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Abstract 

We introduce the first comprehensive publicly available dataset on county-level damages, injuries, and 

fatalities from natural disasters in the U.S. and present a few facts on the economic and human costs of 

extreme climate events. Our source is the National Oceanic and Atmospheric Administration’s Storm 

Events Database, which reports losses for geographic areas largely defined based on meteorological 

science. We map these areas to counties using geographic tools together with the spatial distribution of 

population, housing stock, and economic activity. Our estimates are particularly accurate for severe 

disasters. The Losses from Natural Disasters dataset is regularly updated at 

https://newyorkfed.org/research/policy/natural-disaster-losses. 
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1 Introduction

Natural disasters generate substantial costs for households, firms, and governments. Busi-

nesses monitor their exposure to physical risks, homeowners face rising insurance premiums,

and the mounting costs of disaster response often strain public budgets. However, somewhat

surprisingly, empirical analyses of the economic and human costs of natural disasters are

currently hindered by data limitations. The National Oceanic and Atmospheric Adminis-

tration (NOAA) collects official data on damages, injuries, and fatalities, but nearly 40% of

these estimates are reported for meteorological “zones”—geographic units that might span

many counties (e.g., a valley intersecting three counties) or include only parts of one (e.g., the

coastal portion of one county), making it difficult to merge losses from NOAA with standard

administrative datasets.

In this paper, we introduce Losses from Natural Disasters—new and comprehensive data

on county-level damages, injuries, and fatalities from natural disasters in the U.S. from 1996

to the present. Using geographic tools together with weighting schemes based on the spatial

distribution of population, housing stock, and economic activity, we apportion zone-level

damages to counties (data users can choose the weighting scheme that best suits their empirical

analysis). Losses from Natural Disasters provides nominal and inflation-adjusted damages,

injuries, and fatalities for each natural disaster reported by NOAA. Our county-level estimates

are particularly accurate for severe disasters and can be easily aggregated to different levels,

such as county-month, county-month-disaster type, state-year, and so on. Finally, we use our

data to discuss three facts on the economic and human costs of natural disasters.

Losses from Natural Disasters is publicly available and regularly updated at

newyorkfed.org/research/policy/natural-disaster-losses. This webpage also includes interac-

tive maps, FAQs, data dictionaries, and other details about the dataset. Figure 1 shows a

heat map of total county-level damages from floods, hurricanes/tropical storms, and coastal

disasters (top panel) and wildfires (bottom panel) between 1996 and 2023 using our data.1

1Coastal disasters are astronomical low tide, coastal flooding, high surf, rip current, and storm surge/tide.
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Damages from Floods, Hurricanes/Tropical Storms, and Coastal Disasters

Damages from Wildfires

Figure 1: Total damages from flooding, hurricanes/tropical storms, coastal disasters, and
wildfires from 1996 to 2023. This figure shows a heat map of total cumulative county-level damages
from flooding, hurricanes/tropical storms, and coastal disasters (top panel) and wildfires (bottom panel)
between 1996 and 2023. Table OA.3 provides definitions of each disaster type. Damages are inflation adjusted
to December 2023 USD using the CPI. Figure OA.2 shows damages from all disaster types and droughts.
Sources: NOAA, U.S. Census Bureau.
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These maps, obtained using population-based weights, document that Florida, the Southeast,

and parts of the East Coast have suffered the most from flooding, hurricanes, and coastal

disasters, while the West has been particularly affected by wildfires.

Our main data source is the Storm Events Database (SED), an official NOAA publication.

The SED records significant or unusual weather phenomena that are collected in a national

database by the National Weather Service (NWS) and classified into over 55 types of weather

events since 1996 (we further group disaster types into 13 broader categories). The SED

reports (i) direct property damages, (ii) crop damages, and (iii) direct and indirect fatalities

and injuries. As anticipated, the location of each event is either a county or a zone, where

the NWS uses zones to allow for more accurate forecasts due to “such things as elevation or

proximity to large bodies of water.”

Our methodology to map all events to counties is based on three steps. First, we use

historical maps to identify which county (or counties) each zone intersects. Second, for zones

that overlap multiple counties, we use Census block group data to construct a set of weights

that allocate damages to counties based on the spatial distribution of population, housing

stock, and economic activity (employment and income). For example, if 75% of a zone’s

population lives in county A and the remainder in county B, the population weights assign

75% of the reported damages in that zone to county A and 25% to county B. The mapping

from zones to counties and the set of weights lead to a crosswalk from zones to counties. We

build this mapping for the current and historical vintages of NOAA’s geographic units so

that the crosswalk is based on boundaries that were in effect at the time of the disaster.

Our methodology leads to county-level estimates that are particularly accurate for severe

disasters. We start by documenting that our weighting schemes lead to substantially different

estimates compared with näıve “equal weighting” schemes (commonly used in existing work)

in the context of the 2017–2023 Western Wildfires and Hurricane Katrina, two disasters

largely studied in the literature (e.g., Issler et al., 2021; Deryugina et al., 2018). We then

analyze the full sample of disasters from 1996 and 2023 and document that our estimates

systematically deviate from a näıve equal-weighting scheme, especially for more damaging

disasters. This empirical regularity is consistent with the higher likelihood of higher damages

in urban areas and the observation that several of the especially costly disaster types (e.g.,

4



hurricanes and wildfires) are only reported at the zone level by NOAA.

We also document three facts about the economic and human costs of natural disasters.

First, the severity of disasters is very skewed with a small share of disasters being responsible

for the majority of damages, injuries, and fatalities. For example, while the median damage

for a county-year hit by a disaster is $4.6 per person, the 99th percentile is a staggering

$4,355.8. This skewness is particularly pronounced for hurricanes/tropical storms, coastal

disasters, and droughts—and is also present when looking at injuries and fatalities. Second,

the frequency and severity of damages are negatively correlated across disaster types. In

other words, very damaging disasters tend to be relatively infrequent while less damaging

ones tend to be particularly frequent. For example, droughts, hurricanes/tropical storms, and

coastal disasters are extremely damaging and infrequent, while wind and floods are frequent

and less damaging. Third, some types of disasters, such as hurricanes/tropical storms, floods,

and coastal disasters, have become more severe in the last 25 years, while other disaster types,

such as drought and wildfires, have become less severe.

Related literature. Our new, comprehensive, publicly available dataset on damages,

injuries, and fatalities from natural disasters contributes to the large and growing literature

that uses county-level data on damages from natural disasters in economics (e.g., Barrot and

Sauvagnat, 2016; Fried, 2022) and finance (e.g., Bernile et al., 2017; Heimer et al., 2019; Ge,

2022; Alok et al., 2020; Li et al., 2024; Morse, 2011; Cortés and Strahan, 2017; Dessaint and

Matray, 2017; Ge and Weisbach, 2021; Diamond et al., 2024; Ersahin et al., 2024; Aretz et

al., 2019; Schüwer et al., 2019; Choi et al., 2023; Huynh and Xia, 2023; Dlugosz et al., 2024).

Outline. The remainder of the paper is structured as follows. Section 2 presents the SED

data. Section 3 discusses our methodology to construct county-level damages, injuries, and

fatalities. Section 4 shows that our weighting scheme leads to different estimates compared

with näıve equal weighting, especially for severe disasters. Section 5 presents three facts

about direct damages, injuries, and fatalities from natural disasters. Section 6 concludes.
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2 The official data source

We now provide a brief description of our main data source. The source of our estimates

is the Storm Events Database (SED), an official publication of the National Oceanic and

Atmospheric Administration (NOAA). The reader is referred to NWS Directive 10-1605 for a

detailed discussion of the SED data.

The unit of observation in the SED is an “event.” An event must meet one of the

following criteria: (i) the occurrence of storms and other significant weather phenomena

having sufficient intensity to cause loss of life, injuries, significant property damage, and/or

disruption to commerce; (ii) unusual weather phenomena that generate media attention (e.g.,

snow flurries in South Florida); or (iii) other significant meteorological events, such as record

maximum or minimum temperatures.

