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1 Introduction

The US economy is experiencing an unprecedented business cycle phase as
the current expansion continues somewhat shakily into its 11th year (the
expansion started in March 1991).) The National Bureau of Economic Re-
search has been analyzing the US business cycle for over 146 years (1854
through 2000). Until the current expansion, the longest was the 1960s ex-
pansion lasting 9 years, while the second longest persisted for 7.5 years in
the 1980s. These previous long expansions produced speculation about the
death of the business cycle, with discussion generally peaking about the time
that the expansions actually ended. This expansion, however, occurs in a pe-
riod in which there has been only one recession in eighteen-year interval (the
previous two long expansions were not preceded by long expansions) . This
paper uses statistical techniques to examine whether this current episode is
somehow different from the previous ones, given this distinguishing feature.

This recent experience of longer expansions is associated with an increased
stability of US GDP growth. This has been documented by a number of
authors, who find a structural break in its volatility at the beginning of 1984
(McConnell and Perez 2000, Kim and Nelson, 1999, Koop and Potter, 2000).
As discussed in Potter (2000), the decline in volatility implies that recessions,
defined as two consecutive negative quarters of GDP growth, are likely to be
very infrequent in the future. This paper expands on this previous research
by examining changes in the behavior of a wide range of macroeconomic
time series (see Van Dijk and Sensier 2001 also examine volatility changes in
a number of US time series). In particular, we consider two measures each
of industrial output, consumption, personal income, and employment. These
series, in addition to GDP, are similar to the ones studied by the NBER to
date business cycles.

In order to allow comparison to earlier results on GDP, we develop a
common factor model that allows for structural breaks. This model attempts
to extract the common dynamics in the series examined. Previously, com-
mon factor models have been estimated with recurrent breaks generated by
switches in an unobserved Markov process (see Chauvet 1998). In this pa-
per, Bayesian methods are used to estimate the common factor model and
to produce posterior means of three statistical measures of changes in the

'Hall (2001) suggests that the end of the current expansion has not occured as of March
5th 2001.



common cycle.

First, we examine changes in the inverse of the coefficient of variation? and
the frequency of negative growth in the common factor. Thus, we capture
both the drop in volatility and any implications for the frequency of contrac-
tions. Next, we examine properties of the common factor in the frequency
domain. The idea here is to examine whether the decrease in volatility is uni-
form at all frequencies or whether some of the changes are more pronounced
at business cycle frequencies. Finally, we consider the expected time to the
next recession (see Potter 2000) implied by the common factor model before
and after the break.

We find strong statistical evidence that the volatility of the business cycle
common factor is lower than in the past. The estimated breakpoint is around
1984 and agrees with the previous studies of US GDP alone. In contrast to
Blanchard and Simon (2001) we also find evidence that the dynamics of the
business cycle have changed . In particular since the breakpoint the common
factor displays reduced volatilities at business cycle frequencies, but higher
volatility at lower frequencies. Finally, we match the estimates of expected
time to the next recession of 10 to 20 years as in Potter (2000).

The outline of the paper is as follows: Section 2 describes the data using
the first quarter of 1984 as the breakpoint in business cycle fluctuations.
Section 3 develops the statistical model and the techniques used to estimate
it. Section 4 describes some methods for measuring the change in the business
cycle. Section 5 contains the results. Section 6 offers some conclusions.

2 Data Description

We use data for the period from 1959Q2 to 2000Q4.> We model the common
behavior of the following time series in addition to GDP:

1. Output: Total Industrial and Manufacturing

2. Consumption: Total and Retail Sales

2That is, the mean divided by the standard deviation.

3Starting the sample this late ensures reasonably uniform data collection for the time
series. Earlier discussions of changes in the business cycle have faced problems regard-
ing possible inconsistencies in the time series over time (see Romer 1994, Diebold and
Rudebusch 1992, and Watson 1994).



3. Income: Total Personal and Wage and Salary

4. Employment: Total Payroll and Hours

We deflate the consumption and income measures by the personal con-
sumption deflator. The data is transformed by taking logarithmic differences
and converted to (approximate) annualized growth rates by multiplying by
400.

In order to get some intuition regarding the changes in the business cycle,
we split the sample in two with a break date in 1984Q1. This is approxi-
mately the date estimated by McConnell and Perez (2000) and others in
their investigation of a structural break in the volatility of GDP by itself.
For each series we calculate the average growth rate , the standard devia-
tion of growth, the coefficient of variation (standard deviation divided by the
mean), and the frequency of negative quarters.

Table 1 contains the results for the first subsample and Table 2 for the
second part.*

Table 1: 1959Q2 to 1983Q4

Series Ave. Growth | St. Dev. | CV | % Neg Q
GDP 3.41 4.33 1.27 | 18
Industrial Production | 3.49 8.62 2.47 | 26
Manufacturing Output | 3.59 9.45 2.63 | 27
Income 3.77 3.15 0.83 | 13
Wages and Salary 3.19 3.68 1.15 | 22
Consumption 3.62 3.31 0.91 | 11
Retail Sales 2.46 6.87 2.79 | 32
Payroll Employment 2.25 2.52 1.12 | 16
Aggregate Hours 1.90 3.28 1.73 | 22

As can be seen from comparing the tables, there is little difference in
average growth rates, except for retail sales and personal income.® However,
there has been a marked reduction in volatility of all series. In fact, only
retail sales and wages and salaries show an average growth rate greater than

4The calculations in Table 2 contain the effects of expected tax code changes in 1993
and 1994. The possibility of these changes in the tax code produced substantial income
shifting between quarters at the end and start of the year and artificially inflate the
volatility measure.

