GDP nowcast draws, reflecting parameter and

data uncertainty around the GDP estimate.

3.4 The Components

3.4.1 Monthly Components

FIGURE 8. Consumption

We provide a brief discussion on the modelling choices we impose on the six components in our

component-based approach. For consumption, we use monthly series, which are expected to give the

CBDF model an informational advantage towards the end of the quarter, since QoQ growth rates can

be more accurately pinned down. In particular, we use the linear approximation of QoQ growth rate of

14



consumption as a sum of weighted MoM growth rates13:

ĝC
t = h′ ˜̂YC,t (8)

where h = 1
3 [1, 2, 3, 2, 1]′, ˜̂YC,t =

[
ŶC,t, ..., ŶC,t−4

]′
and ŶC,t are the DFM-implied monthly nowcasts for PCE

MoM growth, which enter the measurement equation (3) directly. Notice that, at the end of a given

quarter, ŶC,t−1, ŶC,t−2, ŶC,t−3 and ŶC,t−4 are already available and so the model uses these realised values

to compute the nowcast for the QoQ growth rate for consumption ĝC
t in equation (8). This not only

improves ĝC
t and, hence, the nowcast for GDP, but also reduces the posterior uncertainty around it as we

get close to the end of the quarter.
FIGURE 9. Exports

In Figure 8 we display the QoQ PCE nowcast at three different points in the quarter based on a

real-time forecasting exercise for the period 2006:Q2-2024:Q4 against the realised series14. From the

figure, it is clear that as we get closer to the end of the quarter, the nowcast for consumption becomes

more accurate; for example, the root mean squared error (RMSE) for the annualised QoQ growth of

PCE twenty-two weeks before the BEA release is 2.3 whereas at the end of the quarter (a day before the

release), it drops to 1.3.

Similarly, we use monthly series for exports and imports to calculate the corresponding nowcasts for

the QoQ growth rates required for the nowcast accounting identity (7). In particular, monthly nominal

export and import growth series and monthly export and import inflation series enter the measurement

equation (3) of the DF model directly (see Table 1 for details). Next, we use the same formula as in (8) to

compute the corresponding nominal QoQ growth rates of exports and imports, which we deflate with
13We experimented with using the exact (non-linear) instead of the approximate (linear) formula; the performance of the model

is nearly identical; we choose to work with the linear formula since linearity simplifies further the impact analysis in Section 3.5.
14For realised series, here and throughout the paper, we use the latest available vintage as of 18/04/2025; in Appendix A.3 we

also report comparisons against the Advance release.
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the corresponding QoQ inflation to obtain the real QoQ growth rate required for the accounting identity

(7). For example, for exports, we compute the nowcast ĝX
t , which enters the GDP nowcast in (7) as

ĝX
t = ĝXN

t − π̂
X
t = h′( ˜̂YX,t −

˜̂YPX ,t
),

where ĝXN
t and π̂X

t are the QoQ growth rates of nominal exports and export prices respectively, ˜̂YX,t =[
ŶX,t, ..., ŶX,t−4

]′
, ˜̂YPX ,t

=
[
ŶPX ,t
, ..., ŶPX ,t−4

]′
, and ŶX,t and ŶPX ,t

are the model-implied nowcasts for MoM

growth rates of nominal exports and export prices respectively, coming from the measurement equation

of the DF model (3) directly.
FIGURE 10. Imports

Figures 9 and 10 display our QoQ real exports and imports nowcasts for the period 2006:Q2-2024:Q4

against the realised series. As expected, nowcasts for both series become more accurate as we get closer

to the release date (e.g. the RMSE for the annualised QoQ growth of exports and imports drops from

8.9 to 4.8 and from 7.5 to 5.0 respectively, as we move from twenty-two months to one day before the

release).

3.4.2 Quarterly Components

The series we use for aggregate investment and government spending are available quarterly, (see Table

1 for details) therefore, we use the measurement equation (3) of our DF model directly to compute the

nowcasts for QoQ growth rates ĝI
t and ĝG

t required to compute the GDP nowcast through the accounting

identity (7). Since our model is ill-equipped for predicting government spending, we add a random

walk time-varying trend in the government spending equation in order to improve the model-implied

nowcast.