The underlying data comes from a variety of sources, including, among others, National

Weather Service (NWS) trained spotters, county, state, and federal emergency management

officials, local law enforcement, and media reports.2 The disparate records are collected,

compared, and verified by “storm data preparers” at the 123 NWS Weather Forecast Offices

(WFOs). After this verification procedure, the WFOs send the data files to the NWS

headquarters, which standardizes the format and updates the national database. The SED is

updated with approximately a three-month lag (e.g., the data for January is usually made

available in April). From 1996 to the present, NOAA has included over 55 types of weather

events in the database, ranging from hurricanes to dust storms and flash floods. Table OA.3

provides a complete list of the event types in the SED data. The table also provides a

categorization of each event type into a broader “disaster type” category.

We primarily rely on two sets of variables from the SED—those that quantify losses from

events and those that document their location.

2Table OA.1 and Table OA.2 report the share of events in the NOAA data by source. Approximately
65% of the events come from NOAA/NWS or other government-affiliated officials.
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Losses from natural disasters. The SED reports estimated direct property and crop

damages, along with direct and indirect fatalities and injuries.

Property damage refers to damage inflicted to private property as well as public infrastruc-

ture and facilities. Damage is reported if “a reasonably accurate estimate” is available from an

insurance company or other qualified entities including “emergency managers, U.S. Geological

Survey, U.S. Army Corps of Engineers, utility companies, and newspaper articles.” Crop

damages are obtained from the “U.S. Department of Agriculture (USDA), the county/parish

agricultural extension agent, the state department of agriculture, crop insurance agencies, or

any other reliable authority.”

The SED only reports direct damages, i.e., monetized values of physical destruction.

Indirect damages, those that happen after the event and are a consequence of direct losses,

are not included in the damage estimates. For example, a ruptured power line that falls on a

home during a tornado results in direct damages. Subsequent (indirect) losses may occur if

local businesses are forced to close due to a lack of power from the downed line. NOAA refers

to these indirect damages as “other related costs,” and Storm Data Preparers are instructed

not to include them in the SED.

The SED also records direct and indirect fatalities and injuries. Storm data preparers

are responsible for determining the number of fatalities and injuries and whether they are

a direct or indirect result of the event. Direct fatalities and injuries are those in which the

“active” agent is the weather event itself or the debris created by the event. Indirect fatalities

and injuries occur near an event, but are not “directly caused by impact or debris from the

event.” For example, “fatalities/injuries caused by wind-driven debris during a hurricane”

are direct, and “a vehicle accident caused by a hurricane-related missing traffic signal” is

considered an indirect injury or fatality.

Location of natural disasters. The SED consistently documents the location of disasters

using geographic areas, a field populated for all observations in the SED. The type of

geographic area in the SED depends on the event type. As shown in Table OA.3, 10 types of

events are reported at the county level and 34 types of events are reported at the zone level.

The remaining 11 event types are designated for marine zones and categorize events that do
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not occur over land. Zones were established by the NWS to allow for more accurate forecasts

because of the “differences in weather within a county due to such things as elevation or

proximity to large bodies of water.”3 For example, one county may be split into two zones, a

coastal and inland portion, or a zone may trace the boundaries of a valley which overlaps

multiple counties. Generally, zones are smaller than counties, but an individual zone can

intersect with more than one county.

Importantly, events are defined to be zone-specific or county-specific. Hence, if the same

natural disaster (or storm system) affects multiple zones or counties, the data features a

separate event (i.e., a separate observation) for each affected zone or county.4 To connect

events that are part of the same natural disaster but occur in different areas, the SED assigns

each event to a broader “episode.” We preserve this event-to-episode mapping to allow

researchers to track the spatial distribution of losses from a given disaster or storm system.

3 Mapping losses to counties

We now discuss how we construct our county-level estimates of losses from natural disasters.

Specifically, we describe how we build crosswalks from historical maps to allocate damages in

the SED to the county level using weights that reflect the spatial distribution of population,

housing stock, and economic activity.

The data challenge with Public Forecast Zones. While allowing for more accurate

weather forecasts, zones prevent the SED from being readily used for county-level analyses.

Indeed, about 40% of all events are reported at the zone level in the SED. Although NOAA

provides “zone-county correlation files” that map each zone to one or more counties, two

limitations prevent these crosswalks from being sufficient to accurately calculate county-level

damages. First, NOAA regularly changes the zone boundaries and identifiers (e.g., splitting

3See https://www.weather.gov/gis/PublicZones for more details about zones.
4We use the term “storm system” to refer to broader disasters/weather phenomena such as Hurricane

Harvey or the 2023 Hawaii Firestorms.
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one zone into two), but the correlation files only contain a mapping for the most recent

vintages of the zones. Hence, merging historical events with the current crosswalk leads to

unmatched events and potentially inaccurate mapping. Second, the crosswalks do not provide

a rule for apportioning zone-level damages to counties when the zone spans multiple counties,

which occurs for approximately 22% of zones as of 2023.

Given these issues, we construct our own crosswalks using zone and county maps. The

crosswalks link each zone to all counties that the zone overlaps. For zones that overlap

multiple counties, we calculate a set of weights that can be used to allocate damages to

counties based on the share of a zone’s population, housing stock, or economic activity

located in each overlapping county. Crucially, we construct these crosswalks using current and

historical vintages of the NOAA zones, ensuring that our allocation of damages to counties is

consistent with the zone boundaries at the time the event occurred.

Constructing crosswalks. To build the crosswalks, we overlay shapefiles of NOAA zones

and U.S. counties from the same year as the vintage of the NOAA zones.5 Shapefiles are

a data format that contain a collection of polygons oriented in space. The intersection of

zones and counties generates a new map consisting of smaller and mutually exclusive spatial

subunits. Each of these subunits is a unique zone-county pair with a non-zero geographic

intersection. Using Census block group-level data, we next calculate the area, population,

employed population, aggregate income, and the number of housing units in each zone-county

pair. In the case of population, we then calculate the weights for each zone-county pair by

dividing the population of the zone-county pair by the total population of the zone. We use

the same methodology for weights based on area, employed population, aggregate income,

and number of housing units.

For example, if 80% of a zone’s population is located in county A and 20% in county B,

our population-based weights allocate 80% of damages from weather events in the zone to

county A and the remaining 20% to county B. A zone located entirely within one county

5We construct multiple crosswalks (one per year) for vintages that were in effect over multiple years.
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has a weight of 1, so all damages are assigned to that county. We construct similar weights

using different weighting variables, namely geographic area, employed population, aggregate

income, and the number of housing units. We benchmark our methodology against a näıve

equally-weighted weighting scheme (used, to the best of our knowledge, by commercially

available datasets) that distributes damages equally among all counties that intersect the

affected zone.

Example: Zone 504 in Washington state. To make this procedure more concrete,

Figure 2 provides an example of the crosswalk construction using zone 504 in Washington

state from the 2017 vintage of zone boundaries. Panel A shows the zone overlaid onto the

Washington county map, and Panel B zooms in on the three counties the zone overlaps,

namely Mason, Thurston, and Lewis counties. Panel C illustrates the first step of the

procedure, i.e., the spatial intersection of the zone and county boundaries. The result is a

dataset where there is only one observation for each zone-county pair. The three colored

polygons in Panel C represent each observation in the spatial intersection.

Next, we construct a set of weights that apportion disaster damages from zone z to

counties c1, . . . , cn (in this example, n = 3). Formally, the weight for each zone-county

intersection z ∩ ci is

wf
z∩ci =

f(z ∩ ci)∑n
i=1 f(z ∩ ci)

,

where f(z ∩ ci) is the value of one of our weighting variables (area, population, employment,

number of housing units, or income) for the zone-county intersection. Intuitively, the weights

represent the share of the zone’s total population (or any other weighting variable) that is

located in a particular zone-county subunit. The näıve equally-weighted weighting scheme

for each zone-county pair is simply calculated as 1/n.