’Both effects are likely due to statistical issues with the series.

4



their standard deviation. The reduction in the volatility of manufacturing
output is particularly striking and was the focus of the analysis of McConnell
and Perez (2000), who attributed it to improved inventory control in durable
manufacturing.

Table 2: 1984Q1 to 2000Q4

Series Ave. Growth | St. Dev | CV | % Neg Q
GDP 3.39 2.13 0.63 | 6
Industrial Production | 3.39 3.37 0.99 |9
Manufacturing Output | 3.84 3.67 0.95 | 10
Income 3.16 2.73 0.86 | 7

Wages and Salaries 3.23 3.86 1.20 |9
Consumption 3.46 2.06 0.60 | 4

Retail Sales 2.96 4.51 1.52 | 26
Payroll Employment 2.13 1.34 0.63 |9
Aggregate Hours 2.07 1.84 0.89 | 12

Figure 1 plots the 4 quarter moving average of growth rates of the dataset
and GDP.5 In addition, two horizontal lines at 1% and 5% growth are plotted
to help recognizing changes in the volatility of the cycle. The business cycle
pattern is clear in the time series, and there is direct visual evidence of a
more muted business cycle recently.

3 Statistical Model and Methods

3.1 Common Factor Model

We define Y, to be the K x 1 vector of growth rates used to estimate the
common factor, C;. The statistical model is

Yt - Ath + Vt7
where X is the K x 1 vector of factor loadings and the common factor is
Q1 + ¢lp(L)Ct—1 +o1e, ft<T

Ct -
2 + ¢, (L)Cy1 + 02e; ift > 7.

6We do not label the individual series, since our intent is to show the common cyclical
pattern.



The measurement error vector V,; has an autoregressive structure:
V=01V +---+0,V,_,+ Uy,

where the innovations to the common factor, e, ~ ITDN(0,1),and the mea-
surement error, U; ~ ITDN(0,Yg), ¥k diagonal”, are independent of each
other at all leads and lags. Finally, the autoregressive matrices are diagonal.
0, - 0

©; = e

o --- 91 K

The model can be written in state space form, where we assume, without

loss of generality but considerable saving in notation, that p = ¢ + 1. First,
we define the following:

1. Define Y; = (I — ©(L))Y..
2. Define C: = [C}, ..., Cipra] -
3. Define the K x (¢ + 1) matrix H by:

A =AMl - —=MOp
A2 —Xbi 0 =Xl
Ak —Arbik - —AxOk

4. Define the p x p matrix A by:

o1 P Py
1 0 - 0
0 1 :
0 . 1 0

The state space form has measurement equation:

"Given the similarity of some of the series, one could also assume that Yy had a par-
ticular block structure.



and transition equation:

a; + A]_CZ;]_ +Wie, ift<r
C; =
ap + AZC;‘_l + sz—:t if t > T,

where W, = [0;,0,---,0] and a; = [a;,0,...,0]",i = 1,2, are (p x 1) vectors.
Below we will also sometimes summarize the conditional mean coefficients in
each regime by the p x 1 vector ¢; = (¢y;, ... ,P,;) or the (p+ 1) x 1 vector
B; = (ai, ¢y, ,¢,;). Let @ represent all the parameters of the common
factor model with a structural break and y represent the (smaller by 3,, 02, 7)
set of parameters of the common factor model without a break.

As is true of all single factor models there is an identification issue between
the factor loadings and the scaling of the innovation to the common factor(see
Chauvet 1998). We normalize the first element of the factor loading vector
setting it equal to 1. Also, unlike Stock and Watson (1989), we do not demean
and standardize the observable variables before the analysis. Thus, not only
will A be estimated from the joint dynamics of the observed time series, it
will also depend on information on their relative means and variances. One
could allow for individual means to be estimated for each time series, but this
will center the dynamic factor model at zero and not provide an unambiguous
definition of negative values for the time series. If the sample size got large,
our methods could cause problems as A would be over-identified. However,
given that we are allowing for a structural break in the time series model
for the unobserved factor and autocorrelated measurement errors, there is no
over-identification in the finite sample.

