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Abstract
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Fama and French (1992) present compelling evidence that the unconditional CAPM does not

account for returns of size and book-to-market (B/M) sorted portfolios. Since then, the asset

pricing literature has developed alternative theories, which depart from the original model

along several dimensions. Promising avenues of research, which preserve the single factor

structure, have been conditional versions of the CAPM. The idea behind this approach

is that, although CAPM may hold conditionally on time t information, it may not hold

unconditionally. Accordingly, the poor empirical performance of CAPM might be due to the

failure to account for time-variation in conditional moments.

Among the many implementations of conditional CAPM, the ones which have proved

most successful are proposed by Jagannathan and Wang (1996) and Lettau and Ludvig-

son (2001).1 In both cases, the authors explicitly model the evolution of the conditional

distribution of returns as a function of lagged state variables. They specify the covariance

between the market return and portfolio returns as affine functions of these variables. This

specification is estimated as a multi-factor model, in which the additional factors are the

interactions between the market return and the state variables.

A recent paper by Lewellen and Nagel (2006) casts doubts on the empirical success of

this approach. While acknowledging that betas vary considerably over time, these authors

present evidence suggesting that the covariation between betas and the market risk premium

is not large enough to justify the deviations from the unconditional CAPM observed for value

and momentum portfolios (Fama and French (1993) and Jegadeesh and Titman (1993)).

They argue that the good empirical performance of previous conditional studies is due to

their cross-sectional design - which ignores key theoretical restrictions on the estimated slope

coefficients - and suggest time-series regressions instead.

In this paper, we complement the conditional CAPM literature by modeling a new type

of time-variation in conditional betas. There is substantial evidence that the risk of some

asset classes has experienced long-run movements. For example, simple OLS regressions on

1Some of the earlier asset pricing papers that model the evolution of conditional moments are, among the
others, Ferson, Kandel, and Stambaugh (1987), Bollerslev, Engle, and Wooldridge (1988), Harvey (1989). A
more recent example that follows a similar approach is Ferson and Harvey (1999).
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CRSP data suggest that value stocks had higher betas than growth stocks in the 1926-1963.

The opposite is true in the later sample.2 This low frequency evolution is different from the

covariance of beta with the equity premium that is typically modeled in conditional CAPM

applications.

Our goal is to explore the implications of long-run changes in factor loadings for the

tests of conditional models. We expect this effect to be important for the assets that have

displayed major swings in their betas, such as size and B/M sorted portfolios.

We tackle this issue by assuming that betas change over time following a mean-reverting

process. Also important, we postulate that investors are unaware of the long-run level of

risk of a given asset. Hence, they need to infer both the level of beta and its long-run mean

from the history of realized returns. Through a stylized model, in which the conditional

CAPM holds, we make the point that the risk loading that determines expected returns is

the expectation of beta that results from the learning process. We model this expectation

via a Kalman filter in which the factor loading is treated as a latent variable and argue

that betas should be estimated accordingly in empirical applications. Consistent with this

theoretical argument, in the empirical analysis, we use Kalman filtered betas to explain the

returns of the twenty-five size and B/M portfolios.

Our first set of results concerns the CAPM, augmented with learning, but without con-

ditioning variables. According to a summary statistic of mispricing adopted from Campbell

and Vuolteenaho (2004), the sole contribution of learning is a reduction of about 45% in

mispricing relative to the unconditional CAPM. Low-frequency movements of beta play a

crucial role in this result. Investors’ inference about the long-run level of beta can cause a

significant difference between the ex-ante expected level of risk and ex-post estimates from

typical OLS regressions. This mechanism is particularly relevant for portfolios of value and

small stocks that have experienced considerable long-run variation in beta. We argue that

the wedge between investors’ ex-ante expectation of beta and ex-post OLS estimates can

account for a large fraction of the unconditional alpha in standard OLS time-series regres-

2See, for example, Franzoni (2002), Campbell and Vuolteenaho (2004), Fama and French (2006), Ang
and Chen (2007).
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sions. In other words, the mismeasurement of expectations of beta and, hence, of equilibrium

expected returns can be the source of the apparent mispricing.

Our second set of results concerns the conditional CAPM with different sets of scaling

variables. We confirm Lewellen and Nagel’s (2006) finding that CAY does not improve the

performance of CAPM much in time-series tests. Once we introduce learning in Lettau and

Ludvigson’s conditional CAPM, the model is no longer rejected, and the composite pricing

error is reduced by 45% (it decreases by 65% when compared to the unconditional CAPM).

By introducing additional state variables, we show that pricing errors further decrease. In

every specification, we find that the model without learning is rejected, whereas the model

with learning is not. Pricing errors of our (one-factor) learning-augmented conditional CAPM

are comparable in magnitude to the ones from the Fama-French three factor model.

The intuition behind the empirical success of the learning-augmented CAPM in pricing

these portfolios is as follows. Consider the value premium. The failure of CAPM to price

value stocks in an OLS framework is due to the fact that these assets have high average

returns but low estimated betas. Given the decrease in systematic risk of value stocks, the

high level of the factor loading from the past affects today’s estimates and makes them larger

than OLS betas. A high estimate of beta is thus matched with high average returns and the

estimated alpha of value stocks is reduced. A similar intuition applies to small stocks, which

have also experienced a decline in systematic risk. The situation is reversed in the case of

large and growth stocks, whose levels of risk have increased over time.

It is important to point out that our results provide support for the conditional CAPM

without being subject to Lewellen and Nagel’s (2006) critique. The type of variability in beta

that affects our estimates is low frequency, idiosyncratic variation, experienced over a long

time horizon. Lewellen and Nagel, instead, focus on the cyclical covariation between beta

and the market risk premium. Consistent with their prediction, we find that the standard

conditioning variables do not improve the performance of CAPM much when the model is

tested in the time-series via OLS. However, the inclusion of these conditioning variables in

our learning framework re-establishes the success of the conditional CAPM in pricing size
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and B/M sorted portfolios.

Following much of the asset pricing literature since the early 70’s, our test assets are port-

folios of stocks. In the context of conditional asset pricing models, this procedure implicitly

assumes that investors price stocks according to the risk of the asset class to which they

belong. The asset class is defined by the relevant characteristic according to which portfolios

are sorted. In our empirical application, we use the Kalman filter to estimate betas of size

and B/M portfolios rather than individual stocks. In this sense, we proceed as if investor

imputed the same beta to all the stocks in a portfolio. While this assumption has the flavor

of some ‘behavioral’ specification, such as ‘style investing’ (Barberis and Shleifer (2003)), it

can also be motivated on rational grounds and anecdotal evidence. First, it makes sense to

believe a priori that when the time series of returns for a firm is not long enough to allow

a reliable estimation of its beta, the rational way to predict its risk is to compare the com-

pany to other firms with similar characteristics, for which a longer time series is available.

Secondly, we believe the spirit of this assumption is in line with an important feature of

the actual investment process. For example Barra, a provider of beta estimates, reports a

‘fundamental measure’ of a stock’s beta. Their estimate is the weighted average of the betas

of a set of characteristic-based portfolios to which a stock belongs.3 Our empirical focus on

the size and B/M characteristics is a clear simplification of the multi-dimensionality of the

problem. Still, we feel that we replicate a salient feature of institutional investors’ approach

in computing betas.

The paper is organized as follows. Section 1 formalizes our theoretical argument through

a stylized model, which we label Learning-CAPM. Section 2 implements the Kalman filter

methodology to estimating betas and discusses the assumptions behind our approach. Sec-

tion 3 contains the asset pricing tests of different specifications of the Learning-CAPM and

compares the performance of this model to other CAPM specifications. Section 4 contains

a review of additional related literature. Section 5 draws the conclusions of this work.

3Barra says that this fundamental beta is superior to the historical beta in predicting future risk. See,
for example, Barra’s Newsletter from September 1988: “What’s new about Beta?”
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1. Conditional CAPM with Learning

As mentioned in the introduction, there is substantial evidence that the risk of some asset

classes varies over time. As a consequence, investors may not know the precise riskiness of

assets when they make their portfolio choice. In a world with uncertainty about relevant

parameters, rational agents have to infer the factor loadings from the available information.

We denote excess returns for assets i = 1...N by Ri
t+1. The previous discussion ex-

plains that we focus on assets that differ by some characteristic that captures an investment

style. For example, the heterogeneity in these assets could originate from their size and

B/M characteristics. While a clear simplification of the actual dimensionality of the prob-

lem, this interpretation is not distant from the top-down approach that characterizes many

institutional investors.

In the Appendix, we derive the following conditional CAPM from no-arbitrage and a

simple factor structure for returns:

Et

£
Ri
t+1

¤
= βiet+1|tEt

£
RM
t+1

¤
(1)

where βiet+1|t = Et

£
βit+1

¤
= covt

¡
Ri
t+1, R

M
t+1

¢
/vart

¡
RM
t+1

¢
is both the time t expectation of

the risk factor loading that applies to time t + 1 returns and the conditional beta. We

call this conditional CAPM the Learning-CAPM, as the expected return is proportional to

the expected risk factor loading βiet+1|t. The expected risk-factor loading is a conditional

expectation, and its evolution depends on the stochastic specification of the evolution of

the unobserved beta. We assume that βit+1 evolves according to an autoregressive process

conditional on a vector of stationary exogenous state variables yt:

βit+1 =
¡
1− F i

¢
Bi + F iβit + φi0yt + uit+1 (2)

Without loss of generality, we assume that the average of the conditioning variables yt is

zero over time, so that we can interpret Bi as the long-run mean of factor loading βit+1. We
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assume that this long-run mean is unobserved, so that investors have to form expectations

about the current level of riskiness of asset i, βit+1, as well as the long-run level of risk, B
i.

