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Abstract
It is often argued that price indexes do not fully capture the quality improvements of new goods in

the market. Because of this shortcoming, price indexes are perceived to overestimate the actual

price increases that occur. In this paper, I argue that the quality bias in price indexes is just as likely

to be upward as it is to be downward. I show how both the sign and the magnitude of the quality

bias in the most commonly applied price index methods are determined by the cross-sectional

variation of prices per quality unit across the product models sold in the market.

I do so by simulating a model of a market that includes monopolistically competing suppliers of the

various product models and a representative consumer with CES (constant elasticity of substitution)

preferences. I illustrate the bias in the commonly applied price index methods by comparing their

estimates of inflation with the theoretical inflation rate implied by the data-generating process.
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1. Introduction
There is a widespread consensus among economists that price index methods tend to overestimate actual
inflation in markets where there is a rapid turnover of goods due to technological progress. The Boskin
(1996) commission made this point with respect to the U.S. Consumer Price Index, while Gordon (1990)
used hedonic price indexes to correct for this bias in equipment price indexes.

There is, however, also a small number of studies that challenge this conventional wisdom.  Studies by
by Triplett (1972,2002), Feenstra (1995), as well as Hobijn (2001) have each made the point that quality
adjustments in price index methods might actually lead to an understatement of inflation.

This paper follows up on the above papers by introducing a parsimonious theoretical model that can
generate both a positive as well as a negative quality bias in the most commonly applied price indexes. The
value added of this approach is that it allows for the study of the factors that determine the sign and
magnitude of the quality bias in a stylized framework. This contrasts strongly with the methodology that is
traditionally applied in the price index literature.

A large part of the literature on price indexes compares various price indexes calculated for the same
dataset. This is for example the approach of Aizcorbe and Jackman (1993), Manser and McDonald (1988),
and Braithwait (1980) when assessing the magnitude of substitution bias as well as of Aizcorbe, Corrado,
and Doms (2000) and Silver and Heravi (2002) in the comparison of hedonic and matched model price
indexes.

Such an approach allows us to consider the sensitivity of price indexes to the choice of method applied.
It does not, however, enable us to make any normative statements about which index method is �better� than
another. Such normative statements on price indexes are all based on the extensive theoretical price index
literature, which focuses on properties like idealness, exactness, and superlativity of price index formula.

It turns out that the theoretical results derived in this paper contradict some of the properties of price
indexes that are presumed in this applied strand of the literature. Three results stand out in particular.

The most important is that the theoretical model in this paper confirms the claims by Triplett
(1972,2002), Feenstra (1995), and Hobijn (2001) that the quality bias in price indexes is not by definition
upward. Moreover, the sign and magnitude of the bias turn out not to depend on the overall level of inflation.
Instead they depend on the cross-sectional behavior of prices per quality unit across models sold in the
market during the same period.

Secondly, the existence and sign of this bias does not depend on the specific price index formula applied.
I show how the application of the most popular price index formulas, like Laspeyres, Paasche, Geometric
Mean, Fisher Ideal, and Tornqvist, all lead to similar magnitudes of the quality bias.

Finally, hedonic price indexes suffer from the same quality bias as matched model indexes. Hence, the
theoretical results here seem to disagree with the presumption that hedonic price indexes do a better job at
correcting prices for quality improvements, as made in, among many, Pakes (2002) and Hulten (2002).

The particular theoretical model that I use for my analysis in this paper is that of a market with a
representative consumer with CES preferences over a set of models sold. This setup is very similar to Dixit
and Stiglitz (1977) and Hornstein (1993). The main difference is that the market that I consider has a
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countably finite number of models and suppliers. The advantage of this choice of model is that price index
theory for CES preferences is extremely well developed. Sato (1976) derived the ideal exact price index for
CES preferences when the same models are sold in both the base- and measurement periods. Feenstra (1994)
extended Sato�s index to an exact matched model index that can be used when the universes of models sold
in both periods do not coincide.

The resulting methodology in this paper is closely related to the Monte Carlo methodology in
econometrics. In this sense, I follow Lloyd (1975) who also used numerical simulation methods to derive and
quantify certain properties of price indexes. In Lloyd�s (1975) study the focus was on the substitution bias in
price indexes while here the focus is on their quality bias.

The structure of the paper is as follows. In the next section I introduce the form of the CES preferences
that I consider in the rest of the paper and derive the theoretical price level that price indexes are meant to
measure. In Section 3 I then illustrate graphically how conventional price index methods might yield a
downward quality bias for these preferences. This graphical description is essentially an informal version of
the results that are derived formally in the context of the theoretical model. I introduce this theoretical model
in Section 4. I consider its demand and supply side and show how its Pure Strategy Nash equilibrium exists
and is unique. In Section 5 I then proceed by deriving some general results for the sign of the quality bias in
matched model and hedonic price indexes calculated for a specific parameterization of the model. Finally, in
Section 6 I present the results of a set of numerical simulations of the model and illustrate how these
simulations confirm the results shown in Sections 3 through 5. Section 7 concludes.

2. CES-preferences and the theoretical price level
The aim of this paper is to be able to make normative statements about price index methods and to say which
ones perform better, in certain situations, than others. In order to make these normative statements we need
to define what it is we would like our price index methods to measure. Since Konüs (1939) the main focus of
price index theory has been on constructing a cost-of-living index (COLI). The aim of a COLI is to track the
(percentage) changes in the minimum expenditures required to reach a certain base-level of utility over time1.

The minimum amount of expenditures that is necessary to reach a certain utility level crucially depends
on the underlying preferences of the consumer. Hence, the theoretical price level that price index methods
are after depends on the preferences of the consumer. In reality, a market consists of a spectrum of
consumers with different preferences. It turns out that it is not always possible, in such cases, to specify the
theoretical price level because aggregate demand does not always behave as if it is generated by a well-
behaved aggregate utility representation.

The focus of this paper is not on the conditions for the existence of an aggregate utility representation for
aggregate demand. What I will do is simply use one of the best developed aggregate utility representations
for which it has been proven that it can be interpreted as the aggregate utility function of a market with a
continuum of heterogeneous agents. This aggregate utility representation is Constant Elasticity of

                                                
1 I will focus on consumer price indexes throughout this paper. The theory presented in this paper is also applicable to producer price

indexes, which are aimed at tracking the minimum cost required to obtain a base quantity of output over time.
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Substitution (CES) preferences. Anderson, de Palma, and Thisse (1993) introduced the microfoundations of
CES preferences and showed how they can be interpreted as the aggregate utility representation of a market
consisting of a continuum of heterogeneous agents.

Let Xi,t be the quantity consumed of good i at time t, where I will assume that good i=0 is the numeraire
good. Ct is the universe of goods sold at time t. I will assume that aggregate demand in the market in the
theoretical model behaves as if resulting from the utility maximizing decision of a representative consumer
with the utility function
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This is a relatively standard CES utility function, where σ≡(1+λ)/λ is the constant elasticity of substitution.
The only non-standard features of (1) are that the quantities for goods i∈ Ct\{0} are multiplied by a quality
parameter ai and that the numeraire good, i=0, is included.

Let pi,t be the price of a unit of good i. Since i=0 is the numeraire good, I will assume that p0,t=1 for all t.
In the rest of this paper, I will focus on the construction of a price index for the set of goods, which I will call
models in the future, that are contained in the CES part of (1). That is, my focus is on the measurement of the
price level of the set of models i∈ C*

t where C*
t=Ct\{0}.