The modeling of the structural break here is quite simple: all series have
to experience the break at the same time. There are more sophisticated
choices one could use involving changes in the factor loadings with the model
for the common factor remaining constant across the breakpoint. However,
this suffers from the problem that some of the changes in the business cycle
might not be summarized by a drop in volatility alone. In particular, there
are two sources of volatility in the time series model for the factor: the first
is the innovation variance; the second is the persistence of shocks produced
by the autoregressive mechanism. The introduction of a structural break in
the common factor model makes it possible to distinguish between these two
sources. However, it also makes the requirements for finding a break more
stringent, since it has to occur at the same time for all series.
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3.2 Bayesian Methods

If the breakpoint 7 were known, estimation by classical or Bayesian methods
would be standard. Both methods use the Kalman filter to construct the
likelihood function. The Kalman filter iterations are given by:

1. Prediction Step: the conditional mean of the factor is,

a; + Ale‘t ift<r

* —
t+1t =

a + A2CZ\t ift>r1
The conditional variance of the factor is,

AP AL+ WIW, ift <7
I:)t+1|t = ) ) .
Azpt‘tAZ + W2W2 if t Z T

Plugging the conditional mean into the measurement equation we have
the forecast error:

* /\* _ * *
t+1 = Tt+ljt — H(Ct - t+1\t) + Ut:
and variance:

* O * * < * 0 0
E [( t+1 Yt+1\t>(Yt+1 - Yt+1\t) =HPuqH + Xk.
2. Updating Step: first, the Kalman Gain matrix is constructed:

-1
0 * O * * O * 0
Gt+1 = Pt+1\tH {E [(Yt+1 - t+1|t)( t+1 t+1|t) ]} :

Then, this is used to include the new information in the conditional
mean of the factor

* o * * < *
t+1t+1 — Ct+1|t + Gyt <Yt+1 - t+1|t> )
and to update the conditional variance:

I:)t+1|t+1 - (Ip - C5“t+1H> I:)t+1|t-



The problem here is that the breakpoint is not known. One approach
would be to estimate the model for each possible breakpoint and then choose
the value that maximizes the likelihood function. Such an approach is com-
putationally feasible, but suffers from two major drawbacks. First, the sam-
pling distribution of the likelihood ratio statistic for the breakpoint is not
known and would require additional simulations to generate it. Second, and
perhaps most importantly, such methods do not allow one to include uncer-
tainty about the breakpoint in assessing the changes in the business cycle.
Potter (2000) shows that inferences conditional on a breakpoint are very frag-
ile for classical estimation of recession frequencies and, implicitly, for other
measures of the reduction in amplitude of the business cycle as well.

For our purposes, we treat the breakpoint as unknown and use Bayesian
methods to extract the sample evidence about its likelihood and date. The
Bayesian methods involve using a Gibbs sampler to generate random draws
from the posterior distribution by utilizing a sequence of conditioning dis-
tributions. In particular, the Gibbs sampler generates random draws of 7
that allows one to act as if the breakpoint was known. Furthermore, a ran-
dom draw of the common factor is generated as part of the iterations of the
Gibbs sampler. The recursion used to generate the random draw of the com-
mon factor is as follows (see Carter and Kohn, 1994). Here the recursion is
conditional on the draw of the parameters of the factor model:

1. The last iteration of the Kalman filter yields:

C;“ ~ N(C;\Tv PT\T)'

Thus, using standard methods one can draw a realization 6*T, from
this multivariate normal. Then the draw of the most recent value of
the common factor is given by:

57“ = Sé},

where s =[1,0,...,0] is a p x 1 selection vector. In practice, one only
needs to draw from the univariate normal with mean given by the first
element of C*T‘T and variance by the first diagonal element of Prz.

2. Given a draw at t + 1 based on draws from ¢ + 2 to 7', the information
from the Kalman filter iterations is incorporated as if the filter were



running backwards, combining prior information from the initial for-
ward run of the filter with the ‘sample’ information generated by the
random draw:

_ a1 + Qslp(L)Ct\t ift<r
Ji = Ci1 — ;
o + ¢2p(L)Ct‘t if ¢ 2 T

¢(;I_Pt‘t¢l + 0'% if ¢ <T
bt = ) )
D Py, +05 ift>7

Pt\t¢1/pt itt<r
gt = 9
Pt\t¢2/pt ift 2 T

Cir =Cye + 9/,

(Ip — gtqb(;l_) Pt‘t ift<r
Pt|T - .
0 .
(Ip — gt¢2> Pt‘t lft Z T

Thus, after observing the whole sample C; ~ N (CI|T, Pyr), Standard
methods can be used to obtain a random draw of the common factor
at time ¢.

3. This iteration stops with C; ~ N( T Ppir), which is used to simul-
taneously draw the first p observations of the common factor.

Given this realized sequence of the common factor, one can apply the
methods described in detail in Potter (2000) to investigate the breakpoint. In
brief one treats the draw of the common factor as an observed time series. For
each possible breakpoint one calculates the marginal likelihood of the data.
The collection of marginal likelihoods suitably normalized is the conditional
posterior distribution of the breakpoint.
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3.2.1 Estimation by Gibbs Sampler

We initialize the Gibbs sampler by running the Kalman filter on the observed
data assuming: a break date at 1984Q1, factor loadings equal to unity, mea-
surement error equal to 1/4 of the observed variance, and point estimates
obtained for GDP with a sample split in 1984Q1 as initial guesses for the
parameters of the common factor. The results of the Kalman filter are then
used to draw a sequence of realizations for the common factor.

