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Abstract

We conduct a systematic comparison of confidence intervals around estimated probabilities
of default (PD), using several analytical approaches from large-sample theory and
bootstrapped small-sample confidence intervals. We do so for two different PD estimation
methods—cohort and duration (intensity)—using twenty-two years of credit ratings data.
We find that the bootstrapped intervals for the duration-based estimates are surprisingly
tight when compared with the more commonly used (asymptotic) Wald interval. We find
that even with these relatively tight confidence intervals, it is impossible to distinguish
notch-level PDs for investment grade ratings—for example, a PDAA- from a PDA+. However,
once the speculative grade barrier is crossed, we are able to distinguish quite cleanly 
notch-level estimated default probabilities. Conditioning on the state of the business cycle
helps; it is easier to distinguish adjacent PDs in recessions than in expansions.
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1. Introduction

Credit risk is the dominant source of risk for banks and the subject of strict regulatory

oversight and policy debate (BCBS (2001a,b)).1  Credit risk is commonly defined as the loss

resulting from failure of obligors to honor their payments.  Arguably a cornerstone of credit risk

modeling is the probability of default.  Two other components are loss-given-default or loss

severity and exposure at default.2  In fact these are three of the four key parameters that make up

the internal ratings based (IRB) approach that is central to the New Basel Accord (BCBS

(2003)).3  In this paper we address the issue of how to estimate the probability of default (PD)

with publicly available credit ratings and explore some small sample properties of this parameter

estimate.  We compare analytical approaches from large sample theory with confidence intervals

obtained from bootstrapping.  The latter are surprisingly tight.

Regulators are of course not the only constituency interested in the properties of PD

estimates.  PDs are inputs to the pricing of credit assets, from bonds and loans to more

sophisticated instruments such as credit derivatives, and they are needed for effective risk and

capital management.  However, default is (hopefully) a rare event, especially for high credit

quality firms which make up the bulk of the large corporate segment in any large bank.  Thus

estimated PDs are likely to be very noisy.  Moreover, PDs may vary systematically with the

business cycle and are thus unlikely to be stable over time.  There may also be other important

sources of heterogeneity such as country or industry that might affect rating migration dynamics

generally (i.e. not just the migration to default), as documented by Altman and Kao (1992),

Nickell, Perraudin and Varotto (2000) and others.  For instance, Cantor and Falkenstein (2001),

                                                

1 The typical risk taxonomy includes market, credit and operational risk. See, for instance, discussions in Crouhy,
Galai and Mark (2001) or Marrison (2002).
2 For a review of the LGD literature, see Schuermann (2004).
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when examining rating consistency, document that sector and macroeconomic shocks inflate PD

volatilities.  How then should one go about estimating PDs with a limited amount of data?

We tackle this question using publicly available data from rating agencies, in particular

credit rating histories.  In this way we do not attempt to build default or bankruptcy models from

firm observables but take the credit rating as a sufficient statistic for describing the credit quality

of an obligor.  For discussions on bankruptcy and default modeling, see for instance Altman

(1968), Shumway (2001), and Hillegeist, Keating, Cram and Lundstedt (2004).

Our main contribution is a systematic comparison of confidence intervals using several

analytical approaches from large sample theory as well as small-sample confidence intervals

obtained from the bootstrapping.  We do so for two different PD estimation methods, cohort and

duration (intensity).  We find that the bootstrapped intervals for the duration based estimates are

surprisingly tight when compared to the more commonly used Wald interval.  The less efficient

cohort approach generates much wider intervals, and here the bootstrap and Wald results are

quite close.

The implications of these findings are significant.  Even with the tighter bootstrapped

confidence intervals for the duration based estimates, it is impossible to distinguish notch-level

PDs for neighboring investment grade ratings, e.g. a PDAA- from a PDA+ or even a PDA.

However, once the speculative grade barrier is crossed, we are able to distinguish quite cleanly

notch-level estimated default probabilities.  When we condition on a common factor, namely the

state of the business cycle (recession vs. expansion), we find that bootstrapped PD densities

overlap significantly for investment grade, even at the whole grade level (e.g. the density for

PDA estimated during a recession vs. expansion).  Again, for the speculative grades the two

                                                                                                                                                            

3 The fourth parameter is maturity.
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densities are cleanly separated, suggesting that firms with these lower credit ratings are more

sensitive to systematic business cycle effects.  Moreover, we find that these densities are

surprisingly close to normal (Gaussian).

Our approach is closest to a recent study by Christensen, Hansen and Lando (2004) who

use simulation-based methods, a parametric bootstrap, to obtain confidence sets for PD estimates

obtained with the duration (intensity) based approach.  Their results are similar in that the

confidence sets implied by their simulation technique are also tighter than those implied by

asymptotics.  Our resampling-based approach may arguably be better able to pick up any small

sample properties of these estimators.  Moreover, we consider the impact of sample length on the

ability to conduct inference on PD estimates.  Finally, we take into account recent results in the

statistics literature which document erratic behavior of the coverage probability of the standard

Wald confidence interval by also including an alternative, the Agresti-Coull confidence interval

(Agresti and Coull (1998)).

