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A Three-Factor Econometric Model
of the U.S. Term Structure

Abstract

We estimate a three-factor model to fit both the time-series dynam-
ics and cross-sectional shapes of the U.S. term structure. In the model,
three unobserved factors drive a discrete-time stochastic discount pro-
cess, with one factor reverting to a fixed mean and a second factor
reverting to a third factor. To exploit the conditional density of yields,
we estimate the model with a Kalman filter, a procedure that also allows
us to use data for six maturities without making special assumptions
about measurement errors. The estimated model reproduces the basic
shapes of the average term structure, including the hump in the yield
curve and the flat slope of the volatility curve. A likelihood ratio test
favors the model over a nested two-factor model. Another likelihood
ratio test, however, rejects the no-arbitrage restrictions the model im-
poses on the estimates. An analysis of the measurement errors suggests
that the three factors still fail to capture enough of the comovement
and persistence of yields.

JEL Codes: E43, G12, G13.

Keywords: Term structure, pricing kernel, affine yields, mean reversion,
time-varying mean, Kalman filter.



A Three-Factor Econometric Model
of the U.S. Term Structure

1. Introduction

The reconciliation of the time-series dynamics of yields with the cross-
sectional shapes of the term structure continues to be a challenge for equilib-
rium models. When such models relied on a single factor, the problem was that
estimates based on time-series data failed to reproduce the average shapes of
actual curves.! With estimates based on cross-section data, the problem was
that parameter values necessarily changed with shifts in the term structure.?
The advent of multi-factor models has transformed the challenge from one of
capturing the yield curve’s unconditional moments into one of capturing its
conditional moments, which indeed is what the pricing of actual fixed-income
instruments would require. In this paper, we estimate a three-factor model of

the U.S. term structure to exploit the yields’ conditional density and test the

1Backus and Zin (1994) and Campbell, Lo, and Mackinlay (1994) emphasize this point.
The latter state, “But in simple term structure models, there also appear to be systematic
differences between the parameter values needed to fit cross-section term structure data
and the parameter values implied by the time-series behavior of interest rates.” Part of the
problem was that the models assumed that yields were affine, i.e., linear functions of the
short rate. However, Chan, et al. (1992), Ait-Sahalia (1996), Eom (1995), Stanton (1996),
Andersen and Lund (1996), and Gallant and Tauchen (1996b) provide evidence on the short

rate’s movements that suggest non-affine yields.
2To market participants, it is more critical that their model be consistent with the cross

section than with the time series, particularly for pricing contingent claims. However, as
Black and Karasinski (1991) point out, relying solely on cross section data means having a
different model from one moment to the next. Among the popular cross-section models are
Ho and Lee (1986), Black, Derman, and Toy (1990), Hull and White (1990), and Heath,
Jarrow, and Morton (1992).



model’s ability to meet the current challenge.

The efforts to reconcile time-series data with the average shapes of the term
structure have tended to rely on the generalized method of moments (GMM),
and in practice this meant placing cross-sectional restrictions on unconditional
moments. Gibbons and Ramaswamy (1993), for example, impose restrictions
on both the unconditional first and second moments of the short rate to fit the
one-factor model of Cox, Ingersoll, and Ross (1985), or the CIR model. Backus
and Zin (1994) place restrictions on the unconditional first moments of several
yields up to the ten-year maturity. Longstaff and Schwartz (1992) estimate
a two-factor model, with the short rate and its volatility as the two factors,
and impose restrictions on unconditional first moments from a reduced-form
model. The use of a model for the pricing of actual instruments, however,
would require the far more stringent test of fitting the conditional moments,

that is, of capturing the term structure’s shapes at each point in time.

Maximum likelihood procedures have recently allowed the use of condi-
tional moments to estimate term structure models but have often required
special assumptions about measurement errors. Chen and Scott (1993) es-
timate a one-factor model, a two-factor model, and a three-factor model by
maximiziug a hkelihood based on the factors’ couditional moments. To derive
the factors, however, their procedure requires the assumnption of zero measure-
ment error for as many yields as they have factors. Their estimates lead to the
puzzling result that a likelihood ratio test for non-nested hypotheses rejects
their three-factor model in favor of their two-factor model at the same time
that the three-factor model outperforms the two-factor model in pricing bonds
over time. Pearson and Sun (1994) also exploit the factors’ conditional density

in estimating a two-factor CIR model. They derive the factors by using two



yields at a time and assuming no measurement error for either yield. They
find that a likelihood ratio test rejects the CIR model and an extended model

performs as poorly as a naive model.

The number of factors required for an adequate term structure model i1s
a related issue. The point is to build a consistent model with as few factors
as possible. Litterman and Scheinkman (1991) show that three factors can
explain nearly all the variation in bond returns. They interpret their factors
as representing the level of interest rates, the slope of the yield curve, and
the curvature of the yield curve. However, they do not ensure that their
factor loadings are consistent with no arbitrage. Gong and Remolona (1996)
are careful to impose no arbitrage when they fit three alternative two-factor
models to U.S. quarterly yield data. However, they fail to find a model that
is adequate for explaining the whole term structure, and they conclude that
at least three factors would be required for that purpose. Using Gallant and
Tauchen’s (1996a) efficient method of moments (EMM), Andersen and Lund
(1996) find that a three-factor model explains the movements of the short-term

rate well. However, they do not fit their model to the term structure.

In this paper, we specify a discrete-time, affine-yield, three-factor model.
We follow Backus and Zin (1994) and Campbell, Lo, and MacKinlay (1994), or
CLM, by specifying the model in terms of a discrete-time stochastic discount
process or pricing kernel. Specifying the model in discrete time avoids the
pitfalls of estimating a continuous time model with discrete-time data.® In
this model, three unobserved factors drive the pricing kernel: one factor reverts

over time to a fixed mean while a second factor reverts to a time-varying mean

3Ait-Sahalia (1996) points out that the approximation of a continuous time process by

discretization methods is hard to justify even for daily data.



that serves as the third factor. Shocks to the third factor represent a risk
priced by the market. To maintain tractability, we write the model to satisfy
Duffie and Kan’s (1993) conditions for affine yields. Asin Gong and Remolona
(1996), we keep the model affine in part by specifying a single source of priced

risk.4

To estimate the model, we exploit the conditional density of the yields by
using a Kalman filter while imposing restrictions implied by arbitrage con-
ditions. Jegadeesh and Pennacchi (1996) and Gong and Remolona (1996)
implement this maximum likelihood procedure for two-factor models but do
not test the arbitrage conditions. The procedure has the advantage of letting
the data determine the measurement errors, and we use these errors to test
the model. The data consist of monthly U.S. Treasury zero-coupon yields
from January 1984 to March 1995. We use six maturities: three months, six

months, one year, two years, five years, and ten years.