We are thus confronted with two sets of goods, i.e. the numeraire good and the models for which we
would like to measure an aggregate price level. Diewert (2001) shows that, because the preferences in (1) are
separable between X0,t and the other goods, the aggregate price level for the models i∈ C*

t is well defined. In
particular, aggregate demand for the models i∈ C*

t will be as if it was generated by the representative agent
maximizing the amount of utility obtained from these models for the expenditures solely on these models.
This implies that the theoretical price aggregate for the set of models i∈ C*

t is the CES price aggregate as
applied in, among many, Dixit and Stiglitz (1977), Hornstein (1993), and Feenstra (1994). This aggregate,
the value at time t of which I will denote by Pt

T, reads
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It is a CES aggregate of the prices per quality unit for all models that are traded in the market. This price
aggregate represents the money cost of a unit of utility obtained from the consumption of the competing
varieties in the set of models Ct

*. This money cost does not depend on the base-level of utility because the
preferences are homothetic.

The aim of price index methods is to construct an index that approximates, up to a constant, the path of
Pt

T. In particular, the index methods are meant to estimate the period by period percentage change in Pt
T.

Throughout this paper, I will focus on the percentage change in Pt
T between periods t=0 and t=1. I will refer

to the percentage change in Pt
T between those two periods as the theoretical inflation rate and will denote it

as
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It represents the percentage change of the money cost of a unit of utility between periods 0 and 1.
If one would know all the preference parameters in (1) then it would not be difficult to calculate the

theoretical inflation rate in (3). In practice, however, the preference parameters are not observed. That is, we
do not exactly know the elasticity of substition, i.e. σ≡(1+λ)/λ. Neither do we know the quality embodied in
each unit sold for each model, i.e. ai. In fact, when we apply price index methods we do not even know by
what preference representation aggregate demand is generated. There are basically two lines of thought here,
which I will both pursue in this paper.

The first line assumes that aggregate preferences belong to a certain class and then uses this restriction to
obtain an estimate of (3). For the CES preferences the index that exactly measures the theoretical inflation
rate is the one derived by Sato (1976). The details of this index are described in Table 1. Sato�s index is valid
under the assumption that the universes of models sold in both periods are the same, such that C0

*= C1
*. It is

a proper price index in the sense that it only depends on observables, namely expenditure shares and prices.
The requirement of coinciding sets of models being sold in both periods renders the Sato (1976) index

inapplicable at many lower levels of aggregation. Many markets have a high rate of product turnover, as
illustrated in Aizcorbe, Corrado, and Doms (2000) for the market for Intel CPU units and in Silver and
Heravi (2002) for the market for laundry machines. Hence, it is thus essential to develop price index methods
that allow for dynamic universes of models that change over time, i.e. C0

*≠ C1
*. Feenstra (1994) extends

Sato�s result to a quasi-index that is exact for CES preferences with non-overlapping universes of models.
Feenstra�s is a quasi-index because it depends on the unobserved elasticity of substitution, which has to be
estimated to implement the index. It is described in Table 1 and I will discuss its intuition in more detail later
on.

Price index theory is thus very well developed for CES preferences. We know the form of the exact
indexes both when the universe of models is static as well as when it is dynamic. The problem is that in
many practical cases it is a big leap to assume that demand is generated by aggregate CES preferences. This
brings us to the second line of thought. This line is to construct price indexes that do not exactly measure (3)
but instead reasonably approximate it for a very broad class of preferences.

This is the approach most commonly chosen for the calculation of aggregate statistics. Classical price
index theory, among others Konüs (1939), Frisch (1936) and Fisher (1922), yielded many important results
for the case in which the universe of models is static. Konüs (1939) introduced the concepts of a cost-of-
living index and substitution bias in price indexes that price a fixed basket of goods. Frisch (1936) showed
how Konüs�s substitution bias result implied that for homothetic preferences the change in the true cost of
living is bounded from above by the Laspeyres index and from below by the Paasche index. Fisher (1922)
showed how the geometric mean of the Laspeyres and Paasche indexes constitutes an ideal index in the sense
that both the price and quantity indexes have the same functional form.
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A large part of the literature has focused on the question which price index formula approximates (3) in
the �most reasonable� way. Like Fisher (1922), Diewert (1976), as well as Lloyd (1975), Braithwait (1980),
Manser and McDonald (1988), and Aizcorbe and Jackman (1993).

A much smaller part of the literature has focused on the construction of �reasonable� approximations to
(3) in case of dynamic universes of models. The problem when the universes of models are dynamic is that
the prices of new goods are not observed in the first period, while the prices of obsolete goods are not
observed in the second period. It is thus not possible to measure the percentage change in the prices between
both periods for new and obsolete goods.

Two approaches are generally considered when dealing with this problem. The first, known as matched
model indexes, makes specific assumptions about the relative price per quality unit of the new models versus
the old models. These assumptions are such that they imply that the change in the overall price level can be
estimated solely as a function of the price changes of the models that are sold in both periods, i.e. that are
matched. Triplett (2002) contains an overview of the different matched model methods and the possible
biases that they induce.

The second, known as hedonic price indexes, uses a regression model that relates the price of a model in
a certain period to its characteristics to impute the unobserved prices for the new and obsolete models. This
imputation completes the set of prices needed to apply conventional price index methods developed for
overlapping universes of models. After the price imputation of the missing price observations, indexes are
then constructed using conventional price index methods.

3. A graphical illustration of the main argument
The conventional wisdom is that the introduction and obsolescence of goods in a market would cause
standard price index methods to overstate the actual inflation rate. The Boskin (1996) commission report as
well as its recent reassessment by Lebow and Rudd (2001) both contain extensive descriptions of this
conventional wisdom. There are three main reasons why this is argued to be the case. The first reason,
designated quality bias by the Boskin (1996) commission, is that current price indexes do not properly
capture the quality improvements embodied in new (or improved) models. By underestimating these quality
improvements, price indexes will attribute too much of changes in expenditures to changes in prices rather
than to changes in quantities. The second reason, designated product bias by the Boskin (1996) commission,
argues that prices of new goods tend to drop faster than those of established models. Because new goods and
models are only included in the sample of goods used to calculate the price index with a certain delay, the
initial price drops early in the product cycle are not captured by current price indexes. Finally, there is the
substitution bias. This bias is due to some price indexes, including the CPI and most price indexes calculated
in Europe, being fixed weighted price indexes which do not capture the increases in welfare from consumers
being able to substitute new goods for goods that they were previously consuming.

In the rest of this paper I will mainly focus on the quality bias and ignore issues related to the latter two
sources of bias. In general it is hard to argue against statistical agencies including new models and goods
more timely in their samples and reducing the potential sources of product bias. Furthermore, the issue of
substitution bias is currently being addressed, at least for the U.S. CPI, by the joint publication of a fixed
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weighted as well as a chain weighted price index. The latter is meant to account for the substitution bias. See
Bureau of Labor Statistics (2002) for a detailed description.

The main point of this paper is that the quality bias in price indexes is not solely a source of upward bias.
Instead, the quality bias induced by most commonly applied price index methods can be both upward as well
as downward. Before I illustrate this in a formal mathematical economic framework, I first describe the main
intuition of the argument graphically in this section. The graphical description in this section is based on
Figure 1 through Figure 3.

The top panel of Figure 1 depicts two hypothetical price schedules, for t=0 and t=1, of a set of models
that differ according to their quality levels, ai. I will assume that ai is not directly observed. Therefore, the
researcher observes the price of each model, i.e. pit, but does not know its relative position on the x-axis. As
explained in the previous section, what is important for the price level associated with the CES preferences
that I consider is not the actual price levels, pit, but the price per unit of quality, pit/ai, for each model. Panel
(b) of Figure 1 depicts the associated schedule of prices per quality unit. Panel (c) contains the same price per
quality unit schedule and adds some of the notation that I will use in the rest of this paper.