Figures 11 and 12 display our model’s nowcasts for the annualised QoQ growth of real investment
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FIGURE 11. Private Investment

and government spending at three points throughout the quarter for the period 2006:Q2-2024:Q4 against

the realised series. Figure 12 also displays the fitted time-varying trend in the government spending

equation and the 68% posterior bands around it. It is clear from the figures that, while the nowcasts

marginally improve as we get closer to the end of the quarter, such improvements are negligible; this is

unsurprising, since both components are available in quarterly frequency and so do not benefit from large

improvements due to timely data arrival, as is the case with the monthly components for consumption

and trade.

Finally, our series for inventories is quarterly. While the change in inventories constitutes a small

component of GDP, its volatility makes it difficult to forecast, hence it can play a disproportionately

large role for nowcasting GDP. After much experimentation with the inventories component (see Section

A.2 for the nowcast performance of a variety of inventory specifications), we found the best performing

specification to be one in which the inventories contribution enters the DF model directly, i.e., we use

quarterly series for cV
t = wV,t−1gV

t directly in the DF model and obtain a quarterly nowcast ĉV
t through

the measurement equation (3). Figure 13 displays the annualised inventories contribution nowcast ĉV
t

for the period 2006:Q2-2024:Q4 against the realised series.

3.4.3 Nowcast Error Decomposition

Subtracting (7) from (6) and rearranging terms, we can decompose the GDP nowcast error of our

component-based model into a weighted sum of component-specific nowcast errors:

ĝGDP
t − gGDP

t =
∑5

k=1
wk,t−1

(
ĝk

t − gk
t

)
+ ĉV

t − cV
t .
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FIGURE 12. Government Expenditures with Time-Varying Trend

Figure 14 displays the GDP nowcast error decomposition (one day before the BEA release) for the period

2006:Q2-2024:Q4 into weighted component-specific errors. From the figure, it is clear that components

such as inventories, while accounting for only a small share of nominal GDP (approximately 1%), can

contribute considerably to the forecast error of our model due to its high volatility and unpredictability.

3.5 The Component-Based Impact Analysis

In this section, we show how impacts of data releases and revisions can be computed from the component-

based approach. In particular, just like existing DF models, we can decompose the nowcast revisions for

each component into impacts due to data releases, parameters and data revisions. Then, we can pass

these impacts through the accounting identity nowcast equation (7) in order to obtain a decomposition

for the component-based GDP nowcast.

Given two information sets at different points in time Fv′ and Fv′′ , where Fv′′ can contain both data

revisions of existing observations in the sample of Fv′ and new releases, denoting by F̃v′′ the sample

augmented with new releases only, we can decompose the nowcast revision for each series yi,t in the DF

model state equation (2) in impacts due to data releases, parameter and data revisions respectively as:

ri,t = E
(
yi,t|Fv′′ , θ̂v′′

)
− E
(
yi,t|Fv′ , θ̂v′

)
(9)

= Ii,t + Iθ,i,t + Id,i,t

where Ii,t are impacts due to new releases

Ii,t := E
(
yi|F̃v′′ , θ̂v′

)
− E
(
yi|Fv′ , θ̂v′

)
,
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FIGURE 13. Inventories

where the estimates of the parameters θ̂ are based on information set Fv′ . The impact on the nowcast

revision for each variable i due to parameter revisions is captured in the term Iθ,i,t given by

Iθ,i,t = E
(
yi,t|Fv′′ , θ̂v′′

)
− E
(
yi,t|Fv′′ , θ̂v′

)
and impacts due to data revisions are included in the term Id,i,t given by

Id,i,t = E
(
yi|Fv′′ , θ̂v′

)
− E
(
yi|F̃v′′ , θ̂v′

)
.