Finally, uit+1 is a purely idiosyncratic shock. So, the innovations to the factor loadings are

uncorrelated with expected risk premia. It worth stressing that we are not assuming that

the evolution of beta is independent of the equity premium, which would be counterfactual.

In fact, the correlation between βit+1 and Et

£
RM
t+1

¤
is achieved through the presence of the

conditioning variables yt in equation (2).

In the Appendix, we also derive an expression for time t+ 1 excess returns:

Ri
t+1 = βit+1R

M
t+1 + ηit+1 (3)

where ηit+1 =
¡
βiet+1|t − βit+1

¢
Et

£
RM
t+1

¤
+ εit+1. Given the assumption of idiosyncratic inno-

vations to βit+1, one can easily show that ηit+1 is orthogonal to RM
t+1 (the proof is in the

Appendix). This result is a necessary condition for the application of the Kalman filter to

estimate βit+1 in equation (3).

Rationality implies that changes in the expectation of the factor loading are determined

by Bayes’ rule. We assume that the shocks uit+1 and ηit+1 are conditionally normal. Hence,

the conditional expectation of βit+1 evolves according to the Kalman filter. In the Appendix,

we show that the dynamics of expectations follow:

βiet+1|t =
¡
1− F i

¢
Bie
t−1 + F iβiet|t−1 + φi0yt + kit

¡
Ri
t −Et−1

£
Ri
t

¤¢
(4)

where Bie
t−1 = Et−1 [B

i], and βiet|t−1 = Et−1
£
βit
¤
. The optimal rule is to use the unexpected

part of the current return realization to update the previous period’s estimate of the factor

loading. kit is the “gain” and can be interpreted as a time-varying regression coefficient.

Equation (4) states that the one-period ahead forecast of the factor loading is a combination

of the long-run behavior of βit, as captured by the expectation of B
i, and the current estimate

of the level of risk.

6



The updating equation for expectations about Bi is

Bie
t = Bie

t−1 +Ki
t

¡
Ri
t −Et−1

£
Ri
t

¤¢
(5)

Hence, although the long-run mean of beta is constant, its expectation changes over time.4

In particular, equation (5) implies that Bie
t is a martingale under investors’ information set.

This feature introduces a slow moving component in risk factor loadings and required risk

premia. Ultimately, our results depend on the persistence of the shocks to the expectation

of the long-run mean of beta. Because of this persistence, levels of risk from a distant past

obtain a non-negligeable weight in today’s beliefs about beta. Hence, in our story, the high

risk premia required from value and small stocks are related to their high perceived risk.5

The specification presented in equation (2) nests popular conditional CAPM models as

special cases. Harvey (1989), Schwert and Seguin (1990), Jagannathan and Wang (1996),

Lettau and Ludvigson (2001), and Ferson and Harvey (1999) all assume that betas are

deterministic, affine functions of state variables. This is the special case of Equation (2)

when uit+1 = 0, F
i = 0, and Bi is observable. Our specification in Equation (2) also nests

the models of time-varying betas proposed by Chan and Chen (1991), Jostova and Philipov

(2005), and Ang and Chen (2007) who assume autoregressive processes for βit+1, but do not

have conditioning variables (φi0 = 0), and - most importantly - assume that the long-run

mean of beta (Bi) is an observable parameter.

One can see the impact of learning on observed mispricing by computing population

counterpart to the OLS estimate of alpha, as in Lewellen and Nagel (2006). Denote the

unconditional OLS beta by βiOLS, and the unconditional OLS alpha estimated on the same

sample by αi
OLS. After simple steps that are described in the Appendix, one obtains an

4The gain matrix for the filter of Bi, denoted Ki
t , can also be interpreted as a time-varying regression

coefficient and its expression is given in the Appendix.
5We did experiment with a specification, in which Bi is an observable parameter rather than a latent

variable. In this case, Bi is estimated using maximum likelihood in the same way as the other parameters
of the Kalman filter. This alternative specification, which is available upon request, produces substantially
larger pricing errors than the ones we present in the paper. Hence, our results really hinge on the assumption
that investors are unaware of the underlying long-run level of risk for an asset.
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expression for the population value of the OLS alpha:

αi
OLS = E

£
βit+1 − βiOLS

¤
E
£
RM
t+1

¤| {z }
Learning component

+ Cov
£
βit+1, R

M
t+1

¤| {z }
Covariance component

(6)

We can solve for the two components by using the expressions from our model. The dynamics

of beta are given in equation (2). We assume that βit+1 covaries with the conditional market

risk premium Et

£
RM
t+1

¤
only through yt. In other words, u

i
t is an idiosyncratic shock and yt

contains all the relevant information about its past values. Hence, the covariance component

of alpha is

Cov
£
βit+1, R

M
t+1

¤
= φi0Cov

£
yt, Et

£
RM
t+1

¤¤
As for the learning component, note that we do not need to focus on the Kalman filter when

computing unconditional values. Without loss of generality, we assume that yt is demeaned.

Then we take expectations of each side of (9)

E
£
βit+1

¤
=
¡
1− F i

¢
E
£
Bi
¤
+ F iE

£
βit
¤

By the stationarity of betas, we obtain

E
£
βit+1

¤
= E

£
Bi
¤

In spite of Bi being a parameter, we keep the expectation operator to signify that investors

do not know the long-run mean and form expectations about it. In terms of sample moments,

this expectation translates into the sample average of investors’ forecast of the long-run mean

Bi. Combining the two components, we obtain the following expression for the OLS alpha:

αOLS =
£
E
£
Bi
¤
− βiOLS

¤
E
£
RM
t+1

¤| {z }
Learning component

+ φi0Cov
£
yt, Et

£
RM
t+1

¤¤| {z }
Covariance component

(7)

Equation (7) is explicit on the contribution of the learning component to explain the positive
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alpha of value and small stocks. In the relevant sample, the average estimate of the long-

run mean tends to lie above the OLS estimate of beta for these assets. Hence, learning

contributes to explain part of the value and small stock premium.

2. Estimation of the Learning-CAPM

The size and B/M related anomalies that are pointed out by Fama and French (1992 and

1993) represent the type of mispricing that is most likely to be related to learning, as the

betas of these portfolios have displayed strong time-variation (Franzoni, 2002). This consid-

eration motivates the adoption of size and book-to-market sorted portfolios in our empirical

application. Our methodology is not subject to Lewellen, Nagel, and Shanken’s (2007) cri-

tique of this choice of test assets, because we avoid cross-sectional tests.

We use the twenty-five portfolios that result from double-sorting the stocks of NYSE,

Amex, and Nasdaq along the size and B/M dimensions.6 The portfolios, which are con-

structed at the end of each June, arise from the intersections of five portfolios formed on

size (market equity) and five portfolios formed on the ratio of book equity to market equity.

The size breakpoints for year t are the NYSE market equity quintiles at the end of June

of t. The B/M for June of year t is the book equity for the last fiscal year end in t − 1

divided by market capitalization for December of t − 1. The B/M breakpoints are NYSE

quintiles as well. The portfolio returns are value-weighted averages of returns on the stocks

in each group. More details on the portfolio formation procedure are provided in Davis,

Fama, and French (2000). To save space, and given that these portfolios are widely used in

the literature, we omit providing summary statistics for their returns.

We focus our empirical exercises on explaining average returns between the third quarter

of 1963 and the last quarter of 2004, because it is in this later sample that CAPM experienced

its strongest failures. However, we assume that investors start learning about the underlying

factor loading as soon as portfolio data become available, that is in July 1926, which is

6The porfolio returns are from Kenneth French’s website.
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the beginning of the monthly portfolio return series based on CRSP. The use of quarterly

data is imposed by the fact that Lettau and Ludvigson’s (2001) CAY, which is one of the

conditioning variables in our analysis, is available only at quarterly frequency. It must be

said, however, that the results that do not involve CAY (which we do not report to save

space) are unaffected by the use of monthly frequency.

Our model suggests that variables that predict factor loadings also predict the equity

premium.7 We thus choose conditioning variables whose ability to predict beta or the equity

premium has been demonstrated in previous studies. We follow Campbell and Vuolteenaho

(2004) and use the return to the value-weighted market portfolio, the term spread, and

the value spread as conditioning variables. We construct the term spread as the difference

between the 10-year and the 3-month constant maturity Treasury yield (reported in the

Federal Reserve Bulletin). For the value spread, we use the return to the HML factor

from Fama and French (1993). Finally, we use Lettau and Ludvigson’s (2001) CAY. This

variable captures the innovations to the cointegrating relationship between consumption, the

stock market, and labor income. Lettau and Ludvigson show that CAY predicts the equity

premium and, when used as scaling variable, drastically improves the pricing performance of

the CAPM and the Consumption CAPM. Different subsets of these conditioning variables

are included as lags in the updating Equation (4).

We also experimented with other conditioning variables such as the dividend yield, the

price-earnings ratio, various Treasury yields, Moody’s BAA-AAA credit spread, inflation,

and the growth rate of industrial production (see Chen, Ross and Roll (1986) and Campbell

(1996)). We found that these additional variables do not significantly improve the cross-

sectional pricing performance of the learning model.

To derive the filtered betas for the twenty-five portfolios, we apply the Kalman filtering

7The equity premium is pinned down by our model:
Et[R

M
t+1] = b̄tV art

£
RM
t+1

¤
Rf
t .

Hence, the expected return on the market is proportional to b̄t, the cross-sectional average of the factor
loadings, which in turn is a function of the conditioning variables.
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procedure for a model with time-varying coefficients to the following state space:

Ri
t+1 = βit+1R

M
t+1 + ηit+1 (8)

βit+1 =
¡
1− F i

¢
Bi + F iβit + φi0yt + uit+1 (9)

Bi : unobserved (10)

The updating equations are provided in Appendix 2. In Section 1, we argue that ηit+1 is

orthogonal to RM
t+1, which is a necessary condition for the application of the Kalman filter.