Just like in the previous section C*
t denotes the set of models sold in period t, while Pt

T denotes the
theoretical price level at time t. Note that I have chosen to draw the example such that PT

0<PT
1. That is, in the

graphical example the actual price level increases between periods t=0 and t=1, such that there is positive
inflation. In each period the set of models sold, i.e. C*

t, consists of a group of models that are not sold in the
other period, i.e. the set At-Bt, as well as a group of models that are �matched� in the sense that they are sold
in both periods, i.e. the set Bt-Dt.

What I will now illustrate is that, even though the theoretical price inflation is positive for these
hypothetical price schedules, most commonly applied price index methods will tend to measure negative
inflation instead. That is, in this graphical example standard price index methods will tend to underestimate
actual inflation rather than overestimate it, as the consensus view suggests. I will illustrate this for both
matched model as well as hedonic price indexes.

There are several ways in which matched model indexes are calculated. They each make different
identifying assumptions about the relative price per quality unit of the obsolete and new models in the
market.

The first method, often referred to as �direct comparison�, assumes that the obsolete and new models can
be directly compared in the sense that they embody the same levels of quality. Because this method assumes
that there are no quality improvements between the old and new vintages of models, this method is never
applied in markets with rapid product turnover due to technological progress, like those for computers and
other electronic products for example. Because I will focus on markets with quality improvements in the
products sold, I will disregard this method in the rest of this paper.

The second method, known as �link-to-show-no-price-change�, assumes that the price per quality unit is
the same for the obsolete and new models. In this case, the relative price of the obsolete and new models is
assumed to be fully attributable to quality improvements. Aizcorbe (2001) uses this assumption for example
to identify the parts in semiconductor price changes attributable to quality changes and price changes
respectively. Note that, as Triplett (2002) describes in more detail, this method overestimates inflation only
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when the price per quality unit of the new models is lower than that of the obsolete models. In that case the
method overestimates the price per quality unit for the new models and thus will overestimate inflation. The
reverse is true in our graphical example here. In the example the price per quality unit is higher for the new
models than for the old models. Consequently, the method will overestimate quality changes and
underestimate the actual level of inflation.

The final matched model method that is frequently applied is the �Implicit Price � Implicit Quantity�2

method (IP-IQ). This method is based on the identifying assumption that the overall price change equals the
price change in the set of matched models. When one makes this assumption, the price levels of the
unmatched models are not needed to measure inflation. Hence, in this case the unmatched models are
ignored, i.e. �deleted�, and standard price index methods are applied to the set of models that is sold in both
periods, i.e. the matched models.

Figure 2 illustrates the application of the IP-IQ method in our graphical example. The set of matched
models in the example is the intersection of C*

0 and C*
1. Consequently, the IP-IQ method will compare the

B0-D0 part of the period 0 price schedule with the B1-D1 part of that of period 1. For all models in this range
the prices are falling. The IP-IQ method will thus, incorrectly, find a drop in the overall price level. The
simplest way to see why the IP-IQ method underestimates inflation in this case is to compare the relative
prices of the deleted sections A0-B0 and A1-B1 with the matched parts of the price schedules.

For the deleted part A0-B0 in period 0 we obtain that the prices per quality unit are lower than the prices
per quality unit on the matched part of the schedule, B0-D0. Consequently, the deletion of the below average
prices on the A0-B0 part of the price schedule will lead to an inferred price level in period 0 that is higher than
the actual level. Similarly, when the above average prices of part A1-B1 are deleted in period 1, the prices of
the matched models, i.e. B1-D1, reflect a price level that is lower than the actual price level. That is, because
the price per quality unit is increasing in quality and the worst models become obsolete while the new
models are of the highest quality, the price level in period 0 is overestimated while the price level in period 1
is underestimated. The combination of these two measurement errors leads to an unambiguous downward
bias in the measured inflation rate, independent of which price index formula is applied.

One final thing is worth noting about this argument. That is that the bias incurred due to the application
of the IP-IQ method does not depend on the overall inflation rate. Instead, it completely depends on the
cross-sectional behavior of the prices per quality unit as a function of the quality units embodied in the
models sold in the market. I will show this in a numerical example later on. This result contrasts sharply with
the argument in Triplett (2002) who argues that �The errors produced by the IP-IQ method are symmetric, in
the sense that when prices are falling the IP-IQ method tends also to miss price declines. � Prices have
generally been falling for electronic products, including IT products. When the IP-IQ method is used to
construct price indexes for electronic products, the price indexes are biased upward because they do not
adequately measure price declines that accompany new introductions�. The example here suggests that what
matters for the IP-IQ bias in IT product inflation is not whether prices are declining over time but rather
whether prices per quality unit are declining in the amount of quality embodied in the models.

                                                
2 This is also often referred to as the �deletion� method.
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Hedonic price indexes are, in some sense, the opposite of IP-IQ matched model indexes. That is, where
the IP-IQ method �deletes� the observed prices of the unmatched models, hedonic methods �insert� the
unobserved prices of the unmatched models. This insertion, or more correctly �imputation�, is done by
estimating a hedonic price equation that relates the price of a model in a particular period to a set of its
quality characteristics and then using this equation to predict what the unobserved prices of the unmatched
models would have been.

Over the past five years, hedonic price indexes have been implemented for an increasing number of
goods for U.S. aggregate statistics. See Landefeld and Grimm (2000) as well as Moulton (2001), for
example, for a discussion of the application of hedonic price indexes in the U.S. national accounts. The main
reason why hedonic price indexes are adopted for an increasing number of goods is the practical problem that
the IP-IQ method ends up not using a large part of the available price quotes in markets where new and
obsolete models make up the bulk of models traded. This is particularly a problem for computers and related
equipment.

The believe is that by taking the price data for the obsolete and new models into account and relating
them directly to quality characteristics, hedonic price indexes more properly adjust for quality and are less
subject to quality bias. This seems to be confirmed by the fact that hedonic price indexes tend to find less
inflation for most of the goods to which they are applied3 than standard matched model indexes, which are
said to overestimate inflation.

Is it true that hedonic price indexes have a smaller quality bias than matched model indexes? Not
necessarily. In order to see why not, consider Figure 3. Which prices are imputed in a hedonic price index
depends on the price index formula applied. The two panels of Figure 3 depict the two most common cases.

The top panel considers a hedonic Laspeyres index, which intends to measure the percentage change in
the cost of the models sold in period 0. The Laspeyres index requires the use of the prices of the models that
became obsolete in period 1. Therefore, a hedonic regression model is used to impute these prices and the
price schedule in period 1 is extended by the imputed part D1-E1. The Laspeyres index then basically
approximates the change in the overall price levels implied by the curves A0-D0 and B1-E1. The overall price
level implied by A0-D0 coincides with the actual price level in period 0, i.e. P0

T. The price level implied by
B1-D1, denoted by P1

HL in the figure, is lower than the actual price level in period 1. The reason is that for the
calculation of the Laspeyres index the above average prices per quality unit in the part A1-B1 are ignored.
Moreover, the imputation adds below average prices per quality unit in the section D1-E1. Hence, the inferred
price level in period 1 is below the actual price level and inflation is underestimated. In fact, because the A0-
D0 schedule is above the B1-E1 schedule everywhere, in this example the hedonic price index would find
spurious price deflation.

The bottom panel depicts the calculation of a hedonic Paasche index. It is meant to approximate the
change in the cost of the models sold in period 1. Therefore it requires the imputation of the D0-E0 part of the
price schedule in period 0 and ignores the part A0-B0 in its calculation. The imputed part D0-E0 consists of
above average prices per quality unit and the ignored part A0-B0 of below average prices per quality unit.

                                                
3 See for example Gordon�s (1990) hedonic price indexes.
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This leads to the hedonic method overestimating the price level in period 0. This estimate is denoted by PHP
0.

Again, the hedonic method will find spurious deflation. This time because it overestimates the price level in
period 0, rather than underestimates the price level in period 1.