We construct the weights by calculating the value of the underlying weighting variable for

each zone-county pair. For the area weighting variable, we perform this calculation using the

Geographic Information System (GIS) software. Values of the economic and demographic

variables cannot be directly obtained because these subunits do not conform to standard

administrative boundaries. Hence, we estimate these values using American Community

Survey (ACS) 5-year data at the block group level. The procedure for obtaining our estimates
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Panel A: Zone 504 in WA Panel B: Zone 504

Panel C: Zone-County Intersections Panel D: Overlaying Census Block Groups

Figure 2: Example of crosswalk construction. This figure shows an example of crosswalk construction
for zone 504 in Washington state. Panel A shows the zone overlaid onto the county map. Panel B zooms in
on Mason, Thurston, and Lewis counties—the counties that overlap with zone 504. Panel C and Panel D
illustrate the first and second step of the procedure, respectively. Sources: NOAA, U.S. Census Bureau.

is shown in Panel D of Figure 2, which overlays census block groups onto the zone-county

subunits. We calculate the value of the weighting variable by summing across all block groups

located in the zone-county pair. If a block group is located in multiple zone-county pairs,

before adding the weighting variable to the zone county-total, we multiply it by the share of

the block group’s geographic area that is located in the zone-county pair.

In our example of zone 504 in Washington state, the population weight (0.799) and

economic weights (0.820, 0.842, 0.793 for employment, income, and housing stock, respectively)

for Thurston County are more than double than its equal weight (0.333) and area-based

weight (0.404). This discrepancy is due to this portion of Thurston County containing the

city of Olympia. Interestingly, the näıve equal weights are also very inaccurate for Mason

county which, as shown in the figure, only shares a very tiny intersection with zone 504.
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Final steps: 50 states (plus D.C. and Puerto Rico) and 46 vintages. The process

used in this example is executed for each zone in all 50 states plus D.C. and Puerto Rico.

The crosswalks for each state are then appended to form a single crosswalk for each NOAA

map. We repeat this process for the 46 vintages of NOAA maps that were effective between

2006 and 2023. For vintages that were in effect across multiple years, we construct multiple

crosswalks (one for each year) using the corresponding county boundaries and Census block

group data. Hence, for this period, we are able to merge the events with the crosswalk

constructed from the zone boundaries that were in effect at the time of the event. For events

that occurred from 1996 to 2006, we merge events with a crosswalk created from the oldest

vintage of zones for which we obtained a shapefile map, namely 2006.

As a final step, we merge all zone-level events with the crosswalk from the zone boundaries

that were in effect at the time of the event. We append this data to the events in the SED

that are reported at the county level. These events are assigned a weight of one for each of

the six methodologies since they occur only in one county.

The final dataset. Our final dataset is an event-level dataset that can be collapsed to the

county level by selecting a weight type and summing the weighted damages across all events in

the county. We group events in 13 broad disaster types: coastal disaster, winter weather, wind,

flood, drought, wildfire, tornado, hail, heat, hurricane/tropical storm, thunderstorm/rain,

tsunami/seiche, and other. The data can be easily aggregated to different levels such as

county-month, county-month-disaster type, state-year, and so on.

4 Precise damage estimates

We now show that the weighting schemes in our methodology lead to estimates that are

particularly accurate for severe disasters. First, we document substantial differences in

estimates compared to näıve equal weights in the context of the 2017–2023 Western Wildfires

and Hurricane Katrina. We then show, more formally, that the accuracy of our data increases

in disaster severity.
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Western Wildfires (2017–2023) Hurricane Katrina (2005)

Figure 3: Population-weighted relative to equal-weighted damages: 2017–2023 Western
Wildfires and Hurricane Katrina. This figure plots the relative difference between population-weighted
and equal-weighted damages for the 2017–2023 Western Wildfires in Washington, Oregon, and California
(left panel) and Hurricane Katrina in Mississippi and Louisiana (right panel). We define Hurricane Katrina
to include all events with a disaster type of hurricane/tropical storm, coastal disaster, or flood with a
start date between August 25, 2005, and August 30, 2005. See Table OA.3 for more details on which

events are included in these disaster types. The relative distance metric is defined as d
Population|Equal
c =

(Population Weighted Damagesc−Equal Weighted Damagesc)/Equal Weighted Damagesc. Sources: NOAA,
U.S. Census Bureau.

Hurricane Katrina and the 2017–2023 Western Wildfires. We now document the

importance of the weighting scheme to accurately compute damages from natural disasters.

We start by focusing on the 2017–2023 Western Wildfires and Hurricane Katrina, two disaster

types (wildfires and hurricanes) reported at the zone-level by NOAA. These episodes have

been widely studied in the literature. For example, Issler et al. (2021), McConnell et al. (2021),

and Biswas et al. (2023) investigate the impact of wildfires on migration and the housing

market, and Vigdor (2008), Gallagher and Hartley (2017), Deryugina et al. (2018), and Groen

et al. (2020) examine the economic and financial consequences of Hurricane Katrina.
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Figure 3 shows that damages estimated using population-based weights differ substantially

from damages estimated using equal weights. The left panel focuses on county-level damages

from wildfires in Washington, Oregon, and California from 2017 to 2023, where the black

circle highlights the counties of Lewis, Mason, and Thurston from our example in Section 3.

The colors indicate the difference between population-weighted and equal-weighted damages,

highlighting how equal weights often lead to an underestimation (green) or overestimation (red)

of damages compared to population-based weights. Building on the example in Figure 2, note

that equal weights overstate damages in Lewis and Mason counties, but understate damages

in Thurston county which contains the city of Olympia. The right panel also documents

substantial deviations between the two measures for Hurricane Katrina in Mississippi and

Louisiana.

Figure OA.3 to Figure OA.7 in the Appendix show the county-level relative difference

metric between equal-weighted damages and damages based on the other five weighting

schemes for all counties during the entire sample period. Our weighting schemes lead to

particularly different estimates in the Mountain and Pacific West, while differences are more

limited in the Midwest and East Coast.

Accuracy of estimates increasing in disaster severity. We now show that the precision

of our data increases for more damaging disasters. To this end, we compare estimates

obtained using equal weights to, again, estimates obtained using weights that reflect the

spatial distribution of population.

We calculate a relative distance metric for each county c and episode e using the formula:

dPopulation|Equal
ec =

Population Weighted Damagesec − Equal Weighted Damagesec
Equal Weighted Damagesec

. (1)

Figure 4 shows a binscatter plot where episode-county level observations are plotted based

on their relative distance metric (absolute values on the y-axis) and the severity of episode

losses (log damages on the x-axis). The figure shows that the discrepancy between damages

calculated using equal weights and damages calculated using population-based weights

increases with the severity of natural disasters, suggesting that the accuracy of our data is
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Figure 4: Absolute relative difference increasing in disaster size. This figure shows a binscatter
plot using the methodology of Cattaneo et al. (2024). The y-axis shows the absolute value of the relative
distance metric against episode-level population-weighted damages on the x-axis. The sample includes all
episode-county observations with non-zero damages from 1996 to 2023. The absolute relative distance metric
between population- and equal-weighted damages is defined in (1). Sources: NOAA, U.S. Census Bureau.

particularly pronounced for severe disasters.6 This positive relationship between episode-level

damages and the relative difference metric can be explained by (i) likely higher damages in

urban areas and (ii) several costly disaster types, such as hurricanes and wildfires, being

reported at the zone level by NOAA.

5 Damages, injuries, and fatalities

We now present a set of facts, based on our data, about damages, injuries, and fatalities from

natural disasters between 1996 and 2023.