To fully exploit the power of maximum likelihood estimation, we impose the restriction from

our model and estimate equation (8) without a constant. Some readers were concerned that

omitting the intercept would play in favor of the null (that is, the learning-CAPM), as the

mean of the estimated betas would capture the component of average returns that is not

explained by the market risk factor. In fact, our results are insensitive to the inclusion of an

intercept in equation (8).

The filter is estimated between 1926:Q3 and 2004:Q4. All conditioning variables except

CAY are available in the whole sample. CAY’s series extends between 1951:Q4 and 2003:Q2.

When CAY is not available, the filter is estimated using the other data. We use diffuse priors

as initial condition for the forecast error, and a prior of 1 for both biet+1|t and Bie
t+1|t for all

portfolios. The Kalman filter is described in detail in Hamilton (1994), and we adopt the

maximum likelihood estimation techniques from Koopman and Durbin (2001).

One of the identifying assumptions of our model is that the innovations uit are uncorrelated

with the innovations ηit for each asset and that error terms are uncorrelated across assets.

Correlation of betas across portfolios and correlations of betas with the expected market risk

premium are thus fully captured by the set of state variables. The autoregressive parameter

F i, the intercept ai, the standard deviations of error terms
¡
σiη
¢2
and (σiu)

2
, and the loadings

on the conditioning variables φi are estimated using maximum likelihood on the whole history

of portfolio returns, the market return, and the state variables.

The parameter estimates of the system (8)-(10) are reported in Table 1. We estimate
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four specifications of the learning model. In the first specification in Table 1, no conditioning

variables are included. We then present estimates where CAY is the only conditioning

variable: this specification is a learning augmented version of Lettau and Ludvigson (2001).

The third model uses the conditioning variables from Campbell and Vuolteenaho (2004): the

term spread, the market return, and the value spread (HML). In the last specification, we

include all four conditioning variables in the estimation. In order to keep Table 1 readable,

we only report the parameter estimates for four portfolios: small-growth, small-value, large-

growth, and large-value.

Estimates of the idiosyncratic return variance
¡
σiη
¢2
and the idiosyncratic beta variance

(σiu)
2
vary little across different specifications (reading Table 1 vertically), but do vary sub-

stantially across different portfolios (reading Table 1 horizontally). The idiosyncratic return

variance
¡
σiη
¢2
is highest for the small growth and lowest for the large growth portfolio. Small

stocks and growth stocks have higher variance of idiosyncratic shocks to betas (σiu)
2
(except

in the last specification). The coefficient of auto-regression F i does vary substantially across

different model specifications, suggesting that conditioning variables pick up some of the per-

sistence in betas. Value stocks are positively autocorrelated with estimates of F i between

20% and 35% in the model without conditioning variables, whereas growth stocks have an

insignificantly negative autocorrelation around the long-run mean Bi. Deviations of value

stocks beta from the long-run mean Bi are thus more persistent. An interesting question for

future research is what characteristic of value and growth firms technology determines the

different degree of persistence of their risk loadings.

For the four portfolios that we report in Table 1, only the term spread is a conditioning

variable that is consistently significant, whereas CAY, the market, and HML never appear

to be significant. Each of the conditioning variables, however, is significant for at least one

of the portfolios that we do not report here. Furthermore, we show in the next section that

pricing errors are changing substantially with different conditioning variables, meaning that

these instruments are relevant conditioning information. Betas of the large growth portfolio

depend negatively on the term premium, whereas the betas of the other portfolios depend
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positively on the term premium. The term spread predicts recessions: in the postwar period,

every time the term spread became negative, a recession followed (see Harvey (1989) and

Estrella and Hardouvelis (1991)). This finding suggests that expected returns of large growth

stocks increase relative to other portfolios when the market expects a recession. The betas of

growth stocks load negatively on CAY, whereas value stocks load positively on CAY. Lettau

and Ludvigson (2001) argue that CAY is high during recessions and low in expansions,

suggesting that the value premium is partially explained by the increase in betas during

recessions. In our context, loadings of betas on HML and the market are small in magnitude

and insignificant, which makes them hard to interpret.

Let us now turn directly to the filtered series of the factor loadings. Figure 1 plots the

one-step-ahead forecast level biet+1|t and forecast long-run mean Bie
t+1|t series resulting from

the Kalman filter for the four portfolios of Table 1. The graphs show a pattern that has been

pointed out in Franzoni (2002): starting from the late forties, there was a downward trend in

the betas of value and small stocks (see portfolios 1:1, 1:5, and 5:1). The flip side of the coin

is that the beta of large growth stocks displays an upward trend. However, relative to the

rolling-window OLS estimates of Franzoni, our Kalman filter betas vary more slowly. This

fact is due to the Bayesian updating contained in the Kalman filter and to the assumption

of mean-reversion, which cause some positive weight to be attached to past levels of beta.

The graphs also show how the forecast level of beta (solid line) is anchored to the forecast

level of the long-run mean, which in turn evolves in a smooth fashion (dashed line).

Table 2 provides evidence on the relationship between OLS beta estimates and Kalman

filtered betas. Panel A contains the OLS beta estimates from time-series regressions in the

sample between 1963:Q3 and 2004:Q4, while Panels B and C have summary statistics on the

βiet+1|t series in the same period. The crucial point to notice is that, when there is evidence

of a descending trend in beta, as for value and small portfolios, the two filtered beta series

tend to lie above the OLS estimates. This occurs because the mean-reversion assumption

embedded into the filter causes the current estimate of beta to be affected by the high levels

of the loading from the past. Consider, for example, portfolio 1:5 (small-value): the OLS
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estimate of beta is 1.19, while the Kalman filtered level of beta across models has a mean

value that is always above 1.50. The opposite happens for large-growth portfolios, although

to a smaller extent.

The wedge introduced by learning and mean-reversion between Kalman filtered betas

and OLS estimates is at the core of our account of the mispricing, which is commonly

detected in the context OLS time-series regressions. The fact that the Kalman filtered beta

is higher than the OLS estimate for value portfolios is crucial to explain a fraction of the

value premium as the expected return required by investors, who are learning about the true

level of beta.

We need to point out that for the wedge between Kalman filtered betas and OLS estimates

to exist, it is important that we let the Kalman filter start at the beginning of the longer

sample. It is in the years up to the early sixties that the betas of value and small stocks

had the very large realizations, which affected the forecast of the long-run mean thereafter.

Accordingly, the assumption of mean reversion is also crucial to obtain a wedge. We have

estimated a separate model in which we allow for non-stationarity in beta. In this case, the

anchoring effect of the long-run mean disappears, and the filtered beta is very close to the

betas that can be obtained from rolling window OLS estimation.

The estimates of OLS and Kalman filtered betas in Table 2 allow an approximate quantifi-

cation of the learning component of the unconditional alpha, which is contained in equation

(7). As an example, let us focus on small—value stocks (portfolio 1:5). In the 1963:Q3-

2004:Q4 sample the OLS beta of this portfolio is 1.19. Instead, the average Kalman filtered

beta is between 1.51 and 1.55, depending on the specification. We can approximate the fore-

cast of the long-run mean with the Kalman filtered beta, as the two are very close. Given

an estimate of 1.56 for the quarterly equity premium in this sample, one can calibrate the

learning component to be around

(1.52− 1.19)× 1.56 = 0.51

which is about one quarter of the quarterly OLS alpha for this portfolio. Table 3 contains the
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results for all the twenty-five size and B/M sorted portfolios. Panel A has the unconditional

OLS alphas, whereas Panel B reports the learning component using the Kalman filtered

betas from Panel E of Table 2. For portfolios that are less mispriced than portfolio 1:5, the

fraction of alpha due to learning is even more important.

To conclude, we quantify the covariance component of the unconditional alpha in equation

(7). As in Lewellen and Nagel (2006), we estimate the unconditional covariance between the

conditional beta and the market risk premium as the sample covariance between estimated

betas and realized excess market returns. The implicit assumption is that the sampling

error in betas is orthogonal to market returns. We use the Kalman filter estimates of beta

that rely on the largest set of conditioning variables. The results are in Panel C of Table

3. Like Lewellen and Nagel, we find that the covariance component is not large enough

to explain the unconditional alpha. This finding underscores the importance of learning to

ultimately explain our results. Unlike these authors, however, we find that the covariance

component has the correct sign to explain the unconditional alphas. That is, value stock

betas positively covary with the market risk premium, while the opposite holds for growth

stocks betas. This evidence is consistent with Lettau and Ludvigson (2001). The difference

with respect to Lewellen and Nagel is possibly due to the fact that Kalman filtered estimates

of conditional betas are possibly less noisy than these authors’ high frequency estimates.

3. Pricing Errors of the Learning-CAPM

In this section, we use the learning-augmented version of the conditional CAPM to explain

average returns on the twenty-five size and B/M sorted portfolios.

The returns to be explained span the interval between the third quarter of 1963 and the

last quarter of 2004. There are two reasons to give more attention to this later period. First,

the major failures of CAPM, the ‘value premium’ and the ‘small firm effect’, are detected in

these data. As we wish to investigate to what extent learning about betas can account for

these anomalies, it is this sample that is of interest to us. Second, the key element in our
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approach is the wedge between true riskiness, which is not observed, and expected riskiness,

which determines the premium required by investors. This wedge is the larger, the bigger

the changes in the underlying factor loadings have been in the past. So, the wedge is more

likely to be a significant determinant of expected returns in the second sub-sample, as the

more drastic changes in the beta of value and small stocks occurred in the initial forty years

of data.