Thus, my tentative graphical example illustrates why matched model and hedonic methods might
actually result in estimates of inflation that are too low rather than too high. However, this simple graphical
example can only be used for illustration purposes, it does not prove that such biases might occur in the data.
In order to show that these biases are likely to occur, I introduce a fairly standard theoretical model in the
next section and show how the equilibrium outcome of the model gives rise to biases of the same kind
discussed here.

4. Theoretical model
The aim of this section is to introduce a simple theoretical framework that generates the kind of bias that I
discussed in the section above. The theoretical framework introduced here is based on the CES model first
considered by Anderson, de Palma, and Thisse (1992). Feenstra (1995) applied this model to hedonic price
indexes. I will introduce the theoretical model in three subsections. The first explains the demand side of the
market, while the second focuses on the supply side of the market. In the final subsection, I will prove
existence and uniqueness of the Pure Strategy Nash equilibrium that determines prices and quantities in the
market and will derive some of the relevant comparative statics for this equilibrium.

Demand side of the market

The aggregate demand in this market can be represented as generated by a representative agent choosing the
demand { }

tCitiX
∈,  to maximize the aggregate utility function in equation (1). This utility function is

maximized subject to the budget constraint
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where Yt denotes real income in terms of the numeraire commodity.
The maximization of this utility function yields the demand functions
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for the non-numeraire commodity, i.e. i∈ C*
t. The variable ( )α+= 1~

tt YY  is the level of total expenditures

on these models. These demand functions are very similar to the ones implied by standard CES preferences
where the level of quality for all goods is the same, i.e. ai=1 for all i∈ C*

t.  The main difference is that the
relevant relative price of each good that determines its market share is its price per unit of quality, that is
pit/ai, rather than its unit price, pit.
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Supply side of the market

The next concern is the supply side of the market for i∈ C*
t. I will assume that the producer of model i at each

point in time, t, faces a constant unit production cost cit. I will consider pure strategy Nash equilibria in prices
for a market with a fixed set of models, { } *

tCiit a ∈=a . Such Nash equilibria imply that the supplier of model i

takes as given the prices pjt for j∈ C*
t\{i} and chooses its price pit to maximize its profits

( ) ititit Xcp − (6)

subject to the demand function (5). The profit maximizing choice of price pit in this case satisfies the
following first order condition.
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This condition implies that the supplier of each model chooses its price such that its cost-price ratio equals
one plus the inverse of the own price elasticity of demand for good i.

Since the own price elasticity of demand for good i is negative, this implies that cit/pit<1. That is, price
exceeds marginal and average cost and the firm charges a markup. For the price elasticity of demand, we
obtain that
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where ( )tti ,apθ >0 is the negative of the price elasticity of demand for good i and { } *
tCiitt p ∈=p  is the

sequence of prices charged in the market. Essential for the results that are to follow is that this elasticity is
specific to good i. This is contrary to the setup of monopolistic competition that is often used to model
imperfect competition in models with price rigidities, like in Hornstein (1993). These models generally
consider a symmetric equilibrium in which each monopolistic competitor is too small to affect the aggregate
price level and its own price elasticity of demand.

Using the notation above, the supplier of good i will set its price such that
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where ( ) 1>tti ,apµ  is the markup charged by the firm. Solving for this markup yields that
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This implies that the pure strategy Nash equilibrium in this market satisfies the following system of
equations
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t (11)

This system of equations will be the center of attention in what is to follow.

Equilibrium

Now that I have derived the conditions for a Pure Strategy Nash equilibrium in equation (11), the question
that remains is whether there exists a set of prices the satisfies this equation. In this section I will not only
show that this is the case, but also prove the uniqueness of this equilibrium price schedule. I will then
proceed by deriving some of its comparative statics that are relevant for the price index measurement results
that I will prove later on.

First and foremost though, it is important to realize that the Pure Strategy Nash equilibrium in prices that
I consider actually exists and is unique. This is what I prove in the following proposition.

Proposition 1: Existence and uniqueness of equilibrium

For any λ>0 and sequences { } *
tCiit a ∈=a and { } *

tCiitt c ∈=c  where ai,cit>0 for all i∈ C*
t there exists a

unique pure strategy Nash equilibrium in prices.

Proof: (existence) Existence of the pure strategy Nash equilibrium follows from the application of
Brouwer�s fixed point theorem. In order to see how Brouwer�s fixed point theorem applies here, it is
most convenient to define c*

it=cit/ai. Rewrite the system of equations that defines the equilibrium, i.e.
(11), in the form
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which implies that
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Let Nt be the number of elements of C*
t, i.e. the number of competing models in the market at time t.

0Define
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( ) λ/1/ −= ititit cpv  and the space { }{ }10* ≤≤∈= ∈ it
N

Ciitt vvV t

t
R (14)

then (13) defines a continuous mapping from Vt to Vt and thus, according to Brouwer�s fixed point
theorem must have a fixed point. Hence, there must exist an equilibrium.
(uniqueness) Define
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then (13) can we rewritten as
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Given Wt, for all i∈ C*
t, there is one unique wit∈ R+ that solves (16). This follows from a straightforward

application of the intermediate value theorem to (16). Define the function f: [0,Wt]→ R+ as
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then f(wit) is continuous and strictly increasing. Furthermore, f(0)=-zit[1+λ]-1/λ and f(Wt)=Wt. Hence, the
intermediate value theorem implies that there must be a unique wit,∈  [0,Wt] for which f(wit)=0.

Suppose the equilibrium is not unique, then there exist Wt and W�t such that Wt>W�t=(1+δ)Wt,
where δ>0, such that

∑
∈
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*
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itt wW  and ∑
∈
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itt wW (18)

and Wt and wit for all i∈ C*
t satisfy (16), which is also true for W�t and w�it for all i∈ C*

t.
Note that the reason that Wt and W�t can not be the same is because I have shown above that the same

Wt will lead to the same best response by the suppliers of all models and thus to the same equilibrium.
What I will show in the following is that if (16) holds for Wt and wit for all i∈ C*

t, then for all i∈ C*
t it

must be the case that the w�it that satisfies (16) given W�t has to satisfy w�it<(1+δ)wit. However, this
would imply that W�t<(1+δ)Wt=W�t which is a contradiction.

In order to see this, suppose that w�it≥(1+δ)wit. In that case, equation (16) implies that
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which is a contradiction. Hence, there can only be one equilibrium. γ
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The benchmark case, and as it turns out the only one in which standard price index methods do not generate a
bias, is the case in which each supplier faces the same unit production cost per quality unit. As I show in the
proposition below, the price per quality unit is the same for all models in the market in that case.

Proposition 2: Symmetric equilibrium

The market has a symmetric equilibrium in which the price per quality unit is constant across

models, i.e. pit=p*
tai for all i∈ C*

t, if and only if the producer of each model faces the same marginal

unit production cost per quality unit, i.e. cit=c*
tai.

Proof: (⇒ ) If cit/ai=c*
t and does not depend on i, then (11) reduces to
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When we choose pit/at=p*
t for all i∈ C*

t and substitute it in the system of equations (20) we obtain that for
all i∈ C*

t
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which does not depend on i. Hence, if cit/ai=c*
t, then p*

t=(1+λNt/(Nt-1))c*
t is the symmetric pure strategy

Nash equilibrium in which all suppliers charge the same price per quality unit and all have an equal
market share.
(⇐ ) If there is a symmetric equilibrium, then for all i∈ C*

t
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and does not depend on i∈ C*
t. γ

In the previous section I argued that the bias that I illustrated graphically was the result of the price per
quality unit not being constant across models sold in the market. In fact, in the example, the price per quality
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unit was higher for better models. In the symmetric equilibrium derived above the price per quality unit is
constant and it is thus unlikely that this equilibrium will yield a bias of the sort described before. However, if
the marginal production cost per quality unit is not the same across models sold in the market, then neither is
the price charged per quality unit. In that case the market equilibrium will be asymmetric in the sense the
models will have different market shares. As I show in the following proposition, the suppliers that produce
the models with the higher marginal production cost per quality unit will charge a higher price per quality
unit and will have a lower market share.