The ordering of the Gibbs sampler is:

1. Conditional on {C,}, ©(L), Lk we draw the K x 1 vector of factor
loadings A from (independent) normal distributions. For the generic
loading A\ we have the sample information:

T -1
*2 * *
> CiE| L Y
t=p+1 t=p+1
where O}, = C; —01;,C;—1 — - - - —0,4Cy—,. Let V), be the variance of the
Gaussian prior on A, and M), be its prior mean. Then the posterior
draw is from normal distribution with mean

—1 T * *
Ve M + 2 i1 Ol Y

K

-1 T *2
V)\k + Zt=p+l Ck‘t

and variance

For the first element of A we impose the prior belief that it is equal to
1.

2. Conditional on {6,5}, ©(L), X we draw the measurement error variances
from independent gamma distributions. For the generic measurement
error Y, we have the sample information

T
Z (Y;;: - Akc;ckt)za T —p,
t=p+1
which is combined with the prior degrees of freedom of ¢ and sum of
squares £s2 to obtain the posterior degrees of freedom ¢ + T — p and
sum of squares €52 + S L (V¢ — MCr,)%

=p+l
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3. Conditional on {C;},A, Xk we draw the measurement autoregressive
coefficients from independent multivariate Gaussian distributions. For
the generic measurement error autoregression k the sample information
is:

0 -1 0
[zkzk} Z\W,,

where Wy, = [Yig+1, -+, Yir] and

Yeg - Ya
o | Yo Y
Yir-1 -+ Yir—q

This is combined with the prior Gaussian distribution,N(0, Vj, ) on the
autoregressive coefficients in the standard way to obtain a posterior
variance of:

-1
_ 0
[‘/le + Zkzk]
and posterior mean of

Vil + 2,24 - Zwi].

4. Conditional on {5,5} we calculate the posterior distribution of 7 and the
marginal likelihood of {@} under both the structural break model and
the no break model. This requires that a normal-inverted gamma prior
be used for both before and after the break values of the parameters of
the common factor model (see Potter, 2000). We use the conditional
posterior distribution of 7 to draw a particular breakpoint.

5. Conditional on {5,5}, 7 we draw the autoregessive model parameters for
before and after the break from the inverted-gamma normal distribu-
tion. These draws of the autogressive parameters are used to calculate
various measures of changes in the common factor before and after the
break.

12



6. Conditional on O(L), A, X, 7, 81, 85, 01, 02 the Kalman filter is run on
the observed data. The filter is initialized at the stationary distribution
for {C;} implied by ;, 01. Then, using the recursions described above,
a draw of {@} is obtained and we return to step 1. The posterior
mean for the smoothed factor is produced directly from a similar set of
recursions, with the draw C; replaced by Cyr.

3.2.2 Evidence for a structural break

We can assess the sample evidence in favor of a structural break in the
common factor model by comparing the average likelihood of the observed
time series with and without a break. This calculation would directly involve
multiple integration but can be simplified using the following tricks. The
Bayes factor is the marginal likelihood of the no break model divided by the
marginal likelihood of the break model:

J 1Y [x)b(x)dx
J 1Y [@)b(p)dep

Using the basic likelihood identity (Chib 1995) we have:

[ ¥l = 2GS

for all points in the parameter space. In particular, consider the transforma-
tion of the parameter space for the common factor model from (3;, 01, 35,02, T)
to (8q, 01,8y — B1,02/01,7). If we evaluate the transformation at 3, — f; =
0,02/01 = 1, then there is no information in the likelihood function about
7. As discussed in Koop and Potter (1999), one can use this lack of identi-
fication to simplify marginal likelihood calculations using the Savage-Dickey
Density ratio. In order to simplify the calculations we assume that the prior
over the shared common factor parameters is the same for the break and no
break models. In this case we have:

J1{C}By, 01)b(By, 01)dBydos
fl<{5t}’ﬁl70175270277)17(51701,ﬁz,Uz,T)dﬁldaldﬁzdasz
_ [ 2By = By =0,02/01 = 1, THC}, Y, @7 )dr
5(52_51:0702/01:1")07) 7
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where (o~ signifies the parameter space excluding the parameters of the com-
mon factor model. Using the methods of Potter (2000) one can directly cal-
culate the marginal likelihoods at each iteration of the Gibbs sampler. If the
conditional posterior density is then averaged across draws of ¢~ and {C;}
from the Gibbs sampler we will have

fp(ﬁz — 31 =0,02/01=1,7|Y)dr
b(B, — B =0,02/01=1) 7

which is the Savage Dickey ratio for the Bayes factor of a no break common
factor model vs a structural break common factor model.

4 Measuring Changes in the Business Cycle

This section develops some simple methods for describing changes in the busi-
ness cycle. The first measure uses the (inverse) coefficient of variation of the
common factor model before and after the break, as well as the frequency of
negative growth in the common factor. The second measure is the spectrum
of the time series model for the common factor before and after the break.
In particular, we focus on whether the change in the business cycle is best
summarized as a reduction in volatility of the shocks hitting the economy as
argued in Blanchard and Simon (2001). Finally, we discuss a measurement of
the frequency of recessions, that is, the expected time to a recession starting
from the stationary distribution of the common factor.