The decomposition in (9) follows directly by adding and subtracting the terms E
(
yi|F̃v′′ , θ̂v′

)
and

E
(
yi|Fv′′ , θ̂v′

)
from ri,t and re-arranging. The conditional expectation terms above can be computed

as point nowcasts from the model, conditioning on different samples and parameter estimates. Since

the focus is on specific data releases, the impact from such data releases can be further decomposed into

impacts coming from individual variables j ∈ (1, ...,n) as:

Ii,t =
∑n

j=1
bi, jr j,t,

where the coefficients bi, j that can be computed through linear projection of nowcast revisions of other

variables r j,t on Ii,t (e.g. see Banbura et al. (2010) and Banbura and Modugno (2014)). This analysis can

be further passed through the linear measurement equation (3) to obtain impacts for each observable in

the DF model. Defining h = 1
3 [1, 2, 3, 2, 1]′ and r̃i,t =

[
ri,t, ..., ri,t−4

]′
,we have

Ri,t := E
(
Yi,t|Fv′′ , θ̂v′′

)
− E
(
Yi,t|Fv′ , θ̂v′

)
=

 ri,t if series i is monthly

h′r̃i,t if series i is quarterly.
(10)

19



FIGURE 14. Component Error Decomposition (against latest release)

The decomposition in (9) and (10) is standard and commonly used in the DF model literature (e.g. see

Hayashi and Tachi (2021)). Since our component-based nowcast for GDP uses the national accounting

identity (7), we can decompose revisions of our GDP nowcast as a weighted sum of revisions in each of

the components:

E
(
gGDP

t |Fv′′ , θ̂v′′
)
− E
(
gGDP

t |Fv′ , θ̂v′
)

=
∑6

k=1
wk,t−1

[
E
(
gk

t |Fv′′ , θ̂v′′
)
− E
(
gk

t |Fv′ , θ̂v′
)]

=
∑6

k=1
wk,t−1h′r̃k,t =

∑6

k=1
wk,t−1h′

(
Ĩk,t + Ĩθ,k,t + Ĩd,k,t

)
=
∑n

j=1

∑6

k=1
wk,t−1bk, jh

′︸               ︷︷               ︸
new CB impact weights

r̃ j,t

︸                            ︷︷                            ︸
impacts due to releases

+
∑6

k=1
wk,t−1h′Ĩθ,k,t︸                ︷︷                ︸

impacts due to parameter revisions

+
∑6

k=1
wk,t−1h′Ĩd,k,t︸                ︷︷                ︸

impacts due to data revisions

where r̃k,t =
[
rk,t, ..., rk,t−4

]′
denote the nowcast revisions for the corresponding series of the six components

k ∈ {C, I,X,M,G,V} and Ĩk,t, Ĩθ,k,t and Ĩd,k,t are similarly defined. Since the accounting identity (7) is

based on QoQ growth rates, we pass the monthly components through the h transformation, which

the measurement equation achieves directly for the quarterly components. For inventories, since we

model the contribution directly, the nominal share weights are already included in the data gV
t and we

set wV,t = 1 above, with a slight abuse of notation.

We provide a brief discussion about how the component-based approach changes the traditional

impact analysis of the DF model. In the standard approach, where GDP is just one of the variables

modelled directly, the impact weights for computing the GDP nowcast revision due to a specific data

release for variable j depend on the model-implied coefficients bGDP, j. In the new component-based
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FIGURE 15. Average Impact by Category Across All Quarters (excluding 2020:Q2 and 2020:Q3)

FIGURE 16. Average Impact by Category Across Grouped Years (excluding 2020:Q2 and 2020:Q3)

approach, the impact weights for the GDP nowcast revision depend on the model-implied coefficients

for each component bk, j due to data release j,which are then weighted through the nominal shares wk,t−1

(and for monthly components, transformed into QoQ quantities). This point is well illustrated in the

impact weight analysis of Section 2.1. Similarly, the new component-based GDP nowcast update due

to parameter and data revisions is computed as a weighted sum of the components’ updates due to

parameter and data revisions, respectively.

In Figure 15, we display the component-based impacts for GDP averaged across data categories (for

details on variables in each category, refer to Table 1). To see more clearly GDP impact trends over time,

we average the impacts into sub-periods in Figure 16. From the figure, there are several conclusions. First,

surprises in trade category series lead to sizeable GDP revisions during the financial crisis, but relatively
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FIGURE 17. RMSE against Latest GDP

small revisions afterwards. Second, consumption category series lead to positive GDP nowcast revisions

for 2006-2009 and negative revisions in subsequent periods. Finally, data and parameter revisions have

a small impact for GDP nowcast updates in most periods, but they play an important role during the

financial crisis and more recently during the Covid-19 pandemic, both characterised by considerable

structural change.