Lewellen and Nagel (2006) suggest that the good performance of conditional asset pricing

models may result from the cross-sectional design adopted for the test of these models and the

failure to impose the theoretical constraints in the estimation process. They argue that time-

series tests are, therefore, more suitable to these models. Accordingly, we choose to assess

the performance of the learning-augmented version of CAPM in a time-series framework.

The fact that betas are estimated with a Kalman filter raises two methodological issues,

which are not present in standard time-series tests of CAPM.

First, portfolio mispricing cannot be computed as the intercept in a time-series OLS

regression. Hence, we proceed as follows. Each quarter we estimate a conditional alpha for

portfolio i as

α̂i
t+1 = Ri

t+1 − β̂
i kf

t+1|tR
M
t+1, (11)

where β̂
i kf

t+1|t is the one-period ahead forecast of beta made at time t, which results from

the Kalman filter. Then, the final estimate of the pricing error for portfolio i, α̂i, equals

the time-series mean of α̂i
t+1. Analogously to the Fama and MacBeth (1973) approach, the

standard error for this estimate of mispricing is computed as the standard error of the mean.

In the Appendix, we show that the probability limit of α̂i is zero under the null hypothesis

that the learning-CAPM holds.

The second issue has to do with the fact that the tests for the joint significance of the

pricing errors, such as the Gibbons, Ross, and Shanken (1989) small sample test and the

asymptotic chi-squared tests (see Cochrane (2001)), cannot be applied to our estimates of

pricing errors, because the above mentioned results are valid in case of OLS estimates.

Therefore, we provide bootstrapped p-values of two summary statistics of aggregate pricing
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error. The first summary measure is simply the square root of the mean squared pricing

errors (RMSE). While this statistic gives equal weight to each pricing error, it has the

appealing feature of corresponding to the objective function that is minimized in a least

square problem and it has, therefore, an intuitive interpretation. Following Campbell and

Vuolteenaho (2004), our second statistic is the composite pricing error (CPE), which is

defined as α̂0Ω̂−1α̂, where α̂ is an N -dimensional vector of the portfolio pricing errors α̂i

and Ω̂ is a diagonal matrix with estimated return variances on the main diagonal. This

measure of aggregate pricing error gives less weight to the alphas of more volatile portfolios.

The authors suggest that this statistic is better behaved than the Hansen and Jagannathan

(1997) distance measure, in which a freely estimated variance-covariance matrix of returns

is replaced for Ω̂, because the high number of test assets magnifies the estimation error in

the inverse matrix. The bootstrapping procedure of these statistics adjusts returns to be

consistent with the pricing model before random samples are generated. Furthermore, the

bootstrapped distribution is conditioned on the Kalman filtered beta series. Accounting

for estimation error in betas would increase the variance of the statistic. Given that our

asset pricing tests fail to reject the null hypothesis of zero pricing errors, a more dispersed

distribution would only confirm this conclusion. Finally, the choice of the identity matrix

and the diagonal matrix Ω̂ as weighting matrices in the quadratic forms of the two summary

statistics allows comparisons of the performance among different asset pricing models. This

would not have been possible, if we had used the variance-covariance of pricing errors, which

is affected by the choice of the asset pricing model.

We consider four specifications of the learning-augmented version of CAPM. The first

specification does not include any conditional variable in the information set for the esti-

mation of beta besides the history of realized returns. The performance of this model is

assessed against that of the corresponding CAPM formulation without learning, that is the

unconditional CAPM. The other three models specify three alternative sets of conditioning

variables in the state equation that defines the evolution of beta (the yt variables in Equa-

tion (4)). These models are contrasted to the corresponding conditional CAPM specification
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without learning on beta. The choice of state variables reflects the results in the literature

on conditional models and is discussed in the previuos section.

Although we consider learning about unobservable factor loadings as the appropriate

complement to conditional models, we want to start our analysis from two models that do not

include conditioning variables in order to assess the sole contribution of learning in reducing

the pricing errors. Table 4 compares the pricing errors generated by the unconditional CAPM

(Panel A) with those from the learning CAPM with no conditioning variables (Panel B). In

Panel A, the pricing errors are simply the intercept from time-series regressions and their

t-statistics are computed accordingly. The computation of the pricing errors and t-statistics

for the learning model in Panel B reflects the procedure described above. At the bottom of

the table, we provide the two summary measures of the aggregate mispricing (RMSE and

CPE) along with their bootstrapped p-values.8 Panel A of Table 4 confirms known results

in asset pricing. Value stocks display positive and significant mispricing, which in the case

of the small-value portfolio is about 8% annually. On the other hand, growth stocks have a

discount in returns, which is marginally significant for the small-growth portfolio.

In moving from Panel A to Panel B, the general impression is that pricing errors decrease.

In particular, accounting for learning reduces the alpha of the small-value portfolio by about

25% from 2.05% to 1.63% quarterly. The reduction in the mispricing of the other value

portfolios is even larger and the alpha of the large-value portfolio decreases to about zero.

Also on the growth side of the spectrum, the alphas are generally reduced by the learning

model, except for the small-growth portfolio. The lack of a decrease in the absolute mispric-

ing of this group of stocks originates from the fact that while this portfolio has a discount in

returns, its beta displays a decreasing trend (see Figure 1). Hence, there is no wedge between

the OLS and the Kalman filter estimates of beta. The small-growth portfolio has proven to

be problematic in the context of other studies based on these test assets (Fama and French

(1993), Campbell and Vuolteenaho (2004)), suggesting that the small size of these stocks

and, probably, their low liquidity, impose a separate account of their returns.

8In the case of the OLS models, the bootstrapping procedure re-estimates beta at each draw. The
sampling error in the estimation of beta is therefore taken into account.
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The general reduction in pricing errors achieved by the learning model in Table 4 is

confirmed by looking at the two aggregate measures. In moving from the unconditional

CAPM to the learning CAPM, the RMSE decreases by about 25%, whereas the CPE drops

by about 45%. Most importantly, the bootstrapped p-values for these two statistics indicate

that, in the case of the learning model, they are only marginally significant.

The first two graphs in Figure 2 give a visual impression of the reduction in pricing errors

achieved by the learning model relative to the unconditional CAPM. Moreover, the standard

error bands provide direct evidence of the fact that the variance of the estimates does not

increase from one model to the other, suggesting that the larger p-values for the summary

measures of mispricing in Panel B are not the result of increased sampling error.

Among the conditional asset pricing models, the one by Lettau and Ludvigson (2001)

has recently received much attention due to its success in substantially improving the pricing

performance of the CAPM and the Consumption CAPM. As mentioned above, Lewellen and

Nagel (2006) argue that the correct framework for testing this model is a time-series one.

Accordingly, Panel A of Table 5 presents the time-series tests of a conditional asset pricing

model, in which beta is assumed to be a linear function of Lettau and Ludvigson’s CAY.

This approach is equivalent to a time-series regression of portfolio returns on two factors:

the market and the market scaled by lagged CAY. Without going into the details, it is

evident that, although the model decreases mispricing relative to the unconditional CAPM,

the improvement is not substantial, consistent with Lewellen and Nagel’s (2006) prediction.

For example, the RMSE is reduced by just 20%.

The point of this paper is to show that the combination of conditioning variables and

learning about time-varying factor loadings achieves a significant reduction in pricing errors.

This argument finds a large part of its support from Panel B of Table 5, which presents

the alphas from the learning model computed using CAY as conditioning variable. The

comparison with Panel A of the same table suggests that learning improves the pricing

performance of conditional models. All pricing erros, except for the small-growth portfolio,

are smaller in Panel B. This impression is confirmed by the fact that the RMSE is reduced
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by about 23% and the CPE drops by about 45%. Also important, these two statistics

are no longer significantly different from zero. Even more striking, there is a substantial

improvement in the pricing performance with respect to both models in Table 4, which do

not use conditioning variables. As an example, the decrease in the CPE relative to the

unconditional CAPM is a remarkable 75%.

As discussed in Section 2, the conditioning asset pricing literature has proposed other

conditioning variables to instrument betas besides CAY. We would like to show that the

reduction in mispricing achieved by combining learning with conditional information is not

specific to the choice of CAY. Among the ‘usual suspects’, and excluding CAY, we have se-

lected the excess return on the market, the return on HML, and the term spread. Interacting

the lags of these variables with the market return generates three additional factors in the

OLS tests of CAPM. Panel A of Table 6 reports the alphas from this version of conditional

CAPM. Overall, the evidence suggests that these variables are not by themselves effective in

reducing CAPM pricing errors. Indeed, the RMSE and CPE are only slightly smaller than

the ones in Panel A of Table 4. However, when these variables are used as state variables

for beta in the Kalman filter, the performance of the resulting learning CAPM significantly

improves relative to the models in Table 4 (see Panel B of Table 6). With respect to Panel

A of that table, the RMSE is reduced by about 31% and the CPE by about 59%. Also with

respect to Panel B of Table 4 the reduction is sensible. Therefore, we infer that the ability of

learning to reduce pricing errors is not peculiar to the use of CAY as conditioning variable.

The evidence in the previous tables suggests that combining CAY with the three other

conditioning variables should further improve the performance of the learning CAPM. This

specification is considered in Table 7. Panel A of the table reports the pricing errors for the

OLS conditional model. The results indicate that this conditional version of CAPM does

not reduce pricing errors more than the specification with CAY alone. The p-values for the

statistics RMSE and CPE state the rejection of this asset pricing model.