The estimated model performs well in certain respects but fails its most
critical test. The model reproduces the basic shapes of the average term
structure, including the hump in the yield curve and the flat slope of the
volatility curve. A likelihood ratio test for nested hypotheses favors the model
over a two-factor version. The real test of the model, however, is whether the
arbitrage restrictions it implies are consistent with yield movements across the
term structure. A strict likelihood ratio test rejects these arbitrage restrictions.
Our analysis of the measurement errors suggests that the three factors are still

insufficient to capture enough of the comovement and persistence of yields.

The paper is organized as follows: In Section II, we discuss pricing-kernel

“It is possible to specify a discrete-time affine-yield model with more than one source of

priced risk if these sources are uncorrelated. Here, however, we opted to allow correlation.



affine yield models in general and specify our three-factor model. In Section
111, we estimate the model by means of a Kalman filter. In Section IV, we
interpret the results in terms of reproducing the average shapes of the term
structure. In Section V, we test the model against a nested two-factor version.
In Section VI, we test the arbitrage restrictions of the model. In Section VII,

we discuss the reasons for the model’s failure.

I1. Theory: Pricing Kernels, Affine Yields, and Three

Factors
A. Background Literature

Theoretical work with equilibrium models, notably by Vasicek (1977) and
Cox, Ingersoll, and Ross (1985), or CIR, show how the term structure at
a moment in time would reflect regularities in interest rate movements over
time. In the simplest such models, the short-term interest rate is the single
factor driving movements in the term structure. Vasicek assumes that the
short-rate’s volatility is constant, while CIR assume that it is proportional to
the square root of the short rate itself. The absence of arbitrage requires that
the ratio of expected excess return to return volatility be the same for different
bonds. This arbitrage condition, the assumption of lognormal bond prices, and
either Vasicek’s or CIR’s short-rate volatility produce an affine-yield solution
in which all bond yields (or log bond prices) are linear functions of the short-
term rate. Such linearity simplifies the pricing of fixed-income securities and
contingent claims. In the two-factor models of Brennan and Schwartz (1982),
Schaefer and Schwartz (1984), Longstaff and Schwartz (1992), and CLM (1994)

and in the three-factor model of Chen and Scott (1993), similar assumptions



generate bond yields that are also linear in the factors. Duffie and Kan (1993)

establish the conditions that produce such affine yields in general.

Rather than model the short-term interest rate directly, Backus and Zin
(1994) and CLM (1994) specify a discrete-time stochastic discount process
or pricing kernel to price assets in general. The discrete-time specification
avoids the pitfalls of estimating continuous-time processes with discrete-time
data. Ait-Sahalia (1996) points out that the approximation of continuous-time
models by discretization methods is hard to justify even with high-frequency
data. Arbitrage opportunities are avoided by applying the same pricing ker-
nel to different assets. In this approach, the factors are unobservable state
variables that serve to forecast discount rates. Pricing kernel models can also
be specified so that bond yields are affine in the factors and, with a linear
transformation, affine in the short rate as well. We describe below such a

pricing-kernel affine-yield model with K factors.
B. The Pricing Kernel

The pricing kernel approach relies on a no-arbitrage condition common to
intertemporal asset pricing models.® In the case of zero-coupon bonds, the

price of an n-period bond is
Pnt = El[Mt+1Pn—l,t+1]a (1)

where My, is the stochastic discount factor. The condition expresses the price
of the bond as the expected discounted value of the bond’s next-period price.

It rules out arbitrage opportunities by applying the same discount factor to

5Gingleton (1990) provides a critical survey of these models, particularly their empiri-
cal performance. Duffie (1992) relates arbitrage conditions to concepts of optimality and

equilibrium.



all bonds. We will model P,; by modeling the stochastic process for M4,
a process called the pricing kernel.® Indeed we can solve (1) forward to get
Pot = Ey{Myy1...Myys), which specifies bond prices to be simply functions of
the future discount factors. By convention we normalize Py, = 1 to ensure the

equality of a bond’s price at maturity to its par value.
C. K-Factor Affine Yields

We assume that M,,, is conditionally lognormal, so that we can take logs

of (1} and write it as

1
Put = Ed(megr + Prore41) + §Va7‘z(mz+1 + Pn-t,41), (2)

where lower-case letters denote logarithms of upper-case letters. Furthermore,
if we have K factors, 2y, T2, - - ., Tk1, that forecast myyy, an affine yield model

can be written as
~Pnt = A, + Blnzlt + Bypxge + ...+ Bl\"nxl\'b (3)

Since the n-period bond yield is yny = —pni/n, yields will also be linear in the
factors. The coeficients A,, Bin, Ban,.-., Bk, will depend on the stochastic
processes of Ty, Tq...,Tx¢ Since the number of factors is usually smaller
than the number of maturities on the curve, the factor structure would im-
ply restrictions across coeflicients for bond prices of different maturities. In
practice, specifying Ay, Bin, Ban,- .., Bin involves solving (2) based on the

stochastic processes of 14, g, - - -, Txy and verifying that (3) holds.

SThe term “pricing kernel” is due to Sargent (1987). In consumption-based equilibrium
models, M.y, would represent the marginal rate of substitution between present and next-

period consumption (Lucas 1978, for example).



D. Previous Results with Two Factors

In the effort to reconcile time-series data with cross-section data on interest
rates, models with fewer than three factors have not fared well. Backus and Zin
(1994) and CLM (1994) argue that the basic problem with one-factor models
is that the yield curve’s steep slope near the short end requires swift mean
reversion by the factor while the curve’s flat slope near the long end requires
slow mean reversion. The flat slope of the volatility curve also requires slow
mean reversion. Gong and Remolona (1996) demonstrate that the problem is
not solved with two factors. They find that the data favor models in which one
of the factors is a time-varying mean, which serves to produce the characteristic
hump in the U.S. yield curve around the one-year to two-year maturities. The
other factor must then revert rapidly to this mean to create a steep yield curve
near the short end but revert slowly to create both a flat yield curve near the

long end and a flat volatility curve.
E. Three-Factor Affine Yields: Model Specification

We now propose a three-factor model. We follow Backus and Zin (1994),
CLM (1994), and Gong and Remolona (1996) by specifying the model in terms
of a discrete-time pricing kernel. To maintain tractability, we write the model
to satisfy Duffie and Kan's (1993) conditions for affine yields. In this model,
three unobserved factors drive the pricing kernel: one factor reverts over time
to a fixed mean while a second factor reverts to a time-varying mean that
serves as the third factor. Two-factor time-varying mean models have been
estimated by Balduzzi, Das, and Foresi (1996), Gong and Remolona (1996),
and Jegadeesh and Pennacchi (1996).