The rest of the paper will proceed as follows.  In Section 2 we discuss credit ratings and

transition matrices and default probabilities.  Section 3 discusses properties of empirical

estimates of default probabilities; here we compare analytical approaches with the bootstrap.

Section 4 provides some final comments.

2. Credit ratings and transitions

Credit migration or transition matrices characterize past changes in credit quality of

obligors (typically firms) using ratings migration histories.  We will focus our attention on the

last column of this matrix which denotes the probability of default.  It is customary to use a one-

year horizon in credit risk management, and we will follow suit.  Lando and Skodeberg (2002)
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present and review several approaches to estimating these migration matrices which are

compared extensively in Jafry and Schuermann (2004).  Broadly there are two approaches,

cohort and two variants of duration (or hazard) – parametric (imposing time homogeneity or

invariance) and nonparametric (relaxing time homogeneity).  Using results from Jafry and

Schuermann (2004) we conduct most of our analysis using the parametric duration or migration

intensity approach with some comparison to the oft-used cohort approach.

In simple terms, the cohort approach just takes the observed proportions from the

beginning of the year to the end (for the case of annual migration matrices) as estimates of

migration probabilities.  Suppose there are Ni firms in rating category i at the beginning of the

year, and Nij migrated to grade j by year-end.  An estimate of the transition probability

is ij
ij

i

N
P

N
= .  For example, if two firms out of 100 went from grade ‘AA’ to ‘A’, then

PAA→A = 2%.  Any movements within the year are not accounted for.  Typically firms whose

ratings were withdrawn or migrated to Not Rated (NR) status are removed from the sample.4

The duration approach counts all rating changes over the course of the year and divides

by the time spent in the starting state or rating to obtain the migration intensity which is

transformed into a migration probability.  For example, if a firm begins the year in A, transitions

mid-year to BBB, before ending the year in BB, both transitions (A → BBB and BBB → BB) as

well as the portion of time spent in each of the three states would contribute to the estimated

probabilities.  In the cohort approach, the mid-year transition to BBB as well as the time spent in

                                                

4 The method which has emerged as an industry standard treats transitions to NR as non-informative.  The
probability of transitions to NR is distributed among all states in proportion to their values.  This is achieved by
gradually eliminating companies whose ratings are withdrawn.  We use this method, which appears sensible and
allows for easy comparisons to other studies.
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BBB would have been ignored.  Moreover, firms which end the period in an NR status still

contribute to the estimated probabilities up until the date when they transition to NR.5

The migration matrix can also be estimated using nonparametric methods such as the

Aalen-Johansen estimator which imposes fewer assumptions on the data generating process by

allowing for time non-homogeneity while fully accounting for all movements within the sample

period (or estimation horizon).6  Jafry and Schuermann (2004) find that relaxing the time

homogeneity assumption by using this nonparametric estimator generates annual transition

matrices that are statistically indistinguishable from their parametric counterparts.  For this

reason we focus our modeling efforts just on the parametric intensity approach.

2.1. Estimating confidence intervals of PDs

Once we obtain estimates of the default probabilities, we can discuss several approaches

for inference and hypothesis testing.  Denote PDR as shorthand for the one-year probability of

default for a firm with rating R.  We seek to construct a (1-α)% confidence interval, e.g. α = 5%,

around an estimate of PDR:

(2.1) min maxPr 1RR RPD PD PD α < < = − 

As default rates are very small for high quality borrowers, min
RPD  may be zero, and in this way

the interval may not be symmetric about RPD .

                                                

5 There is a range of differences between the number of firm years spent in rating i and Ni from the cohort approach
range.  For instance, the total number of firm years spent in ‘BBB’ during 2002 was 857 whereas NBBB = 804 under
the cohort approach.  The difference is driven by time spent in ‘BBB’ by firms in mid-year transit and by firms
whose ratings were withdrawn.  By contrast, the difference for the ‘A’ rating was much smaller: 695 against NA =
694.
6 For details, see Aalen and Johansen (1978) and Lando and Skodeberg (2002).
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2.2. Confidence intervals based on theory

If default is taken to be a binomial random variable, then the standard Wald confidence

interval CIW is

(2.2)
( )

*

1R R

RW
R

PD PD
CI PD

N
κ

−
= ± ,

where *
RN  is the total number of firm-years spent in rating R, and κ is the ( )th

2100 1 α−  percentile

of the standard normal distribution.  For example, in the case of α = 5%, κ = 1.96.  Naturally this

assumes that RPD  is estimated from a set of iid draws meaning, for instance, that the probability

of default does not vary systematically across time or industry, and that the likelihood of default

for firm i in year t is independent of firm j in the same year.  This clearly seems unreasonable as

there are likely to be common factors such as the state of the economy which affect all firms,

albeit differentially, in a given year t.  For this reason the Wald confidence interval described by

(2.2) will likely be too tight.