Instead, Panel B of Table 7, where the four conditioning variables are incorporated into

the Kalman filter for beta, tells a completely different story. In general, the pricing errors are
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smaller in absolute value than in Panel A, the main exception being again the small-growth

portfolio. In particular, the premium to the value portfolios is substantially smaller than

with the previous models (see also Figure 2). The alpha of the small-value portfolio is only

marginally statistically significant and it drops to about 5% in annual terms. The decrease in

the aggregate pricing error relative to the unconditional CAPM and the conditional models

without learning is substantial. For example, the RMSE and CPE are respectively 56% and

30% of the corresponding levels for the unconditional CAPM in Table 4. Finally, these two

statistics are not significantly different from zero, suggesting that the asset pricing model is

not rejected by the data. As said before, given that the standard error of the alphas for this

model and the bootstrapped standard deviation of these two statistics are not significantly

larger than for the unconditional CAPM, which is instead rejected, we are not inclined to

impute the failure to reject to the lack of statistical power with respect to the tests of the

other CAPM specifications.9

Finally, it is interesting to compare the performance of our theoretically motivated learn-

ing model to that of Fama and French’s (1993) empirical model, which is known to perform

well on this set of test assets. Table 8 contains the alphas from the three-factor model.

The Fama-French model produces smaller pricing errors for value stocks than our learning

specification in Panel B of Table 7. It does, however, worse in pricing growth portfolios. In

terms of aggregate mispricing, the Fama-French specification yields a RMSE which is only

19% smaller than the learning model of Table 7. The difference in the CPE is however larger,

because the three-factor model reduces the alphas of value portfolios, which have compara-

tively lower return volatility and, therefore, receive more weight. Incidentally, the rejection

of the Fama-French model in spite of the smallest aggregate mispricing is to be imputed to

the fact that the three factors absorb most of the residual variance and, therefore, increase

the power of the tests.

In conclusion, the evidence suggests that incorporating learning into conditional models

9For example, the bootstrapped standard deviation of the CPE statistic for the unconditional CAPM in
Panel A of Table 4 is 0.034, while it is 0.038 for the learning model in Panel B of Table 7. The two standard
deviations are, therefore, very close.
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pushes the pricing performance of CAPM substantially closer to that of the best multi-factor

models.

4. Related Literature

In terms of modelling strategy, our work has drawn inspiration from Lewellen and Shanken

(2002). These authors extend results by Timmermann (1993) to an equilibrium setting with

multiple securities. Lewellen and Shanken show that learning about the unobservable means

of the dividends generates both predictability and excess variance in returns. More gener-

ally, their goal is to point out the role played by parameter uncertainty in explaining pricing

anomalies. While placing our paper in this line of research, we innovate by focusing on

uncertainty about second moments. The advantage of this choice is to capture the impact

of the long-run behavior of risk for today’s expected returns. This element is missed if one

focuses only on the long-run mean of the dividend process. In the present formulation of the

paper, investors eventually learn Bi, which is an unknown constant. So, as in Lewellen and

Shanken, the learning component of the value premium is expected to disappear asymptot-

ically. Because βit varies over time, learning the long-run mean of B
i can potentially take a

long time. One could easily modify the model to allow time-variation in the long-run mean

as well. In this case, investors would never fully learn about the long-run mean and there

would always be a non-negligeable learning component in the alphas.10

Rationality implies that conditional expectations evolve according to Bayes’ rule, which

naturally leads to modeling the evolution of investor’s expectations via the Kalman Filter.

Multivariate GARCH models are an econometric alternative to Kalman filtered estimates of

beta. For example, Engle, Bollerslev, and Wooldridge (1988) and Engle, Lilien and Robins

(1987) test a CAPM models where the time-variation in beta is modeled as a (multivariate)

GARCH. Engle and Lee (1999) adopt a model of volatility that is closely related to ours.

10In previous versions of the paper, we allowed for time-variation in B. The results were very similar to
the current version. We have finally decided to treat B as a constant in order to avoid over-parametrization
of the model.
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They model the volatility of the market return as an autoregressive process that is reverting

back to a slowly time-varying mean. Instead of modeling the time-variation of volatilities, we

model the time-variation of betas. Schwert and Seguin (1990) also model the time-variation

of covariances in a Garch framework and test the CAPM with time-varying betas on the

universe of size-sorted portfolios. The main econometric difference to our approach is that

our analysis allows idiosyncratic movements in beta.

When second moments are constant, their estimation can be arbitrarily improved by

increasing the frequency of observations (Merton (1980)). When second moments are time-

varying, increasing the frequency of observations can lead to improved efficiency even when

the wrong structural model of second moments is imposed (Nelson (1992) and Diebold,

Andersen, Bollerslev, and Labys (2003)). The driving forces for our results is the evolution

of the expectation of the long-run mean of beta. An increase in the frequency of the data does

not help to make better inference about the long-run mean of beta, only a longer time-series

can improve investors’ inference about Bi.

5. Conclusions

In deriving factor pricing models, the existing literature has proceeded in one of two ways:

either by assuming that second moments and risk premia are constant to derive uncondi-

tional restrictions, or by modelling the evolution of conditional moments as constant func-

tions of state variables. We extend the latter approach by introducing unobserved, long-run

movements in beta. This time-variation affects investors’ expectation of the risk factor load-

ing. Eventually, a long history of returns matters in determining the required return on

characteristic-sorted portfolios. Under a normality assumption, it follows naturally from

Bayes’ rule that betas have to be estimated via the Kalman Filter.

We perform time-series asset pricing tests on the size and B/M sorted portfolios. The

introduction of learning into standard conditional CAPM models, by estimating betas with

the Kalman filter, reduces pricing errors substantially. Whereas standard conditional CAPM
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formulations are rejected in the time-series, our learning augmented specifications cannot be

rejected.

We have made some simplifying assumptions that could be relaxed in future research.

Throughout the paper, we have assumed that betas evolve as linear, autoregressive processes

with homoskedastic innovations. Nonlinear Bayesian estimation methods such as Monte-

Carlo Markov-Chains would allow the assumption of linearity and constant variances of

innovations to betas to be relaxed. We have also simplified our approach by assuming that

there is only one priced factor. It is straightforward to extend our methodology to a setting

with multiple factors. One of the appealing features of our approach, however, is to show

that a conditional one-factor model can go a long way in explaining stock returns, once

learning about systematic risk is introduced.
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Appendix 1: Derivation of the Learning-CAPM

In this appendix, we present a framework that derives equation (1) from the basic principles

of no-arbitrage. We denote excess returns to asset i by Ri
t+1. Ross (1976a and 1976b) shows

- in what has become to be known as the fundamental theorem of asset pricing - that the

absence of arbitrage implies the existence of a strictly positive pricing kernel Mt+1 such that

Et

£
Mt+1R

i
t+1

¤
= 0 (A-1)

Most asset pricing models can be derived from Equation (A− 1) with an appropriate specifi-

cation of the stochastic discount factor. We assume that unexpected returns depend linearly

on surprises to the stochastic discount factor:

Ri
t+1 −Et

£
Ri
t+1

¤
= −bit+1 (Mt+1 −Et [Mt+1]) + εit+1 (A-2)

where εit+1 denotes idiosyncratic risk, which is a random variable that is independently

distributed of Mt+1, while b
i
t+1 is the loading of asset returns on the pricing kernel. The

assumption that return surprises depend linearly on innovations to the discount factor is

standard. It holds naturally in continuous time, and is also assumed in the derivation of the

APT. An implicit assumption in (A− 2) is that innovations to the pricing kernel depend

on only one source of risk. We make this assumption as we focus on pricing models with a

single risk factor in our empirical application. However, we could have assumed that shocks

to Mt+1 are subject to shocks from multiple sources, everything that follows could easily be

extended to such a setting.

We denote the value weighted excess return on the market by RM
t+1 and assume that the

idiosyncratic risk in factor loadings bit+1 averages out cross-sectionally. The value weighted

cross-sectional average of factor loadings bit+1 is thus known at time t and we denote it

by b̄t. We further assume that the value weighted idiosyncratic risk εit+1 averages to zero

across assets. The value weighted average of Equation (A− 2) then implies the following
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unexpected return to the market portfolio:

RM
t+1 −Et

£
RM
t+1

¤
= −b̄t (Mt+1 −Et [Mt+1]) (A-3)

Surprises in the market return thus depend linearly on surprises in the pricing kernel. We

have not restricted the sign of b̄t, but we would expect it to be positive in normal times: a

surprisingly high realization of the stochastic discount factor leads to stronger discounting

and thus lower returns.

One can replace equation (A− 3) into equation (A− 2) to obtain an expression of stock

returns as a function of the market return:

Ri
t+1 −Et

£
Ri
t+1

¤
= βit+1

¡
RM
t+1 −Et

£
RM
t+1

¤¢
+ εit+1 (A-4)

where βit+1 = bit+1/b̄t is the loading on the market factor for time t+ 1 returns on asset i.

Now one can derive expressions for Et

£
Ri
t+1

¤
and Et

£
RM
t+1

¤
by replacing equations (A−3)

and (A− 2) into the pricing equation (A− 1). In particular, one obtains

Et

£
Ri
t+1

¤
= βiet+1|tEt

£
RM
t+1

¤
(A-5)

which corresponds to equation (1) in the text. Notice that

βiet+1|t = Et

£
βit+1

¤
= covt

¡
Ri
t+1, R

M
t+1

¢
/vart

¡
RM
t+1

¢
(A-6)

which can be easily verified using equation (A-4) and the assumption that time t+1 shocks

to factor loadings are idiosyncratic.

