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Abstract 

We document the extent to which workers in AI-exposed occupations can successfully retrain for AI-

intensive work. We assemble a new workforce development dataset spanning over 1.6 million job training 

participation spells from all U.S. Workforce Investment and Opportunity Act programs from 2012-2023 

linked with occupational measures of AI exposure. Using earnings records observed before and after 

training, we compare high AI exposure trainees to a matched sample of similar workers who only 

received job search assistance. We find that AI-exposed workers have high earnings returns from training 

that are only 25 percent lower than the returns for low AI exposure workers. However, training 

participants who target AI-intensive occupations face a penalty for doing so, with 29 percent lower 

returns than AI-exposed workers pursuing more general training. We estimate that between 25 percent to 

40 percent of occupations are “AI retrainable” as measured by its workers receiving higher pay for 

moving to more AI-intensive occupations—a large magnitude given the relatively low-income sample of 

displaced workers. Positive earnings returns in all groups are driven by the most recent years when labor 

markets were tightest, suggesting training programs may have stronger signal value when firms reach 

deeper into the skill market. 
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1 Introduction

The debate over whether advances in artificial intelligence (AI) will ultimately complement

or substitute labor has drawn significant attention (Autor (2024); Deming et al. (2025);

Hampole et al. (2025)). However, there is a dearth of research examining the role that existing

job training programs might play in helping AI-exposed workers adapt to the evolving labor

market. This gap is particularly striking in light of survey evidence showing that AI-adopting

firms are retraining their workforces more rapidly than they are adjusting headcounts in

response to AI technologies (Abel et al., 2024).1

This short paper evaluates the effectiveness of the US’s flagship workforce

development program—the Workforce Innovation and Opportunity Act (WIOA), formerly

the Workforce Investment Act (WIA)—in helping workers transition out of jobs facing

AI-related pressure and into jobs with higher AI complementarity. We assemble a novel

dataset of over 1.6 million individual WIOA/WIA training spells from 2012 to 2023, linked

to administrative earnings records spanning several quarters before and after training. The

earlier years allow us to compare with periods in which precursors to generative AI were

more prevalent. Crucially, the data include detailed occupation codes at each stage of the

training process: the worker’s pre-training occupation, the targeted occupation of training,

and the post-training occupation. By merging in seminal measures of occupational AI

exposure from Brynjolfsson et al. (2018) and their extensions to large language models

(LLMs) and generative AI from Eloundou et al. (2024), we analyze the joint distribution of

transitions in AI skill space and their associated earnings returns.

We find that earnings returns to training for AI-exposed workers are large and

positive, but workers capture higher returns when they avoid targeting AI-intensive

occupations in their next jobs. In an ideal experiment, these returns would be identified by

random assignment. Absent random assignment, we follow the approach of Rothstein et al.

(2022), matching each WIOA/WIA trainee to a control worker who only received job

search assistance. In our context, the control group comprises nearest-neighbor matched

workers from occupations with similar AI exposure in the same year. This addresses the

potential “Ashenfelter dip” concern that a decline in earnings prior to training could

upwardly bias estimates of post-training earnings gains. The nearest neighbor approach

also allows us to separately examine outcomes for workers displaced from high–AI exposure

occupations, and for those who are targeting transitions into AI-intensive occupations after

training. That is, we can separately estimate the effects of more general (non-AI) and

1In a large-scale survey of Danish workers most exposed to ChatGPT, Humlum and Vestergaard (2024)
find that 43% of workers reported the need for more training as the largest barrier to adoption.
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specific (AI-deepening) skill investments for workers who were highly exposed to AI prior

to participating in training.

We have four main findings. (i) The modal participant displaces from top quintile AI

exposure occupations despite being relatively low income. This is not driven by the

composition of the sample—training participants have composition similar to the CPS

Unemployed and Displaced Worker samples. (ii) The mean earnings returns for training

participants displaced from above-median (“high”) AI exposure occupations are large and

positive—around $1,470 per quarter relative to the control group and only about 25%

lower than the returns for low AI exposure workers. (iii) Participants who target high AI

exposure occupations for their next jobs also see significant returns, although with a

penalty relative to those who pursue more general skills. Returns for participants

deepening AI-specific skills remain high, at roughly $1,040 per quarter, but are

approximately 29% lower compared to the average returns for high AI exposure workers

who pursue more general skills. (iv) Positive returns in both groups are largely driven by

the most recent years when labor markets were tightest, suggesting training programs may

have stronger signal value when firms are forced to reach deeper into the skill market.

Using the matched sample, we also construct an AI Retrainability Index (AIR) which

ranks occupations by the share of workers who can successfully retrain into higher-wage, more

AI-intensive roles after leaving those occupations. Defining AI retrainability in terms of both

skill and earnings helps mitigate survivorship bias: it prevents us from mistakenly labeling

workers as successfully “AI retrainable” if AI-intensive firms have become more dominant

in hiring. Earnings movements allow us to disentangle the source of such transitions by

revealing whether workers are compensated for AI upskilling. Using the index, we estimate

that between 25% to 40% of occupations are “AI retrainable” as measured by its workers

receiving higher pay for moving to more AI-intensive occupations—a large magnitude given a

relatively low-income sample of displaced workers. The index also enables us to decompose,

for any given occupation, the extent to which successful AI retraining is driven by wage

gains while holding skills constant (e.g. gains from occupational licensing barriers) versus

skill transitions from AI training.

Our main finding that workers are more successful when they avoid targeting AI

occupations for their next job contributes to both the literature on the labor market effects

of AI and the active labor market program evaluation literature. While personnel studies

have found complementarities between AI adoption and worker productivity within

individual firms, these studies generally do not attempt to isolate the effects of

AI-upskilling incumbent workers from the outcomes of AI adoption.2 They are also silent

2In a prominent example, Brynjolfsson et al. (2025) finds that customer service ChatBots helped less
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on the question of whether workers would be better off avoiding AI occupations altogether.

Firm-level studies are also naturally limited from drawing inferences across a wider set of

workers and firms. To our knowledge, our paper is the first to directly estimate the effects

of AI retraining on worker earnings, and to do so at a nationally-representative scale.

The implication that the labor demand environment is an important driver of positive

returns also contributes to the literature on active labor market policy evaluations, especially

those focused on heterogeneity over the business cycle. In a meta-analysis of more than 200

evaluations, Card et al. (2018) provide suggestive evidence that active labor market policies

are more effective in weak labor markets, consistent with the view that employers can be more

selective in slack labor markets. We find evidence in favor of the opposing viewpoint that

job training is less effective during recessions. Our results better align with the alternative

explanation that training provides a particularly valuable signal when labor markets are

tighter and firms have to recruit lower down in the skill distribution.

A secondary contribution of our work is that we document that modern AI exposure

measures (e.g. Brynjolfsson et al. (2018), Eloundou et al. (2024)) have a natural mapping

to task content measures from the preceding automation literature (Acemoglu and Autor

(2011)). Specifically, we show that AI exposure is correlated with routine cognitive tasks

while generative AI and LLM exposure is correlated with both routine and non-routine

cognitive task measures. This mapping is helpful because it underscores that estimates

of the returns to job training by time-invariant AI exposure measures will reflect routine

cognitive skill retraining in earlier years (more aligned with automation) and increasingly

non-routine cognitive skill retraining in later years (more aligned with AI).