All the measures considered are nonlinear functions of the estimated pa-
rameters. As shown in Potter (2000), traditional classical techniques for
estimating these nonlinear functions can produce substantial bias. Further,
it is very difficult to obtain sampling distributions that allow for uncertainty
over the break point. The approach here will be to use the realizations of the
Gibbs sampler to calculate the various nonlinear functions, and then average
across realizations to obtain the posterior means.

4.1 Coeflicient of Variation

The coefficient of variation is the (inverse) ratio of the mean of a random
variable to its standard deviation. There are two general ways in which re-
cessions could have become less frequent (or expansions lengthier): first, the
volatility of fluctuations could have been reduced; second, the growth rate

14



could be higher for the same level of volatility. The description of the data
above suggests that the former is the main source of the recent changes in
the U.S. business cycle. The common factor model is constructed in such a
way that one of the main set of moments it must match, when scaled by the
relevant factor loading, is the mean growth rate of the various time series.
Thus, rather than examining its volatility directly, it is necessary to study it
relative to the mean. Further, the sources of the volatility of the observed
time series are both the factor and the individual measurement errors pro-
cesses. Thus, the coefficient of variation allows us to check whether any of
the reduction in volatility in the observed series is accounted for indirectly
by the measurement error process.

In terms of the parameters of the time series model for the common factor,
we have in the AR(2) case:

o yEa{0-er-d)
L —¢1— ¢, o 7
which we can calculate at each iteration of the Gibbs sampler for the param-
eter draws before and after the break, and then average to form the posterior
mean of this quantity.

If the time series model was known, then the inverse of the coefficient
of variation would allow direct calculation of the probability of a negative
quarter using the cumulative distribution function of a normal. Since the
time series model is not known, we also calculate the implied probability of
a negative quarter at each iteration of the Gibbs sampler and average this
quantity. This gives us some indication of how informative is the posterior
mean of the inverse coefficient of variation about the rest of its posterior
distribution.

4.2 Spectral Methods

The spectrum of the common factor time series model has the following
representation:

0.2

T o

v
Plexp(—iw)]

Recall that the spectrum decomposes a time series in terms of cycles of
different frequencies, where the average height of the spectrun represents

fw)
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the overall variance of the time series. Clearly, one source of change in the
business cycle is the reduction in the volatility of shocks as measured by o2.
If this were the only source of change in the common factor model before and
after the break, then the two spectra should have exactly the same shape,
but with a different scaling. In other words, cycles at all frequencies would
have been reduced by an equal amount. We can check for changes in other
parts of the spectrum by using Kolgomorov’s formula:

o 27rexp{%/ﬂ ln(f(w)dw}.

—Tr

Thus, one can decompose the difference in the innovation variances before
and after the break as:

In(0?) — In(0?) = % /0 "n @EZ;)CM

- ()2 [ (akeCel),

T . 2
[ (el
0 |1 [exp(—iw)]]
for all stationary autoregressive operators. Hence, if the only change arised

from the volatility of the shocks, then the log ratio of the two spectra would
be constant. In particular,

n(2) = (%)

Frequencies in which the log spectral density ratio is greater than the log
ratio of the innovation variances have cycles that have been muted more than
average, whereas frequencies for which the ratio is less have cycles that have
been muted less than average. In particular, it is possible that even though
the overall variance has dropped, some frequencies are now absolutely more
variable than they were in the past:

“(5e) <
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4.3 Calculating Time to Next Recession

Consider the statement: “recessions occur once every 4 years on average”.
One interpretation of this statement is that the average duration of an ex-
pansion is 3 years. This interpretation would be exact if the average duration
of a recession was 1 year. However, if recessions lasted less than one year
on average, then the duration of expansions would be longer than 3 years.
Alternatively, consider the statement that the average duration of an expan-
sion is 10 years. Does this imply that recessions occur every 10th year? The
answer is, not necessarily. Suppose that recessions, if they occur, last for 10
years also on average. In addition, assume that, unconditionally, recessions
are as likely as expansions. Then, the frequency of years in which the
economy is in recession is about one out of two years. However, if we had
just reached the trough of the business cycle it is true that we would expect
the next recession to happen in 10 years. We focus on a hybrid of these two
concepts of the duration of expansions and the frequency of recessions.

We mainly focus on probabilities generated assuming that the initial con-
ditions of the series are drawn from their stationary distribution. We also
examine a current recession prediction that conditions on the most recent
economic data. In order to start, we need to convert the subjective criteria
of the NBER into a quantitative statement about common factor. We follow
a long literature and assume that a recession is equivalent to two consec-
utive quarters of negative growth. In our case it is negative growth in the
common factor rather than GDP. Based on this criteria, we need to distin-
guish between forecasting a recession at a certain date in the future, and the
expected time to the next recession. The former is captured, for example, by
statements such as:

P[ReCGSSiOIl in 2002Q3/4] = P[02002Q3 < 0, 02002Q4 < 0] = 010,

that is, the probability of a recession at the end of the year 2002 is 10%.
Notice that this leaves unanswered the question of whether there will be
a recession in the year 2001. We are interested in the different exercise of
finding the probability of the next recession. Consider first the probability
of a recession hitting at time ¢ given that there are no recessions before this
date:

P|[First Recession at time t|no recession from ¢ = 2,...t — 1]
= P[Ct_l < O, Ct < O]rect_l = O],t = 2, 3, ey
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where rec; = 1 if rec;_; =1 or C; < 0 and C;_; < 0 and rec;_; = 0.