4 Real-Time Historical Nowcast Evaluation

In this section, we study the forecasting performance of our new CBDF model through a large real-time

forecast evaluation exercise, comparing it to: the DF model of Almuzara et al. (2023) currently used

by the New York Fed, the model of Higgins (2014) currently used by the Atlanta Fed, as well as GDP

estimates of professional forecasters such as SPF and Blue Chip. In Appendix A.2, we also compare the

performance of our component-based model against a large number of alternative model specifications.

We use real-time data15 from 1985:M1 and compute the CBDF and DF models’ nowcasts weekly starting

2006:Q2 through 2024:Q4. We evaluate the different approaches against the latest available GDP values

as of 18/04/2025; comparisons against the Advance GDP release can be found in Appendix A.3. We

evaluate point and density forecast performance of each approach; point performance is measured in

terms of root mean squared error (RMSE) and forecast bias; density performance is evaluated in terms

of average log-predictive scores16.

In Figure 17, we present the point nowcast accuracy of the CBDF model in terms of RMSE for

15In order to align the information sets, all series are in real-time weekly vintages, except BoP non-monetary gold due to data
availability.

16Log scores are computed as the logarithm of the nowcast density evaluated at the realised value and are used to evaluate
density forecast performance.
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FIGURE 18. Bias against Latest GDP

different weeks throughout the reference quarter (starting 4 weeks before each quarter and finishing

when the BEA Advance estimate is released, around 4 weeks after the end of each quarter), averaged

over the sample of 75 quarters 2006:Q2-2024Q417. The figure also displays the average performance

of the DF model of Almuzara et al. (2023) currently used by the New York Fed, estimated over the

same periods, as well as the performance of the SPF and Blue Chip. As is clear from the figure, the

point nowcast performance of the new component-based approach is better than that of the standard

DF model, uniformly over the quarter, with RMSE improvements of around 15% on average. Moreover,

the CBDF model also performs comparably (in terms of point accuracy) to professional forecasters’

estimates, widely monitored by market participants and commentators. Impressively, at the end of

the quarter, the RMSE of the Blue Chip is actually lower than the RMSE of the BEA (computed as the

difference between the Advance GDP release and the final available GDP series).

Figure 18 compares the average forecast bias for each method. It is clear from the figure that the DF

model suffers from some positive forecast bias, implying it systematically over-estimates GDP growth;

the bias is resolved in the component-based approach. Finally, in Figure 19, we show the log-predictive

scores for the DF and CBDF models (log scores cannot be computed for the SPF and Blue Chip since these

lack a full probability nowcast density around their GDP estimate). In particular, we find that the new

component-based approach can improve the density nowcast performance (in terms of log-predictive

score) of the standard DF model with 20% on average.

We also compare our approach against the model of Higgins (2014) currently used by the Atlanta

Fed, known as the GDPNow model. Due to availability of GDPNow nowcasts, we can only perform the

comparison over a reduced sample of 51 quarters spanning 2011Q3-2024Q4. In Figure 20, we display the

RMSE performance of our model relative to GDPNow throughout different points of the quarter18. The
17Throughout the analysis, outlier quarters 2009:Q1, 2020:Q2 and 2020:Q3 are excluded for all models.
18Since GDPNow is not released at equidistant points in time, we fill non-update days in the 90-day forecast window of
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FIGURE 19. Log Scores against Latest GDP

FIGURE 20. RMSE against Latest GDP

main conclusion from the figure is that our model performs comparably well to the Atlanta Fed’s model:

it is better on average in terms of point forecast accuracy until around 6 weeks before the Advance BEA

release, while the Atlanta Fed’s model has an advantage in terms of point accuracy closer to the release

date. There are two additional advantages of our new component-based approach, as well as the DF

model of Almuzara et al. (2023) currently used by the New York Fed: (i) both begin producing GDP

nowcasts 8 weeks earlier each quarter, providing useful early quarterly estimates, and (ii) both models

provide a full probability density precisely quantifying the uncertainty around their nowcast estimate,

which is in contrast to GDPNow as well as other professional judgement-based estimates. In addition,

GDPNow with the previously available nowcast and then average across quarters.
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the component-based approach has the added advantage over the DF model of generating the impact

decomposition and nowcast density for all six GDP components, providing a transparent interpretation

of its output.