Table 1 presents per capita damages (inflation adjusted dollar values; Panel A), injuries

(per 100,000 persons; Panel B), and fatalities (per 100,000 persons; Panel C) at the county

6While the distance metric discussed here compares the equal and population weighting methodologies,
this metric can also be easily calculated to compare equal weighting to weights based on area, employment,
income, or housing stock. The insights presented in this section (based on population) carry on to the
comparison of equal weighting to area, employment, income, or housing stock weighting.
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level over the period from 1996 to 2023 for all types of disasters, as well as the same statistics

broken down by disaster type for the seven most damaging disaster types (hurricane/tropical

storms, floods, coastal disasters, tornadoes, wildfires, hail, and drought)7. The first column

shows the frequency of disasters, namely the number of county-year observations with non-zero

damages (injuries, fatalities) from a given disaster type. The next four columns show the

severity of disasters. Specifically, these four columns show the distribution of total damages

(injuries, fatalities) at the county-year level, where we use population-based weights and then

divide by the total population at the county-year level to obtain per capita statistics. Finally,

the last three columns show the means of per capita damages (injuries, fatalities) for three

subsample periods: 1996–04, 2005–13, and 2014–23.

There are three main takeaways. First, the severity of disasters is highly skewed. Specifi-

cally, the distribution of damages, injuries, and fatalities shows that a small share of disasters

accounts for the majority of these outcomes. Consider, for example, the 67,096 county-year

observations that have non-zero damages in our sample. The mean damage for a county hit

by a disaster is $285.9 per capita, but the median is only $4.6, and the 99th percentile is a

staggering $4,355.8. This skewness is particularly pronounced for hurricanes/tropical storms,

coastal disasters, and droughts—note that droughts can be particularly damaging. In terms

of injuries, floods are extremely dangerous, followed by tornadoes, and hail. The distribution

of per capita injuries is also highly skewed, with a median of 2.4, mean of 14.6, and 99th

percentile of 174.5 across all disaster types. Finally, tornadoes are associated with the highest

mean fatalities per 100,000 persons at 11.1, but floods and coastal disasters cause fatalities

in the greatest number of county-year observations. Similar to damages and injuries, the

distribution of per capita fatalities is very skewed.

Second, frequency and severity are negatively correlated across disaster types, i.e., very

damaging types of disasters tend to be relatively infrequent compared to less damaging

ones. One the one hand, consider droughts, hurricanes/tropical storms, and coastal disasters.

These disasters can be extremely severe, with mean per capita damages of $1,492.5, $1,240.1,

7See Table OA.3 for a mapping of NOAA’s event types into these broader disaster types.
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Summary statistics calculated using county-year-disaster type observations with non-zero damages
(Panel A), injuries (Panel B), and fatalities (Panel C) over the entire sample period (1996–2023)

Panel A — damages ($ per capita)
Distribution of Damages Time Series (means)

Count Mean p50 p90 p99 1996–04 2005–13 2014–23

All 67,096 285.9 4.6 188.3 4,355.8 235.3 378.5 237.7
Hurricane/Tropical Storm 3,473 1,240.1 5.1 766.1 21,929.2 572.8 1,399.5 1,726.9
Flood 25,389 153.1 2.2 105.6 2,471.0 123.2 119.8 225.4
Coastal 1,314 973.8 0.8 118.4 13,014.4 45.2 1,642.4 441.8
Tornado 13,163 91.2 3.4 87.5 1,474.4 81.2 135.5 52.7
Wildfire 2,100 328.6 2.0 157.4 5,187.6 729.5 178.3 418.9
Hail 12,004 92.5 1.5 109.4 2,052.4 108.3 74.3 95.7
Drought 2,795 1,492.5 66.6 2,564.0 26,786.3 1,390.7 2,289.4 285.2

Panel B — injuries (per 100,000 persons)
Distribution of Damages Time Series (means)

Count Mean p50 p90 p99 1996–04 2005–13 2014–23

All 14,950 14.6 2.4 26.1 174.5 15.4 14.3 13.7
Hurricane/Tropical Storm 242 8.1 0.5 10.5 177.8 12.7 4.8 7.3
Flood 766 37.0 2.1 24.6 884.6 60.2 14.1 6.8
Coastal 515 2.0 0.5 3.2 23.9 1.5 1.4 2.7
Tornado 2,580 30.3 7.3 66.3 347.5 26.8 33.4 31.1
Wildfire 724 9.8 1.5 20.0 118.8 6.6 11.3 9.1
Hail 225 20.9 5.0 53.8 188.2 22.2 19.5 20.5
Drought 6 513.6 2.8 2,965.3 2,965.3 . 23.3 2,965.3

Panel C — fatalities (per 100,000 persons)
Distribution of Damages Time Series (means)

Count Mean p50 p90 p99 1996–04 2005–13 2014–23

All 12,113 3.7 0.8 8.3 43.9 3.2 3.6 4.5
Hurricane/Tropical Storm 383 4.3 0.5 5.3 52.5 1.3 8.3 3.1
Flood 1,822 4.2 1.3 9.6 45.7 3.4 4.0 5.4
Coastal 1,274 1.6 0.5 3.1 17.6 1.2 1.1 2.1
Tornado 650 11.1 4.9 24.3 85.6 7.6 12.7 12.7
Wildfire 256 4.4 0.4 10.0 53.4 7.9 2.7 5.2
Hail 18 8.0 1.0 14.6 99.0 2.0 1.0 14.6
Drought 0 . . . . . . .

Table 1: Summary statistics: per capita damages, injuries, and fatalities. This table shows
summary statistics for (i) per capita direct damages measured in dollars per person (Panel A), (ii) per capita
injuries (direct and indirect) per 100,000 persons (Panel B), and (iii) per capita fatalities (direct and indirect)
per 100,000 persons (Panel C) from natural disasters between 1996 and 2023. Damages are inflation-adjusted
using December 2023 dollars and the CPI. We collapse damages (taking the sum) to the county-year-disaster
type level using population-based weights and then divide damages by the total population at the county-year
level. Column (1) displays the number of county-year observations with non-zero damages from a given
disaster type. Columns (2)–(5) show mean, p50, p90, p99 of damages across county-year observations with
non-zero damages from the listed disaster type. Columns (6)–(8) show mean damages during the periods
1996–04, 2005–13, and 2014–23. Table OA.3 provides more details on each disaster type.
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and $973.8, respectively. They are, however, relatively infrequent, as each of these disaster

types caused damages to fewer than 3,500 county-year observations from 1996 to 2023. On

the other hand, wind and floods are very frequent, affecting more than 25,000 county-year

observations over our entire sample period. Fortunately, these two disaster types tend to

be relatively less severe, causing mean per capita damages of $23.3 and $153.1, respectively.

This negative correlation is robust, and survives if we measure severity using the 95th or 99th

percentiles, instead of the mean of per capita damages. For a scatter plot documenting the

correlation between disaster severity and frequency, see Figure OA.8.

Third, some disaster types have become more severe while others have become less severe

over the last 25 years. Notably, hurricanes/tropical storms, floods, and coastal disasters have

become more severe, while droughts and wildfires have become less severe. The mean per

capita damages of hurricanes/tropical storms tripled from $572.8 to $1.726.9 from the 1996–04

period to the 2014–23 period. During the same time, mean damages increased tenfold for

coastal disasters and doubled for floods. However, the comparison between these two periods

shows a contraction in mean per capita damages of 79% and 43% for drought and wildfires,

respectively.

6 Conclusion

We introduce Losses from Natural Disasters—new publicly available data on county-level

damages, injuries, and fatalities from natural disasters in the U.S. The data is based on

official publications of damage estimates from NOAA through the SED, which we transform

to the county level using the spatial distribution of population, employment, income, and

housing stock. This methodology leads to more accurate county-level estimates compared to

the näıve equal-weighting schemes largely used, to the best of our knowledge, by commercially

available datasets. We show that the increased accuracy is particularly pronounced for severe

disasters.