In order to convert this sequence of conditional probabilities into proba-
bilistic statements about the timing of the next recession, we need to multiply
this term by the probability that no recession has hit before time ¢ :

Plrec; = 1Jrec; = 0,C"
= P[Cy_1 <0,C; < OJrec;_1 =0, Cl]P[rect,l = Olrec; =0, C’l],

where Cl = {Cl, CQ, C,]_, ce }

This probability is itself conditional on the probability of the initial state,
Plrec; = 0,C. Again, in a pure forecasting exercise the initial state would
be determined by current conditions. In contrast, the initial state here is
taken to be a draw from the stationary distribution of the common factor.
However, in both cases we have Plrec; = 0] = 1 by assumption.

This assumption defines a unique sequence of the probabilities indexed
by the forecast horizon t and C*. Here we assume that C! is a draw from
the stationary distribution. This will place some weight on starting from
a recession position, C; < 0 and Cy < 0. If this probability were large,
then the calculations below would underestimate the length of expansions as
described above. The alternative would be to consider the initial condition to
be the turning point from a recession to an expansion: C; > 0 and C_; <0
and C_, < 0. This would provide a measure of the average length of an
expansion. However, this measure would tend to underestimate the frequency
of recessions, if the duration of recessions were similar to that of expansions,
as discussed above.

As recessions become less likely, there will be little disagreement between
the measures. Computationally, in the case that recessions are infrequent,
it is much easier to start from the stationary distribution. Further, since we
are making random draws from the posterior it is important to reduce the
ambiguity of any measures calculated. We also examine the case where C!
is given by the contemporaneous (2000Q4) estimate of the common factor.

Assuming that ¢ = 2,... , then the probability of no recession before a
certain date is given by:

P[No Recession thru periods 2,3, ... s

= 1- ZP[C’t_l < 0,Cy < O|recy_1 = 0] P[rec;_1 = 0].

t=2

and rec; = 0, with initial conditions for C? from the stationary distribution.
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The expected waiting time to the next recession, starting from the sta-
tionary distribution of the time series is then given by:

Z P[No Recession before s].
s=1

Note that the first term in the sum is 1, since, by assumption, the earliest a
recession can happen is after two periods.

This gives the expected waiting time to the recession event in quarters.
One can invert this expected weighting time to obtain an approximate long
run probability of recession at the quarterly frequency. This quantity multi-
plied by 4 to annualize would then be the approximate frequency of recessions
assuming the majority of recessions were less than one year in length.

4.3.1 Simulation Techniques

Simulation methods can be used to calculate the expected time to reces-
sion from a known time series model. Consider, for example, a Gaussian
autoregression of the form:

Ct = O + ¢1Ct_1 + 4 qpr't_p + O Uy,

One starts by constructing initial conditions from stationary distribution of
the time series. Next, draws of the random shock v, are propagated by the
time series model for N periods. Suppose that J collections of length N are
simulated. One forms the time series for each draw from the Gibbs sampler,
©:

Ri(¢) = 1[C;_; < 0,C) < 0 and R},_y = 0]+ R},_1(¢),

with R](¢) = 0 and then the sequence of averages:

1<
=7ZR%,(¢)
=1

which converges to P,rec,=1|rec; = 0] as J — oo for each draw ¢.
Now, as we increase the number of iterations I on the Gibbs sampler we
have:

NI*—‘

ZE ) — E[R,(¢),
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where the expectation is over the posterior draws of . Alternatively, for each
draw ¢ we can form an expected recession time from:

i (1-Ri).

and then examine the posterior distribution across the draws of . The pos-
terior mean of this variable is clearly the same as

> (1 - %ZRZW) ,

but it provides information on the variation in recession probabilities across
draws. These posterior features are once again calculated for the period
before and after the break.

In the case of current prediction, we also have to condition on the p most
recent values of the common factor at each draw, and use the time series
model for the period after the break. Thus, at each iteration of the Gibbs
sampler we use the random draws of the parameters of the time series model
and the current draws of the common factor to construct a time series model
and, then, simulate J series of length V.

5 Priors and Results

5.1 Properties of the Prior Distribution

We focus on the choice of the hyperparameters of the Normal-inverted gamma
priors for the common factor parameters. These priors are the most impor-
tant for the interpretation of the sample evidence. We begin by eliciting
a prior, which is relatively noninformative, but accords with our subjective
prior beliefs. To simplify matters, it is assumed that the prior means and
covariances are zero for all the conditional mean parameters in the model
(i.e. the B;’s are centered over zero). The prior variance for the intercept is
taken to be 4. We use a shrinkage prior on the autogressive coefficients with
the first autogressive lag having a variance of 1 and subsequent variances
reduced by 0.5771,
In particular, we assume that the marginal prior variance for 3, is E(02)cBp+1,

where Bpiis a (p+1) x (p+ 1) diagonal matrix with (1,1)'th element 4 and
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all other diagonal elements given by the shrinkage prior. Degrees of freedom
(v) for the inverted gamma priors are 3 for both before and after break to
ensure the first two marginal prior moments exist for all parameters. The
other hyperparameter of the ilzlverted gamma prior is s. This hyperparameter

is defined so that E(c?) = £5.