The paper proceeds as follows. Section 2 provides background information and

descriptive statistics on the WIOA/WIA training programs and defines AI exposure

measures. Section 3 details our nearest-neighbor matching identification strategy. Section 4

presents our main results. Section 5 outlines our AI retrainability (AIR) index which allows

us to decompose the sources of successful AI retraining. Section 6 concludes and discusses

areas for future research.

2 Data and Measurement

Determining whether individuals can be retrained for AI-related work is challenging because

we typically lack administrative data on how AI is used by workers within firms.3 We make

experienced workers catch up to experienced colleagues. Presumably these employees required retraining to
work with the new technology, but the upskilling itself is not studied directly.

3While recent surveys provide firm AI usage rates (Bonney et al. (2024)) and some estimates of worker-
level adoption across the income distribution (Hartley et al. (2024)) and by occupation (Humlum and
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progress on this challenge by developing a dataset that can longitudinally track transitions of

job training participants into occupations that vary in their susceptibility to AI; occupations

are then categorized as AI-exposed using measures we describe below. To determine whether

transitions into more AI-intensive roles reflect genuine upskilling—as opposed to repeated

exposure to adverse AI-related shocks—the dataset must also include pre- and post-training

earnings. For this purpose, we construct a new large-scale dataset of training participants

by merging two publicly available data sources.

2.1 WIOA / WIA Participant Data

The US Department of Labor’s (USDOL) Participant Individual Record Layout (PIRL) is

a national performance tracking dataset that contains one observation for each unique

participation spell in any WIA, or its successor WIOA, program from 2005q1 to 2023q4.

WIOA/WIA is a federally funded active labor market program in which qualified workers

receive fully subsidized occupational job training (Title I - “Workforce Development

Activities”) or job search assistance services (Title III - Wagner-Peyser Act Employment

Services) among other services.4 We restrict our analysis to participants who exited

WIOA/WIA between 2012q1 and 2023q4, as occupation codes are available throughout all

stages of the job training spell during this period.

Our main focus is on Title I occupational training programs which span over 1.67

million training spells from 2012 through 2023. 57% of Title I participants are enrolled in

the Title I - Adult program which prioritizes current public service recipients (e.g.

Supplemental Nutrition Assistance Program (SNAP) recipients), lower-income individuals,

and disadvantaged individuals with employment barriers. 35% of Title I participants are

enrolled in the Title I - Dislocated Worker program which serves individuals who have

been laid off, received a notice of termination, or are eligible for USDOL rapid response

services directed to workers impacted by mass layoffs or plant closures. Unlike Adult

program trainees who can be part-time employed while training, Dislocated Worker

program trainees are generally enrolled full-time in training. Of the remaining Title I

participants, less than 1% are in the program for young adults aged 14-24, while 8% are

co-enrolled across the above programs.

Vestergaard (2024)), we are aware of only one study that has linked AI use to worker administrative data
(Pizzinelli et al. (2023)) though it does not include individual-level job training data.

4Participants seeking remedial English or basic education may enroll in WIOA Title II – Adult Education
and Family Literacy Act (AEFLA) programs, while individuals with disabilities may qualify for WIOA Title
IV - Rehabilitation Act Amendments. Popular examples of training services are nursing degree programs
and courses in data analysis with Microsoft Office and Python. See Andersson et al. (2024) for an involved
description of available services.
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To establish a control group of similarly AI-exposed workers, we follow Rothstein et

al. (2022) and use matched participants in Title III programs who receive job search

assistance services through the Wagner-Peyser Act, but do not enroll in occupational

retraining programs. Title III programs span over 29 million participants from 2012 to

2023 providing a rich set of characteristics from which to match Title I trainees. While

both Title I and Title III workers can receive job search assistance services upon initial

intake at American Job Centers, individuals may either choose on their own or be guided

by case workers to enroll in Title III training services.5 To account for potential selection

bias from endogenous sorting into Title I and Title III programs, we use a matched sample

strategy described in detail in Section 3.

We observe individual quarterly earnings from state unemployment insurance ES-202

administrative records for three quarters before each participant enters a Title I or Title III

program, and for three quarters after exiting the program. We deflate all earnings records

to 2010Q1 dollars. Importantly, for a sizable subset of individuals we observe the quarterly

6-digit Standard Occupation Code (SOC) associated with each worker’s primary job if

employed.6 One limitation of the PIRL dataset is that the requirement to report

occupation codes is left to the discretion of local workforce development boards. After

restricting to participants with complete occupation codes (available for 22% of training

participation spells), earnings records, and covariate information, our final sample contains

109,038 total training spells, of which 108,215 spells are successfully matched to a nearest

neighbor control group unit. In Section 2.3, we provide balance tests that confirm that

individuals with missing occupation codes are qualitatively similar to those with observed

occupation codes, consistent with arbitrarily distributed reporting requirements for

occupation codes.

Finally, for each individual, the PIRL also provides a rich set of demographic

variables including sex, race, ethnicity, highest level of educational attainment, disability

status, and social benefit distinctions including low-income status, Temporary Assistance

for Needy Families (TANF) recipient, SNAP recipient, or other public assistance recipient,

which are helpful for both description and matching.

5Because the case worker is unobserved, we cannot use an examiner design to estimate effects from the
quasi-random assignment to case workers as in Humlum et al. (2023).

6All 6-digit SOC codes in our data are derived from 2010 detailed O*NET (Occupational Information
Network) occupational codes. SOC codes represent the first 6 digits of the 8-digit O*NET codes.
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2.2 Occupation-Level AI Exposure Measures

We use two seminal occupational measures of AI exposure that we merge to WIOA/WIA

participant occupations to study AI transitions. The first is Brynjolfsson et al. (2018)’s

“Suitability for Machine Learning” (SML) measure which is independently calculated for

each pair of tasks (2,069 O*NET “work activities”) and occupations (964 6-digit SOC

occupations). 7 independent human annotators evaluate each task-occupation pair across

23 Likert-scale questions that measure the likelihood that a machine could execute the task

in a given occupation, where a score of 5 reflects high suitability for machine learning and 1

low suitability. The SML measure uses O*NET “importance weights” that determine the

relevance of each task for a given occupation. We aggregate SML importance-weighted

scores by occupation by taking the mean across all questions and annotators, resulting in a

single time-invariant SML score for each 6-digit occupation. Among the unique

occupations spanned by the WIOA/WIA dataset (prior to program participation), the

mean and median SML scores are 3.47 and 3.46 with a standard deviation of 0.10.

While the SML score is a pioneering approach to AI exposure, it was developed in

2017. To capture whether subsequent advances in large language models (LLMs) including

generative technology such as ChatGPT can execute the same task-occupation pairs, we

draw from a more recent measure developed by Eloundou et al. (2024) which we denote

SMLLLMβ . Eloundou et al. (2024) expand on the earlier SML methodology by asking whether

generative AI and LLMs specifically can reduce the time required to complete a given task.