With this in mind, how large does *
RN  need to be to obtain a reasonable estimate of

RPD ?  Clearly this varies with the true RPD , but a common rule of thumb is *
R RPD N⋅ ≥ 10.7

As an illustration suppose that RPD  = 0.1% (or 10bp).  The rule of thumb would suggest that

one would need *
RN  = 10,000!  This probability of default is roughly in line with a BBB-rating.

To put this into perspective, in the 22 years of rating history data we will be using, there are just

over 10,000 obligor years observed for BBB-rated companies.  Obviously it would be a stretch to

assume that those 10,000 obligor years are iid draws.

                                                

7 See, for instance, Moore and McCabe (1993), Section 8.1.
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2.3. Confidence intervals based on resampling

An alternative approach to obtaining confidence intervals for default probability

estimates is via the bootstrap method.  As it is not clear how to obtain asymptotic expressions for

RPD  obtained via the duration or hazard approach, this is our preferred method for constructing

confidence intervals for these estimates.  By resampling on the rating histories, we create B

bootstrap samples8 of size Nt each, where Nt is the number of firm-histories over some time

interval which could be a year or multiple years, compute the entire migration matrix { }( )

1
( )

Bj

j
t

=
P

and then focus our attention just on the last vector, { }( )

1
( )

Bj

j
t

=
PD , where j = 1, …, B denotes the

number of bootstrap replications.  Efron and Tibshirani (1993) suggest that for obtaining

standard errors for bootstrapped statistics, bootstrap replications of 200 are sufficient.  For

confidence intervals, they suggest bootstrap replications of 1000.9  To play it safe we set

B = 10,000.

Ideally the data underlying the bootstrap should be independently and identically

distributed (iid).  Broadly one may think of at least two sources of heterogeneity: cross-sectional

and temporal.  It is difficult to impose temporal independence across multiple years, but easier at

shorter horizons such as one year.  We will still be subject to the effects of a common (macro-

economic) factor, but this problem can be mitigated by focusing the analysis on either expansion

or recession years only, an issue to which we return in Sections 3.2 and 3.5.10  We are able to

                                                

8 A bootstrap sample is created by sampling with replacement from the original sample.  For an excellent exposition
of bootstrap methods, see Efron and Tibshirani (1993).
9 Andrews and Buchinsky (1997) explore the impact of non-normality on the number of bootstraps.  With
multimodality and fat tails the number of bootstrap replications often must increases two or three fold relative to the
Efron and Tibshirani benchmarks.
10 Similarly Christensen, Hansen and Lando (2004) perform their bootstrap simulations by dividing their sample into
multi-year “stable” and “volatile” periods.  See also Lopez and Saidenberg (2000) for a related discussion on
evaluating credit models.
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control for some but not all of these factors.  For instance, we restrict our analysis to U.S. firms,

i.e. no government entities (municipal, state or sovereign), and no non-U.S. entities, but do not

perform separate analysis by industry largely for reasons of sample size.  By mixing industries

together, the resulting bootstrap samples will likely be noisier than they would be otherwise,

biasing the analysis against finding differences.

Our method contrasts with the parametric bootstrap approach put forth in Christensen,

Hansen and Lando (2004) who estimate an intensity based migration matrix using all the

available data and then generate many, say B*, synthetic rating histories from that estimated

migration matrix.  From these pseudo-histories they compute B* intensity based migration

matrices and thus are able to compute a simulation-based confidence interval from the default

columns of the B* migration matrices.  In this way their parametric bootstrap approach may be

thought of as simulation-based whereas ours is resampling-based.

3. Properties of empirical estimates of default probabilities

We will make use of credit rating histories from Standard & Poor’s where the total

sample ranges from January 1, 1981 to December 31, 2002.  Our data set is very similar to the

data used in Bangia et al. (2002) and Jafry and Schuermann (2004).  The universe of obligors is

mainly large corporate institutions around the world.  In order to examine the effect of business

cycles, we will restrict ourselves to U.S. obligors only; there are 6,776 unique U.S. domiciled

obligors in the sample.  The resulting database has a total of 50,585 firm years of data, excluding

withdrawn ratings, and a total of 842 rated defaults, yielding an average annual default rate of

1.66% for the entire sample.
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In Table 1 we present PD estimates across notch-level credit ratings using the entire

sample period, 1981-2002, for both the cohort and the duration based methods with the last

column comparing the two PD estimates by grade.11  Since no defaults over one year were

witnessed for firms that started the year with a AAA, AA+ or AA ratings, the cohort estimate is

identically equal to zero, in contrast to the duration estimate where PDAAA = 0.02bp,

PDAA+ = 0.05bp and PDAA = 0.71bp.  For more discussion see Jafry and Schuermann (2004).