Three factors drive the pricing kernel, and the factors are not directly



observable. Two of the factors affect expectations of the stochastic discount
factor for the next period, while the third factor affects the ultimate destination
of the stochastic discount factor. Specifically, the conditional expectation of
the negative of the log stochastic discount factor depends on the sum of two

factors:

—Myq1 = Ty + Tag + Weg, (4)

where w4, represents the unexpected change in the log stochastic discount
factor and will be related to risk. The shock w,,, has mean zero and a variance
that will be specified to depend on the time-varing mean of the second factor.
Each of these factors follows a univariate AR(1) process with heteroskedastic

shocks described by a square-root process:

Tirr = (1—¢)0+ drzre + ,u?'sul,tn
Topr = (1= d2)pe + $aZay + 1] Pz (5)

pen = (1= dap + dape + pg "tz a1,
where 1 — ¢y, 1 — ¢, and 1 — @3 are the rates of mean reversion, 6 and p are the
long-run means to which the factors revert, and w41, Uset1, and uzgyq are
shocks with mean zero, volatilities o1, 02 and o3 and covariances 012,013,023
The shocks have a common source of heteroskedasticity in that they are all
proportional to u®*. This common square-root process permits affine yields

while allowing correlations among the shocks.
As in Gong and Remolona (1996), we specify the shock to m; to be
proportional to the shock to ge41, which in turn depends on the level of u;:
Wiy = /\/l?'sua.t“y (6)

where A represents the market price of risk. When A is negative, bond returns

are inversely correlated with the stochastic discount factor and risk premia

9



are positive. The model can thus be characterized as a three-factor single-risk

model.”
We now verify that yields are affine in the factors, that is, we can write

1
Ynt = ;(An + Blnl‘lt + B2n$2¢ + BSn,ut)- (7)

The normalization pg, = 0 gives us coefficients of Ag = Byg = By = Bz = 0.

We can then derive the one-period yield or short rate as

1
Yia = Pt = _Et(mt+1) - ivart(mt-{-l)

Il

1
Tyt + Tape — 5/\202/11» (8)

which is also linear in the factors, with the coefficients A, = 0, By; = By =1,

and By = —1A%03.

In Appendix A we verify that the yield of an n-period bond is linear in the

factors with the coefficients restricted by

An = Aw1+ (1= ¢1)8Bray + (1 — ¢3)p By

1+ é1B1,n-1

Ban = 14 ¢2B2n (9)
Bs, = ¢3B3n1+ (1= ¢2)Bya1

1
- ~é[(’\ + B3,n—1)20§ + B%,n—lal2 + Bg,n~10§

I

Bl,n

+ 2\ + Bsn1)Brn-1013 + 2(A + B3 1) Bain-1023 + 2By n-1Ban-1012),

The coefficients By, Ban, and Bs, are factor loadings for xy;, 22, and p,.

The coefficient A, represents the pull of the factors to the means 6 and p.

"With discrete-time models, accommodating more than one risk would require zero cor-

relation between shocks that are sources of risk.

10



These recursive equations impose cross-sectional restrictions to be satisfied by

twelve pa’ra‘meterS: ¢17 ¢'21 ¢37 01 Y, 01, 02, 03, 012, 013, 23, and A.

The volatility curve is derived from the conditional variance of the n-period

yield:

1
Vart(yn.H-l) = F(Bfnaf + Bgnog + Bgnag

4+ 2B, Ban012 + 2B1,B3,013 + 2Ban Ban023) . (10)

We would have a downward-sloping volatility curve given that é1, ¢a, and ¢3
are less than unity. Mean reversion by the factors serves to dampen yield

volatilities as maturity is lengthened.

A linear transformation of this model will give us a reduced form which
expresses the yield for any given maturity as a linear function of any three
other yields, or of one other yield, the conditional variance of any yield, and
the conditional expectation of any yield. This follows from the fact that yields,
conditional variances, and conditional expectations are different linear func-
tions of the factors. Such a reduced form will therefore nest the one-factor
models of Vasicek (1977) and CIR (1985) and the two-factor models of Bren-
nan and Schwartz (1982), Schaefer and Schwartz (1984), and Longstaff and

Schwartz (1992).

The model also allows us to measure term premia. We can derive term

premia in the form of the expected excess bond return:
Epn-1g41 =Pt — Yu = ~A(Bi 1013 + Ban1023 + BB‘n—lag)/‘t
1
- E{Bf,n—lgf + Bg,n—lag + Bg,n—log (11)
4+ 2Bin1Bin-1012+2B1a1B3p1013 + 2B; n-1B3n-1023 1
= —(AMI+T)p,

11



where

N = (Bia-1013 + Bano1023 + Bypo103) (12)
1
F = §(B12,1z—1012 + Bg,n—-lag + Bg,n~]a§

+ 2By Ban-1012+ 2B1 a1 Bano101a + 2820183 n-1023) e (13)

The term IT represents a risk premium that depends on the covariance between
the stochastic discount factor and bond returns, while the second term I’
represents Jensen’s inequality arising from the use of logarithms. Positive
term premia require that A be so negative that

r
~A> 5 (14)

Note also that if o3 = 0, we will have homoskedastic shocks, term premia will

be constant, and the pure expectations hypothesis will hold.

III. Estimating the Model
A. An Econometric Approach

Because the factors driving the dynamic movements of the stochastic dis-
counting factor are not directly observable, the model lends itself to estimation
by a Kalman filter. This maximum likelthood procedure exploits the condi-
tional density of observed yields to extract conditional forecasts of the unob-
served factors. In this application, we impose the model’s arbitrage conditions

as overidentifying restrictions.

Other maximum likelihood procedures also allow the use of conditional mo-
ments to estimate term structure models, but these procedures require special

assumptions about measurement errors. Chen and Scott (1993) estimate a

12



one-factor model, a two-factor model, and a three-factor model by maximizing
a likelihood based on the factors’ conditional moments. To derive the factors,
however, their procedure requires the arbitrary assumption of zero measure-
ment error for as many yields as they have factors. Pearson and Sun (1994)
also exploit the factors’ conditional density in estimating a two-factor CIR
model. They derive the factors by using two yields at a time and assuming no

measurement error for either yield.

The Kalman filter provides a way to exploit the conditional moments of the
yields while allowing measurement errors for all the yields used in the estima-
tion. In an early application, Fama and Gibbons (1982) used a Kalman filter
to extract estimates of expected real returns from ex post inflation and three-
month Treasury-bill rates. More recently, Jegadeesh and Pennacchi (1996) and
Gong and Remolona (1996) applied the procedure to two-factor term struc-
ture models. In the present application, the yields as affine functions of the
factors serve as the measurement equations of the Kalman filter and the fac-
tors’ stochastic processes as the transition equations. The model’s arbitrage
conditions, however, imply strong restrictions between the measurement and
transition equations, and we take careful account of these restrictions. While
the procedure has the advantage of letting the data determine the measure-
ment errors, these errors prevent us from solving the measurement equations
to derive the factors directly. Hence, the likelihood function is based on the
conditional density of the yields rather than the factors. The data consist of
monthly U.S. Treasury zero-coupon yields from January 1984 to March 1995.
We use six maturities: three months, six months, one year, two years, five

years, and ten years.