Both annotators and ChatGPT itself evaluate the likelihood that (a) an LLM would reduce

the time taken to perform the task by at least 50% and (b) additional software could be

developed on top of the LLM to reduce the time taken by at least 50%.7

AI Exposure versus Automation

In this paper, occupational measures of AI exposure reflect the degree to which AI

technology could perform the same tasks previously done by a human. AI exposure should

thus be thought of as the potential rather than realized substitution of AI for human tasks,

though recent work has shown a high correlation between our chosen AI exposure measures

and real task usage using Microsoft Bing Copilot (Tomlinson et al. (2025)). Because the

PIRL data’s time span from 2012 - 2023 includes earlier precursors to modern AI, some of

what the above AI exposure measures capture is automation or computerization in earlier

7We use the “β” weighting scheme which calculates a variable SMLLLMβ ∈ [0, 1] = (a) + 0.5 ∗ (b) that
captures the share of an occupation’s tasks that can be done by LLMs. This weighting scheme is chosen
because it has the desirable validation that SMLLLMβ is positively correlated with average occupational
incomes. On average, LLMs are estimated to be able to complete 30% to 34% of tasks using this measure.
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years. However, one novel contribution of our paper is that we show that the two AI exposure

measures used in this paper (SML and SMLLLMβ ) correlate with foundational measures used

in the Acemoglu and Autor (2011) task framework. In Appendix Figure A.1, we illustrate

this link by plotting binscatter plots which reveal that SML is strongly correlated with

routine-cognitive tasks, while SMLLLMβ is correlated with both routine- and non-routine

cognitive tasks. That is, we formally document that AI tasks are cognitive tasks. This

observation is useful because it underscores that estimates of the returns to job training by

time-invariant AI exposure measures will reflect routine cognitive skill retraining in earlier

years (more aligned with automation) and increasingly non-routine cognitive skill retraining

in later years (more aligned with AI).

2.3 Descriptive Statistics and Sample Restrictions

Throughout the paper, we split the sample of training participants by whether their

pre-enrollment occupation was above or below the 6-digit median occupation-level SML

score, resulting in a “high” AI exposure group and a “low” AI exposure group.8 Table 1

presents means and standard deviations of key worker characteristics at the time of

training enrollment for these two groups.

Among the 108,215 pooled training spells in our final matched sample, observation

counts are relatively evenly distributed between high- and low-AI exposure workers prior to

training, pointing to broad representation of occupations in the WIOA/WIA data. The

average worker pooled across both samples made around $40,000 in annualized 2010

earnings prior to training participation. In Appendix Figure A.2, we also show that these

workers had pre-separation AI exposure distributions that are almost identical to the

distributions among the Current Population Survey (CPS) of unemployed workers when

comparing occupations prior to separation in repeat cross sections over time. This suggests

that WIOA/WIA training participants are likely representative of the national population

of unemployed workers.9

Table 1 also reveals that the high AI exposure group has a larger female share

(consistent with Bollinger and Troske (2025) who document greater success among females

in coding-focused training programs), is more educated, and has slightly higher earnings

prior to participation. The high AI exposure group is also more skewed toward participants

8We assign each training spell a single prior- and post-training occupation based on the SOC code
associated with the plurality of earnings in the three quarters before or after training. For occupation codes
that are self-reported at more aggregate levels of granularity, we set the SML level to be the average level of
all 6-digit codes within that occupation group.

9Occupations spanned by our full set of WIOA/WIA training participants account for around 93% of the
CPS labor force on a monthly basis.
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in the dislocated worker program versus the adult (disadvantaged) worker program.

Sample Restrictions. In Table 1 and throughout the analysis, we restrict to workers

who have: (1) positive earnings in all six quarters of observation, (2) non-missing

occupation codes in all six quarters of observation, (3) non-missing covariates used for

matching. The first restriction intentionally limits the sample to reemployed workers,

allowing us to measure earnings responses to changes in the AI content of occupations

insulated from any confounding extensive margin reemployment effects. Relaxing this

restriction results in near-identical earnings returns to WIOA/WIA (see Appendix Figure

A.4). The second restriction ensures we can measure flows in AI skill space, however,

results in dropping a significant share of training participants. This is because the

reporting of occupation codes varies by state and may be missing “due to language in the

WIOA statute and a variety of practical/quality reasons” or if the “occupation code is not

a part of the UI wage record in most states” (correspondence with USDOL Employment

and Training Administration, November 2024). In Appendix Table A.1, we show that

compositional differences between workers in states with and without recorded occupation

codes are mostly negligible. Ultimately, our matching estimator will compare training

participants with nearest-neighbor matched workers within occupation bins while matching

on state location.

Earnings Selection Patterns. Before turning to our matching design, Figure 1 presents

selection patterns in earnings around training participation spells by calendar year of program

exit subject to the above sampling restrictions. Panels (A) and (B) show real quarterly

earnings for the three quarters before training program entry and three quarters after training

program exit, separately by low and high AI exposure in the worker’s occupation prior to

participation based on the SML occupational measure. These plots reveal that after a mild

“Ashenfelter dip” in the run up to training, post-training earnings are mildly higher in most

years, with much greater values in more recent years (indicated with heavier lines) when

labor markets were tighter. This pattern appears to be more dominant in driving earnings

patterns than heterogeneity across low and high AI exposure occupations, though the data

do point to slightly lower post-training earnings among highly exposed groups. When cutting

the data by high AI intensity (exposure) in the target occupation of training—that is, the

desired occupation after training—we see a similar pattern. Overall, the stronger patterns

in years in which labor markets were tighter may suggest that training programs may have

stronger signal value when firms are forced to reach deeper down in the skill market. We

adjust for potential selection in these patterns in our nearest neighbor matching strategy

discussed in Section 3.

Job Flows Across AI Quintiles. In a final descriptive, we analyze the flows of job
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trainees across AI skill space in Figure 2. On the x-axis, we split trainees in our sample

into five quintiles of AI exposure prior to training participation. Before analyzing flows

between quintiles, it is worth noting that the modal WIOA/WIA training participant is

displaced from a top 20th percentile (i.e. top quintile) occupation in AI exposure prior to

training enrollment. This underscores that in the context of workers interfacing with public

job training programs, WIOA/WIA trainees are highly exposed to AI forces despite their

lower income and education levels.10 Consistent with this finding, prominent occupations

in the top exposure quintile include trainees who were formerly customer service

representatives, cashiers, and office clerks (see Appendix Table A.2 for a detailed

breakdown by AI exposure quintile). Further decomposition of the bars into destination

occupation quintiles after training suggests that most workers are moving to weakly higher

AI skills relative to the AI content of their prior jobs, with only a small share of workers

remaining in their same 6-digit occupation before and after training. Overall, this pattern

points to substantial mobility across occupations after training.11 In subsequent sections,

we disentangle the extent to which this reflects successful upskilling or instead alternative

explanations.

3 Empirical Methodology

While positive earnings selection patterns and flows into more intensive AI work are

consistent with successful AI retraining, WIOA/WIA workers may be positive selected,

either by virtue of the Ashenfelter dip which depresses earnings prior to training

participation, or due to changes in trainee composition over time that explain higher

returns in more recent years. To address these concerns, we follow Rothstein et al. (2022)

who use a matching design to compare WIOA/WIA trainees with Wagner-Peyser job

search assistance recipients that are observationally similar, but do not enroll in

occupational retraining programs.

Because our goal is to attain heterogeneous estimates across AI exposure groups, we

opt for a simple nearest-neighbor matching strategy that matches each training participant in

our sample to a unique Wagner-Peyser participant, and then pools estimates across nearest-

neighbor pairs within AI exposure subgroups. We use the semiparametic estimator described

in Abadie and Imbens (2002), where we desire a treatment effect for each treated trainee i,

10In a large survey, Hartley et al. (2024) present evidence consistent with our finding; in their paper,
generative AI use is U-shaped in income.