Proposition 3: Properties of asymmetric equilibrium

In the asymmetric equilibrium, producers with higher marginal production costs per efficiency units,

i.e. cit/ai, (i) charge a higher price per efficiency unit, pit/ai, and (ii) a lower markup, pit/cit.

Proof: (i) Equation (20) implies that, when we define
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t it must be in equilibrium that
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Applying the implicit function theorem to the above equation yields
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Furthermore, because (pit/ai) is higher, equation (5) implies that the market share of the model must be
lower.
(ii) In order to prove this part, it is easiest to reconsider (13), which reads
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Again, redefining

( ) λ/1/ −= ititit cpv  and defining ( )∑
∈
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(28)

equation (27) boils down to
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It is straightforward to show that the vit that solves this equation is increasing in c*
it. Since the markup,

pit/cit, is decreasing in vit, this implies that the equilibrium markup is decreasing in c*
it, which is what is

claimed. γ
The above result is important because it suggests that any asymmetric equilibrium exhibits prices per quality
unit that are unequal across the models sold in the market and thus has the potential of generating the bias
described in the previous section.

5. Price index bias in the theoretical model
Now that I have developed the theoretical model of this market, it is time to consider what conventional price
index methods would measure in this market. In order to illustrate the quality bias it is essential to consider
dynamic universes of goods such that

*
1

*
0 CC ≠  and ∅≠∩ *

1
*
0 CC (30)

In principle, there are many ways in which the set of models traded in the market can change and each of
these changes might have a different effect in the theoretical example considered here. Because it is simply
impossible to consider all of these different cases, I will limit myself to one specific example. In the first
subsection, I will describe the parameterization of this example in detail. Then, in the second subsection, I
will consider what happens when standard price index methods are applied in this example.

Parameterization of example

The example that I will consider is one where the model at �the bottom of the line� in period t=0 becomes
obsolete in period t=1 and in which in period t=1 a new �top of the line� model is introduced. The �bottom of
the line� model at t=0 is the lowest-quality model, i.e. the one with the smallest ai among all i∈ C*

0. The �top
of the line� model introduced in period t=1 is such that its quality exceeds that of all models traded in period
t=0.

Consequently, in both periods the same number of models is sold. I will denote this number by
N=N0=N1. I will index the models as i=1,�,N+1, where model 1 is the �bottom of the line� model that
becomes obsolete at time t=1 and model N+1 is the new �top of the line� model introduced at t=1. This
indexation implies that C*

0={1,�,N} and C*
1={2,�,N+1}.

Two things are still to be defined. The first is the parameterization of the quality levels { } 1
1
+

=
N
iia . I will

assume that quality is increasing in i such that

( ) 11 −+= i
i ga (31)

where g>0 represents the quality growth rate across models.



17

The second is the parameterization of the unit production costs { } 1
1
+

=
N
iitc . The parameterization that I will

choose for these unit production costs is
γ+= 1*

itit acc (32)

This parameterization is such that if γ=0 then the production costs per quality unit are identical across
models and the equilibrium is symmetric. If γ<0 then the production costs per quality unit are lower for
better models and their suppliers will charge a lower price per quality unit and a higher markup in
equilibrium, as shown in proposition 3. Similarly, if γ>0 then production costs per quality unit are higher for
better models and, as in the graphical example, the price per quality unit is higher for better models. Hence, γ
represents the steepness of the cross-model production costs per quality unit schedule. Because of
proposition 3, this implies that γ also represents the steepness of the cross-sectional price per quality unit
schedule.

I will parameterize the change of c*
t over time as follows. Let ∏

∈

=
*

/1

tCi

N
tt aa  then I will assume that

γ
t

t
t a

cc
~

* =  where ( ) 01
~1~ cc π+= (33)

The reason that I parameterize c*
t like this is because, in equilibrium, the structural parameter π has a specific

interpretation. This is proven in the following proposition.

Proposition 4: Interpretation of structural parameter π

In equilibrium, the structural parameter π equals the theoretical inflation rate, i.e. π=πT.

Proof: The basis of this proof is the equilibrium equation
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what I will show is that
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11 // ++= titi aaaa (37)
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Since ai+1=(1+g)ai, this implies that
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Thus, π represents the theoretical inflation rate that is supposed to be approximated by the empirical
price index methods. γ

Given this parameterization, the question is how estimated inflation on the basis of the various price index
methods depends on the underlying structural parameters, N, g, π, γ, and λ and how it compares to the actual
level of inflation, πT. This question is addressed in the next subsection.

Quality bias

Just like in the graphical example of section 3, I will first address the bias induced by matched model indexes
and then consider hedonic price indexes in this theoretical model.

For the matched model price indexes I will solely consider the, most frequently used, IP-IQ method. The
following proposition states the properties of the IP-IQ linked matched model indexes in this example.

Proposition 5: Matched model index properties

An IP-IQ linked matched model index yields an estimate of inflation, πM, that has the following

properties:
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(i) πM =πT if γ=0.

(ii) πM >πT if γ<0.

(iii) πM <πT if γ>0.

This result does not depend on which of the price index formulas (except the Feenstra (1994) index

which is exact) is applied.

Proof: (iii): Note that the inflation rate of good i between t=0 and t=1 is given by
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Hence, what will be essential in the rest of this proof is the property of 01
~~

ii pp − . It turns out that itp~  is

increasing in ( )γti aa / . In order to see why, it is useful to rewrite (36) as

( )

γ

λλ 













−

+= −
t

i

itt

t
it a

a
pP
Pp /1~~
~

1~  for all i∈ C*
t (45)
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Applying the implicit function theorem to the above two equations yields in a straightforward manner
that
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(47)

Therefore itp~  is strictly increasing in ( )γti aa / . Furthermore, note that if γ=0, then the equilibrium is
symmetric and itp~  is equal for all i∈ C*

t.

Consequently, if γ>0 then ( )γti aa /  is increasing in i and models of higher quality have a higher