We document three facts about county-level damages, injuries, and fatalities from natural

disasters between 1996 and 2023. First, the severity of disasters is very skewed with a small

share of disasters being responsible for the majority of damages, injuries, and fatalities.
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Second, the frequency and severity of damages are negatively correlated across disaster types.

Third, some types of disasters such as hurricanes/tropical storms, floods, and coastal disasters

have become more severe in the last 25 years, while drought and wildfires have become less

severe.

Our goal is to provide the public with comprehensive, publicly available, regularly updated

data that can be easily matched with administrative datasets. We believe our data can help

businesses, households, and policymakers better understand the economic and human costs of

extreme weather events, thus leading to better evidence-based decision making. Our dataset

also directly supports the Federal Reserve’s mission by allowing timely analyses of local and

regional economic activity in the aftermath of natural disasters. Losses from Natural Disasters

is available and regularly updated at newyorkfed.org/research/policy/natural-disaster-losses.
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Supplemental Appendix

This appendix is structured as follows. Appendix A provides additional details on the

SED database, on how we build the crosswalks, and how we allocate damages to counties.

Appendix B presents additional figures on the distribution of damages and the relative

difference between damage estimates across various weighting schemes.

A Data appendix

A.1 Background on the Storm Events Database

The Storm Events Database (SED) is an official publication of the National Oceanic and

Atmospheric Administration (NOAA). The reader is referred to NWS Directive 10-1605 for

additional details about this database. The unit of observation in the SED is an “event”

which, according to NOAA, meets at least one of the following criteria:

1. The occurrence of storms and other significant weather phenomena having sufficient

intensity to cause loss of life, injuries, significant property damage, and/or disruption

to commerce;

2. Rare, unusual weather phenomena that generate media attention, such as snow flurries

in South Florida or the San Diego coastal area; and

3. Other significant meteorological events, such as record maximum or minimum tempera-

tures or precipitation that occur in connection with another event.

The underlying data comes from various sources, including county, state, and federal emergency

management officials, local law enforcement officials, National Weather Service (NWS) trained

spotters, and newspaper clipping services, among others. The disparate records are collected,

compared, and verified by “data preparers” at the 123 NWS Weather Forecast Offices (WFOs).

In the case an event is reported by multiple sources, Data Preparers are responsible for “using

their professional judgment as to what single source is appropriate.” Table OA.1 and Table

OA.2 tabulate the number and percent of NOAA events between 1996 and April 2023 by

reporting source and by category of reporting source, respectively. Approximately 65% of the

events are reported by NOAA/NWS or other government-affiliated officials.
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Source N Events Percent of Total

TRAINED SPOTTER 267,921 16.21
LAW ENFORCEMENT 177,724 10.75
EMERGENCY MANAGER 149,315 9.03
PUBLIC 136,747 8.27
MISSING 113,570 6.87
MESONET 69,106 4.18
NEWSPAPER 52,945 3.20
ASOS 47,450 2.87
COOP OBSERVER 46,277 2.80
GENERAL PUBLIC 40,778 2.47
BROADCAST MEDIA 40,185 2.43
DROUGHT MONITOR 38,394 2.32
AMATEUR RADIO 37,109 2.24
AWOS,ASOS,MESONET,ETC 36,447 2.20
NWS STORM SURVEY 35,590 2.15
911 CALL CENTER 34,684 2.10
DEPARTMENT OF HIGHWAYS 31,492 1.90
OFFICIAL NWS OBS. 31,121 1.88
AWOS 31,084 1.88
OFFICIAL NWS OBSERVATIONS 29,375 1.78
OTHER FEDERAL AGENCY 22,701 1.37
COCORAHS 17,931 1.08
SOCIAL MEDIA 17,723 1.07
FIRE DEPARTMENT/RESCUE 16,023 0.97
NWS EMPLOYEE 15,925 0.96
COUNTY OFFICIAL 15,566 0.94
STATE OFFICIAL 15,310 0.93
RIVER/STREAM GAGE 12,303 0.74
STORM CHASER 9,029 0.55
UTILITY COMPANY 8,136 0.49
PARK/FOREST SERVICE 7,727 0.47
SNOTEL 7,021 0.42
UNKNOWN 6,587 0.40
GOVT OFFICIAL 6,531 0.40
RAWS 5,886 0.36
NWS EMPLOYEE(OFF DUTY) 4,693 0.28
FIRE DEPT/RESCUE SQUAD 4,363 0.26
DEPT OF HIGHWAYS 3,461 0.21
POST OFFICE 2,086 0.13
C-MAN STATION 1,081 0.07
SHAVE PROJECT 893 0.05
COOP STATION 601 0.04
AIRPLANE PILOT 571 0.03
METEOROLOGIST(NON NWS) 555 0.03
LOCAL OFFICIAL 508 0.03
AWSS 437 0.03
COASTAL OBSERVING STATION 399 0.02
WLON 372 0.02
LIFEGUARD 349 0.02
INSURANCE COMPANY 316 0.02
BUOY 299 0.02
COAST GUARD 186 0.01
MARINER 111 0.01
TRIBAL OFFICIAL 100 0.01
ARPT EQUIP(AWOS,ASOS) 77 0.00
NPOP 3 0.00
WFO 3 0.00

Table OA.1: NOAA SED sources. This table shows the sources for the events as reported by NOAA in
the SED from January 1996 to April 2023, together with the number of observations associated with each
data source. Source: NOAA.
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Source N events Percent of total

NOAA/NWS 727,676 44.02
Other Government Official 345,483 20.90
Public 187,014 11.31
Media Report 148,935 9.01
Other Company 8,452 0.51
Other 115,460 6.98
Unknown/Missing 120,157 7.27

Table OA.2: NOAA SED sources, aggregated by category. This table shows the sources for the
events as reported by NOAA in the SED from January 1996 through April 2023, together with the number
of observations associated with each data source. Source: NOAA.

After the verification procedure, the WFOs send data files to the NWS headquarters,

which standardizes the format and updates the national database. The SED is updated

monthly and generally lags the current month by 75 days (e.g., the data for January is usually

made available on, or around, April 15th). From 1996 to present, NOAA has included over

55 types of weather events in the database, ranging from hurricanes to dust storms and flash

floods.1 Table OA.3 lists the event types in the data, and NWS Directive 10-1605 provides

detailed definitions for each event type. We categorize these event types into 13 broader

event groups, which include: coastal disaster, winter weather, wind, flood, drought, wildfire,

tornado, hail, heat, hurricane/tropical storm, thunderstorm/rain, tsunami/seiche, and other.

The SED contains a number of variables that allow researchers to identify the geographic

areas impacted by the event, the start/end time of its occurrence, along with its magnitude

and resulting damages. The remainder of this section provides more details on the variables

included in the SED.

Location. Generally, the location of the event is documented in two ways: (i) as occurring

within a particular geographic area, and (ii) as occurring around a specific point.