In spirit, our work is close to Backus and Zin (1994) in that we use the

13



observed yields to determine the dynamics of the underlying stochastic dis-
count factor. Backus and Zin estimate a reduced form in the sense that they
study various ARMA processes for the stochastic discounting factor. We es-
timate a structural model by specifying the underlying factors that drive the
pricing kernel. An ARM A(3,2) yield process is generated by our three AR(1)

factors.®
B. Data and Summary Statistics

We obtain end-of-month zero-coupon yield data from McCulloch and Kwen
(1993) for 1984:1 to 1990:12 and from the Federal Reserve Bank of New York
for 1991:1 to 1995:3. In the case of the Federal Reserve data, each zero curve
is generated by fitting a cubic spline to prices and maturities of about 160 out-
standing coupon-bearing U.S. Treasury securities. The securities are limited
to off-the-run Treasuries to eliminate the most liquid securities and reduce the
possible effect of liquidity premia. Fisher, Nychka, and Zervos (1995) explain
the procedure in detail. Summary statistics for the yields with maturities of
three months, six months, one year, two years, five years, and ten years for
the sample period 84:1-95:3 are reported in Table 1. The average yield curve
is upward sloping, with mean yields rising from 6.25 percent to 8.47 percent.
Its slope is steep near the short end and flat near the long end. This curve is
somewhat hump-shaped, with the hump located near the two year maturity.
The average volatility curve is downward sloping with a relatively flat slope.
The average volatility as measured by sample standard deviation is 2.01 per-
cent at the short end and 1.67 percent at the long end. The yields across the

curve are all very persistent, with first-order monthly auto-correlations of 0.98.

3Engel (1984) derives the sums, products, and time aggregations of ARMA processes.

14



C. Kalman Filtering and Maximum Likelihood Estimation

We write the model in the linear state-space form, with the measurement

equation
Yit a biy Pai by T vt
= | i+ o | H| P (19)
Ynt [« bl,n b2,n bS,n e vn,t

where ¥y, .. . , Yn, are zero-coupon yields at time ¢ with maturities {,...,n and

the measurement errors v, = {vyy, . .., Vs }/ are assumed to be i.i.d.:

0 e ... 0
0 0 ... e

and aj — Ak/k,bl,k = B]lk/k,bg,k = Bgyk/k, bB,k = B3,k/k,k = 1,. Loy T

Allowing such measurement errors is an important difference between our
Kalman filter procedure and other maximum likelihood procedures based on

conditional moments.

The transition equation is

T1,t41 (1 - ¢1)9 o 0 Tyt Up,e41
Taag1 | T 0 +1 0 ¢ 1-¢; Tae |+ £ | ugem
Hegt (1 - ¢a)p 0 0 b3 B U3,141

with shocks to the state variables distributed as

2

Uy, t41 0 gy 012 013
2

U2,t41 "‘N( 01, 012 0Oy 023 ). (17)
2 3

U3,t+1 0 O3 Oa3 O3



In standard linear state-space models, no restrictions link the measurement
equation and the transition equation. This time, however, the measurement
equation comes from the transition equation and the no-arbitrage conditions,

and the restrictions are given by equation (15).

After putting the restrictions into the measurement equations, the preced-
ing model is estimated by maximum likelihood using the Kalman filter. The
algorithm is discussed in Appendix C. For more detailed discussions of the

Kalman filtering procedure, see, for example, Hamilton (1994).

1V. Estimates and Factors

The estimated parameters describe three factors that differ in their rates
of mean reversion and volatility and combine to reproduce the average shape
of the U.S. term structure. Table 3 reports parameter estimates and mea-
surement errors based on three sample periods: the full sample from January
1984 to March 1995 and the subsamples January 1984 to December 1990 and
January 1991 to March 1995. The different samples produce reasonably simi-
lar parameter estimates, suggesting a degree of stability in the pricing kernel.
These estimates characterize an incredibly stable and slow moving first factor
and a rather volatile second factor that reverts rapidly to a less volatile third

factor. We also find sizeable measurement errors for each of the six yields.
A. Parameters

The mean reversion rates are sharply different for the three factors. These
rates also seem rteasonable compared with other estimates. Recall that the

rates of mean reversion are given by 1 — ¢; for the first factor, 1 — ¢, for

16



the second factor, and 1 — ¢3 for the third factor. The estimates for these
parameters are quite precise and all are statistically significant. In the full-
sample estimates, the first factor reverts to its fixed mean at the rate of 0.2
percent a month. Such a slow rate implies a mean half life of 27.5 years.
Even this rate, however, is not so slow compared with other estimates. Chen
and Scott (1993) report a half life of 771 years for one factor in a two-factor
model. Our second factor reverts at the rate of 8.8 percent a month, implying
a relatively short mean half life of 7.5 months. Pearson and Sun (1994) report
a half life of roughly a month for one of their factors in one of their estimates.
Our third factor reverts at the rate of 5.3 percent a month, implying a mean
half life of 12.8 months, which is longer than that of the second factor but

shorter than that of the first.

For our estimates, the slower the mean reversion, the less volatile the factor.
The first factor’s volatility is only 0.1 percent, the second factor’s volatility 26.9
percent, the third factor’s volatility 18.6 percent. It makes sense for a factor
representing a time-varying mean to be less volatile than the factor that reverts
to it. At the same time, it is interesting that even this time-varying mean is
much more volatile than the first factor. The first factor has little correlation
with other factors, while the second and third factors are positively correlated.
In the model, the time-varying mean is also the source of the time variation
in the risk premium. The price of risk has the expected negative sign and is
statistically significant. This price of risk and the volatility of the third factor

show that there is significant time variation in the term premium.
B. The Implied Factors

The Kalman filter procedure allows us to back out the three factors for each

month by conditioning on the time series of six yields up to that month. Figure

17



1 plots these implied factors. The first factor is depicted as an almost straight
line with a slowly declining trend, reflecting the factor’s small volatility and
slow mean reversion. The second and third factors exhibit wide swings, with
the second factor showing wider swings than the third factor. The reversion of
the second factor to the third factor is evident. We suspect that the first factor
may represent expectations of inflation, a process that has been characterized
as a long-memory process (Backus and Zin 1993). We suspect that the third
factor represents the expected real return over the medium term consistent
with the outlook for the business cycle, while the second factor reflects the

currently expected real return.
C. Shaping the Term Structure

How well do the three factors reproduce the actual shapes of the average
term structure? The term structure is represented by both the yield curve
and the volatility curve. The average U.S. yield curve can be characterized
as having a steep slope near the short end, a flat slope near the long end,
and something like a hump around the one-year to two-year maturities. The
average U.S. volatility curve can be characterized as downward sloping but
with a rather flat slope. Figure 2 shows the average yield curve for our full
sample and the yield curve based on the unconditional first moments implied
by the model. The chart shows that the factors capture the basic shape of the
yield curve, including the hump around the two-year maturity. Figure 3 shows
the average volatility curve and the volatility curve based on the unconditional
second morments implied by the model. Again the chart shows that the factors
capture the basic shape of the volatility curve, particularly its relatively flat

slope.