We set s2 = 20/3, ¢ = 1/20. This implies a very flat prior for o2, but
one that has mean 20. Since the data are measured as (annual) percentage
changes (e.g. 1.0 implies a 1.0 percent change in the growth rate) and annu-
alized, this choice of s? is sensible in light of the typical U.S. fluctuations. In
addition, it is centered well above the size of fluctuations observed recently.

By the symmetry of the prior distribution of the intercept around zero,
the prior immediately places some of its weight on recessions happening in
two quarters. If we fix the autoregressive lag at two, we can simulate from
the prior imposing stationarity. This gives a prior mean for expected time
to recession of 8 years. The median of the prior distribution is considerably
lower at 2 years. In the posterior analysis, stationarity is not directly imposed
in calculating the marginal likelihood, but it is imposed to generate the draws
of the parameters of the common factor model. The Cumulative Distribution
Function of the prior expected waiting time is shown in Figure 2. Note how
relatively flat it is after 10 years.®

5.2 Results

The model is estimated with ¢ = 1, p = 2. The growth rate of GDP is chosen
as the variable with factor loading equal to unity. The Gibbs sampler was
run with a burn-in phase of 1000 iterations and a further 10, 000 iterations.
Figure 3 shows a recursive estimate of the Bayes factor for no break vs. a
break. As it can be seen in the plot, after some initial imprecision the Bayes
factor settles down and appears to have converged.

Figure 4 plots the posterior mean of the smoothed common factor (i.e.,
we averaged the estimates of the smoothed factor across posteriors draws).
We can see from Figure 4 that the factor is negative during the NBER-dated
recessions and positive elsewhere. The factor also appears to pick up the
“orowth recessions” of 1967 and the mid 1980s, as well as the recent abrupt
slowdown in the United States.

8In practice, only 14 out of 10,000 draws violated the stationarity condition in the
posterior sample.
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Table 3 contains various correlations between the estimated common fac-
tor and the time series used to estimate it. The whole sample correlation is
from the posterior mean of the common factor. The Before Break and After
Break calculations are based on the average correlations across draws of the
Gibbs Sampler. Over the whole sample, the factor has a correlation of 89%
with GDP, 93% with industrial production and manufacturing output, and
84% with payroll employment. The correlation is lowest with consumption at
68%, and retail sales at 60%. Notice how these whole sample correlations are
not good guides to the pattern of correlations after the break. In particular,
measures of the “old economy,” such as industrial production have become
less correlated with the factor.

Table 3: Correlations with Common Factor

Series Whole Sample | Before Break | After Break
GDP 0.89 0.89 0.88
Industrial Production. | 0.93 0.95 0.82
Manufacturing 0.93 0.94 0.83
Income 0.76 0.81 0.72
Wage/Salary 0.79 0.91 0.66
Consumption 0.68 0.70 0.63
Retail Sales 0.60 0.62 0.50
Payroll Employment 0.84 0.85 0.81
Aggregate Hours 0.87 0.88 0.80

The estimated Bayes factor in favor of no break is . 00025, (i.e., about
4000 : 1 in favor of a break) as can be seen in Figure 3 considering the last
value in the plot. This is a less overwhelming evidence than in Potter (2001),
where the odds in favor of a break were found to be much higher. On one
hand, one might expect that using more time series would strengthen the
evidence in favor of a break if it was actually present. On the other hand,
as discussed above, this is a very crude model for the break, since it imposes
a simultaneous break in all the time series. Overall, there is strong evidence
for a break, but it is quite possible that it did not occur simultaneous in all
the series examined.

Given that a break did occur, the most likely location of the break is
1983/4, as can be observed in Figure 5. There is virtually no probability
attached to breaks elsewhere. In particular, the previous breakpoint for
growth rates in 1973, used in many studies, gets virtually zero probability.
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The posterior mean of the ratio of the mean to standard deviation before
the break is 0.783, which from the normal CDF implies 22% of quarters
having negative growth. The posterior mean after the break is 1.305, which
from the normal CDF implies only 10% of quarters having negative growth.
However, while the posterior mean of the frequency of negative quarters
before the break is in agreement at 22%, the posterior mean after the break
is 12%, suggesting some draws of the common factor after the break had less
stability. Since the observed average frequency of negative quarters in the
dataset is 21% before the break located in the first quarter of 1984, and 10%
after the break, we have a reasonably close match to sample averages.

The posterior mean of the spectrum before and after the break, shown in
Figure 6, is hard to interpret because the after break spectrum has a con-
siderable amount of power at very low frequencies. The relative changes are
easier to see in Figure 7, which shows the log spectral ratio and log innovation
variance for the common factor model. From this figure, we can see that the
innovation is only about 50% as volatile after the break than before (this is
very similar to the estimates of McConnell and Perez 2000). Figure 7 further
indicates that this reduction in volatility is not uniform across frequencies.
One can observe that there has been a more than proportional drop in the
volatility of cycles at frequencies traditionally associated with the business
cycle. However, Figures 6 and 7 indicate a proportionate increase in the
volatility at both lower and higher frequencies, which is absolute in the case
of low frequencies.