Finally, by substituting equation (A-5) into (A-4), one obtains the following expression

for excess returns on individual assets:

Ri
t+1 = βit+1R

M
t+1 +

¡
βiet+1|t − βit+1

¢
Et

£
RM
t+1

¤
+ εit+1 (A-7)
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Hence, stock returns are determined by three components. The first component is the market

return RM
t+1 times the systematic risk β

i
t+1: assets with a higher beta have more systematic

risk, and investors are compensated for that risk with higher returns. The second term is

the surprise in factor loadings: a positive shock to the factor loading of asset i between t

and t + 1 requires expected returns to increase and hence prices to fall, which explains the

negative dependence of Ri
t+1 on β

i
t+1−βiet+1|t surprises to asset betas. The third determinant

of returns is the idiosyncratic return εit+1.

By denoting

ηit+1 =
¡
βiet+1|t − βit+1

¢
Et

£
RM
t+1

¤
+ εit+1 (A-8)

in equation (A-7), one obtains equation (3) in the text.

Appendix 2: Derivation of the Kalman-Filter

This section gives the details about the Kalman filter. Let’s introduce the following notation:

ξit =

⎛⎝ Bi

βit

⎞⎠ F̃ i =

⎛⎝ 1 0

1− F i F i

⎞⎠ Ht =

⎛⎝ 0

RM
t

⎞⎠ U i
t+1 =

⎛⎝ 0

uit+1

⎞⎠ Φi0
t =

⎛⎝ 0

φi0yt

⎞⎠
Then the system of Equations (8)—(10) can be written as:

ξit+1 = F̃ ξit + Φi0Yt + U i
t+1 ∀i (A-9)

Ri
t = H 0

tξ
i
t + ηit ∀i (A-10)

Furthermore denote the variance-covariance matrix of the forecast error as follows:

Γit+1|t = Et

h¡
ξit+1 −Et

£
ξit+1

¤¢ ¡
ξit+1 −Et

£
ξit+1

¤¢0i
(A-11)
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With this notation, the Kalman-Filter from Hamilton (1994) can be directly applied:

Et

£
ξit+1

¤
= F̃ iEt

£
ξit
¤
+ κit

¡
Ri
t −H 0

tEt

£
ξit
¤¢

(A-12)

κit = F̃ iΓit|t−1Ht

¡
H 0

tΓ
i
t|t−1Ht + σi2η

¢−1
(A-13)

Now, using the notation introduced in Section 1 we obtain:⎡⎣ Bie
t

βiet+1|t

⎤⎦ =

⎡⎣ Et [B
i]
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Writing each updating equation separately yields Equations (4) and (5) where:
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and γ
i(q,r)
t|t−1 are the (q-th, r-th) element of the matrix Γit|t−1 which evolves as:
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Appendix 3: Covariance between ηt+1 and RM
t+1

This section proves that the conditional covariance between ηt+1 and R
M
t+1 in equation (3) is

zero. Let us recall equation (3):

Ri
t+1 = βit+1R

M
t+1 + ηit+1 (A-18)

where

ηit+1 =
£¡
βiet+1|t − βit+1

¢
E
£
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¤
+ εit+1

¤
(A-19)

Next, we provide the derivation of the conditional covariance between ηt+1 and RM
t+1:
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We can make the second step because we are conditioning on time t information. The final

step depends on our assumption of idiosyncratic innovations in βit+1. In other words, we

assume that the covariance between factor loadings and market risk premia occurs through

information that is known at time t. To be concrete, we assume that uit+1 in equation (2)

is uncorrelated with RM
t+1. The correlation between factor loadings and the market risk

premium comes through the variables yt, which are known at time t and, therefore, do not

matter for Covt
¡
RM
t+1, η

i
t+1

¢
.
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Appendix 4: Alpha decomposition

This section proves the decomposition in equation (6).

Denote the unconditional OLS beta by βiOLS, and the unconditional OLS alpha estimated

on the same sample by αi
OLS. Then:
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Appendix 5: Plim α̂i = 0 under learning-CAPM

In this section, we prove that, under the null of the learning-CAPM, the sample average of

the alphas defined in equation (11) converges to zero. For the law of large numbers, the

sample average converges to the unconditional expectation of αi
t+1:
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The Kalman filter estimate of βit+1 is equal to the conditional expectation of β
i
t+1 plus

orthogonal sampling error, which can be ignored. Hence, we get that

E
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¤
where we can make the last step thanks to the law of iterated expectations. Finally, one can

use the expression for βit+1 in equation (2) and the fact that u
i
t+1 is an idiosyncratic shock

to prove that E
£
αi
t+1

¤
= 0.

The argument above proves that the definition of αi
t+1 in equation (6) is the correct way

to go about testing our learning CAPM.

31



References

Ang, A., and J. Chen, 2007, “CAPM Over the Long-Run: 1926-2001,” Journal of Empirical

Finance, 14, 1-40.

Barberis, N., and A. Shleifer, 2003, “Style Investing,” Journal of Financial Economics, 68,

161-199.

Bollerslev, T., R. Engle, and J. Wooldridge, 1988, “A capital asset pricing model with time

varying covariances,” Journal of Political Economy, 96, 116-131.

Breeden, D., 1979, “An Intertemporal Asset Pricing Model with Stochastic Consumption

and Investment Opportunities,” Journal of Financial Economics, 7, 265-296.

Campbell, J., 1996, “Understanding Risk and Return,” Journal of Political Economy, 104,

298-345.

Campbell, J., and T. Vuolteenaho, 2004, “Bad Beta, Good Beta,” American Economic

Review, 94, 1249-75.

Chan, Y., and N. Chen, 1991, “Structural and return characteristics of small and large

firms,” Journal of Finance, 46, 1467-1484.

Chen, N., R. Roll, and S. Ross, 1986, “Economic Forces and the Stock Market,” Journal of

Business, 59, 383-403.

Cochrane, J., 2001, Asset Pricing, Princeton University Press, Princeton, NJ.

Davis, J., E. Fama, and K. French, 2000, “Characteristics, Covariances, and Average Re-

turns: 1929-1997,” Journal of Finance, 55, 389-406.

Diebold, F., T. Andersen, T. Bollerslev, and P. Labys, 2003, “Modeling and Forecasting

Realized Volatility,” Econometrica, 71, 579-626.

Engle, R., T. Bollerslev and J. Wooldridge, 1988, “A Capital Asset Pricing Model with Time

Varying Covariances,” Journal of Political Economy, 96, 116-131.

32



Engle, R., D. Lilien, and R. Robins, 1987, “Estimation of Time Varying Risk Premia in the

Term Structure: the ARCH-M Model,” Econometrica, 55, 391-407.

Engle, R., and G. Lee, 1999, “A Permanent and Transitory Component Model of Stock

Return Volatility,” in: R. Engle and H. White (ed.), Cointegration, Causality, and Fore-

casting: A Festschrift in Honor of Clive W.J. Granger, Oxford: Oxford University Press,

475-497.

Estrella, A. and G. Hardouvelis, 1991, “The Term Structure as a Predictor of Real Economic

Activity,” Journal of Finance, 46, 555-76.

Fama, E. and J. MacBeth, 1973, “Risk, Return, and Equilibrium: Empirical Tests,” Journal

of Political Economy, 81, 607-636.

Fama, E., and K. French, 1992, “The Cross-section of Expected Stock Returns,” Journal of

Finance, 47, 427-465.

Fama, E., and K. French, 1993, “Common Risk Factors in the Returns on Stocks and Bonds,”

Journal of Financial Economics, 33, 3-56.

Fama, E., and K. French, 2006, “The Value Premium and the CAPM,” Journal of Finance,

61, 2163-2185.

Ferson, W., and C. Harvey, 1999, “Conditioning variables and the cross-section of stock

returns,” Journal of Finance, 54, 1325-1360.

Ferson, W., S. Kandel, and R. Stambaugh, 1987, “ Tests of Asset Pricing with Time-Varying

Expected Risk Premiums and Market Betas,” Journal of Finance, 42, 201-220.

Franzoni, F., 2002, “Where is beta going? The Riskiness of Value and Small Stocks,” Ph.d.

dissertation, MIT.

Gibbons, M., S. A. Ross, and J. Shanken, 1989, “A Test of the Efficiency of a Given Port-

folio,” Econometrica, 57, 1121-52.

Hamilton, J. D., 1994, Time Series Analysis. Princeton, NJ: Princeton University Press.

33



Hansen, L., R. Jagannathan, 1997, “Assessing Specification Errors in Stochastic Discount

Factor Models,” Econometrica, 55, 587-614.

Harvey, C., 1987, ”The Real Term Structure and Consumption Growth,” Journal of Finan-

cial Economics 22, 305-334.

Harvey, C., 1989, “Time-Varying Conditional Covariances in Tests of Asset Pricing Models,”

Journal of Financial Economics, 24, 289-317.

Jagannathan, R., and Z. Wang, 1996, “The Conditional CAPM and the Cross-Section of

Expected Returns,” Journal of Finance, 51, 3-53.

Jegadeesh, N., and S. Titman, 1993, “Returns to Buying Winners and Selling Losers: Im-

plications for Stock Market Efficiency,” Journal of Finance, 48, 65-91.

Jostova, G., and A. Philipov, 2005, “Bayesian Analysis of Stochastic Betas,” Journal of

Financial and Quantitative Analysis, 40, 747-778.

Koopman S. J., and J. Durbin, 2001, Time Series Analysis by State Space Methods, Oxford

University Press.

Lettau, M., and S. Ludvigson, 2001, “ Resurrecting the (C)CAPM: A Cross-Sectional Test

When Risk Premia Are Time-Varying,” Journal of Political Economy 109, 1238-1287.

Lewellen, J., and S. Nagel, 2006, “The Conditional CAPM Does Not Explain Asset-Pricing

Anomalies,” Journal of Financial Economics, 82, 289-314.

Lewellen, J., S. Nagel, and J. Shanken, 2007, “A Skeptical Appraisal of Asset Pricing Tests,”

manuscript.