3.1. Comparing bootstrap to analytical confidence intervals

In Figure 1 we compare the bootstrap to the Wald 95% confidence interval using the

entire sample period, centered around the duration based PD point estimate presented in logs for

easier cross-grade comparison, using the number of firm-years as *
RN  in (2.2).12  We present

results at the notch level, meaning that for the AA category, for example, we show 95% bars for

AA+, AA and AA-.  The top and bottom grades, AAA and CCC, do not have these modifiers.

The first set of bars for each pair is the interval implied by the bootstrap, the next set is the Wald

interval.

Several aspects of the results are striking.  First, for nearly every rating, the confidence

interval implied by the bootstrap is tighter than implied by the Wald interval.  For the lower

bound this may not be surprising.  RPD  is small enough for the investment grades that

subtracting ˆ1.96 Rσ  may indeed hit the zero boundary.  For example, for grade A,

APD = 0.865bp, Aσ̂  = 1.192bp so that A Aˆ1.96PD σ−  = -1.498bp which is clearly not possible.

                                                

11 This table is taken from Table 2 in Jafry and Schuermann (2004).  All credit ratings below CCC are grouped into
CCC for reasons of few observations.
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Second, most of the confidence intervals, be they bootstrapped or analytical, overlap

within a rating category for investment grades.  In the speculative grade range one is much more

clearly able to distinguish default probability ranges at the notch level.  For example, the

bootstrapped 95% confidence intervals for the A+, A and A- ratings almost completely overlap,

implying that the estimated default probabilities for the three ratings are statistically

indistinguishable even with 22 years of data.  This is not the case for B ratings, for example.

Whether one uses bootstrapped or analytical bounds, all the ratings, B+, B and B- are clearly

separated.

At the whole grade level, default probabilities become somewhat easier to distinguish, as

can be seen from Figure 2.  Here we also include cohort-based point estimates and their 95%

Wald confidence intervals.  No AAA defaults were observed in our sample, and hence we have

no corresponding confidence interval for cohort.  However, the confidence intervals for grades

AA and A, whether Wald or bootstrapped, still largely overlap.  Thus even at the whole grade

level, dividing the investment grade into four distinct groups seems optimistic from the vantage

point of PD estimation.

At a minimum, a rating system should be ordinally consistent or monotonic meaning that

estimated PDs should be increasing as one moves from higher to lower ratings.13  Returning to

Table 1, notice that the notch-level PD estimates for both duration and cohort are not

monotonically increasing.  To evaluate the issue of monotonicity more formally, we perform

                                                                                                                                                            

12 Because the duration method makes more efficient use of rating histories than the cohort approach, *

RN  is likely
inflated, meaning that the confidence intervals will be too tight.  We take up some of these issues in Section 3.6
below.
13 It is quite difficult to see how a set of estimated PDs that failed monotonicity could be consistently employed in
either regulatory, risk management, or pricing applications.
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one-tailed tests using the bootstrap results along the following lines.  For ratings k < j, where

rating k is of better credit quality (e.g. A+) than j (e.g. A), we compute the one-tailed test

(3.1) Pr ( ) ( ) %α ∆ < ∆ = j kPD t PD t .

In Table 2 we report the fraction of replications for which the duration based

( ) ( )∆ < ∆j kPD t PD t  over B bootstrap replications.  This should be no greater than α%.  We find,

in fact, that the nominal p-value often exceeds 5% for the investment grades.  This is the case,

for instance, with the first test, Pr 9.16%AA AAAPD PD+ < =  .  The nominal p-value is especially

poor for the range of AA ratings; see Section 3.4 for more discussion on behavior of this

particular grade.  Even the BBB grades have trouble meeting this monotonicity criterion.  For

example, Pr 6.72%BBB BBBPD PD + < =   and Pr 31.90%BBB BBBPD PD− < =  .  Only at the non-

investment grade end of the rating spectrum can we reliably state that estimated notch level PDs

are indeed monotonically increasing.  Similar calculations for grade levels PDs to those shown in

Table 2 reveal that the only violation of monotonicity is between AA and A.

3.2. Common factors: recession vs. expansion

The analysis above made the arguably unrealistic assumption that all rating histories from

the whole 22 year sample period were draws from the same iid process.  However, it is likely

that systematic risk factors affect all firms within a year.  A simple approach may be to condition

on the state of the economy, say expansion and recession, so that defaults are conditionally

independent.14  Using the business cycle dates from the NBER,15 in the 22 years of our sample,

only 1982 was a “pure” recession year.  The years 1981, 1990, 1991 and 2001 experienced a mix

                                                

14 See Schönbucher (2000).
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of recession and expansion states.  All other years are “pure” expansion years.  The NBER

delineates peaks and troughs of the business cycle at monthly frequencies.  Since rating histories

are available at a daily frequency, insofar as rating changes are dated at that level, we pick the

middle of a month as the regime change from expansion to recession or vice versa.

We repeat the monotonicity experiment as above, but this time we compute bootstrapped

p-values separately for expansions and recessions.  The results are summarized in Table 3 where

we repeat in the first column labeled 1981-2002 the p-values for the whole sample range.