11In Appendix Figure A.3, we show that while the share of workers flowing to higher AI occupations has
remained relatively stable over time, those who make the transition have received a growing earnings return
from doing so over time.
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θi = Yi(1)–Yi(0), but only one potential outcome is observable for each unit. We consider a

distance metric ||Xi–Xj|| that creates a score between each trainee’s covariates Xi and all

potential j control candidates with covariate vectors Xj in the years prior to WIOA/WIA

training, and keep the closest match for each treated unit i. To equalize scales among the

different components of each vector in their contribution to the distance score, we use a

Mahalanobis distance statistic that weights vector distances by the inverse of the variance-

covariance matrix (Σ) for covariates:

||Xi–Xj||Mahalanobis =
√

(Xi–Xj)′(Σ−1x )(Xi–Xj) (1)

We use the algorithm discussed in Abadie et al. (2004) to implement this procedure

as it has the useful property that violators of the “covariate overlap” assumption are

dropped, resulting in treated units only being used if the covariates share a sufficiently

common covariate support. In practice, less than 1% of our final sample is dropped due to

overlap, a high match success rate that arises due to the abundance of potential control

units available in the Wagner-Peyser program. We require certain variables to be an “exact

match” for each nearest neighbor pair, and then rely on “fuzzy matching” for remaining

covariates (Xi and Xj in Equation 1):

• Exact Match Covariates : calendar year of program exit (controls for demand

environment upon exit), SML quintile in prior occupation (ensures that

nearest-neighbor pairs are comparable within similar AI exposure bins), SOC major

occupation group (first two digits of 6-digit code) in prior occupation

• Fuzzy Match Covariates : sex, age at time of program enrollment, race and ethnicity

dummies, adult vs. dislocated program indicator, limited-English flag, low-income

flag, Temporary Assistance for Needy Families (TANF) recipient, veteran status,

Supplemental Security Income and Social Security Disability Insurance (SSI/SSDI)

recipient status, highest education attained at time of program enrollment, state

centroid longitude/latitude as proxy for geographic distance of program location

After each training participation spell is matched to a nearest-neighbor job search

assistance spell, we estimate balance tests across predetermined covariates in our dataset.

Appendix Table A.3 and Appendix Table A.4 present the results from these balance tests

for high and low prior AI exposure samples respectively. While there are some imbalances

(as would be expected by chance when conducting 22 t-tests), differences in mean values

for treated and control groups are, for the most part, economically small. The exception

to this is that two variables—employment at participation and total quarters enrolled—are
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mechanically different. That is, trainees are more likely to be partially employed at time of

participation versus their matched pairs who only receive job search assistance services, and

thus remain enrolled in the program for about 1 to 2 fewer quarters. This longer training

duration rules out the possibility that positive earnings returns from training programs are

driven by quicker reemployment, as longer program durations would lead us to understate

rather than overstate effects.

4 Main Results

In Figure 3, we graphically present the main empirical findings of the paper. Each series

shows estimates of quarterly differences in mean earnings between WIOA/WIA training

participants and nearest-neighbor matched Wagner-Peyser job search assistance recipients

separately by each AI exposure subgroup. Panel (A) shows estimates for high (red) and

low (blue) AI exposure prior to program enrollment, separately estimated in each quarter

with heteroskedasticity-robust t-tests along with 95% confidence intervals. Panel (B) shows

analogous effects, but for participants listing high AI intensity (exposure) occupations as

their target occupation after job training, versus low AI intensity occupations, relative to

their control group pairs.

In both panels, prior earnings differences are well balanced in all sub-groups despite

the exclusion of lagged outcomes from our covariate match lists. Starting with Panel (A),

estimated earnings returns for high initial AI exposure training participants are slightly

muted relative to low AI exposure participants in the three quarters after program exit.

However, overall training returns in both groups remain quite high in quantitative terms. In

the three quarters after training exit, high AI exposure workers have quarterly earnings that

are about $1,450-$1,650 higher relative to their matched control group pairs, or on average

$6,225 annually on a base of roughly $44,000 prior to participation (see Table 1 for baseline

real wages). That is, among high AI exposure workers, those who train have about 14%

higher short-run earnings relative to similar workers who only receive job search services.

This is surprisingly large, especially considering earlier evidence suggesting that training

returns were concentrated in the most recent years. Appendix Table A.5 shows pooled

regression estimates associated with these earnings returns before and after participation.

Training participants in Panel (A) are free to choose any occupation after training,

including general skill training that facilitates avoiding AI occupations that may be at risk

of future displacement. By contrast, Panel (B) shows estimates based on whether the target

occupation (the individual’s desired occupation as a result of training) is high or low AI

intensity. Here, we see a substantial penalty for workers that choose to retrain in high AI
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intensity occupations, thus deepening AI-specific human capital relative to those who appear

to instead elect general training in Panel (A). Participants targeting high AI occupations

in training programs in Panel (B) make on average $1,039 more than their matched control

group pairs, which is about a 29% lower return to training relative to high AI exposure

workers that retrain in all occupations (see Appendix Table A.5). This pattern in relative

returns is robust to using a wide range of percentile thresholds for defining “high exposure,”

not just the median (see Appendix Figure A.5).

One implication of these results is that AI-exposed workers appear highly adaptable

when supported by a training program, but may face frictions in adapting to high AI

intensity work in particular. Indeed, the short-run returns to all four types of workers

featured in Figure 3 are unambiguously large with respect to the literature (e.g. comparing

to active labor market program treatment effect estimates considered in the meta-study by

Card et al. (2018), who concluded they are “ineffective” in the short term). Since the

effects are largely driven by the later years in our training sample in which market

tightness was unprecedentedly high, our evidence suggests that training programs may

interact in important ways with the state of the labor market. For example, the large

returns when tightness is high are consistent with training programs containing a stronger

signal value when firms reach deeper into the skill market. In complementary work, Hyman

et al. (2025) use a mismatch model following the work of Şahin et al. (2014) to quantify the

degree to which the recent effects emanate from a strong labor market, or from improved

alignment between the demand and supply for specific skills (especially AI skills) achieved

via job training programs.

4.1 What share of workers and occupations are AI retrainable?

Using our nearest-neighbor matched estimates, we can calculate the number of training

participants for whom both earnings returns and the AI content of their next occupation are

higher than those of their matched pair counterparts. In the final two columns of Table A.6,

we show the share of training spells for which both AI intensity and earnings are weakly

greater, separately for the training participant group and the training group relative to

matched nearest neighbors. We find that about 26% - 28% of workers are AI retrainable,

with this range improving slightly to 28% - 34% when using the LLM measure developed

by Eloundou et al. (2024). We also perform the same calculation by asking for any given 6-

digit occupation, whether on average workers displaced from that occupation move to higher

earnings and AI exposure scores, and find a range varying from about 25% to 40%. These

AI retrainable occupations cover 38% of the CPS labor force, though this is likely a lower
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bound as some occupations in the CPS do not appear in WIOA/WIA.

5 AI Retrainability (AIR) Index

To further unpack the mechanisms underlying the estimated large degree of adaptability to

AI shocks through retraining, we develop an “AI Retrainability Index” (AIR) that ranks

occupations based on the share of job training participants who receive positive returns

from moving to more AI-intensive work, relative to their matched control group pairs. This

allows us to decompose whether training success emanates from movements up the AI skill

ladder, versus movements in earnings holding AI skills constant. Higher weight on the latter

would be consistent with alternative stories unrelated to AI upskilling, such as overcoming

occupational licensing barriers through job training. That is, here we seek to separately

isolate the joint probability of “AI retrainability” from overall retrainability.