These results are in contrast to those for GDP alone, in which nearly all
the reduction in volatility is due to a drop in the innovation variance (see
Blanchard and Simon 2001). This result is also consistent with the changes
in the volatility of consumption relative to GDP and wage income, shown in
Tables 1 and 2. After the break, it can be seen that consumption has a very
similar volatility to GDP and wage income, whereas its volatility is consid-
erable lower before the break. This suggests that more of the fluctuations in
GDP and wage income are permanent since 1984.°

Finally, we consider measures of the expected time to the next recession
or frequency of recession. Figure 8 contains the cumulative probability of
the first recession by year for the common factor model, before and after the
break and for current conditions in 2000Q4. The difference between the CDF's

9Total personal income does not show quite the same pattern, but this is more difficult
to interpret because of definitional issues regarding what is included in total income.
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before and after break is large and similar to that found in Potter (2000).
Note that neither the post-break CDF nor current CDF attain the value of
1. Instead, after 100 years they are only 0.96. In the simulations, the number
of quarters forecasted (N) was 400. This suggests that the posterior mean of
the expected time to recession after the break will be underestimated. Figure
9 contains the posterior distribution of the expected waiting time before the
break.

The overall mean is estimated to be 4.5 years, compared to 5 years in the
sub-sample before 1984. There is very little probability attached to expected
waiting time greater than 10 years. Figure 10 contains the posterior distribu-
tion for the model after the break and for current conditions. The posterior
mean after the break or currently is estimated to be 19.5 years (compared to
the 1 recession experienced since 1984). In practice it turned out that the
differences between the unconditional estimates and the current estimates
were very small. This is consistent with the view of Hall (2001) that up to
the end of 2000 there is little indication of the end of the expansion.

The underlying distribution of the probability of the next recession is
skewed towards longer time periods. Thus, other measures of time to the
next recession contain useful information. For example, the posterior median
of the expected time to recession is 4 years before the break and is around
15 years after the break. The posterior probability that the expected time to
recession is less than 9 years (the average of the last two expansions) is 0.23
after the break compared to 0.97 before the break. Finally, the probability
that the next recession occurs before 10 years is 0.86 before the break and
0.50 after the break.

Overall, the results on the frequency of recessions are very similar to
those found in Potter (2000) based on GDP alone, but the dynamics of the
common factor are very different from that of GDP. This is mostly clearly
observed in the large relative changes in the frequency domain. If we drop
GDP out of the variables used to identify the common factor, the expected
time to the next recession after the break falls to 14 years (the median to 10
years) and posterior odds in favor of a break drop to 25 : 1.

6 Conclusions

This paper has presented strong statistical evidence that the business cycle
as traditionally described in terms of recession and expansions is dampening.

24



Although the statistical evidence presented here is more robust than previous
claims regarding the possible end of the business cycle, it is still dependent
on history providing an accurate view of the future.

However, history can be interpreted in more than one way. Clearly, there
is overwhelming evidence that economic fluctuations have become less volatile
in the United States. On the other hand, if the economy has experienced
a structural break in favor of stability, one might reasonably argue that a
break in the other direction towards increased instability could occur in the
future.

For example, consider the conjecture that there is a probability p that we
will return to the greater instability of the long historical record. Further,
suppose that the movement to the increased instability will be caused by
a recession. Then, this gives a probability of recession in the year 2001 of
p + (1 — p)0.05, since the calculations above imply a current probability of
recession within one year of approximately 5%. If one has a subjective belief
in a recession in 2001of ¢, this would be supported by p = (¢ — 0.05)/0.95.
For example, if one thought the recession probability was 2/9 (the historical
record), then the probability of returning to greater instability would be
about 16%. Alternatively, if one thought the probability of recession was 50%,
then the probability of returning to greater instability would be a relatively
high 48%.

The United States experience is somewhat different from other G-7 coun-
tries. In the 1950s and, to some extent, in the 1960s these countries did not
suffer the same intensity of the business cycle as they were catching up to the
United States. However, from the mid-1970s to the mid-1980s, the intensity
of the business cycle was reasonably similar across these G-7 countries. This
pattern has now reversed itself with the United States experiencing a more
muted business cycle than other G-7 countries, particularly Japan. One could
be more confident that the changes in the US business cycle were permanent
if other G-7 countries also started to experience similar reductions in the
volatility of their fluctuations. Blanchard and Simon (2001) find some lim-
ited evidence that this is true with the exception of Japan, but the evidence
appears to be weaker than in the US.
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Figure 1: 4 quarter growth rates of the data set
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Figure 2: CDF of Common Factor Prior in terms of expected time to recession
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Figure 3: Evidence for Convergence of Gibbs Sampler
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Figure 5: Posterior Distribution for Breakpoint
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Figure 6: Spectra Before and After the Break
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Figure 7: Log Ratio of Normalized Spectra
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