(i) The geographic area for which events are reported depends on the event type, which is

included as a variable in the data. 10 of the event types are reported at the county

level, while 34 are designated for NWS Public Forecast Zones (zones). The remaining

1The database dates back as far as 1950, but with limited coverage. Specifically, from 1950 through 1954,
only tornado events were recorded. From 1955 to 1995, more event types were reported, but only tornado,
thunderstorm wind, and hail events were standardized to a CSV format. Information on other event types
from this period is collected on PDFs of scanned paper documents or in unformatted text files. From 1996 to
2006 NOAA collected the data in Paradox format which they then converted to CSV format. From October
2006 to present, all event types have been recorded in CSV files.
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Event Type Event Group Designator Event Type Event Group Designator

Astronomical Low Tide Coastal Zone Lakeshore Flood Flood Zone
Avalanche Other Zone Lightning Thunderstorm/Rain County
Blizzard Winter Weather Zone Marine Dense Fog N/A Marine
Coastal Flood Coastal Zone Marine Hail N/A Marine
Cold/Wind Chill Winter Weather Zone Marine Heavy Freezing Spray N/A Marine
Debris Flow Other County Marine High Wind N/A Marine
Dense Fog Other Zone Marine Hurricane/Typhoon N/A Marine
Dense Smoke Wildfire Zone Marine Lightning N/A Marine
Drought Drought Zone Marine Strong Wind N/A Marine
Dust Devil Other County Marine Thunderstorm Wind N/A Marine
Dust Storm Other Zone Marine Trop. Depression N/A Marine
Excessive Heat Heat Zone Marine Trop. Storm N/A Marine
Extreme Cold/Wind Chill Winter Weather Zone Rip Current Coastal Zone
Flash Flood Flood County Seiche Tsunami/Seiche Zone
Flood Flood County Sleet Winter Weather Zone
Frost/Freeze Winter Weather Zone Sneaker Wave Tsunami/Seiche Zone
Funnel Cloud Tornado County Storm Surge/Tide Coastal Zone
Freezing Fog Other Zone Strong Wind Wind Zone
Hail Hail County Thunderstorm Wind Wind County
Heat Heat Zone Tornado Tornado County
Heavy Rain Thunderstorm/Rain County Trop. Depression Hurricane/Trop. Storm Zone
Heavy Snow Winter Weather Zone Trop. Storm Hurricane/Trop. Storm Zone
High Surf Coastal Zone Tsunami Tsunami/Seiche Zone
High Wind Wind Zone Volcanic Ash Other Zone
Hurricane (Typhoon) Hurricane/Trop. Storm Zone Waterspout N/A Marine
Ice Storm Winter Weather Zone Wildfire Wildfire Zone
Lake-Effect Snow Winter Weather Zone Winter Storm Winter Weather Zone

Winter Weather Winter Weather Zone

Table OA.3: Event types and geographic designators. This table shows the geographic unit used for
each event type in the SED database. Our analysis disregards events reported at the marine zone geographic
unit. We classify each event type into one of 13 broader event groups: coastal disaster, heat, flood, wildfire,
wind, drought, winter weather, hurricane/tropical storm, wind chill, tsunami/seiche, thunderstorm/rain,
tornado, and other. Source: NOAA.

event types are designated for marine zones, which do not occur over land and are not

included in Losses from Natural Disasters. The geographic designator for each event

type is reported in Table OA.3.

Zones were established by the NWS to allow for more accurate forecasts because of the

“differences in weather within a county due to such things as elevation or proximity to

large bodies of water” (see https://www.weather.gov/gis/PublicZones for more details).

For example, one county may be split into two zones, a coastal and inland portion, or a

zone may trace the boundaries of a valley that overlaps multiple counties. Generally,

zones are smaller than counties, but an individual zone can intersect with more than

one county.

The SED indicates whether an event is reported at the county or zone level. We also

observe the state name, state FIPS code, county or zone name, and county FIPS code

or zone code (depending on whether the event is designated at the county or zone level).

For each observation, the data indicate the County Warning Area (CWA) in which the

event occurred. CWAs are groups of counties that fall under the purview of a single

WFO. WFO and CWA refer to the same geographic area.
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(ii) The SED also reports the beginning and ending latitude/longitude. While more granular

than a geographic area, the use of these variables is limited as they are missing for 42%

of the observations. Moreover, the SED does not specify the areas surrounding the

starting and ending points impacted by the event. Given these limitations, we do not

use the latitude and longitude data.

Losses. The SED also includes a set of variables that quantify the losses associated with

each event, including estimated property damages, estimated crop damages, direct and

indirect fatalities, and direct and indirect injuries.

Property damage is reported if “a reasonably accurate estimate” is available from an

insurance company or other qualified entities including “emergency managers, U.S. Geological

Survey, U.S. Army Corps of Engineers, utility companies, and newspaper articles.”2 Property

damage refers to damage inflicted to private property as well as public infrastructure and

facilities. Estimates are reported in nominal U.S. Dollars, and are rounded to three significant

digits followed by the magnitude of the value (i.e., 1.55 Billion $USD for $1,550,000,000).
Crop damages are obtained from the “U.S. Department of Agriculture (USDA), the

county/parish agricultural extension agent, the state department of agriculture, crop insurance

agencies, or any other reliable authority.” When an event damages vegetation, if the purpose

of the damaged vegetation was for harvest, the losses are recorded as crop damage, regardless

of whether the intended use was commercial or personal. On the other hand, if the damaged

vegetation was intended to enhance a property’s appearance (e.g., lawn grass), the estimated

losses are counted towards property damage.

The damages recorded in the database include only direct damages (monetized losses

of physical destruction), but do not account for other indirect losses that happen after the

event and are not realized as physical destruction. For example, a ruptured power line that

falls on a home due to a tornado is easily observed and represents a direct physical loss to

property. However, this event may have indirect costs, such as business closures due to a

lack of power supply. NOAA refers to these indirect damages as “other related costs,” which

include items such as “snow removal, debris clearing/moving, firefighting, personnel overtime

charges, public housing assistance, etc.” Data prepares are instructed to not include these

indirect costs into the reported property and crop damages.

Beyond damages, the SED also records direct and indirect fatalities and injuries. Data

2See, again, NWS Directive 10-1605 for additional details.
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Preparers from the NWS Forecast Offices are responsible for determining the number of

fatalities and injuries and whether they are a direct or indirect result of the event. Direct

fatalities and injuries are those in which the “active” agent is the weather event itself or the

debris created by the event. Indirect fatalities and injuries, on the other hand, are those that

occur in the vicinity of an event, but are not “directly caused by impact or debris from the

event.” For example, “fatalities/injuries caused by wind-driven debris during a hurricane”

are direct and “a vehicle accident caused by a hurricane-related missing traffic signal” is

considered an indirect injury or fatality.

Episodes. Each event is associated with an episode identification code, and each episode

typically includes multiple events. Episodes are broader classifications of whether phenomena,

which help link together the more granular events. Each observation includes an episode

narrative and an event narrative that describe the general nature of the episode, the specific

details of the event, and how the specific event is connected to the broader episode.

More precisely, events are defined for a single county (or zone) and are assigned a single

event type from Table OA.3. NOAA uses the episode identifier to account for disasters that

cover a large geographic area and cause events of different types and link the individual

events. The occurrence of multiple events under a single episode arises when a storm system3

(episode) impacts multiple counties (or zones), resulting in event-level observations for each

county. Multiple events under one episode can also occur when (i) a storm system causes

multiple events that occur at disjoint times or places (within county/zone), resulting in

event-level observations for each time or place, or (ii) a storm system causes multiple event

types such as hail and thunderstorm winds which result in event-level observations for each

event type. Episodes are defined to be state and WFO specific, so that the same weather

phenomenon, such as Hurricane Katrina, is reported under separate episode identification

codes for the New Orleans, Louisiana WFO, and the Peachtree City, Georgia WFO (among

others). Within the New Orleans episode for Hurricane Katrina, there are 27 individual

events, one for each zone that was impacted.

3We use the term “storm system” to refer to broader disasters/weather phenomena such as Hurricane
Harvey or the 2023 Hawaii Firestorms. These storm systems result in multiple event-level observations in the
SED based on NOAA’s definition of events.
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A.2 Data inputs

Storm Event Database. The SED is available for bulk download from NOAA’s website

in comma-separated values (CSV) format compressed via the gzip algorithm to reduce their

size. There are separate files for each year, and for each year there are three files—event

details, event locations, and event fatalities—which can be linked by the event identifier.