We use information from each nearest-neighbor matched pair p. Training participants

(and their matched pairs) begin in origin occupation i prior to training and can flow to any

destination occupation j after training.12 The index is as follows

AIRi =
∑
j

1

nij
∆SMLσij ∗M(∆ log(Yij)) (2)

where nij is the number of trainees flowing from occupation i to j, capturing probability of

reemployment in occupations of varying AI intensities. ∆SMLσij = (SMLσj − SMLσi )p=1 −
(SMLσj −SMLσi )p=0 is the difference in standardized mean SML scores associated with each

trainee’s occupational transition from i to j relative to the change in SML for their matched

control group unit. ∆ log(Yij) = 1
pij

∑
p ∆ log(Y i→j

p=1 ) − ∆ log(Y i
p=0) is the mean returns to

training for each treated unit in the nearest neighbor pair p relative to each control group

unit p=0 that started in same occupation i but is free to move to any subsequent sector

j. M ∈ [0, 1] is a MinMax transformation that allows us to circumvent the problem of

multiplying negative wage returns by negative SML changes by converting the most negative

earnings returns into low positive values:

M(∆ log(Yij)) =
∆ log(Yij)−min(∆ log(Yij))

max(∆ log(Yij))−min(∆ log(Yij))
(3)

The functional form in Equation 2 is deliberately chosen such that the index has the

largest value when both the change in the AI content of work (i.e. SML) and earnings

12In this descriptive exercise, we further strip out any participants who were dual enrolled in WIOA job
training and Wagner-Peyser search assistance to hone in on the mechanisms that drive the high returns to
job training in particular.
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returns to training are highly positive, and the index can only turn negative when the

change in the AI content of work is negative. This allows us to hone in on whether the

highest ranked occupations in AI retrainability are driven by much higher earnings gains or

instead large leaps in AI skill after job training. By differencing out effects with respect to

nearest neighbor pairs, this functional form also minimizes any mechanical bias that may

arise from occupations with more or less scope to move in AI skill space due to starting at

initially low or high SML values.13

To see this clearly, Figure 4 presents the overall 2-digit rankings of occupations by

their AI retrainability. Panel (A) shows that only three occupations at the 2-digit level

show positive improvements in AI skill (though this aggregation masks a larger number of

6-digit occupations that have positive AI skill returns). The top ranked 2-digit occupations

include Legal, Computer and Mathematics , as well as Art, Design, and Entertainment/Sports

Media professions—all of which also rank highly in Anthropic’s Economic Index measuring

the task use of AI by occupation (Handa et al. (2025)). The interpretation of the top

ranked occupation is that workers displaced from legal professions (such as paralegals who

comprise the largest disaggregated occupation in the Legal 2-digit category) are the most

AI-retrainable workers in the index. Panel (B) decomposes the contribution of AI skill and

earnings returns components to the index, where index values are expressed as a heatmap

with top ranked occupations in darker reds. Here we can clearly see that higher heatmap

(index) values are driven by moving from bottom to top along the AI skill dimension, rather

than from left to right in earnings returns.

In a final exercise, we take the modal 6-digit occupation within three illustrative

occupations: Legal (AIR Rank 1/23) whose dominant 6-digit occupation is Paralegals,

Health Support (AIR Rank 20/23) whose dominant 6-digit occupation is Nursing

Assistants, and Office and Admin Support (AIR Rank 22/23) whose dominant occupation

is Customer Service Representatives. Appendix Figure A.6 shows that paralegals largely

move up in AI skills after retraining, adapting to professions such as Insurance Claims

Clerks which are presumably machine-substitutable. By contrast, Nursing Assistants move

to higher earnings values while keeping AI skills constant, consistent with overcoming

credentialing barriers to becoming Registered Nurses (also documented by Jacobson and

Davis (2017)). Finally, Customer Service Representatives are not as adaptable, and instead

find jobs in more physical professions that are insulated from AI, such as Truck Drivers and

Movers. Overall, these decompositions show that occupations vary tremendously in their

13In practice, the relative rankings of occupations remain relatively stable across a number of functional
form choices for Equation 2, however this form clarifies that negative values correspond to negative
movements in AI skill.
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adaptability to AI, with some workers deepening their AI skills and others avoiding them.

6 Discussion

We document that workers in AI-exposed occupations are surprisingly resilient in adjusting

to AI pressures through job training. Comparing high AI exposure trainees to a matched

sample of similar workers who only received job search assistance, we find that AI-exposed

workers have high earnings returns from training that are only about 25% lower than the

returns for low AI exposure workers. However, training participants who choose to deepen

in AI-specific skills face a penalty for doing so, with 29% lower returns than those pursuing

general training. This suggests that the predominant adjustment margin for AI-exposed

workers is not through deepening their AI skills, but rather avoiding AI altogether.

Despite the inferred penalty from AI skill deepening, earnings returns to WIOA/WIA

training are high for all AI exposure levels. We estimate that between 25% to 40% of

occupations are “AI retrainable” as measured by its workers receiving higher pay for moving

to more AI-intensive occupations—a large magnitude given a relatively low-income sample

of displaced workers. Positive earnings returns in all groups are driven by the most recent

years when labor markets were tightest, suggesting training programs may have stronger

signal value when firms reach deeper into the skill market.

In the context of a virtually nonexistent AI re-skilling literature, our main

contribution is to provide a national and large-scale lens into AI reskilling efforts that goes

beyond individual firm training studies. We also develop an AI retrainability index (AIR)

that can track retraining outcomes of different occupations over time as AI becomes more

widespread. Future work will need to consider whether workers who receive on-the-job

training, as well as workers more aligned with white-collar jobs than the WIOA/WIA

participants discussed here, remain resilient as AI tools continue to diffuse throughout the

economy.
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Figures and Tables

Figure 1: Earnings Selection Patterns for WIOA/WIA Trainees by Program Year

(A) Low AI-Exposure in Prior Occupation (B) High AI-Exposure in Prior Occupation

(C) Low AI-Exposure in Target Occupation (D) High AI-Exposure in Target Occupation

Notes: Figures plot mean quarterly earnings (CPI-deflated to 2010 real dollars) for all WIOA/WIA training
participants in the main analysis sample, subject to the sample restrictions discussed in Section 2.3. High and
Low AI exposure is measured as workers having occupations above or below the median 6-digit occupational
AI exposure measure from Brynjolfsson et al. (2018) (see text for details). Panels (A) and (B) show results
for occupations prior to training participation, while panels (C) and (D) show results for desired or “target”
occupation in next job after training. Data are observed for three quarters before training spell entry (red
series) and three quarters after training spell exit (blue series), but not in the intervening period (shaded
gray). Heavier lines correspond to more recent years while fainter lines correspond to earlier years.
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Figure 2: Flows Across AI-Exposed Occupations Before and After Job Training

(A) Flows into AI Quintiles of Post-Training Occupation

(B) Flows into AI Quintiles of Target Occupation in Training

Notes: Figure show transitions between occupations prior to training and occupations after training (Panel
A) or desired/targeted occupations in training programs (see text for details). X-axis reflects quintiles of AI
exposure in occupation prior to training, while darker red colors reflect higher AI quintiles in destination or
target occupation . High and Low AI exposure is measured as workers having occupations above or below
the median 6-digit occupational AI exposure measure from Brynjolfsson et al. (2018) (see text for details).
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Figure 3: Nearest-Neighbor Matched Returns to WIOA/WIA: Pooled Across Years