Conditioning on the state of the economy appears to help in differentiating PDs in adjacent credit

ratings.  Of the 16 tests, half of the bootstrapped p-values exceed 5%, meaning that we would

have to reject (at the 95% level) that the two adjacent PDs are monotonic (ordinally consistent).

The proportion is the same in expansions, but conditioning on recessions reduces this proportion

to 25% (4 out of 16).  For example, the unconditional Pr 17.96%A APD PD + < =  , and during

an expansion it is even worse at 19.35%, but it drops to less than 0.01% during a recession.  A

similar pattern can be observed for the next pair, Pr A APD PD− <  .  Interestingly there are some

instances when monotonicity is violated in a recession but not in an expansion:

Pr expansion 0.87%+ − < = BBB APD PD  and Pr recession 28.00%+ − < = BBB APD PD .

Speculative grade ratings are monotonic in both recessions and expansions.

3.3. Empirical densities of PDs

It may also be of interest to see how much the empirical (bootstrapped) PD distributions

for recession and expansion periods overlap.  Although the rating agencies strive to achieve a

                                                                                                                                                            

15 See http://www.nber.com/cycles/cyclesmain.html.
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“cycle neutral” credit rating, the speculative grades tend to be more sensitive to business cycle

conditions, both empirically and by design of the rating agencies (Moody’s (1999)).  Thus we

would expect that the conditional PD distributions would be farther apart for speculative than for

investment grades.  This is seen quite clearly in Figure 3 where we include the unconditional

density for each grade for easy comparison.

For speculative grades the recession and expansion densities show very little overlap as

expected, in contrast to investment grade PDs.  The multi-modality in BBB and AA ratings is a

result of default clusterings from the bootstrap; see also the discussion in Section 3.4.  The

unconditional and expansion densities are very close, especially for investment grade.  This

makes sense since we have been in an expansion most of the time (88%) since 1981.  As a result

the distributions for recessions are also wider than for expansions.  For the A through AAA

ratings, it seems that the recession densities are to the left of the expansion densities, implying

that defaults may actually be lower in recessions.  Overall we find that speculative grade PDs are

more business cycle sensitive than the investment grades which is consistent with the rating

agencies’ own view.

Finally, it is striking just how close to normal most of the PD densities appear to be,

especially for the speculative grades.  In Figure 4 we display kernel density plots of the

bootstrapped default probabilities overlaid against a normal density with the same mean and

variance as a visual guide.  A summary of moments for each rating is presented in Table 4.  The

AA grade is a glaring exception to which we will return shortly.  The proximity to the normal

density is perhaps especially striking for the high credit quality grades since their estimated

default probabilities are so low.  The mean of our estimate of annual PDR across the 10,000

bootstrap replications are 0.033bp for AAA, 0.54bp for AA, 0.865 for A and 10.443 for BBB.
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Naturally PDR can not fall below 0, so the density has a natural left (and right at 1, of course)

boundary to which the investment grade densities are very close indeed.  One would expect

probability mass to pile up against that boundary, and we see this in the slight right skew of the

investment grade densities, but this skew is indeed slight, even for AAA and A whose estimated

PDs are under a basis point.

3.4. Multi-modality of PDAA

Since we never observe a direct transition from AA+ or AA to default, our estimated PD

for AA under the duration approach primarily reflects the probability of experiencing a sequence

of successive downgrades that ends in default.  Thus, transitions far from the diagonal, such as

downgrades from AA to B, play a key role in determining estimated PDs for investment grade

ratings.  It turns out that the multi-modal kernel density plot for AA is being driven by a single

firm, TICOR Mortgage Insurance, which transitioned from AA to CCC in December of 1985.  In

Figure 5 we display kernel densities for AAPD  estimated with and without TICOR.  The modes

in the density plot correspond to the number of times TICOR appears in the bootstrap sample and

hence the number of observed AA to CCC transitions.

We note that this not a peculiarity specific the duration method, but is due to the general

difficulty of estimating probabilities for such rare events.  For instance, there is a single instance

of a firm beginning a year in AA- and ending the year in default (General American Life

Insurance Co. in 1999) and bootstrapped AAPD ’s from the cohort approach show a similar type

of clustering.
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3.5. Comparing conditional and unconditional PDs

We now examine the effects of varying T, the length of the estimation window, on grade-

level PD estimates, an issue particularly relevant for practitioners.  There is a trade-off between

parameter uncertainty and heterogeneity, proxied here simply by economic regime.  The longer

T, the more accurate the estimates RPD  are likely to be.  However, one will invariably mix

recessions (higher average PDs) and expansions (lower average PDs).  If one is interested in a

long run or unconditional estimate, one would explicitly be interested in mixing these regimes.

Since the average post-war recession is slightly more than one year, and the most recent two

recessions have each lasted less than one year, it seems reasonable to impose conditional

independence over a one year period.  Thus, comparing conditional PD estimates using rolling

one-year windows to the unconditional (i.e. full sample length) estimate seems reasonable.