Shapefiles. We also download shapefiles for two sets of geographies: the NWS Public

Forecast Zones (zones) and U.S. Census administrative geographies (counties and block

groups). Shapefiles are a special data format for maps, representing a collection of polygons

oriented in space. Geographic Information Softwares (GIS) can open shapefiles and display

the polygons. To work with shapefiles, we use the R package sf, which is a GIS interface that

allows shapefiles to be stored and manipulated in the format of a data frame, where each row

is a geographic entity (e.g., a zone or a county) that points to one or more polygons that

encompass the entity’s area.

The first set of shapefiles we use are maps of the NOAA zones. The NOAA zone shapefiles

are frequently updated (usually multiple times a year) to correct for errors in previous versions

or to make substantive changes to the geographies (e.g., a single zone splitting into multiple

zones). Section A.3 provides further details on updates to the zone maps. Current shapefiles

can be downloaded from NOAA’s website. NOAA also provided us with 46 historical zone

shapefiles, dating back to June 2006.

The second set of shapefiles we use are maps of U.S. counties and block groups from the

U.S. Census Bureau. For counties and block groups, we use the following vintages: 1990,

2000, and every year from 2010 to 2023. For these years, we also obtain county and block

group-level information on population, employed population, aggregate income, and number

of housing units from the U.S. Census Bureau.

NOAA crosswalks. The NWS also provides zone-county correlation files (henceforth

“crosswalks”) where each observation is a unique overlap of a zone and a county. For example,

if one zone overlaps three counties, that zone will be observed three times in the dataset, one

for each county intersection. The most recent versions of the crosswalks can be downloaded

from the website of the NWS. As discussed in more detail in Section A.3, the availability and

usefulness of these crosswalks is limited for the purpose of allocating zone-level damages to

the county level. Hence, we construct our own crosswalks and use the crosswalks provided by

NOAA to verify our crosswalks.
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A.3 Allocating NOAA damages to counties

The problem. In the SED, approximately 40% of events are recorded at the zone level,

including all hurricanes and wildfires. The innovation of Losses from Natural Disasters

is mapping these zone-level events to the county level. Doing so consists of, broadly, the

following two steps:

(i) For each event reported at the zone level, identify which counties the zone intersects.

(ii) If a single zone intersects multiple counties, apportion the zone-level damages to counties.

Given that NOAA provides a zone-county crosswalk, step (i) should, in theory, be relatively

simple. In practice, this task is more complex because NOAA regularly updates its shapefiles

(often multiple times each year), and the SED reports the zone identifier that was valid at the

time of the event. However, the zone-county crosswalks that are available for download from

NOAA only refer to the most recent vintages of zones. Hence, there is not a 1:1 correspondence

between the zone identifiers in the SED and the zone identifiers in the zone-county crosswalk.

Figure OA.1 illustrates one example of the issue created by changes in NOAA maps. Prior

to 2023, there were a number of storm events reported in zone 520 of Washington state.

However, there is no zone 520 in Washington state in the current zone-county crosswalk

as, on 03/08/2023, what was formerly zone 520 was split into a western and an eastern

portion—which became zones 522 and 523, respectively, and zone 520 ceased to exist. The

current version of the zone-county crosswalk reflects this change, but the event data are not

retroactively updated, so events that occurred before 03/08/2023 in this area are reported in

zone 520. Hence, these events will not merge with the current crosswalk.

To overcome this challenge, rather than merging the SED to the current crosswalk, one

should use the crosswalk that was valid at the time of the event. Unfortunately, the entire

history of zone-county crosswalks is not available on NOAA’s website. After contacting

NOAA, their staff provided us with 18 zone-county crosswalks that cover the period from

November 2015 to present, which leaves missing crosswalks for the period from 1995 to

October 2015.

Not only do the crosswalks not cover the entire history of the SED, they are also limited

in their usefulness to address the second step of mapping the damages to the county level—

apportioning zone-level damages to counties when a zone spans multiple counties. For

example, if a disaster occurs in zone X, the NOAA crosswalk may tell us that zone X overlaps

with counties A and B, but it does not provide any guidance as to the share of damages that

should be allocated to both counties.
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Figure OA.1: Public Forecast Zone change in Washington state.

Given the limited availability and lack of usefulness of NOAA’s zone-county correlation

files, we decide to construct our own crosswalks using zone and county maps. The crosswalks

link each zone to all counties the zone overlaps, thus accomplishing the first step of the

process. Next, we compute the share of a zone’s population, economic activity, housing

stock, and area that is located in each overlapping county. We use these shares as weights to

allocate damages for disasters in multi-county zones, thus accomplishing the second step.

We construct these crosswalks for the current and historical vintages of zones (if the map

is available), so that events can be merged with crosswalks that were valid at the time of

the disaster. After constructing the crosswalks and merging with the SED, the shares can

be used to allocate damages from the zone level to the county level. We now describe the

process of constructing the crosswalks and the process of linking the crosswalks with the SED

to allocate damages.

Constructing zone-county crosswalks. In this section, we describe the methodology for

aggregating natural disaster damages from the zone level to the county level. When a zone is

contained entirely within the boundaries of a single county, this process is trivial as all of the

zone’s damages can be allocated to that single county. However, when a zone overlaps with

multiple counties, we need to choose a set of weights that distribute the damages from the

zone to the multiple counties the zone intersects.

Our methodology is flexible and allows us to construct weights that distribute damages

proportional to a number of relevant economic and geographic variables including population,

employed population, aggregate income, number of housing units, and geographic area. To
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benchmark our methodology, we also distribute damages in multi-county zones via a näıve

technique: equally to all counties that intersect the zone.

To build the crosswalks, our method overlays the maps of zones and counties using

Geographical Information Software (GIS) through the R package sf. The two maps cover

the same territory, but contain different partitions of it. The intersection of the two maps

generates a new map consisting of smaller and mutually exclusive spatial subunits. From

these subunits, we build a dataset where each observation is a unique zone-county pair with

a non-zero geographic intersection. Using Census block group-level data, we calculate the

population (aggregate income, employed population, or number of housing units) in each

zone-county pair. The weights for each zone-county pair are then constructed by dividing

the population of the zone-county pair by the total population of the zone. For example, if

80% of the population of a zone is located in county A and 20% in county B, then 80% of

damages from weather events in the zone are allocated to county A and the remaining 20%

to county B.

To make this procedure more concrete, consider the example from Washington State in

Figure 2, which plots the boundaries of NOAA zone 504 from 2017 overlaid on the 2017

county map. Panel A shows the entire state, and Panel B zooms in on the three counties

that the zone overlaps (Lewis, Mason, and Thurston).

The first step is to preform a spatial intersection of the zone and county boundaries. This

process generates a dataset where there is one and only one observation for each zone-county

pair, and each observation points to the spatial features of the geographic area. The three

colored polygons in Panel C of Figure 2 make up the spatial intersection. After performing

the intersection, we drop all observations for which the area of zone-county pair is less than

0.5% of the area of the entire zone. We do so to avoid treating zone-county “slivers” as

meaningful units, when they are actually the result inconsistencies in the zone and county

shapefiles.

Next, we apportion disaster damages from zone z to counties c1, . . . , cn (in the example

above n = 3). To do so, we construct a set of weights—one for each zone-county intersection

z ∩ ci— that can be multiplied by the damages in zone z to give the amount apportioned to

county ci. We use various sets of weights based on the distribution of population, employment,

income, and housing within a given zone. More formally, the weight for each zone-county

intersection z ∩ ci is

wf
z∩ci =

f(z ∩ ci)∑n
i=1 f(z ∩ ci)

. (OA.1)

where f(z ∩ ci) is the value of one of our weighting variables (area, population, employment,

number of housing units, or income) for the zone-county intersection. Each weighting scheme
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assumes that disaster damages within a zone are distributed proportional to the weighting

variable.