(A) By AI Exposure in Prior Occupation

(B) By AI Exposure in Target Occupation

Notes: Panel (A) shows estimates for the effects of WIOA/WIA training relative to the matched Wagner-
Peyser control group, separately for high (red) and low (blue) AI exposure groups. Each series shows
estimates that reflect mean differences between training and control group participants, weighted by the
inverse Mahalanobis distance between training and control unit pairs, separately estimated in each quarter
with t-tests along with equal-variance 95% confidence intervals. Panel (B) shows analogous effects, but for
participants listing high AI intensity (exposure) occupations as their target occupation after job training,
versus low AI intensity occupations.
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Figure 4: AIR Index Rankings by 2-digit SOC Code Prior to Training

(A) Index Rankings

(B) Decomposition

Notes: Panel (A) ranks 2-digit SOC occupations based on the extent to which displaced workers from these
occupations are subsequently retrained into higher AI-intensity occupations. The gradient scale in Panel
(B) reflects higher rankings in darker red colors, and decomposes rankings based AI skill movements (y-axis)
and earnings movements (x-axis). See text for details.
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Table 1: Summary Statistics by AI Exposure Prior to Training Participation

High Prior AI Exposure Low Prior AI Exposure High AI - Low AI

Mean/SD ∆/SE # Training Spells Mean/SD ∆/SE # Training Spells ∆/SE % Diff
(1) (2) (3) (4) (5) (6)

A. Demographic

Female 0.57 53,232 0.44 54,983 0.13 22.1
[0.50] [0.50] (0.0030)

Age 40.1 53,232 37.8 54,983 2.28 5.68
[11.3] [10.7] (0.067)

Asian 0.040 53,232 0.027 54,983 0.012 30.8
[0.20] [0.16] (0.0011)

Black 0.25 53,232 0.29 54,983 -0.041 -16.8
[0.43] [0.45] (0.0027)

White 0.60 53,232 0.57 54,983 0.025 4.19
[0.49] [0.49] (0.0030)

Hispanic/Latino 0.16 53,232 0.15 54,983 0.011 7.05
[0.37] [0.36] (0.0022)

Disability Status 0.029 53,232 0.025 54,983 0.0037 12.9
[0.17] [0.16] (0.00098)

No HS Diploma/GED 0.034 53,232 0.055 54,983 -0.022 -64.5
[0.18] [0.23] (0.0013)

HS Diploma/GED 0.42 53,232 0.52 54,983 -0.10 -24.9
[0.49] [0.50] (0.0030)

Some College 0.20 53,232 0.19 54,983 0.0053 2.71
[0.40] [0.39] (0.0024)

College Degree Plus 0.35 53,232 0.23 54,983 0.12 34.3
[0.48] [0.42] (0.0027)

B. Social Benefits

Disadvantaged Adult Status 0.48 53,232 0.58 54,983 -0.10 -21.2
[0.50] [0.49] (0.0030)

Dislocated Worker Status 0.52 53,232 0.42 54,983 0.11 20.3
[0.50] [0.49] (0.0030)

Low-income Status 0.42 53,232 0.46 54,983 -0.041 -9.77
[0.49] [0.50] (0.0030)

TANF Recipient 0.0094 53,232 0.0092 54,983 0.00019 2.02
[0.096] [0.095] (0.00058)

SNAP Recipient 0.21 37,768 0.23 40,865 -0.020 -9.25
[0.41] [0.42] (0.0030)

Other Public Assistance Recipient 0.25 41,854 0.27 45,662 -0.019 -7.72
[0.43] [0.44] (0.0030)

C. Pre-Separation Employment

Employed at Participation 0.30 53,232 0.37 54,983 -0.069 -23.4
[0.46] [0.48] (0.0029)

Real Earnings 1Q Before 10687.3 53,232 9287.5 54,983 1399.8 13.1
[11522.8] [10355.7] (66.6)

Real Earnings 2Q Before 11139.5 53,232 9966.4 54,983 1173.2 10.5
[9657.6] [9522.3] (58.3)

Real Earnings 3Q Before 11020.0 53,232 9785.8 54,983 1234.2 11.2
[9689.5] [9028.0] (56.9)

Quarters in WIOA/WIA 5.05 53,232 4.60 54,983 0.45 8.96
[3.43] [3.23] (0.020)

Notes: Table presents means, standard deviations, and sample counts for main sample of job training
participants by High and Low AI exposure prior to job training participation (see text for details). The
pooled sample of trainees contains 108,215 participation spells.
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Online Appendix (Not for Publication)

Figure A.1: AI Exposure Correlations with Acemoglu and Autor (2011) Task Measures

(A) SML scores at 6-digit (Occupation Level)

(B) SML-LLM values vs. AA Index

Notes: The x-axis in both panels measures the mean Acemoglu and Autor (2011) (AA) task share for each
6-digit occupation. The y-axis in panel (A) is our main AI exposure measure—-Suitability for Machine
Learning (SML) at the 6-digit occupation level following Brynjolfsson et al. (2018). The y-axis for panel (B)
represents the LLM extension of AI exposure which we call “SML-LLM” following Eloundou et al. (2024).
Correlations between AA task shares and SML measures are expressed as binscatter plots.
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Figure A.2: WIOA and CPS-Unemployed AI Exposure Distributions Over Time

Notes: Figure plots the inter-quartile range of occupation AI exposure scores (“Suitability for Machine
Learning” from Brynjolfsson et al. (2018)) for WIOA/WIA trainees’ occupations prior to training, and CPS
unemployed workers’ occupations prior to their current unemployment spell.

Figure A.3: Share of Positive SML and Earnings Changes over Time

Notes: Figure plots share of WIOA/WIA training participants moving to higher AI exposure occupations
(“Suitability for Machine Learning” scores from Brynjolfsson et al. (2018)) after training by calendar year
of participation, and jointly receiving higher earnings from moving to higher AI exposure values.
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Figure A.4: Nearest-Neighbor Matched Returns to WIOA/WIA: Pooled Across Years
(Including Zero Earnings)

(A) By AI Exposure in Prior Occupation

(B) By AI Exposure in Target Occupation

Notes: Panel (A) shows estimates for the effects of WIOA/WIA training relative to the matched Wagner-
Peyser control group, separately for high (red) and low (blue) AI exposure groups, including earnings
observations equal to zero. Each series shows estimates that reflect mean differences between training and
control group participants, weighted by the inverse Mahalanobis distance between training and control unit
pairs, separately estimated in each quarter with t-tests along with equal-variance 95% confidence intervals.
Panel (B) shows symmetric effects, but for participants listing high AI intensity (exposure) occupations as
their target occupation after job training, versus low AI intensity occupations.