itp~ . This implies that if γ>0 then

( ) ( )11001
~~~

++ => iii ppp (48)

where the second equality follows from the proof of proposition 4. Hence, if γ>0 then for all i∈ C*
t,
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( )( ) T
ii

TT
i pp ππππ <−++= 01

~~1 (49)

Because this inequality holds for all models sold in the market in periods t=0 and t=1, matched model
price indexes calculated using the Laspeyres, Paasche, Geometric mean, Fischer, Tornqvist, and Sato
formula will all underestimate inflation. The reason is that all these price index formula have the
property that measured inflation is in the range of inflation rates of the individual models. Since the
actual inflation rate is above the maximum inflation rate measured for the models it must be that the
actual inflation rate is understated by the matched model indexes.

A reverse but similar argument yields that the matched model indexes overstate inflation whenever
γ<0. γ

This proposition is the formal mathematical proof of the informal argument that I stated with respect to
matched model price indexes for the graphical example in section 3. That is, the sign and magnitude of the
quality bias in matched model price indexes does not depend on the sign and magnitude of the overall
inflation rate. Instead, it depends on the cross-sectional behavior of prices per quality unit for the models
sold in the market.

That the bias does not depend on the sign and magnitude of the overall inflation rate follows directly
from the fact that the result in proposition 5 does not depend on the structural parameter π. The dependence
of the bias on the steepness of the cross-sectional schedule of prices per quality unit across models is implied
by the bias in the matched model indexes only depending on the parameter γ.

That is, if γ>0 then, according to proposition 3, the price per quality unit is increasing in the level of
quality embodied in the model. This is the case depicted in the graphical example of section 3 and is the case
that yields a downward bias in the measured inflation rate. If γ<0 then the reverse is true.

 So, how do hedonic price methods behave in the theoretical model here? This question can only be
answered conditional on the behavior of the imputed price levels. I do so in the next proposition.

Proposition 6: Hedonic price index properties

A hedonic price index yields an estimate of inflation, πH, that has the following properties:

(i) πH =πT if γ=0.

(ii) πH >πT if γ<0, if the imputed prices satisfy the property of the equilibrium price schedule

that prices per quality unit are decreasing in the quality embodied in the model.

(iii) πH <πT if γ>0, if the imputed prices satisfy the property of the equilibrium price schedule

that prices per quality unit are increasing in the quality embodied in the model.

Just like in proposition 5, this result does not depend on which of the price index formulas (except

the Feenstra (1994) index which is exact) is applied.

Proof: (i): If γ=0 then the equilibrium price schedule satisfies
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If the imputed prices, 0,1� +Np  and 1,1�p ,from the hedonic regression model also satisfy this property such
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then we find that the observed and imputed inflation rates satisfy
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Consequently, no matter what type of weighted average one takes of the observed and imputed inflation
rates across models to calculate πH, this average will always equal πT.

(ii): If γ<0 then the equilibrium price schedule satisfies
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If the imputed prices in the hedonic regression model also satisfy this property, such that
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then, in terms of the notation of proposition 5, the observed and imputed prices obey
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This means that the observed and imputed inflation rates satisfy
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Hence, no matter what weighted average one takes of these inflation rates across models to calculate the
hedonic inflation rate πH, it will always yield πH>πT.
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(iii): This follows in the same way as the proof of part (ii). The only thing that is different is that in
this case the equilibrium price schedule is such that the prices per quality unit are increasing in the
quality levels of the models, which yields a reversal of the inequality signs. γ

The proof of the proposition above gives some interesting insights. First of all, the hedonic price indexes
only yield an unbiased estimate of inflation whenever the equilibrium is such that the price per quality unit is
constant across the models traded in the market. However, if the price per quality unit is constant across
models, then matched model indexes will do just fine. In fact, if the price per quality unit is constant across
the models sold in the market, then one can simply measure overall inflation by considering the percentage
price change of a single model. That is, when the price per quality unit is constant across the models sold in
the market quality bias is not an issue. This itself is an important observation.

Bils and Klenow (2001) for example use microdata from the Consumer Expenditure Survey to estimate
the quality bias in the CPI for several durable consumption goods. They do so by estimating a structural
model of durable goods consumption. In order to quantify quality growth in this model, however, they
assume that independent of each household�s expenditures on a particular durable consumption good, the
price paid per quality unit is constant for all households. Hence, no matter what model the households are
buying, they are assumed to pay the same price per quality unit. This means that Bils and Klenow (2001)
implicitly assume that the price per quality unit is constant across models. However, if this identifying
assumption would be true in the data then the BLS would have had no problem quantifying quality growth in
the first place.

If the price per quality unit is constant, then relative prices represent relative quality differences. In that
case the coefficients in the hedonic regression model will represent the marginal quality coefficients of the
quality indicators. Feenstra (1995) shows that when these coefficients represent these marginal values,
hedonic price indexes will work properly. In fact, for certain classes of preferences Feenstra (1995) derives
exact hedonic indexes. However, when he considers the existence of markups he also observes that when this
is not the case then the estimated hedonic regression coefficients might over- or underestimate the quality
difference between the models.

This is the case when γ>0 and γ<0. In those cases hedonic regression coefficients do not only reflect the
marginal quality differences between the models but also reflect the slope of the price per quality unit
schedule. In order to illustrate this point in practice, I present the results of a numerical simulation of the
theoretical model in the next section.

6. A numerical simulation
So far, I have presented the properties of the price indexes in my theoretical model in the form of several
formal propositions. These propositions proved the existence of the quality bias that can be both upward as
well as downward and exists for both matched model as well as hedonic price indices. However, it is
worthwhile to see how big the bias is in the model when we actually put in some numbers. This is what I will
do in the numerical simulation in this section.
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The numbers to be put in are the structural parameters. These are N which is the number of models sold
in each period, g the quality growth rate across models, λ the preference parameter that determines the
elasticity of substitution, γ the slope of the average cost curve per quality unit, and π the theoretical inflation
level.

Propositions 5 and 6 claim that their results do not depend on the price index formula applied, except the
exact matched model index for CES-preferences by Feenstra (1994). For that reason, I will apply all the most
commonly used price index formulas. These formulas are listed in Table 1. The table contains the names and
definition of the formulas as well as a brief description where some of them are applied in practice.

Finally, in order to simulate the hedonic price indexes, I have to choose a particular model specification
for the hedonic regressions. I will assume that the researcher observes ai for each model but does not realize
that it is the actual quality level of the model and uses it as a quality indicator in a hedonic regression. The
hedonic regression model that I apply is of the following �log-log� form

iitittit aap εβββ +++= 2
210 lnlnln (57)

I allow the coefficients in the regression to be changing over time4. This means that I will perform separate
cross-sectional hedonic regressions for t=0 and t=1.

I will present my simulation in two parts. In the first part, I will present a benchmark example that turns
out to yield results that are similar to the graphical example that I gave in section 3. I discuss this example
and these similarities in detail. Then, in the second part, I will present the results for a set of other examples
that each deviate from the benchmark in the difference in one particular structural parameter.

Benchmark case

The benchmark case that I will consider is that of a market with ten models, i.e. N=10. The quality ranking
of the models is such that each model is 5% better than the next best one, i.e. g=0.05. The elasticity of
substitution between the various models is constant and assumed to equal two, such that λ=1. On the cost
side, average production costs per quality unit are increasing in quality5, such that its elasticity with respect
to quality is 0.1. This implies that γ=0.1. Finally, the benchmark case is such that overall inflation is zero, i.e.
πT=π=0. Hence, all inflation or deflation that is measured by the price indexes is spurious.