We also use a näıve equally-weighted scheme that distributes damages equally among

all counties that intersect the effected zone (i.e., setting the weight equal to 1/n for each

zone-county pair) to provide a comparison with our other measures.

To construct the area-based weights, we only need the area of each zone-county pair, which

can be calculated from the shapefile of the intersection using the GIS software. Values of the

economic and demographic variables cannot be directly obtained because these subunits do

not conform to standard administrative boundaries. Hence, we estimate these values using

American Community Survey (ACS) 5-year data at the block group level.

The procedure for obtaining these estimates is shown in Panel D of Figure 2, which

overlays census block groups onto the zone-county subunits. To calculate the population of

each zone-county pair, we proceed as follows: (i) for block groups that are entirely contained

within the boundaries of a zone-county pair, we simply sum the population to the zone-county

level, and (ii) when only a portion of the block group is located within a zone-county pair,

we multiply the population of the block group by the area of the zone-county-block group

intersection as a fraction of the area of the entire block group before summing to the zone-

county-level.4 We use the same procedure for the other economic and demographic weighting

variables (employment, aggregate income, and housing stock).

Table OA.4 reports the resulting weights from our six methodologies. The demographic

and economic weights for Thurston County are larger than its equal weight and area-based

weight, reflecting the fact that this portion of Thurston County is more densely populated

than the other two zone-county pairs (the city of Olympia is located in Thurston). The näıve

equal weights are also very inaccurate for Mason county, which, as shown in Figure 2, only

shares a very small intersection with zone 504.

We complete the process in the example above for all 50 states plus DC and Puerto

Rico, and append the files to form a single crosswalk for each NOAA map. We construct a

4The share of a block group g’s population that is located in zone-county subunit z ∩ c is calculated as∑
b∈z∩c∩g λb,g,z,cpopulationb∑

b∈g populationb

where b ∈ z ∩ c ∩ g are all of the blocks that overlap with the zone-county-block group intersection, and
λb,g,z,c is the area of block b that is in the zone-county-block group intersection as a share of the total area of
block b. The block-level data comes from the Decennial Census.
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Weighting Method

Zone County Equal Area Population Employment Income Housing

504 LEWIS 0.333 0.584 0.196 0.177 0.153 0.196
504 MASON 0.333 0.012 0.005 0.003 0.005 0.010
504 THURSTON 0.333 0.404 0.799 0.820 0.842 0.793

Table OA.4: Weights from counties in zone 504 in Washington state. This table shows the three
observations from the crosswalk of zone 504 in Washington state that maps April 2017 zones to 2017 counties
using different weighting schemes.

crosswalk for each of the 46 vintages of zones for which we were able to obtain shapefile maps.

Given that maps prior to June 2006 are not available, we use the zone map from June 2006 to

cover all previous events. For vintages that were in effect across multiple years, we construct

multiple crosswalks for each year using the corresponding county boundaries and Census

block group data. As an example, consider the vintage that was effective from November

2020 through March 2021. We construct one crosswalk to cover November 2020–December

2020 and a separate crosswalk for January 2021–March 2021 using block group data from

each year.5

Merging the SED crosswalks. The next step in the construction of our dataset is to

merge the set of all events in the SED that are reported at the zone level with the crosswalks

constructed in the previous section. To do so, we use the following procedure:

(i) Left join all events with the crosswalk that was valid at the end date of the event by

state and zone id.

(ii) For the set of events not merged in (i), left join all events with the crosswalk that was

valid at the end date of the event by state and zone name. Using zone name, instead of

zone id, helps us account for some data entry issues in zone id field in the SED.

(iii) For the set of events not merged in the previous steps, left join all events with the

previously valid crosswalk by state and zone id. Using the previously valid crosswalk

accounts for cases when the data preparers report the event in a zone that is no longer

5We are able to obtain ACS 5-year data at the block group-level for each year between 2010 and 2023.
For the June 2006 zone shapefile, we construct two crosswalks: one for the period 1996–2004 using the 2000
block group data from the 2000 decenial census, one from 2005 to May 30, 2007 (when the next vintage
became active) using 2010 block group data from the ACS 5-year estimates.
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in the effective map. This may be particularly important for events that occur just

after the zone map is updated by NOAA.

(iv) For the set of events not merged in the previous steps, left join all events with the

previously valid crosswalk by state and zone name.

(v) Repeat steps (iii) and (iv) using the second previous crosswalks.

(vi) For the set of events not merged in the previous step, left join all events with the

next crosswalk that would become valid by state and zone id. We implement this step

because some entries in the data are reported to occur in zones that do not exist at the

time the event occurred. This is possible because NOAA releases versions/drafts of the

maps before they actually become effective, and some data preparers use these when

recording events.

(vii) For the set of events not merged in the previous steps, left join all events with the next

crosswalk by state and zone name.

(viii) Repeat steps (vi) and (vii) for the second next crosswalk.

Using this procedure, 99.7% of the total zone-level events are matched. The vast majority

of the 2,026 unmatched events occur in the period between January 1996 and June 29, 2006,

which can be explained by the fact that during this period we do not have the NOAA map

that was valid at the time, and are thus forced to use the crosswalk constructed from the

zones as of June 2006. We attempt to manually match the 2,062 events that are not matched

with this algorithm to NOAA zones. We successfully manually match 1,641 of these events,

leaving only 421 events which we are not able to map to the county level.

After merging the crosswalks with the zone-level events, we append this data to the events

in NOAA that are reported at the county level. These events are assigned a weight of one

for each of the six methodologies. Hence, we are left with an event-level dataset that can

be collapsed to the county level by selecting a weight and summing the weighted damages

across all events in the county.
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B Additional figures

Damages from All Disaster Types

Damages from Droughts

Figure OA.2: Total damages from all disasters and droughts from 1996 to 2023. This figure
shows a heat map of total cumulative county-level damages from all disaster types (top panel) and droughts
(bottom panel) between 1996 and 2023. Damages are inflation adjusted to December 2023 USD using the
CPI. Sources: NOAA, U.S. Census Bureau.
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Figure OA.3: Area-weighted damages relative to equal: 1996–2023. This figure plots the relative
difference between area-weighted damages and equal-weighted damages for all disasters that occurred between
1996 and 2023. The relative distance metric is defined in equation (1). Sources: NOAA, U.S. Census Bureau.

Figure OA.4: Population-weighted damages relative to equal: 1996–2023. This figure plots the
relative difference between population-weighted damages and equal-weighted damages for all disasters that
occurred between 1996 and 2023. The relative distance metric is defined in equation (1). Sources: NOAA,
U.S. Census Bureau.
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Figure OA.5: Employment-weighted damages relative to equal: 1996–2023. This figure plots the
relative difference between employment-weighted damages and equal-weighted damages for all disasters that
occurred between 1996 and 2023. The relative distance metric is defined in equation (1). Sources: NOAA,
U.S. Census Bureau.

Figure OA.6: Housing stock-weighted damages relative to equal: 1996–2023. This figure plots the
relative difference between housing stock-weighted damages and equal-weighted damages for all disasters that
occurred between 1996 and 2023. The relative distance metric is defined in equation (1). Sources: NOAA,
U.S. Census Bureau.
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Figure OA.7: Income-weighted damages relative to equal: 1996–2023. This figure plots the relative
difference between income-weighted damages and equal-weighted damages for all disasters that occurred
between 1996 and 2023. The relative distance metric is defined in equation (1). Sources: NOAA, U.S. Census
Bureau.

Figure OA.8: Negative correlation between disaster severity and frequency. This figure shows a
scatter plot with the frequency of disasters (number of county-years with non-zero damages) on the x-axis
and the severity of disasters (average damages conditional on non-zero damages) on the y-axis from 1996 to
2023. Note that we break the x-axis from 25,000 to 50,000. Sources: NOAA, U.S. Census Bureau.
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