A.3



Figure A.5: Robustness of Earnings Returns Estimates to Definition of High AI Exposure

(A) By AI Exposure in Prior Occupation

(B) By AI Exposure in Target Occupation

Notes: Figures show sensitivity of our nearest-neighbor matched estimates for the quarterly returns to
training (pooled over the three quarters after program exit) to varying the cutoff for defining high AI
exposure. Dashed vertical line corresponds to our preferred estimates using the median SML score to define
AI exposure. Heteroskedasticity-robust 95% confidence intervals are shown in whiskers.
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Figure A.6: AIR Index: Decomposition of Illustrative 6-Digit SOC Examples

(A) Paralegals (Legal = 2-Digit AIR Rank 1/23)

(B) Nursing Assistants (Health Support = 2-Digit AIR Rank
20/23)

(C) Customer Service Representatives (Office & Admin Support =
2-Digit AIR Rank 22/23)

Notes: Figures show flows in AI intensity (y-axis) and earnings returns from training (x-axis) relative to
nearest neighbor matched pairs, for three origin occupations (prior to program participation) along with
destination occupations. Red text indicates flows within the same 6-digit occupation. See text for details.

A.5



Table A.1: Attrition Balance for WIOA/WIA Trainees with Missing Occupation Codes

Nonmissing Occ Codes Missing Occ Codes Nonmiss - Miss

Mean/SD ∆/SE # Training Spells Mean/SD ∆/SE # Training Spells ∆/SE % Diff
(1) (2) (3) (4) (5) (6)

A. Demographic

Female 0.50 108,215 0.50 469,123 -0.0010 -0.20
[0.50] [0.50] (0.0017)

Age 38.9 108,215 38.1 388,251 0.84 2.17
[11.1] [11.0] (0.038)

Asian 0.042 86,669 0.035 403,080 0.0069 16.6
[0.20] [0.18] (0.00070)

Black 0.32 89,940 0.31 407,087 0.0099 3.10
[0.47] [0.46] (0.0017)

White 0.67 94,208 0.64 421,438 0.034 4.99
[0.47] [0.48] (0.0017)

Hispanic/Latino 0.16 103,164 0.16 424,666 0.0056 3.40
[0.37] [0.37] (0.0013)

Disability Status 0.027 105,648 0.027 443,843 0.00018 0.67
[0.16] [0.16] (0.00056)

No HS Diploma/GED 0.045 108,215 0.058 469,123 -0.014 -30.4
[0.21] [0.23] (0.00077)

HS Diploma/GED 0.47 108,215 0.46 469,123 0.0052 1.11
[0.50] [0.50] (0.0017)

Some College 0.19 108,215 0.19 469,123 0.0028 1.46
[0.39] [0.39] (0.0013)

College Degree Plus 0.29 108,215 0.28 469,123 0.0087 2.98
[0.45] [0.45] (0.0015)

B. Social Benefits

Disadvantaged Adult Status 0.53 108,215 0.65 469,123 -0.12 -22.5
[0.50] [0.48] (0.0016)

Dislocated Worker Status 0.47 108,215 0.38 469,123 0.090 19.3
[0.50] [0.48] (0.0016)

Low-income Status 0.44 108,215 0.43 437,578 0.017 3.86
[0.50] [0.49] (0.0017)

TANF Recipient 0.011 92,534 0.013 391,131 -0.0025 -23.5
[0.10] [0.11] (0.00041)

SNAP Recipient 0.22 78,633 0.21 237,363 0.010 4.70
[0.42] [0.41] (0.0017)

Other Public Assistance Recipient 0.26 87,516 0.22 371,110 0.042 16.1
[0.44] [0.41] (0.0016)

C. Pre-Separation Employment

Employed at Participation 0.33 108,215 0.40 469,123 -0.072 -21.7
[0.47] [0.49] (0.0016)

Real Earnings 1Q Before 9975.8 108,215 9645.9 469,123 329.9 3.31
[10967.7] [13024.5] (42.7)

Real Earnings 2Q Before 10543.2 108,215 10096.0 469,123 447.3 4.24
[9607.0] [11923.0] (38.9)

Real Earnings 3Q Before 10392.9 108,215 9864.1 469,123 528.7 5.09
[9379.5] [10391.4] (34.4)

Quarters in WIOA/WIA 4.82 108,215 4.39 469,123 0.43 8.96
[3.34] [3.15] (0.011)

Notes: Columns (1) and (2) show summary statistics for the main analysis sample of job trainees (N=108,215
training spells). Columns (3) and (4) present summary statistics for training spells with partially missing
occupation data either prior to training entry or after training exit. T-test standard errors in column (5)
are adjusted for unequal variances (heteroskedasticity) across groups.
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Table A.2: Top Occupations in Each AI Exposure Quintile Ranked by Number of Trainees

Rank 6-Digit SOC Occupation (No. of Trainees)

AI Exposure Quintile 1 (Low Exposure)
1 537062 Laborers and freight, stock, and material movers, hand (1,923)
2 537051 Industrial truck and tractor operators (793)
3 537064 Packers and packagers, hand (616)

AI Exposure Quintile 2
1 533032 Heavy and tractor-trailer truck drivers (1,934)
2 519198 Helpers – production workers (1,487)
3 292061 Licensed practical and vocational nurses (1,468)

AI Exposure Quintile 3
1 412031 Retail sales (1,430)
2 19199 Managers, all other (1,326)
3 533033 Light truck drivers (1,276)

AI Exposure Quintile 4
1 533031 Drivers/sales workers (829)
2 519061 Inspectors, testers, sorters, samplers, weighers (748)
3 514041 Machinists (629)

AI Exposure Quintile 5 (High Exposure)
1 434051 Customer service representatives (3,851)
2 412011 Cashiers (1,993)
3 439061 Office clerks, general (1,379)

Notes: This table shows the top three most prominent occupations in different AI exposure quintiles prior
to entering WIOA/WIA training participation. Counts of number of training participants are shown in
parentheses. See text for details.
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Table A.3: Balance Table for Matched Pairs with High AI Exposure Prior to Participation

Trainees Matched Wagner Peyser Trainees - Wagner Peyser

Mean/SD ∆/SE # Spells Mean/SD ∆/SE # Spells ∆/SE % Diff
(1) (2) (3) (4) (5) (6)

A. Demographic

Female 0.57 53,232 0.59 53,232 -0.025 -4.41
[0.50] [0.49] (0.0030)

Age 40.1 53,232 41.5 53,232 -1.44 -3.60
[11.3] [11.1] (0.069)

Asian 0.040 53,232 0.034 53,232 0.0058 14.6
[0.20] [0.18] (0.0012)

Black 0.25 53,232 0.25 53,232 -0.0056 -2.28
[0.43] [0.43] (0.0026)

White 0.60 53,232 0.61 53,232 -0.014 -2.34
[0.49] [0.49] (0.0030)

Hispanic/Latino 0.16 53,232 0.13 53,232 0.029 18.0
[0.37] [0.34] (0.0022)

Disability Status 0.029 53,232 0.025 53,232 0.0036 12.7
[0.17] [0.16] (0.00099)

No HS Diploma/GED 0.034 53,232 0.028 53,232 0.0056 16.6
[0.18] [0.16] (0.0011)

HS Diploma/GED 0.42 53,232 0.43 53,232 -0.012 -2.84
[0.49] [0.49] (0.0030)

Some College 0.20 53,232 0.18 53,232 0.011 5.77
[0.40] [0.39] (0.0024)

College Degree Plus 0.35 53,232 0.35 53,232 -0.0031 -0.89
[0.48] [0.48] (0.0029)

B. Social Benefits

Disadvantaged Adult Status 0.48 53,232 0.42 53,232 0.062 12.9
[0.50] [0.49] (0.0030)