5 Conclusion

In this paper, we develop a new component-based nowcast model which effectively combines ideas from

dynamic factor models and from ’bottom-up’ approaches, bridging the gap between the two. Relative

to existing dynamic factor models, the main advantages of our new approach are: (i) it imposes the

national accounting identity, incorporating important missing restrictions in standard DF models which

link key components to GDP, and (ii) it utilises timely monthly component releases effectively, which

delivers improvements in the accuracy of the model’s nowcast for GDP. Relative to existing ’bottom-

up’ approaches and professional forecasts based on expert judgement and heuristics, our new method

models all GDP components jointly, through a single dynamic factor model, designed to capture common

and component-specific co-movements in the data and deliver a model-consistent GDP probability

density. We establish the impact analysis of our new approach demonstrating how nowcast revisions

to both GDP and its components can be decomposed into impacts due to incoming data releases and

updates, providing a transparent interpretation of the model’s output. We also demonstrate that the

new approach delivers forecasting improvements over existing methods in a real-time out-of-sample

forecasting exercise.

More generally, the conceptual approach taken in this paper is applicable in many diverse settings.

The idea behind removing a target variable from the model and imposing instead an accounting identity,

or some other theoretical relationship, in order to construct its forecast through model-implied forecasts

for its elements, is general and can be applied to different models, variables and countries, and the formal

analysis can be further disaggregated to include a larger number of subcomponents.
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A Appendix

A.1 Details of Estimation Approach

The Gibbs algorithm for the Bayesian estimation of DF model is standard; we refer the reader to Almuzara

et al. (2023) for precise details on the steps of the algorithm. Below, we provide a detailed description of

the priors used for our component-based model.

Let Ym,t be an nm-vector of monthly series and Yq,t an nq-vector of quarterly series (imputed to the

third month of each quarter). The model relates them to a time-varying trend gt, unobservable factors ft
and errors et via the measurement equation:

Yt =

Ym,t

Yq,t

 =
 Inm

0nm×nq

0nq×nm

1
3 (1 + 2L + 3L2 + 2L3 + L4)Inq

 yt,

yt = µ + ιgt + Λ ft + et.

With n = nm +nq, yt is the n-vector of monthly-equivalent series for Yt. If the i-th entry of Yt is a monthly

series we have Yit = yit, while if it is a quarterly series we have

Yi,t =
1
3

{
(ȳi,t + ȳi,t−1 + ȳi,t−2) − (ȳi,t−3 + ȳi,t−4 + ȳi,t−5)

}
,

where ȳi,t is such that ∆ȳi,t = yi,t, as in Mariano and Murasawa (2003). The long-run trend gt is modelled

after Antolín-Díaz, Drechsel, and Petrella (2017) and Antolín-Díaz, Drechsel, and Petrella (2024), with

an entry of ι corresponding to government spending set to 1 and 0 otherwise.

The model for latent variables19 is

ft = Φ1 ft−1 + σ f ,t ⊙ ε f ,t,

et = ϕ1 ⊙ et−1 + σe,t ⊙ εe,t,

ε f ,t|Ft−1 ∼ N(0n f×1, In f
), εe,t|Ft−1 ∼ N(0ne×1, Ine

),

with time-varying trend and volatilities20 given by

gt = gt−1 + γgυg,t,

ln σ2
f ,t = ln σ2

f ,t−1 + γ f ⊙ υ f ,t,

ln σ2
e,t = ln σ2

e,t−1 + γe ⊙ υe,t,

υg,t|Ft−1 ∼ N(0, 1), υ f ,t|Ft−1 ∼ N(0n f×1, In f
), υe,t|Ft−1 ∼ N(0ne×1, Ine

).

19The loadings Λ are subject to certain restrictions for identification, this is achieved by specifying that certain factors (e.g., the
consumption, investment and trade factors) only affect a subset of observables.