The top panel of Figure 4 depicts the equilibrium price schedules for t=0 and t=1. What a researcher
would observe in this market is that the model with the lowest price at  t=0 drops out of the market, while the
prices of the other models drop by about half a percent. The model that drops out of the market is replaced by
a model with a price that is higher than that of the other models at t=1. Because of this higher price of the
new model the average price paid per unit sold in the market increases between t=0 and t=1. However, the

                                                
4 In practical applications of hedonic price indexes the regression coefficients turn out to fluctuate a lot over time. This has been a

topic of discussion in the literature for a while. See Hulten (2002) for review of this discussion.
5 One reason that production costs per quality unit might be increasing in the number of quality units is when the best models are the

newest models and learning by doing reduces production costs over time at a higher rate than quality per model grows. That
learning by doing might be a significant source of price declines has been argued for semiconductors by Irwin and Klenow (1994).
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crucial question is how much of this increase is due to the superiority of the new model introduced at time
t=1.

What matters for the overall price change is again not the levels of unit prices but the levels of prices per
quality unit. The second panel of Figure 4 depicts the equilibrium schedules of prices per quality unit at times
t=0 and t=1. Because γ>0 these schedules are monotonically increasing in the level of quality embodied in
the various models. Finally, the bottom panel of Figure 4 depicts the log price per quality unit schedule as a
function of the logarithm of the quality level. The reason that I included this panel is because it depicts the
relationship estimated in the hedonic regression model (57). As can be seen from the panel, the logarithm of
the price per quality unit seems to be virtually linear in the logarithm of the quality level. Therefore, (57)
should yield a good fit.

So, what happens when an IP-IQ matched model index is applied in this benchmark case? Proposition 5
implies that an IP-IQ matched model index will underestimate inflation in this case. To see why this is the
case, consider Figure 5, which is the numerical equivalent of Figure 2 discussed in section 3. The application
of the IP-IQ method results in ignoring the unmatched model in t=0 which is obsolete in t=1. However, this
model has the lowest price per quality unit. Therefore, ignoring this model raises the inferred overall price
level at t=0. Similarly, the IP-IQ method also ignores the price of the new model in period t=1. However,
this model has the highest price per quality unit and, thus, ignoring it will artificially lower the inferred
overall price level in period t=1. Since the prices of all matched models fall by 0.46% between period t=0
and t=1, the IP-IQ method underestimates actual inflation by about half a percent. Since the price drop for all
matched models is identical, it does not matter what index formula is applied. This can be seen in the column
labeled (1) in Table 2. All matched model indexes, except the exact Feenstra (1994) index, yield the same
measure of 0.46% deflation.

Another way of looking at this bias is to realize that the IP-IQ method is based on the identifying
assumption that the change in the price per quality unit between the obsolete and the new model equals the
price change of the matched models. However, in this case the price change for the matched models is
-0.46% while the new model is more expensive then the obsolete one in terms of price per quality unit.

The only matched model index that works in this case is that by Feenstra (1994). Feenstra�s  index
assumes that aggregate demand is generated by CES preferences and also requires that one knows, or at least
has an accurate estimate of, the constant elasticity of substitution. If this is the case, then Feenstra�s index is
an exact matched model index here. Not surprisingly, the Feenstra index thus estimates the right inflation
rate in this case, as can be seen again in column (1) of Table 2.

It turns out to be informative to consider what the Feenstra (1994) index does differently from the other
matched model indexes. As can be seen in Table 1, Feenstra�s index is similar to Sato�s, except that it is
multiplied by a correction factor. This correction factor is a function of the ratio of the shares of the matched
models in period t=1 and in t=0. As can be seen from the demand function (5), the higher the price per
efficiency unit of a model compared to the overall price level, the lower its market share. Hence, the ratio of
the market shares of the matched models can be used to estimate difference between the price per quality unit
of the obsolete model in period t=0 and that of the new model in period t=1 compared to the overall inflation
rate. The IP-IQ method does not estimate this magnitude. It assumes it is one. Therefore, the Feenstra (1994)
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index corrects for the deviations from the identifying assumption that is made when applying the IP-IQ
method.

It turns out that hedonic price indexes do not fare any better than the matched model indexes in this
benchmark case. Figure 6, which is the equivalent of Figure 3 in the graphical example of section 3, depicts
this point. The prices imputed based on the hedonic regressions are such that they add an above average price
per quality unit for the new model in period t=0. Because of this the imputed price level in period t=0 is
biased upward. The imputed price for the obsolete model in period t=1 implies a lower than average price
per quality unit. Therefore the imputed price level in period t=1 is biased downward. Consequently, the
hedonic price index method will underestimate inflation.

For this particular example, the imputed price schedule in period t=0 is 0.46% higher than that in period
t=1 for all models. Therefore, the hedonic price index method yields 0.46% deflation, independent of the
price index formula applied.

One thing is important to note. This is that this bias is not due to the hedonic regression model (57) not
properly fitting the data. As I noted before, the logarithm of the price per quality unit is virtually linear in the
logarithm of the quality level. This translates into a perfect fit of the regression model (57) in both periods, as
can be seen from the R2 equaling one for the hedonic regressions in column (1) of Table 2.

Other examples

Besides the benchmark example in column (1), Table 2 contains 14 more numerical examples. I will briefly
discuss the main results implied by these examples here.

Only in 1 out of the 15 examples listed in Table 2 do the price index methods actually work. This is in
case (11), in which, as suggested by the results of Propositions 5 and 6, γ=0. This is the case in which the
prices per quality unit are constant across models in each period.

All 15 examples have four things in common. First of all, the Feenstra (1994) index is indeed exact and
correctly estimates the inflation level in each of the 15 cases. Secondly, nowhere do the hedonic price
indexes do much better than the matched model indexes. That is, for the numerical examples here, it does not
seem to be the case that hedonic methods better correct for quality bias then matched model indexes do.
Thirdly, the measurement bias in these examples is independent of which of the price index formulas from
Table 1 are applied. Finally, in all cases the hedonic regression model (57) seems to provide a perfect fit of
the equilibrium price schedule. Several things are worth pointing out by considering and comparing some of
the specific examples.

When we compare cases (13) through (15) with the benchmark case (1), then we observe that the
changes in the inflation rate imposed in (13)-(15) hardly matter for the size of the bias. The same is true for
the number of models in the market, when we compare cases (2) and (3) with the benchmark case. I will
discuss how these parameters influence the size of the bias in more detail in the next subsection when I
consider a log-linear approximation to the bias.

In all cases the estimated hedonic regression coefficient, β1t, is positive except for case (9). The reason
that β1t<0 in that case, even though quality is obviously increasing in ai, is that marginal production costs per
quality unit are falling rapidly as a function of the quality of the models. This is implied by the elasticity
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γ=-2. This is a numerical example of Pakes� (2002) argument that one should not consider �counterintuitive�
signs of hedonic regression coefficients as a sign of misspecification of the hedonic regression. These
coefficients are a complex function of the intersection of supply, in large part determined by the behavior of
production costs, and demand.

Because the logarithm of the price per quality unit is approximately linear in the logarithm of the quality
level, we can actually approximate the actual values of the regression coefficients in (57) by log-linearizing
the equilibrium conditions. I do so in the next subsection in which I use this approximation to quantify the
quality bias as function of the underlying structural parameters.

Log-linearized approximation of the bias

Log-linearization of equation (25) around the symmetric equilibrium derived in Proposition 2 yields
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This implies that the logarithm of the price per quality unit satisfies

( ) ( )tititiit aacap lnln~lnln/ln −++≈ γµ (59)

where lnµit is the logarithm of the markup charged on model i in period t which equals approximately
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When we take the first difference, over time, of (59), then we obtain that the percentage price change in
the price of model i between t=0 and t=1 can be approximated by