Lewellen, J., and J. Shanken, 2002, “Learning, Asset-pricing Tests, and Market Efficiency,”

Journal of Finance 57, 1113-1145.

Lucas, R., 1978, “Asset Prices in an Exchange Economy,” Econometrica, 46, 1429-1446.

Merton, R. C., 1973 “An Intertemporal Asset Pricing Model,” Econometrica, 41, 867-887.

Merton, R. C., 1980, “On Estimating the Expected Return on the Market: an Exploratory

Investigation,” Journal of Financial Economics, 8, 323-361.

34



Nelson, D., 1992, “Filtering and Forecasting with Misspecified ARCH Models I: Getting the

Right Variance with the Wrong Model,” Journal of Econometrics, 52, 61-90.

Ross, S., 1976a, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Economic

Theory, 13, 341-360.

Ross, S., 1976b, “Risk, Return, and Arbitrage,” in I. Friend and J. Bicksler (eds.), Risk and

Return in Finance, Volume 1, Ballinger, Cambridge, 189-218.

Schwert, G. W., and P. Seguin, 1990, “Heteroskedasticity in Stock Returns,” Journal of

Finance, 45, 1129-1155.

Timmermann, A., 1993, “How Learning in Financial Markets Generates Excess Volatility

and Predictability in Stock Price,” Quarterly Journal of Economics, 108, 1135-1145.

35



Table 1: Parameter Estimates. For the twenty-five size and B/M sorted portfolios, the table
reports the maximum likelihood parameter estimates for the parameters in system (8). Except
Panel A, each panel corresponds to a different set of state variables in the state equation of the
system. The estimated parameters are the autoregression coefficient F , the variance of the error in
the observable equation (σ2η), and the variance of the error in the state equation 1 (σ

2
u). P-values

are given in brackets. The Kalman filter is estimated on all available data between between 1926:Q3
and 2004:Q4. CAY is available between 1951:Q4 and 2003:Q2. Portfolio returns and the other state
variables (HML, term, and the market return) are available on the whole sample.

small small large large
growth value growth value

Panel A: no cond. variables
σ2η 97.45 [0.00] 51.17 [0.00] 7.11 [0.00] 26.27 [0.00]
σ2u 0.58 [0.06] 0.66 [0.01] 0.01 [0.00] 0.42 [0.00]
F -0.09 [0.57] 0.20 [0.15] -0.26 [0.48] 0.35 [0.00]

Panel B: CAY
σ2η 95.66 [0.00] 51.85 [0.00] 7.60 [0.00] 26.54 [0.00]
σ2u 0.62 [0.07] 0.65 [0.01] 0.00 [0.00] 0.41 [0.00]
F -0.02 [0.91] 0.16 [0.25] 0.80 [0.00] 0.32 [0.00]
φCAY -8.39 [0.43] 6.10 [0.45] -0.10 [0.80] 5.21 [0.38]

Panel C: HML, TERM, and MKT
σ2η 98.33 [0.00] 53.00 [0.00] 7.79 [0.00] 26.93 [0.00]
σ2u 0.55 [0.08] 0.58 [0.00] 0.00 [0.49] 0.40 [0.00]
F -0.14 [0.38] -0.17 [0.20] -0.18 [0.65] 0.20 [0.09]
φHML -0.01 [0.42] -0.02 [0.05] 0.00 [0.59] -0.01 [0.29]
φterm 0.11 [0.26] 0.17 [0.02] -0.05 [0.00] 0.11 [0.02]
φmkt 0.00 [0.53] 0.02 [0.00] 0.00 [0.53] 0.01 [0.14]

Panel D: CAY, HML, TERM, and MKT
σ2η 96.81 [0.00] 53.11 [0.00] 7.79 [0.00] 27.02 [0.00]
σ2u 0.57 [0.09] 0.57 [0.00] 0.00 [0.39] 0.39 [0.00]
F -0.09 [0.57] 0.02 [0.87] -0.18 [0.71] 0.25 [0.01]
φCAY -12.96 [0.25] 1.57 [0.86] 0.31 [0.88] 2.39 [0.70]
φHML -0.01 [0.62] -0.01 [0.28] 0.00 [0.83] -0.01 [0.33]
φterm 0.14 [0.16] 0.17 [0.03] -0.05 [0.01] 0.10 [0.03]
φmkt 0.00 [0.87] -0.01 [0.18] 0.00 [0.57] 0.00 [0.93]
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Table 2: Summary Statistics for Betas. Panel A reports the estimates of beta and their
standard errors from time-series regressions of portofolio excess returns on the excess return on the
value-weighted market index. The test assets are the twenty-five size and B/M sorted portfolios.
For the same assets, Panel B reports the mean of the Kalman-filtered estimates of beta and their
standard deviations, when no conditioning variables are included in the state equations. Panels C
to E report means and standard deviations of Kalman-filtered estimates of beta, when conditioning
variables are included in the state equations. The sets of conditioning variables are given in the
table. Returns are quarterly compounded returns. The sample period is 1963:Q3-2004:Q4.

B/M quintile
1 2 3 4 5 1 2 3 4 5

Size q. Panel A: Unconditional CAPM
OLS Betas St. Error of Beta

1 1.65 1.40 1.21 1.12 1.19 0.08 0.07 0.06 0.06 0.07
2 1.55 1.27 1.13 1.05 1.10 0.06 0.05 0.05 0.05 0.06
3 1.44 1.17 1.01 0.96 1.00 0.05 0.04 0.04 0.05 0.06
4 1.31 1.09 0.97 0.95 1.01 0.04 0.04 0.04 0.04 0.05
5 1.03 0.92 0.77 0.75 0.81 0.03 0.03 0.03 0.04 0.05

Panel B: Unconditional Learning
Mean of Beta St. Dev. of Beta

1 1.65 1.62 1.45 1.39 1.51 0.04 0.09 0.16 0.11 0.11
2 1.38 1.29 1.23 1.26 1.41 0.07 0.13 0.20 0.10 0.19
3 1.32 1.19 1.15 1.20 1.31 0.15 0.06 0.15 0.04 0.23
4 1.19 1.08 1.10 1.16 1.43 0.17 0.08 0.03 0.11 0.14
5 0.97 0.91 0.90 0.93 1.23 0.01 0.03 0.05 0.17 0.15

Panel C: Learning cond. on CAY
Mean of Beta St. Dev. of Beta

1 1.65 1.62 1.46 1.40 1.51 0.11 0.09 0.15 0.10 0.12
2 1.38 1.30 1.24 1.27 1.42 0.13 0.11 0.20 0.14 0.21
3 1.30 1.20 1.16 1.19 1.32 0.18 0.08 0.16 0.17 0.24
4 1.15 1.08 1.10 1.18 1.43 0.20 0.08 0.12 0.15 0.20
5 0.97 0.92 0.90 0.96 1.24 0.02 0.09 0.09 0.20 0.16

Panel D: Learning cond. on HML, TERM, and MKT
Mean of Beta St. Dev. of Beta

1 1.74 1.96 1.63 1.56 1.55 0.32 0.66 0.30 0.31 0.26
2 1.34 1.34 1.25 1.31 1.48 0.11 0.15 0.20 0.19 0.26
3 1.31 1.19 1.16 1.21 1.39 0.15 0.06 0.16 0.16 0.41
4 1.15 1.09 1.10 1.20 1.51 0.16 0.08 0.13 0.14 0.20
5 0.97 0.90 0.91 0.96 0.92 0.05 0.02 0.08 0.18 0.28

Panel E: Learning cond. on CAY, HML, TERM, and MKT
Mean of Beta St. dev. of Beta

1 1.65 1.62 1.50 1.44 1.52 0.19 0.20 0.22 0.23 0.21
2 1.35 1.31 1.73 1.28 1.47 0.16 0.15 0.56 0.18 0.26
3 1.31 1.19 1.16 1.17 1.35 0.18 0.06 0.18 0.18 0.26
4 1.15 1.08 1.09 1.26 1.49 0.20 0.08 0.36 0.38 0.23
5 0.97 0.92 0.91 0.98 1.26 0.05 0.09 0.10 0.20 0.18



Table 3: Alpha Components. The table reports estimates of the unconditional alpha for
the twenty-five size and B/M sorted portfolios, as well as estimates of the Learning and Covari-
ance components of alpha that are identified in equation (7). Panel A reports the intercept from
OLS regressions of portfolio excess return on the market excess return. In Panel B, the learning
component is the difference between Kalman filtered betas and OLS betas (from Panels E and
A of Table 2, respectively) times the sample mean of the excess market return. In Panel C, the
covariance component is the sample covariance between the Kalman filtered beta and the excess
return on the market. The frequency is quarterly and the sample period is 1963:Q3-2004:Q4.