The slopes of the yield curve near either end are the easiest characteristics
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of the term structure to explain. The first factor determines the slope near
the long end, because it is the factor with the slowest mean reversion. In fact,
a rather slow mean reversion rate is required to keep the curve from declining.
It would have the most influence on the long end because a shock to the factor
would persist the longest and would be the shock most likely to be reflected in
long-term yields. The second factor determines the slope near the short end,
because it is the factor with the most rapid mean reversion, and it would have
its greatest effect on the shorter term yields. These explanations are consistent
with the factor loadings shown in Figure 4. The picture portrays the first factor
as having an effect on yields that decays very slowly as maturity is lengthened
and the second factor as having an effect that dies down so swiftly that its

effect at the ten-year maturity is only an eighth of that of the first factor.

The hump in the yield curve is a feature associated with the time-varying
mean and the effect it has on the risk premium. Such an association is evident
in our time-varying mean models with two factors (Gong and Remolona 1996).
In these models, the time-varying mean factor induces hetoreskedasticity in
volatility, and this source of risk is priced. In the present three-factor model,
the loading for this factor, as shown in Figure 4, is negative, rising rapidly

near the short-end. It then becomes flat after the three-year maturity.

To produce the right curvature, however, requires the right mean reversion
rate as well as the right volatility and price of risk. Figure 5, for example,
shows the implied yield curve produced with the third factor having a mean
reversion rate of 10 percent instead of 5 percent. The curve overshoots the
average yields between three-month to six-month yields and one-year to five-

year maturities.

In general, a downward sloping volatility curve requires mean reversion
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and a flat curve slow mean reversion. To produce the right shape for this
curve, however, requires slow mean reversion for the first factor. Figure 6, for
example, shows that the volatility curve drops too fast once the mean reversion

rate of the first factor is changed to 5 percent.

V. Testing Three Factors Against Two

We now test whether adding a third factor represents a significant improve-
ment over a two-factor model. Chen and Scott (1993) find that Vuong'’s likeli-
hood ratio test favors their non-nested two-factor model over their three-factor
model. Using quarterly data and two yields at a time, Gong and Remolona
(1996) fail to find a two-factor model that is adequate to explain the whole
yield curve. Their preferred two-factor model is a time-varying mean model
that is nested by our three-factor model. Hence, we can compare the two

models by relying on the standard likelihood ratio test.

In our three-factor model, setting ¢; = 0, 8 = 0, and oy = 0, then z,, =
0 reduces the model to the two-factor time-varying mean model (Gong and

Remolona 1996), which has the following pricing kernel:

~Mypr = Tge + Weg,s
Toapr = (1= d2)pe + dagar + pPuginn (18)
pr = (1= da)u+ dape + 3 g amn,
w1 = ApPSuag.

The yields are affine in the factors so that we can write

1
Yn,t = ;(An + BanZa + Banpte), (19)
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where the coefficients are restricted by

An Ap_1 + (1 — ¢a)u B3
By = 14 ¢2B20-1 (20)
Bsn = ¢3Bza-1+ (1 —¢2)Bana

1
- 5[(/\ + Ban-1)%03 + B%,n—lag +2(X + B3 u-1)Ban-1023]-

We use the same monthly sample and the same six maturities used in the
estimation of the three-factor model to estimate the two-factor model. The
estimates of the two-factor model and those of the three-factor model are
shown in Table 4. For the two-factor model, one factor reverts to a time-
varying mean rather quickly, at a rate of 10 percent a month, for a mean half
life of 6.6 months. The time-varying mean is more persistent, reverting to a
fixed mean at a rate of 2.5 percent a month for a mean half life of 27.4 months.
All the model parameter estimates are significant. Compared with the three-
factor model, however, the estimated standard deviations of the measurement
errors tend to exceed those of the three-factor model, particularly near the

long end.

The likelihood ratio statistic of the three-factor model against the nested
two factor model is 2 % 135 * (2.18 — 0.817) = 368. At the 1 percent level the
critical value of this statistic is 11.3. Thus, the likelihood ratio test soundly

rejects the two-factor model in favor of the three-factor model.

To visually compare the two-factor and three-factor models, we plot the
implied unconditional first and second moments of the two models and the
actual sample average yield curve and the volatility curve. As shown in Figures
7 and 8, the three-factor model captures the shapes of the sample average

curves better than the two-factor model. In particular, the implied volatility
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of the two-factor model near the long end declines too sharply, because the
factors revert too quickly to the mean to retain sufficient volatility near the

long end.

VI. Testing the Arbitrage Restrictions

The real test of the three-factor model is whether the arbitrage restrictions
it implies are consistent with yield movements across the term structure. The
arbitrage restrictions take the form of cross-section restrictions imposed on
the coefficients of the measurement equations. To test the model, we estimate
one without these arbitrage restrictions, where we let all the coefficients of
the measurement equations be estimated independently. To identify the unre-
stricted model, we impose the parameters implied by the transition equations
on the coefficients of the measurement equation for the the three-month yield
only. Thus, in the unrestricted estimation, there are no restrictions placed

across maturities.

Because the three-factor model is nested by the unrestricted model, the
standard likelihood ratio test applies. The likelihood functions are based on
the conditional moment estimates from the Kalman filter, which provides quite
a powerful test. The estimated mean log likelihood for the unrestricted model
is 2.76, while the mean log likelihood for the three-factor model is 2.18. The
likelihood ratio statistic is 2 * 135 % (2.76 — 2.18) = 157, which is a x> with
20 degrees of freedom. The critical value at the 1 percent level is 45.3. Thus
the no-arbitrage restrictions imposed by the three-factor model are soundly

rejected.
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To understand the model’s failure, we examine the measurement errors.
Table 5 reports parameter estimates and the standard deviation of the mea-
surement errors for the six maturities used in the restricted and unrestricted
model estimation. For the restricted estimates, the measurement errors are
relatively large for long-term yields; for the unrestricted estimates the mea-
surement errors are relatively small, except for the three-month maturity. Note
that our estimation procedure assumes i.i.d. errors. Table 6 reports cross-
sectional correlations of these measurement errors. We see that measurement
errors near the long end are highly correlated. These correlations suggest that
there are significant common movements in the long maturity yields that are
not captured by the three factors of the model. The smoothing imposed by the
cubic spline to generate the zero curve data may induce some of these correla-
tions. Table 7 reports first-order autocorrelations of the measurement errors.
We see that the autocorrelations are significant and tend to be stronger near
the long end. These autocorrelations suggest that the three factors fail to cap-
ture enough of the persistence of the yields. The Q-test implies no higher-order

autocorrelations, suggesting that a fourth factor may capture such persistence.