In Figure 6 we compare duration (top panel) and cohort based (bottom panel) PD

estimates using a one-year rolling estimation window by grade with the unconditional estimate

(reported in log basis points, bp).  The CCC chart is repeated at the end in levels.  Focusing first

on the top panel, for most grades we are able to reliably determine that the annual PD estimate

using just one year of data is significantly different from the long-run average for a surprisingly

large number of years.  For instance, with 95% confidence we can say that the BPD  was above

its long-run average in 5 of the 22 years and below its long run average in 9 of 22 years.

Specifically, we note that the PD estimates for BB and B were significantly above their long-run

averages during 1990-1991 (there was a recession from July 1990 to March 1991), while

estimates for all grades except for AAA and AA were above their unconditional levels in 2001

(the most recent recession lasted from March to November 2001).  We also point out that during
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the mid-1990s conditional PDs were below their unconditional levels across most ratings,

consistent with the business cycle.

Looking at the top panel of Figure 6 we note that for the top two grades (and to some

extent A as well) there seems to be a regime shift around 1989.  Prior to that year the conditional

PD estimates were occasionally above the long run average, but since then the entire 95%

interval has been below with the single exception of AA in 2002.  As discussed in section 3.4,

estimated PDs for these grade are significantly impacted by the number of transitions far from

the diagonal, particularly by downgrades of three or more grade levels, e.g. AAA → BBB.

However, such far migration have become extremely rare since 1989.  This observation may be

consistent with an increasing desire the part of the rating agencies to limit ratings volatility and

move towards more gradual rating adjustments (Hamilton and Cantor (2004)).  However, we

cannot rule out the possibility that AAA and AA firms were simply subject to larger shocks

during the earlier period.

The bottom panel in Figure 6 shows the one-year cohort estimates with their 95%

confidence intervals, also bootstrapped.16  The information loss incurred by applying the cohort

instead of duration based method is again striking.  No defaults from AAA occurred at all in

these 22 years, and only one default from AA (specifically AA- in 1999).  In addition, we note

that it is more difficult to distinguish the conditional from the unconditional PD using this

estimation method.

The New Basel Accord stipulates that banks have at least five years of data on hand in

order to be eligible for the advanced IRB approach (FRB (2003)).  In Figure 7 we show duration

                                                

16 To be sure, the Wald intervals are quite close to and rarely smaller than the bootstrapped cohort-based confidence
intervals.
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based PDs  (in logs) by rating with five-year rolling estimation windows against the

unconditional estimate, i.e. using the entire sample length.  Again the CCC graph is repeated at

the end in levels.  In each case we accompany the yearly point estimates with their 95%

bootstrapped confidence intervals.  The unconditional estimates naturally are just a straight line

across time (the x-axis).  Even though we are mixing recession and expansions, nonetheless with

the additional data from the wider estimation window we are still able to distinguish the five-

year conditional PD from the unconditional estimate for many of the sub-periods.  The regime

shift for the highest grades mentioned above is even more pronounced in this chart, although it

now appears around 1993.

3.6. Comparing (again) bootstrap to analytical confidence intervals: effect of

dependence

In Section 2.2 we introduced the Wald confidence interval for a binomial process.

Brown, Cai and DasGupta (2001) show persuasively that the coverage probability of the standard

Wald interval is poor not just for cases when the true (but unknown) probability is near the 0,1

boundary but throughout the unit interval.17  Among the many alternative methods for computing

a confidence interval, their final recommendation for cases where the number of observations is

at least 40 is the Agresti-Coull interval, from Agresti and Coull (1998).  Instead of using the

simple sample proportion, namely ,R D
R

R

N
PD

N
= , as the center of the confidence interval, they use

(3.2) ,R D
R

R

N
PD

N
= , where 2

, , / 2R D R DN N κ= +  and 2
R RN N κ= + .

The corresponding confidence interval for one year is

                                                

17 See also Stein (2003) for a related discussion on sample size with dependence.
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(3.3)
( )1R R

RAC
R

PD PD
CI PD

N
κ

−
= ± .

Agresti and Coull (1998) describe this as “add 2 successes and 2 failures” if one uses 2 instead of

1.96 for κ in the case of α = 5%.  Extending (3.3) to multiple years is straight forward.

Miao and Gastwirth (2004) build on these results and explore the behavior of different

interval methods in the case of dependence in the sample.  They provide a dependence correction

which assumes that the correlation across draws is known and confirm the recommendations in

Brown, Cai and DasGupta (2001) that the (now dependence corrected) Agresti-Coull interval is

preferable to the (dependence corrected) Wald interval.  In both cases the correction can be most

easily formulated in terms of an adjusted number of observations †
RN  as a function of the default

correlation ρij between firm i and j:

(3.4) 2

1
† 1 2

, ,R R
R i R j R ijN i jN

N N N ρ
−

<
 = + ⋅ ∑ ,

where Ni,R represents the number of trials, in our case years, for firm i with rating R.  Clearly

†
RN  = NR if ρij = 0.  One then uses †

RN  instead of NR in (2.2) and (3.2) to obtain the correlation

corrected confidence intervals.  The latter becomes

† 2†

† 2

/ 2R R
R

R

PD NPD
N

κ
κ

⋅ +=
+

.