20The volatilities σ f ,t and σe,t are drawn through a linear non-Gaussian step approximated with a Gaussian mixture as in Kim,
Shephard, and Chib (1998) and Omori, Chib, Shephard, and Nakajima (2007).
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The parameter vector includes

θ =
[
µ′, γ′g,vec(Λ)′,vec(Φ)′, γ′f , ϕ

′, γ′e, σ
′

f t, σ
′

et

]′
.

We make use of normal and inverse-gamma priors distributions, just as in Almuzara et al. (2023):21

µ ∼ N(mµ,P
−1
µ ), γg ∼ 1/

√
Γ(νg/2, 2/(νgs2

g)),

vec (Λ) ∼ N(mΛ,P
−1
Λ ), (subject to the identifying restrictions), vec (Φ) ∼ N(mΦ,P

−1
Φ ),

γ f ∼ 1/
√
Γn f

(ν f /2, 2/(ν f s
2
f )), vec (ϕ) ∼ N(mϕ,P

−1
ϕ ),

γe ∼ 1/
√
Γn(νe/2, 2/(νes

2
e ))

si, f ,t ∈ {1.01, ..., 10}w.p. πi, f ,t ∼ B(αi, f ,t, βi, f ,t)

si,e,t ∈ {1.01, ..., 10}w.p. πi,e,t ∼ B(αi,e,t, βi,e,t)

The choice for the prior parameters is as follows:

mµ = 0n×1, Pµ = 100 × In

s2
g = 0.005, νg = 10

mΛ = m̂MLE
Λ , PΛ = (10 − 10−1/n) × (In f

⊗ In)

mΦ = vec (In f
), Xd = [In f

, 2In f
]′, PΦ = ( X′dXd ⊗ In f

)

αi, f ,t = αi,e,t = 19.2, βi, f ,t = βi,e,t = 0.83

mϕ = 0n×1, PΦ = 25 × In

s2
e = 0.0001, νe = 18, s2

f = 0.001, νe = 2

21ΓK(α, β) is a vector of K independent Γ(αk, βk)-distributed random variables.
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A.2 Comparison against Alternative Specifications

FIGURE 21. RMSE against Latest GDP: DF specifications

FIGURE 22. RMSE against Latest GDP: CBDF specifications

We present a comprehensive comparison of the performance of the final specification of our component-

based model against a number of alternative model specifications: 29 different DF and 36 component-

based DF specifications. A brief description of the features of the different models can be found in Table

A.2. All models are estimated on real-time data on samples from 1985:M1; we compute the GDP nowcast

of all specifications at three points in each quarter (two months, one months and one day before the

BEA Advance Release) over 75 quarters 2006:Q2-2024:Q4. We evaluate the point nowcast (in terms of

RMSE) of all specifications, including the main CBDF model, against the latest available GDP values as

of 18/04/2025 in Figures 21 and 22 and against the Advance GDP release in Figure 23 and 24.
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TABLE 2. List of Specifications
Spec. Details

DF 1* Priors and lag structure: Baseline DF model, priors as in Almuzara et al. (2023)
DF 2 Priors and lag structure: p f = 1
DF 3 Priors and lag structure: loose trend priors νg = 10, σ2