VII. Conclusion

We estimated and tested a three-factor econometric model of the U.S. term
structure. It is a model in which three factors drive a pricing kernel and shocks
to one factor serve as a risk priced by the market. One factor reverts over time
to a fixed mean, a second factor reverts to a time-varying mean, and the time-
varying mean itself is a mean-reverting factor that induces time-varying term

premia. We estimate the model with monthly data for six maturities across
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the yield curve. The parameter estimates seem to be robust to sample periods.
A likelihood ratio test favors the three-factor model over a nested two-factor
model. However, another likelihood ratio test soundly rejects the arbitrage
restrictions imposed by the model. An analysis of measurement errors suggests
that the factors fail to capture enough of the comovement and persistence of

yields.

While fitting the conditional moments of the term structure remains a
challenge, the three-factor model shows promise in that it seems to capture
the basic shapes of the term structure. The restricted estimates describe three
factors with very different rates of mean reversion. The first factor reverts
to its fixed mean at a rate of less than 1 percent a month, while the second
factor reverts to a time-varying mean about forty times faster. The third
factor serving as the time-varying mean reverts to its own mean about twenty
times faster than the first factor. Something seems key about these parameter
values, because small deviations from our range of estimates produce very bad
yield and volatility curves. Each factor has a role in the shape of the term
structure. The first factor explains the yield curve's flat slope near the long end
and the volatility curve’s flat slope for most of its length. The second factor
explains the yield curve’s steep slope near the short end. The time-varying

mean produces the yield curve’s hump.
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Appendix A
Al. Model I: Recursive Restrictions

We start with the general pricing equation:

1
Prt = Ei(myyy + Prcrn) + EVar,(mH.l + Pa-1,041)- (21)

The short rate is derived by setting po = 0:
1
y=—pu = —E(mg) - 5Va7‘z(mt+1)
1
= Tret Tt — 5)\20'%#“

showing the short rate to be linear in the factors.

Now we suppose that the price of an n-period bond is affine:

~Pnt = An + Bia®1 + BanZay + Banpl (22)

We verify that there exist A,, Bin, Ban, and Bsn that satisfy the general

pricing equation:

Ez(mz+1 + Pn—1.¢+1) = —Ap - (1 - ¢1)0Bl,n~1 - (1 - ¢3)#Bs,n—1
- (1 + @ Bia)e,—(1+ 2B2.n-1)%2,
— (1 —¢2)Bep-1 + $3 B3 1)1t (23)

(A + Bsn1)?02 + B} ,,_y0 + B 103

Vary(mgr + Pr-t41)

-+

2(A + B3 n-1)Bin-1013 + 2B n-1B2,n-1012

+

2(A + By 1) B2 n-1023) e (24)

Now substitute (26) (27) into (24) and match the coefficients of equations
(24) and (25), we have

An = Au—-l + (1 - ¢l)oBl,n—l + (1 - ¢3)ﬂ33,n—-1

25



Bin = 1+¢1Biua
Byn = 1+ 6282,
Bsn = ¢3Ban1+ (1 — ¢2)Ban
- %[(/\ + Byno1)’o3 + B?.n—la? + Bg,n—l"%

+ 2(A+ Bapn-1)Brn-1013 4+ 2(A 4 B 1) Byno1023 + 2B n-1Ban-1012]-
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Appendix B

B1. The Term Premia

Term premia can be derived from the expected excess bond return over the

short rate:

E,

+ o+

i

Pa-1t41 ~ Doyt — Y1t

~Ap1 = Bin-1E21041 = Ban-1E32,t + 1 = Ban 1 Etpena

An+ Bz + Banzag + Baapie

i — Tzt %/\203#:

(An — Any — Bra—1(1 — ¢1)0 — B3 (1 — ¢3)pt)

(Bin =1 = ¢1B1n-1)z1e + (Ba — 1 = 2By )22

(Ban + %/\205 — 38301 — (1 — $2) By 1) e

~AMBin-1013 + Ban-1023 + Bapn_102)

S1BLu 10} + B, 103 + Bl 10 (25)

2Bl,n—132,n-1012 + 2B1,n—lB3,n—lol3 + 232,n—1B3,n—1023]:ut-

B2. Ezpected Change in the Short Rate

The conditional expectation of the short rate n periods in the future is

1
Biyrgen = Eyen + EiZogn ~ 5)‘2U§Etﬂt+n

T1t41 — 0 ¢ 0 0 Tyt — 0

E, L2641 — M

I

0 ¢ 1— ¢y Ta,t — |

Hegr — 1 0 0 b3 Bt — H
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n

Ty tgn — 0 ¢ 0 0 Tyt — 0

Bl ayppn—n| = 0 ¢ 1—¢s Toe — I
Htgn — 1 A 0 0 #3 e — p
X 0 Ty — 0
= |0 g (- || an-n
L 0 0 83 He — 1

We can then write

Eytan — Y16 = @ + 10 (0 — 21¢) + Bon(pts — 22¢) + Y b,

where
1- 1
o = 1= 65— P ) - D3 - e
/Bln = 1"'¢;‘
,Bln = 1—¢;
_ 1- ¢ n+1 n+1 Lo o n n
Tn = m(‘ﬁz —¢5 )+§/\ o3(1 — ¢3) — (1 — 43).
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Appendix C: The Kalman Filter Algorithm

For the state-space models in section I1I, the measurement and transition

equations can be written in the following matrix form.

Measurement Equation:
Y = A+BX¢+‘U¢,

.

where v, ~ N(0, R)
Transition Equation:
Xep1 = C+ FXi 4wy, (26)
where e ~ N(0,Qy).
The Kalman filter algorithm of this state-space model is the following:
1. Initialize the state-vector Sg:
The recursion begins with a guess Syo, usually given by
Si0 = E(8)). (27)
The associated M SE is

E[(S1 — S10)(S1 = $1p)']
Var(S).

Puo

1]

Il

The initial state S; is assumed to be N(5'1|0, Pyy).