With this in mind we illustrate the impact of the different analytically based confidence

intervals, with and without the assumption of dependence, for the BB-rating in the most recent

year in our sample, 2002, with the bootstrap.  The results are summarized in Table 5, and we use

only the cohort based method since the analytical formulae are designed for the discrete binomial

process rather than the continuous duration based estimate.  We pick the BB-rating since we

need at least some defaults to illustrate the difference between methods.
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We turn our attention first to the results under the assumption of independence.  The

Wald and bootstrapped estimated confidence intervals are nearly of equal length, with 281.84bp

and 283.83bp respectively.  The analytical interval is necessarily symmetric, but not the

bootstrapped interval.  The Agresti-Coull interval is slightly longer at 296.68bp and is also

shifted to the right, meaning that the center of the interval as well as the upper and lower bound

are larger.

Even a modest default correlation of 1% can have a dramatic impact on the effective

confidence interval implied by either the Wald or Agresti-Coull approach.  First, the effective

number of observations †
BBN  shrinks from 531 to 84.3.  The interval length more than doubles

for the standard Wald to 636.2bp and triples for the Agresti-Coull to 899.75bp.  Doubling the

default correlation to 2% reduces the effective number of observations to about 46, further

lengthens the confidence intervals, especially the Agresti-Coull interval (namely to 1,332.56bp)

so that it is bounded below at 0.

4. Concluding remarks

Using credit rating histories from S&P, we estimate probabilities of default using two

estimation techniques, cohort and duration (or intensity), and compare confidence intervals for

these estimates based on both analytical and bootstrap approaches.  For the duration based

estimates, we find that confidence intervals from bootstrapping are significantly tighter than the

standard Wald intervals, which may reflect the greater efficiency of the duration approach.  We

next consider the effect of varying the number of grades in the rating system.  We propose that

rating systems should satisfy monotonicity and we test this requirement formally.  Using notch

level PD estimates from the duration approach, we cannot conclude that monotonicity holds for
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most investment grade ratings, although this criterion is generally met for speculative grade

ratings.  Conditioning on the state of the business cycle helps: it is easier to distinguish adjacent

PDs in recessions than in expansions.

We also consider the effects of varying the length of the estimation window to consider

conditional, i.e. time-varying, PD estimates.  We compute bootstrapped confidence intervals for

intensity-based PDs estimated using one and five-year rolling windows, allowing for

comparisons between PDs estimated over these shorter intervals and their long-run averages.

For both the one and five-year windows, we are able to determine that the conditional estimate

differs from the unconditional estimate for a large number of years.

Our findings have implications for regulators and credit risk practitioners alike.  In a

survey of internal rating systems at the fifty largest U.S. banking organizations, Treacy and

Carey (2000) report that the median banking organization had five pass grades with a range from

two to the low twenties.  The authors also report that many banks expressed interest in increasing

the number of internal grades either through the addition of ±  modifiers or by splitting riskier

grades while leaving low-risk grades intact.  Our results suggest that the latter approach is to be

preferred from the vantage point of PD estimation, at least for the higher credit quality (à la

investment) grades.  The addition of ±  modifiers to existing low-risk ratings could result in non-

monotonic PD estimates, whereas it appears likely than meaningful estimates for additional

high-risk grades could be obtained.
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Tables

Rating
Categories

Cohort Duration
Duration
Cohort%

AAA 0.000 0.020 0.00%

AA+ 0.000 0.049 0.00%

AA 0.000 0.706 0.00%

AA- 2.558 0.317 805.56%

A+ 5.942 0.380 1562.18%

A 5.576 1.024 544.54%

A- 4.403 0.854 515.76%

BBB+ 36.049 3.952 912.09%

BBB 36.017 12.122 297.12%

BBB- 45.519 17.517 259.86%

BB+ 51.378 28.817 178.29%

BB 126.206 49.963 252.60%

BB- 228.637 98.704 231.64%

B+ 363.529 198.279 183.34%

B 1,030.928 801.539 128.62%

B 1,460.674 1,356.182 107.70%

CCC18 3,092.243 4,401.658 70.25%

Table 1: Estimated Annual Probabilities of Default (PDs) in Basis Points (1981 – 2002),
across methods.  S&P rated U.S. obligors. (from Table 2 in Jafry and Schuermann (2004)).