g = 0.1
DF 4 Priors and lag structure: loose trend priors νg = 5, σ2

g = 0.5
DF 5 Priors and lag structure: loose trend priors νg = 10, σ2

g = 0.005
DF 6 Priors and lag structure: Minnesota prior centred on zero w priors from DF 5
DF 7 Priors and lag structure: spec DF5, η f = 1, overall shrinkage = 1
DF 8 Priors and lag structure: spec DF5, η f = 1, overall shrinkage = 2
DF 9 Priors and lag structure: outlier space 1.0001-10
DF 10 Priors and lag structure: spec combination DF7 and spec DF9
DF 11 Factor Structure: 1 global factor
DF 12 Factor Structure: 2 global factors
DF 13 Factor Structure: 3 global factors
DF 14 Factor Structure: 4 global factors
DF 15 Factor Structure: No Covid factor
DF 16 Factor Structure: 3 global factors with DF10 changes
DF 17 Factor Structure: 4 global factors with DF10 changes
DF 18 Factor Structure: 1 global factor with p f = 1
DF 19 Additional Vars: Stock return, corporate bond spread, 10y-2y yield spread and 30y fixed mortgage rates
DF 20 Additional Vars: Stock return and corporate bond spread
DF 21 Additional Vars: Large financial block with expanding window
DF 22 Additional Vars: Small financial block with expanding window
DF 23 Additional Vars: DF22 + DF10
DF 24 Additional Vars: Added quarterly components to DF1
DF 25 Additional Vars: DF25 + DF10
DF 26 Additional Vars: DF 25 without monthly inventory series
DF 27 Additional Vars: DF 25 without monthly trade and trade price indices
DF 28 Additional Vars: Vehicle sales, initial and continuing claims, consumer sentiment and nonfarm hours
CBDF 1* Final Components-Based Specification
CBDF 2 Added 9 components (including disaggregated financial comps)
CBDF 3 Replaced smaller investment components with real private fixed investment
CBDF 4 Added back small investment components
CBDF 5 Created investment block with CBFN3
CBDF 6 Created consumption block with CBFN3
CBDF 7 Replaced inventory component with direct contribution to gdp
CBDF 8 Moved trend to inventories
CBDF 9 New component-based block structure
CBDF 10 Deflated monthly nominal trade with price index
CBDF 11 CBDF9 + CBDF7 + DF10
CBDF 12 Constructed inventories contribution in place of direct contributions + CBDF9
CBDF 13 Added financial data to investment block, n f = 2 + loose priors from DF5
CBDF 14 Dropped core prices, added consumer sentiment, loaded labour vars on C block, p f = 2 + DF10
CBDF 15 CBDF11 + DF9 p f = 2
CBDF 16 CBDF11 + DF9 p f = 1, all series load on G and Cv blocks
CBDF 17 CBDF16 + 2 spread vars loaded on I, G, Cv blocks
CBDF 18 CBDF16 + consumer sentiment, dropped core prices, labour series only on G, Cv blocks
CBDF 19 CBDF17 spreads only load on I block
CBDF 20 CBDF16 remove core prices
CBDF 21 CBDF16 + labour vars on C, govt. trend, consumer sentiment on G&C, spreads on G&I, select vars on Cv
CBDF 22 CBDF16 with added trade variables
CBDF 23 CBDF22 removed petroleum series and load new trade vars on T block
CBDF 24 CBDF23 + CBDF14
CBDF 25 CBDF23 + CBDF14 + 2 spread variables on I&G blocks
CBDF 26 CBDF25 with only corporate bond spread
CBDF 27 CBDF23 with exchange rate and commodity index on I
CBDF 28 CBDF24 p f = 1
CBDF 29 CBDF26 p f = 1
CBDF 30 CBDF29 with inventories modelled as growth rate in place of contribution
CBDF 31 CBDF30 add inventories to T block
CBDF 32 CBDF32 with pe = 2
CBDF 33 CBDF32 with loosened priors on γe, γ f : νe = ν f = 10; σ2

e = σ
2
f = 0.005

CBDF 34 CBDF32 with loosened priors γe, γ f : νe = ν f = 2; σ2
e = σ

2
f = 0.001
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A.3 Additional Results

Below, we provide all forecast results of the paper evaluated against the first release of GDP published

by the BEA, known as the Advance Estimate.

FIGURE 23. RMSE against Advance GDP: DF specifications

FIGURE 24. RMSE against Advance GDP: CBDF specifications
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FIGURE 25. RMSE against Advance GDP

FIGURE 26. Bias against Advance GDP

FIGURE 27. Log Scores against Advance GDP
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FIGURE 28. RMSE against Advance GDP

FIGURE 29. Component error decomposition against Advance GDP
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FIGURE 30. Consumption against Advance GDP

FIGURE 31. Investment against Advance GDP

FIGURE 32. Imports against Advance GDP
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FIGURE 33. Exports against Advance GDP

FIGURE 34. Inventories against Advance GDP

FIGURE 35. Government Expenditures against Advance GDP
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