( ) ( ) gg
NN

N

aacp

TT

i
T

iii

θπ
λ

γπ

γµπγµπ

−=







−++

−−≈

∆−∆+≈∆−∆+∆≈∆≈

111
1

lnlnlnln~lnln 111111

(61)

Thus, we obtain that the inflation rates of each of the matched models deviate from the actual inflation rate
by approximately the same amount, namely -θg. Because the hedonic regression extrapolates this
approximately linear relationship for the imputation of the unobserved prices, it also finds that the imputed
inflation levels πN+1=π1=πT-θg. Therefore, the results for the hedonic price indexes do not differ much from
the matched model indexes and both are biased by approximately -θg.

What constitutes this bias? The reason for this bias is that the price index methods can not distinguish
between a movement in the price per quality unit schedule over time due to an actual change in the overall
price level and a move in the schedule because the introduction of a new model shifts the relative
competitive advantages (in production and the market) and thus prices of the models sold in the market.
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In order to see this, consider Figure 7. It disentangles the various effects on the schedule of the logarithm
of the price per quality as a function of the logarithm of the quality. That is, it graphically represents the first
difference of (59) over time and the various things that influence it.

Consider model i at time t=0. It has price pi0, such that the logarithm of its price per efficiency unit is
ln(pi0/ai). At time t=0 it is at point A on the log price per quality unit schedule. For expositional purposes, I
have drawn this graph for π<0 and γ>0. The drop in the overall price level π<0 shifts the log of the price per
quality unit of model i down from point A to point B. However, something else happens at the same time as
well. That is the introduction of the new model N+1 and the exit of model 1.

Because of the introduction of the new, superior, model and the fact that production costs are increasing
in the quality embodied in the model, the production costs of model i relative to those of its competitors will
drop. This allows the supplier of model i to charge a lower price per quality unit than in period t=0. In fact,
because of the setup of the model, model i+1 takes over model i�s position in the relative quality ladder in
period t=1. Therefore, in period t=1 model i+1 will be sold at the same relative price per quality unit that
model i was sold at in period t=0. This is depicted in Figure 7 by the horizontal shift from B to C. The slope
of the log price per quality unit schedule, i.e. θ, and the length of the horizontal shift, i.e. g, then jointly
determine how far below ln(pi0/ai)+π the logarithm of model i�s price per quality unit in period t=1, i.e.
ln(pi1/ai), ends up.

Hence, in terms of this Figure 7, the problem of the price index methods is that they do not distinguish
between the actual change in the overall price level, depicted by the shift from A-B, and the effect of the shift
in the relative qualities of the models due to the introduction of a new model, depicted by the movement
from B-D.
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7. Conclusion
In this paper I argued that the quality bias in price indexes does not necessarily always bias them upwards. I
illustrated how the sign and the magnitude of this bias depend on the cross-sectional behavior of prices per
quality unit across the models sold in the market. I did so by introducing a theoretical model that generated a
quality bias in inflation as measured using the most common price index methods. The three main points that
can be taken away from the analysis here are.

First and foremost, the quality bias can be both positive and negative. The sign of the bias does not
depend on the actual underlying overall inflation rate. Instead, it solely depends on the cross-sectional
behavior of prices per quality unit.

Secondly, the bias does not depend on which of the many proposed price index formulas are used to
calculate the index. Laspeyres, Paasche, Geometric mean, Fisher Ideal, Tornqvist, and Sato indexes all
performed is a similar manner in the theoretical model in this paper.

Finally, hedonic price indexes do not necessarily reduce the quality bias. In the examples in this paper,
hedonic methods did just as poorly as matched model indexes. However, other examples, like the one given
in Hobijn (2001), suggest that they might actually do worse in some cases.

This result is important because the application of hedonic price indexes seems to gain momentum both
with statistical agencies, see Moulton (2001) for example, as well as with researchers. In fact, an extensive
recent research agenda, including Greenwood, Hercowitz, and Krusell (1997), Violante, Ohanian, Rios-Rull,
and Krusell (2000), and Cummins and Violante (2002), has been using Gordon�s (1990) hedonic equipment
price index as a measure of the �true� quality adjusted price change for equipment in the U.S.. However, the
results here suggest that one has to be careful in using this hedonic price index as such a benchmark. Simply
because it measures less equipment price inflation than price indexes published by the Bureau of Economic
Analysis and Bureau of Labor Statistics, does not necessarily mean it adjusts better for quality.

The results in this paper provide additional insight in which type of competitive circumstances are
suspect to generating a bias, up or down, in the price indexes we calculate. Future research could focus on
empirical tests of these conditions and of identifying in which markets what bias is the most likely to occur.
At least it seems that the conventional wisdom that the quality bias biases measured inflation upward
deserves a more thorough empirical verification.
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Table 1. Price index formulas applied in this paper

Index Formula Applied
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Note: All indexes are meant to measure percentage price change between t=0 and t=1. πi denotes the percentage price change of
item i between t=0 and t=1. sit is the expenditure share of good i in period t. C*
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denoted without time index it is assumed that C*
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1=C*. λ>0 is the parameter used in the CES specification of the theoretical

model of section 3 and beyond.
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Table 2. Inflation estimates and hedonic regression results for various price index methods and formulas

parameter (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

N 10 5 50 10 10 10 10 10 10 10 10 10 10 10 10
g 0.05 0.05 0.05 0.025 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
λ 1 1 1 1 1 0.5 2 20 1 1 1 1 1 1 1
γ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -2 -0.1 0 2 0.1 0.1 0.1
π (in %) 0 0 0 0 0 0 0 0 0 0 0 0 -10% 10% 50%

Matched model indexes (IP-IQ linked)
Laspeyres -0.460 -0.427 -0.482 -0.233 -0.896 -0.451 -0.469 -0.484 9.622 0.462 0.000 -8.777 -10.414 9.494 49.310
Paasche -0.460 -0.427 -0.482 -0.233 -0.896 -0.451 -0.469 -0.484 9.621 0.462 0.000 -8.777 -10.414 9.494 49.310
Geometric (G0) -0.460 -0.427 -0.482 -0.233 -0.896 -0.451 -0.469 -0.484 9.621 0.462 0.000 -8.777 -10.414 9.494 49.310
Geometric (G1) -0.460 -0.427 -0.482 -0.233 -0.896 -0.451 -0.469 -0.484 9.621 0.462 0.000 -8.777 -10.414 9.494 49.310
Fisher -0.460 -0.427 -0.482 -0.233 -0.896 -0.451 -0.469 -0.484 9.621 0.462 0.000 -8.777 -10.414 9.494 49.310
Tornqvist -0.460 -0.427 -0.482 -0.233 -0.896 -0.451 -0.469 -0.484 9.621 0.462 0.000 -8.777 -10.414 9.494 49.310
Sato -0.460 -0.427 -0.482 -0.233 -0.896 -0.451 -0.469 -0.484 9.621 0.462 0.000 -8.777 -10.414 9.494 49.310
Feenstra 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -10.000 10.000 50.000

Hedonic price indexes
Laspeyres -0.460 -0.428 -0.482 -0.233 -0.897 -0.451 -0.469 -0.484 9.620 0.462 0.000 -8.838 -10.414 9.494 49.310
Paasche -0.460 -0.428 -0.482 -0.233 -0.897 -0.451 -0.469 -0.484 9.550 0.462 0.000 -8.828 -10.414 9.494 49.310
Geometric (G0) -0.460 -0.428 -0.482 -0.233 -0.897 -0.451 -0.469 -0.484 9.619 0.462 0.000 -8.838 -10.414 9.494 49.310
Geometric (G1) -0.460 -0.428 -0.482 -0.233 -0.897 -0.451 -0.469 -0.484 9.550 0.462 0.000 -8.828 -10.414 9.494 49.310
Fisher -0.460 -0.428 -0.482 -0.233 -0.897 -0.451 -0.469 -0.484 9.585 0.462 0.000 -8.833 -10.414 9.494 49.310
Tornqvist -0.460 -0.428 -0.482 -0.233 -0.897 -0.451 -0.469 -0.484 9.585 0.462 0.000 -8.833 -10.414 9.494 49.310

Hedonic regression results for t=0
constant 0.726 0.802 0.585 0.737 0.707 0.422 1.149 3.123 1.166 0.768 0.747 0.336 0.726 0.726 0.726
ln(ai) 1.094 1.088 1.099 1.094 1.094 1.092 1.096 1.099 -0.940 0.905 1.000 2.841 1.094 1.094 1.094
ln(ai)2 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.117 0.000 0.000 0.112 0.000 0.000 0.000
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hedonic regression results for t=1
constant 0.722 0.798 0.580 0.734 0.698 0.417 1.144 3.118 1.261 0.773 0.747 0.246 0.617 0.817 1.127
ln(ai) 1.094 1.088 1.099 1.094 1.094 1.092 1.096 1.099 -0.951 0.905 1.000 2.830 1.094 1.094 1.094
ln(ai)2 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.113 0.000 0.000 0.113 0.000 0.000 0.000
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 1. Price per quality unit schedule and related notation.
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Figure 2.  Downward bias in inflation measured using matched model index.
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Figure 3. Downward bias in inflation measured using hedonic price index methods.
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Figure 4.  Price schedule and price per quality unit schedule for benchmark case (1).
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Figure 5. Application of matched model indexes in benchmark case (1).
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Figure 6. Application of hedonic price indexes in benchmark case (1).
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Figure 7. Graphical representation of log-linearization of bias in inflation measures