                                                

18 Includes CC and C rated obligors.
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Grade 1981-2002 Expansion Recession

AA+ minus AAA 9.16% 12.45% 1.34%*

AA minus AA+ 0.48%** 0.35%** 30.75%

AA- minus AA 69.63% 70.59% 1.23%*

A+ minus AA- 46.33% 45.05% 59.28%

A minus A+ 17.96% 19.35% 0.00%**

A- minus A 33.99% 39.73% 0.19%**

BBB+ minus A- 0.63%** 0.87%** 28.00%

BBB minus BBB+ 6.72% 12.33% 0.04%**

BBB- minus BBB 31.90% 21.78% 65.68%

BB+ minus BBB- 1.75%* 2.57%* 0.03%**

BB minus BB+ 13.82% 25.84% 0.00%**

BB- minus BB 0.03%** 1.50%* 0.02%**

B+ minus BB- 0.00%** 0.00%** 2.34%**

B minus B+ 0.00%** 0.00%** 0.00%**

B- minus B 0.00%** 0.00%** 0.13%**

CCC minus B- 0.00%** 0.00%** 0.00%**

* and ** denote one-tailed significance of 5% and 1% respectively.

Table 3: Testing for monotonicity significance.  % of bootstrap replications for rating
k < j, where k is of better credit quality (e.g. A+) than j (e.g. A) in which j kPD PD< . S&P credit
rating histories of U.S. firms from 1981-2002. PDs are taken from the last column of the
migration matrix estimated using the parametric intensity approach.  The number of bootstrap
replication B = 10,000.
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Rating Mean (bp) Standard
Deviation (bp)

Skewness Kurtosis number of
firm years

AAA 0.033 0.016 0.69 3.6 2,494

AA 0.540 0.339 0.93 3.8 6,937

A 0.865 0.200 0.64 3.5 13,551

BBB 10.443 2.456 0.39 3.3 10,603

BB 62.704 6.191 0.21 3.1 7,443

B 470.49 20.56 0.04 3.0 8,609

CCC 4230.35 184.41 0.10 3.0 945

Table 4:  Empirical moments of bootstrapped probabilities of default (PDs) using S&P
credit rating histories of U.S. firms from 1981-2002.  PDs are taken from the last column of the
migration matrix estimated using the parametric intensity approach.  The number of bootstrap
replication B = 10,000.
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Assuming
Independence

Assuming
Dependence (ρ = 0.01)

Assuming
Dependence (ρ = 0.02)

N / N† 531 84.3 45.8

CI with length CI length CI length CI length

Standard Wald (141.56, 423.41) 281.84 (0.00, 636.20) 636.20 (0.00, 762.45) 762.45

Agresti-Coull (168.03, 464.71) 296.68 (38.25, 938.00) 899.75 (0.00, 1,332.56) 1,332.56

Bootstrap (150.09, 433.92) 283.83 N/A N/A N/A N/A

Table 5: Confidence intervals for 2002 BB default probabilities in basis points estimated
by cohort method.
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Figures

Figure 1: Comparing asymptotic with bootstrapped 95% confidence intervals for notch-
level probabilities of default (PDs) using S&P credit rating histories of U.S. firms from 1981-
2002.  Note that the results are presented in log(PD) for easier comparison.
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Figure 2: Comparing asymptotic with bootstrapped 95% confidence intervals for whole
grade-level probabilities of default (PDs) using S&P credit rating histories of U.S. firms from
1981-2002.  Note that the results are presented in log(PD) for easier comparison.
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Figure 3:  Kernel density plots of bootstrapped probabilities of default (PDs) using S&P
credit rating histories of U.S. firms from 1981-2002, split by recession and expansion.  The red
line denotes recession, blue expansion, and green the unconditional density (as in Figure 4).  PDs
are taken from the last column of the migration matrix estimated using the parametric intensity
approach.  B = 10,000 bootstrap replication, Epanechnikov kernel using Silverman’s optimal
window.
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Figure 4:  Kernel density plots of bootstrapped probabilities of default (PDs) using S&P
credit rating histories of U.S. firms from 1981-2002.  The dashed line is the implied normal
density with the same mean and variance as the empirical density, plotted as a visual guide.  PDs
are taken from the last column of the migration matrix estimated using the parametric intensity
approach.  B = 10,000 bootstrap replication, Epanechnikov kernel using Silverman’s optimal
window.
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Figure 5: Kernel density plots of bootstrapped AA probabilities of default (PDs) using
S&P credit rating histories of U.S. firms from 1981-2002.  The solid line includes the single
firm, TICOR Mortage Insurance, that migrated from AA → CCC and the modes correspond to
the number of times TICOR appears in the bootstrap sample.  The dashed line repeats the same
calculation excluding TICOR.  PDs are taken from the last column of the migration matrix
estimated using the parametric intensity approach.  B = 10,000 bootstrap replication,
Epanechnikov kernel using Silverman’s optimal window.
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Figure 6: Comparing duration (top panel) and cohort based (bottom panel) estimates of
PD using a one-year rolling estimation windows by grade with the unconditional estimate
(reported in log basis points, bp) using S&P credit rating histories of U.S. firms from 1981-2002.
The CCC chart is repeated at the end in levels.
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Figure 7: Comparing the 5-year rolling estimation windows by grade with the
unconditional estimate (reported in log basis points, bp) using S&P credit rating histories of U.S.
firms from 1981-2002.  The CCC chart is repeated at the end in levels.
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