2. Forecast y;:
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Let I, denote the information set at time ¢. Then

g1 = A+ BE[SiIi]
= A + BS'”,_I. (28)
The forcasting MSE is
El(ys — 9ye—1)(ye — Gypp1)] = BPy 1B +R. (29)

3. Update the inference about S, given Iy:
Knowing y, helps to update Sy, by the following:

Write
Sy $t|t—l + (S - gtlt-—l)

A+ B§¢|¢~1 + B(S, — Stlt—l) + v (30)

Il

Il

Yt

We have the following joint distribution:

b |1¢—1 - N( §t|t—Al Ptlt—l Pt|t—lB, (31)
Ye A+ BSgy4 BPy_y BPy_B'+R
Thus,

S'zlz = E[Stlyt;11»1]
S't|t—-l + Ptlt—xBl(BPtlt—-lBl + R)—l(yt - BStlt—l - A) (32)

Py = E[(Se— Sy)(Si— Sue)]
= Py — Py B'(BPy_yB' + R)'BPy._y. (33)

4. Forecast S;4, given I,
gg+1“ = E[SH.)II‘] = Féglg. (34)
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fl

E[(Se41 — $'¢+1|¢)(5¢+1 - §t+1]t)I]
FP¢|¢Fl+Q¢. (35)

Pt+1|t

5. Maximum likelihood estimation of parameters:
The likelihood function can be built up recursively

T
log L(Yr) = Zlogf(yzlh_x), (36)

where

flyle)) = (27)*|H'Py_yH + R|7'/?

*

1 & 1 Y] - &
ezP{—E(yt —A- Bstlt—l) (B P¢|z—1B + R) l(yt —A- BS,"_;)}

for t = 1,2,...,T. (37)

Parameter estimates can then be based on the numerical maximization of

the likelihood function.
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Table 1
Summary Statistics for End-of-the-Month Zero-Coupon Yields with Maturities of Three
Months, Six Months, One Year, Two Years, Five Years, and Ten Years
The sample period is 1984:1-1995:3. Data are obtained from McCulloch and Kwon (1993) for 1984:1 to
1990:12 and from the Federal Reserve Bank of New York for 1991:1 to 1995:3.

Monthly Observations ( 84:1-95:3 )

Maturity Mean Std Dev 1st-Auto. Corr
3 Months 6.25 2.01 0.98
6 Months 6.45 2.04 0.98

1 Year 6.79 2.07 0.98

2 Year 7.27 2.05 0.97

5 Year 7.99 1.86 0.97

10 Year 8.47 1.67 0.97

Table 2
Correlations Between End-of-the-Month Zero-Coupon Yields with Maturities of Three
Months, Six Months, One Year, Two Years, Five Years, and Ten Years

The sample period is 1984:1-1995:3. Data are obtained from McCulloch and Kwon (1993) for 1984:1 to
1990:12 and from the Federal Reserve Bank of New York for 1991:1 to 1995:3.

Maturity 3-month 6-month I-year 2-year 5-year 10-year
3-month 1.000
6-month 0.996 1.000

1-year 0.984 0.996 1.000

2-year 0.961 0.980 0.992 1.000

5-year 0.898 0.925 0.947 0.978 1.000

10-year 0.830 0.863 0.892 0.937 0.987 1.000




Table 3
Parameter Estimates of the Three-Factor Model for Different Sample Periods Using
3.Month, 6-Month, 1-Year, 2-Year, 5-Year, and 10-Year Maturities

The parameters describe AR(1) processes of three factors. The first factor reverts to a fixed mean, while
the second factor reverts to the third factor, which in turn reverts to a fixed mean. The parameter 1-¢; is the
rate of mean reversion of the factor x,, 0 is the long-run mean of the first factor, and  is the long-run
mean of the third factor. The parameter o, is the volatility of the shock u,,,, to the factor x,,,,, and p;; is the
correlation between factors x, and x;. The parameter A is the price of risk. The measurement errors refer to
the three-month, six-month, one-year, two-year, five-year, and ten-year yields, respectively. The parameters
are estimated by a Kalman filter maximum likelihood procedure imposing arbitrage conditions as
overidentifying restrictions. End-of-the-month zero-coupon yields are obtained from McCulloch and Kwon
(1993) for 1984:1 to 1990:12 and from the Federal Reserve Bank of New York for 1991:1 to 1995:3.

Model Parameters 84:1-95:3 84:1-90:12 91:1-95:3

¢, 0.9979 0.9991 0.9982
(0.0009) (0.0001) (0.0002)

b, 0.9117 0.9525 0.9307
(0.0167) (0.0015) (0.0007)

b, 0.9473 0.9825 0.9557
(0.0127) (0.0152) (0.0075)

0 0.3563 0.5759 0.3672
(4.7993) (3.6462) (3.7084)

M 11.2207 35.1345 14.1413
(1.1476) (41.4595) (4.5474)

A -8.3984 -7.9805 -8.1067
(0.4649) (0.1032) (0.0989)

g, 0.0013 0.0001 0.0015
(0.0005) (0.0000) (0.0000)

o, 0.2689 0.1936 0.2877
(0.0373) (0.0022) (0.0003)

o, 0.1856 0.1777 0.2007
(0.0005) (0.0000) (0.0001)

P2 0.0048 0.0046 0.0049
(0.6583) (9.0595) (1.7748)

Pis -0.0366 -0.0073 -0.0394
(0.9311) (5.7132) (1.1316)

P2 0.8619 0.9273 0.9207
(0.0188) (0.0122) (0.0015)




Table 3 Continued: Standard Deviation of Measurement Errors

e, 0.2496 0.2836 0.3323
e, 0.0144 0.0071 0.5041
e 0.1152 0.1381 0.2169
el 0.2388 0.2986 0.6487
e 0.5535 0.6823 0.5606
e 0.7785 0.6820 0.3057
Mean Log-Likelihood 2.18 1.79 1.49




Table 4

Comparison of the Three-Factor Model and the Nested Two-Factor Model
The parameters describe AR(1) processes of three factors. The first factor reverts to a fixed mean, while
the second factor reverts to the third factor, which in turn reverts to a fixed mean. The parameter 1-¢ is the
rate of mean reversion of the factor x,, 0 is the long-run mean of the first factor, and p is the long-run
mean of the third factor. The parameter o; is the volatility of the shock u;,, to the factor x;,,, and p; is the
correlation between factors x, and x;, The parameter A is the price of risk. The measurement errors refer to
the three-month, six-month, one-year, two-year, five-year, and ten-year yields, respectively. The parameters
are estimated by a Kalman filter maximum likelihood procedure imposing arbitrage conditions as
overidentifying restrictions. End-of-the-month zero-coupon yields are obtained from McCutloch and Kwon
(1993) for 1984:1 to 1990:12 and from the Federal Reserve Bank of New York for 1991:1 to 1995:3.