Dislocated Worker Status 0.52 53,232 0.52 53,232 0.0055 1.06
[0.50] [0.50] (0.0031)

Low-income Status 0.42 53,232 0.40 53,232 0.024 5.75
[0.49] [0.49] (0.0030)

TANF Recipient 0.0094 53,232 0.0077 53,232 0.0017 17.7
[0.096] [0.087] (0.00056)

SNAP Recipient 0.21 37,768 0.18 38,114 0.031 14.8
[0.41] [0.38] (0.0029)

Other Public Assistance Recipient 0.25 41,854 0.24 38,234 0.0084 3.35
[0.43] [0.43] (0.0030)

C. Pre-Separation Employment

Employed at Participation 0.30 53,232 0.20 53,232 0.098 33.2
[0.46] [0.40] (0.0026)

Real Earnings 1Q Before 10687.2 53,232 10813.2 53,232 -126.0 -1.18
[11522.8] [10387.7] (67.2)

Real Earnings 2Q Before 11139.5 53,232 11311.5 53,232 -172.0 -1.54
[9657.6] [10290.1] (61.2)

Real Earnings 3Q Before 11019.9 53,232 11015.4 53,232 4.52 0.041
[9689.5] [9222.9] (58.0)

Quarters in WIOA/WP 5.05 53,232 3.15 53,232 1.90 37.6
[3.43] [2.58] (0.019)

Notes: Columns (1) and (2) show summary statistics for the job trainees with high AI exposure prior
to participation while columns (3) and (4) present the same for nearest neighbor matched Wagner-Peyser
participants. T-test standard errors in column (5) are adjusted for heteroskedasticity.
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Table A.4: Balance Table for Matched Pairs with Low AI Exposure Prior to Participation

Trainees Matched Wagner Peyser Trainees - Wagner Peyser

Mean/SD ∆/SE # Spells Mean/SD ∆/SE # Spells ∆/SE % Diff
(1) (2) (3) (4) (5) (6)

A. Demographic

Female 0.44 54,983 0.46 54,983 -0.015 -3.35
[0.50] [0.50] (0.0030)

Age 37.8 54,983 39.2 54,983 -1.39 -3.68
[10.7] [10.8] (0.065)

Asian 0.027 54,983 0.023 54,983 0.0046 16.9
[0.16] [0.15] (0.00094)

Black 0.29 54,983 0.31 54,983 -0.022 -7.71
[0.45] [0.46] (0.0028)

White 0.57 54,983 0.57 54,983 0.00091 0.16
[0.49] [0.49] (0.0030)

Hispanic/Latino 0.15 54,983 0.12 54,983 0.035 22.9
[0.36] [0.32] (0.0020)

Disability Status 0.025 54,983 0.021 54,983 0.0038 15.4
[0.16] [0.14] (0.00090)

No HS Diploma/GED 0.055 54,983 0.046 54,983 0.0092 16.7
[0.23] [0.21] (0.0013)

HS Diploma/GED 0.52 54,983 0.56 54,983 -0.037 -7.19
[0.50] [0.50] (0.0030)

Some College 0.19 54,983 0.18 54,983 0.015 7.65
[0.39] [0.38] (0.0023)

College Degree Plus 0.23 54,983 0.22 54,983 0.015 6.53
[0.42] [0.41] (0.0025)

B. Social Benefits

Disadvantaged Adult Status 0.58 54,983 0.50 54,983 0.081 14.0
[0.49] [0.50] (0.0030)

Dislocated Worker Status 0.42 54,983 0.39 54,983 0.026 6.23
[0.49] [0.49] (0.0030)

Low-income Status 0.46 54,983 0.43 54,983 0.031 6.65
[0.50] [0.50] (0.0030)

TANF Recipient 0.0092 54,983 0.0072 54,983 0.0020 21.8
[0.095] [0.084] (0.00054)

SNAP Recipient 0.23 40,865 0.18 41,285 0.052 22.6
[0.42] [0.38] (0.0028)

Other Public Assistance Recipient 0.27 45,662 0.26 40,273 0.013 4.85
[0.44] [0.44] (0.0030)

C. Pre-Separation Employment

Employed at Participation 0.37 54,983 0.28 54,983 0.084 22.9
[0.48] [0.45] (0.0028)

Real Earnings 1Q Before 9287.2 54,983 9418.4 54,983 -131.2 -1.41
[10355.7] [10874.9] (64.0)

Real Earnings 2Q Before 9966.1 54,983 10005.0 54,983 -38.9 -0.39
[9522.3] [10447.8] (60.3)

Real Earnings 3Q Before 9785.7 54,983 9715.5 54,983 70.2 0.72
[9028.0] [10259.7] (58.3)

Quarters in WIOA/WP 4.60 54,983 2.94 54,983 1.66 36.1
[3.23] [2.51] (0.017)

Notes: Columns (1) and (2) show summary statistics for the job trainees with high AI exposure prior
to participation while columns (3) and (4) present the same for nearest neighbor matched Wagner-Peyser
participants. T-test standard errors in column (5) are adjusted for heteroskedasticity.
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Table A.5: Regression Estimates for Quarterly Earnings Returns to WIOA/WIA Training

Prior AI Exposure Target Occ. AI Exposure

High Low High Low

A. Pooled Post:
1,466 1,945 1,039 2,272

(51.96) (47.94) (49.52) (49.65)

B. Pooled Pre (Placebo):
-80 -7 91 -99

(44.32) (48.63) (51.24) (41.33)

N 53,232 54,983 47,358 60,700
Mean Trainee Baseline Wages: 10,949 9,680 11,530 9,340

Notes: Each cell reports a separate mean quarterly earnings regression estimate. All estimates are weighted
by the inverse of the Mahalanobis distance for each nearest-neighbor matched pair. Mean baseline earnings
reflect average quarterly earnings pooled across three quarters prior to WIOA/WIA participation. Prior AI
exposure is measured prior to program enrollment, while target AI exposure is the occupation targeted or
desired after training—see text for further details. Heteroskedasticity-robust standard errors are reported in
parentheses.

Table A.6: Headline Results for Share of Participants and Occupations “AI-Retrainable”

Trainees Trainees - Matched
Full High Initial Full High Initial

Sample AI Exposure Sample AI Exposure
AI Retrainability Statistic (1) (2) (3) (4)

Sh. Spells ∆SML ≥ 0 & ∆Y ≥ 0 35.9% 21.1% 28.8% 25.9%
Sh. Spells ∆SMLLLM ≥ 0 & ∆Y ≥ 0 41.2% 23.6% 34.4% 27.7%
Sh. Occups ∆SML ≥ 0 & ∆Y ≥ 0 35.7% 11.4% 26.2% 20.8%

Sh. Occups ∆SML
LLM ≥ 0 & ∆Y ≥ 0 38.4% 8.8% 39.1% 22.8%

Notes: Table shows counts of shares of workers and occupations for whom both the earnings returns from
job training and the AI content of their subsequent occupation are higher after participation. Columns (1)
and (2) show these as raw levels, whereas columns (3) and (4) show our preferred measures that calculate
the number of workers for whom both outcomes are higher relative to the outcomes for matched nearest
neighbor pairs. SML corresponds to the Brynjolfsson et al. (2018) AI exposure measure while SMLLLM

corresponds to the Eloundou et al. (2024) measure. A 6-digit occupation is labeled AI-retrainable if the
mean worker in that occupations AI-retrainable. See text for further details.
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