Model Parameters The Three-Factor Model The Two-Factor Model
b, 0.9979 _
(0.0009)
b, 09117 0.9038
(0.0167) (0.0183)
b, 0.9473 0.9740
(0.0127) (0.0069)
6 0.3563 —
(4.7993)
vl 11.2207 16.9343
(1.1476) (4.6124)
A -8.3984 -12.7464
(0.4649) (1.8370)
0, 0.0013 _
(0.0005)
0, 0.2689 0.0948
(0.0373) (0.0363)
o, 0.1856 0.0728
(0.0005) (0.0156)
P 0.0048 -~
(0.6583)
P13 -0.0366 _
(0.9311)
o 0.8619 0.4038
(0.0188) (0.1322)




Table 4 Continued: Standard Deviation of Measurement Errors

e 0.2496 0.1416
e, 0.0144 0.1133
& 0.1152 0.2104
e, 0.2388 0.5370
e 0.5535 0.4159
e 0.7785 1.0120
Mean Log-Likelihood 2.18 0.817




Table 5
Testing the Arbitrage Restrictions: Restricted and Unrestricted Estimates of the
Three-Factor Model

The parameters describe AR(1) processes of three factors. The first factor reverts to a fixed mean, while
the second factor reverts to the third factor, which in turn reverts to a fixed mean. The parameter 1-¢, is the
rate of mean reversion of the factor x,, 0 is the long-run mean of the first factor, and p is the long-run
mean of the third factor. The parameter o, is the volatility of the shock u;,, to the factor x;,,, and p; is the
correlation between factors x, and x;, The parameter A is the price of risk. The measurement errors refer to
the three-month, six-month, one-year, two-year, five-year, and ten-year yields, respectively. The parameters
are estimated by a Kalman filter maximum likelihood procedure imposing arbitrage conditions as
overidentifying restrictions. End-of-the-month zero-coupon yields are obtained from McCulloch and Kwon
(1993) for 1984:1 to 1990:12 and from the Federal Reserve Bank of New York for 1991:1 to 1995:3.

Mode! Parameters Restricted by Arbitrage Conditions Unrestricted Model
&, 0.9979 0.9706
(0.0009) (0.0128)
¢, 0.9117 0.5430
(0.0167) (0.7069)
b 0.9473 0.5359
(0.0127) (0.3588)
6 0.3563 3.7799
(4.7993) (1.4519)
p 11.2207 0.7784
(1.1476) (1.1302)
A -8.3984 -0.0737
(0.4649) (0.2753)
o, 0.0013 0.0744
(0.0005) (0.0153)
G, 0.2689 0.0110
(0.0373) (0.0228)
g, 0.1856 0.5910
(0.0005) (0.6743)
P12 0.0048 -0.0037
(0.6583) . (12.7790)
P -0.0366 0.0455
(0.9311) (0.2752)
P2 0.8619 0.9984
(0.0188) (20.1624)




Table 5 Continued: Standard Deviation of Measurement Errors

€ 0.2496 1.2413
e, 0.0144 0.2006
e 0.1152 0.0895
€4 0.2388 0.2618
€ 0.5535 0.2190
€ 0.7785 0.0823
Mean Log-Likelihood 2.18 2.76




Implied yields are based on the full-sample estimates of the three-factor model with the
parameters reported in Table 3.

Table 6
Cross-Section Correlations between the Measurement Errors of Implied Yields

Maturity | 3 m 6m 1yr 2yr 3yr 4yr Syr 7yr 10yr
3m 1.00
6m 0.31 1.00
1yr -0.68 | -0.80 1.00
2 yr -0.48 | -0.69 0.74 1.00
3yr -0.38 | -0.51 0.52 0.89 1.00
4yr -0.18 | -046 | 0.36 0.81 0.92 1.00
5yr 004 | 044 | 027 0.71 0.71 094 1.00
7 yr 0.01 -0.41 0.21 0.60 062 | 0.84 097 1.000
10 yr 0.01 -0.39 | 020 0.57 0.56 | 0.80 | 0.94 0.99 1.000




Table 7

First-Order Autocorrelation of the Measurement Error of Implied Yields
Implied yields are based on the full-sample estimates of the three-factor model with the
parameters reported in Table 3.

Maturity | lst. Autocorrelation | t-Statistics | Q-statistic for higher order autocorrelation
(Significance Level of Q)

3-month 0.66 7.74 28.45
(0.69)
6-month 0.44 438 31.18
(0.56)
1-year 0.70 10.82 26.17
(0.80)
2-year 0.72 10.18 26.14
(0.80)
3-year 0.68 8.73 29.82
(0.63)
4-year 0.75 11.79 17.83
(0.99)
5-year 0.84 15.33 20.39
(0.96)
7-year 0.90 18.88 24.45
(0.86)
10-year 091 21.41 23.94
(0.88)
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Figure 1. Time Series of the Three Implied Factors. The factors are extracted through the Kalman filter full-sample estimate:
of the three-factor model with the parameters reported in Table 3. The sample period is 84:1- 95:3.
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Figure 2. Actual and Implied Average Yield Curves. The implied curve is derived by setting the factors at their

unconditional means. The average curve is based on the average for the full sample.
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Figure 3. Actual and Implied Volatilities. The implied volatility curve is based on the unconditional variance of the impliec
yields derived by setting the factors at their unconditional means. The actual volatility curve is the sample variance of the
observed yields.
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Figure 4. Factor Loadings of the Three-Factor Model. Factor loadings are calculated from equations (8) and (9) based on t
full sample estimates of the three-factor model with the parameters reported in Table 3.



85

6.5

—

TTe LY ields Implied by the Three-Factor Model

Actual Average Yield R

S NN NS NS EU SN VA0S AU NS STV SANU SUSUYR N TR SEN TR NSO SR ENSUVN NUUSTE SO S

Figure 5.

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
Maturity (in months)

Actual and Implied Yield Curves. The curve implied by the three-factor model is based on the full sample estimate

reported in Table 3. The implied curve when ¢3= 0.90 is calculated from the same estimates except for ¢3 = 0.90.
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Figure 6. Actual and Implied Volatility Curves. The volatility curve implied by the three-factor model plots the
unconditional variance of the implied yields based on the full sample estimates reported inTable 3. The volatility implied
when ¢1=0.95 is based on the same parameters except for $1=0.95.
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Figure 7. Actual and Implied Yield Curves from the Three-Factor and Two-Factor Models. The curves implied by the
three-factor and two-factor models are based on the unconditional mean of the yields derived from the full-sample estimate
reported in Table 4.
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Figure 8. Actual and Implied Volatility Curves. The implied curves are based on the unconditional variance of the
implied yields derived from the fuil-sample estimates reported in Table 4.