B/M quintile
1 2 3 4 5

Size q. Panel A: Unconditional Alphas
1 -1.42 0.61 1.02 1.78 2.05
2 -0.93 0.25 1.22 1.47 1.73
3 -0.76 0.57 0.75 1.27 1.71
4 -0.26 -0.04 0.82 1.25 1.24
5 -0.23 0.08 0.33 0.59 0.54

Panel B: Learning Component
1 0.00 0.34 0.39 0.43 0.51
2 -0.27 0.04 0.18 0.35 0.51
3 -0.22 0.04 0.23 0.36 0.49
4 -0.25 0.00 0.19 0.35 0.65
5 -0.08 -0.01 0.20 0.33 0.66

Panel C: Covariance Component
1 -0.25 -0.01 -0.06 0.04 0.11
2 -0.31 -0.04 0.04 0.26 0.25
3 -0.40 0.05 0.15 0.34 0.23
4 -0.43 0.01 0.26 0.29 0.26
5 0.02 0.21 0.17 0.33 0.08
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Table 4: Alphas: No Conditioning Variables. Panel A reports the intercept from OLS
time-series regressions of portofolio excess returns on the excess return on the value-weighted market
index. The test assets are the twenty-five size and B/M sorted portfolios. For the same assets,
Panel B reports the alphas for the learning model without conditioning variables. For each portfolio,
alpha is computed as the portfolio times series mean of the time t excess portfolio return minus
the time t product of the Kalman filter estimate of beta and the excess return on the market.
t-statistics are given in parentheses below each estimate. For the learning models the standard
errors are computed from the time-series standard deviation of time the t pricing error. Below
each estimate, t-statistics are given in parentheses. At the bottom of each panel the table reports
three statistics: the square root of the mean squared pricing error over the twenty-five portfolios
(RMSE); the composite pricing error (CPE), which is a quadratic form in the vector of the twenty-
five portfolio pricing errors, where the weighting matrix is a diagonal matrix with estimated return
variances on the main diagonal; and the bootstrapped p-value for these two statistics. Returns are
quarterly compounded returns. The sample period is 1963:Q3-2004:Q4.

B/M quintile
1 2 3 4 5 1 2 3 4 5

Size q. Panel A: OLS model Panel B: learning model
1 -1.42 0.61 1.02 1.78 2.05 -1.43 0.21 0.80 1.46 1.63

(-1.97) (0.99) (1.82) (3.17) (3.17) (-2.02) (0.33) (1.37) (2.52) (2.43)
2 -0.93 0.25 1.22 1.47 1.73 -0.59 0.31 1.09 1.13 1.24

(-1.77) (0.54) (2.92) (3.27) (3.21) (-1.12) (0.65) (2.57) (2.44) (2.18)
3 -0.76 0.57 0.75 1.27 1.71 -0.33 0.54 0.51 0.92 1.26

(-1.75) (1.66) (2.04) (3.09) (3.35) (-0.78) (1.58) (1.36) (2.14) (2.43)
4 -0.26 -0.04 0.82 1.25 1.24 0.22 -0.03 0.61 0.84 0.62

(-0.74) (-0.13) (2.56) (3.61) (2.69) (0.62) (-0.11) (1.88) (2.31) (1.21)
5 -0.23 0.08 0.33 0.59 0.54 -0.15 0.07 0.13 0.14 -0.01

(-0.95) (0.37) (1.17) (1.90) (1.34) (-0.64) (0.31) (0.44) (0.42) (-0.03)
RMSE 1.076 RMSE 0.814
(p-value) (0.008) (p-value) (0.041)
CPE 0.197 CPE 0.108

(p-value) (0.009) (p-value) (0.057)
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Table 5: Alphas: Conditioning on CAY. Panel A reports the intercept from OLS time-
series regressions of portofolio excess returns on the excess return on the value-weighted market
index and the market index scaled by lagged CAY. The test assets are the twenty-five size and
B/M sorted portfolios. For the same assets, Panel B reports the alphas for the learning model with
CAY as conditioning variable. For each portfolio, alpha is computed as the portfolio times series
mean of the time t excess portfolio return minus the time t product of the Kalman filter estimate
of beta and the excess return on the market. For the learning models the standard errors are
computed from the time-series standard deviation of time the t pricing error. Below each estimate,
t-statistics are given in parentheses. At the bottom of each panel the table reports three statistics:
the square root of the mean squared pricing error over the twenty-five portfolios (RMSE); the
composite pricing error (CPE), which is a quadratic form in the vector of the twenty-five portfolio
pricing errors, where the weighting matrix is a diagonal matrix with estimated return variances on
the main diagonal; and the bootstrapped p-value for these two statistics. Returns are quarterly
compounded returns. The sample period is 1963:Q3-2004:Q4.

B/M quintile
1 2 3 4 5 1 2 3 4 5

Size q. Panel A: OLS model Panel B: learning model
1 -0.92 0.76 0.90 1.76 1.89 -1.18 0.27 0.69 1.31 1.43

(-1.20) (1.14) (1.48) (2.90) (2.70) (-1.66) (0.44) (1.18) (2.30) (2.18)
2 -0.67 0.17 1.04 1.15 1.35 -0.35 0.25 1.00 0.86 0.97

(-1.19) (0.33) (2.31) (2.39) (2.34) (-0.67) (0.53) (2.38) (1.94) (1.76)
3 -0.51 0.43 0.51 0.82 1.39 -0.14 0.48 0.38 0.57 0.99

(-1.09) (1.16) (1.28) (1.91) (2.55) (-0.33) (1.41) (1.03) (1.43) (1.94)
4 0.21 -0.19 0.43 0.86 0.72 0.42 -0.05 0.37 0.60 0.33

(0.58) (-0.56) (1.30) (2.38) (1.48) (1.25) (-0.15) (1.21) (1.73) (0.68)
5 -0.24 -0.09 0.23 0.20 0.26 -0.17 -0.11 -0.04 -0.06 -0.20

(-0.91) (-0.36) (0.75) (0.62) (0.60) (-0.68) (-0.53) (-0.13) (-0.19) (-0.44)
RMSE 0.864 RMSE 0.668
(p-value) (0.034) (p-value) (0.121)
CPE 0.127 CPE 0.070

(p-value) (0.035) (p-value) (0.147)
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Table 6: Alphas: Conditioning on HML, TERM, and MKT. Panel A reports the
intercept from OLS time-series regressions of portofolio excess returns on the excess return on the
value-weighted market index, the market index scaled by the lagged return on HML, the market
index scaled by the lagged term spread, and the market index scaled by its lagged return. The
test assets are the twenty-five size and B/M sorted portfolios. For the same assets, Panel B reports
the alphas for the learning model with HML, TERM, and the lagged market index as conditioning
variable. For each portfolio, alpha is computed as the portfolio times series mean of the time t
excess portfolio return minus the time t product of the Kalman filter estimate of beta and the
excess return on the market. For the learning models the standard errors are computed from the
time-series standard deviation of time the t pricing error. Below each estimate, t-statistics are given
in parentheses. At the bottom of each panel the table reports three statistics: the square root of
the mean squared pricing error over the twenty-five portfolios (RMSE); the composite pricing error
(CPE), which is a quadratic form in the vector of the twenty-five portfolio pricing errors, where
the weighting matrix is a diagonal matrix with estimated return variances on the main diagonal;
and the bootstrapped p-value for these two statistics. Returns are quarterly compounded returns.
The sample period is 1963:Q3-2004:Q4.

B/M quintile
1 2 3 4 5 1 2 3 4 5

Size q. Panel A: OLS model Panel B: learning model
1 -1.44 0.57 0.94 1.75 1.94 -1.56 0.01 0.40 1.02 1.32

(-1.97) (0.92) (1.69) (3.14) (3.06) (-2.18) (0.01) (0.69) (1.75) (2.02)
2 -0.84 0.23 1.19 1.43 1.55 -0.66 0.12 0.91 0.93 0.87

(-1.57) (0.48) (2.84) (3.17) (2.91) (-1.24) (0.26) (2.16) (2.03) (1.57)
3 -0.62 0.58 0.78 1.19 1.55 -0.33 0.06 0.41 0.79 0.95

(-1.42) (1.66) (2.11) (2.92) (3.01) (-0.78) (0.12) (1.09) (1.93) (1.85)
4 -0.17 -0.05 0.71 1.18 1.12 0.32 -0.10 0.50 0.69 0.35

(-0.49) (-0.14) (2.23) (3.38) (2.40) (0.94) (-0.31) (1.63) (1.94) (0.70)
5 -0.23 -0.03 0.24 0.55 0.41 -0.08 0.10 0.17 -0.02 -0.25

(-0.94) (-0.12) (0.83) (1.74) (1.01) (-0.35) (0.44) (0.56) (-0.05) (-0.55)
RMSE 1.012 RMSE 0.667
(p-value) (0.009) (p-value) (0.133)
CPE 0.174 CPE 0.069

(p-value) (0.009) (p-value) (0.165)
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Table 7: Alphas: Conditioning on CAY, HML, TERM, and MKT. Panel A reports
the intercept from OLS time-series regressions of portofolio excess returns on the excess return
on the value-weighted market index, the market index scaled by lagged CAY, the market index
scaled by the lagged return on HML, the market index scaled by the lagged term spread, and the
market index scaled by its lagged return. The test assets are the twenty-five size and B/M sorted
portfolios. For the same assets, Panel B reports the alphas for the learning model with CAY,
HML, TERM, and the lagged market index as conditioning variable. For each portfolio, alpha is
computed as the portfolio times series mean of the time t excess portfolio return minus the time t
product of the Kalman filter estimate of beta and the excess return on the market. For the learning
models the standard errors are computed from the time-series standard deviation of time the t
pricing error. Below each estimate, t-statistics are given in parentheses. At the bottom of each
panel the table reports three statistics: the square root of the mean squared pricing error over the
twenty-five portfolios (RMSE); the composite pricing error (CPE), which is a quadratic form in the
vector of the twenty-five portfolio pricing errors, where the weighting matrix is a diagonal matrix
with estimated return variances on the main diagonal; and the bootstrapped p-value for these two
statistics. Returns are quarterly compounded returns. The sample period is 1963:Q3-2004:Q4.

B/M quintile
1 2 3 4 5 1 2 3 4 5

Size q. Panel A: OLS model Panel B: learning model
1 -0.93 0.76 0.89 1.77 1.88 -1.26 0.16 0.46 1.05 1.28

(-1.21) (1.14) (1.48) (2.96) (2.77) (-1.76) (0.25) (0.79) (1.79) (1.97)
2 -0.63 0.17 1.05 1.16 1.28 -0.40 0.15 1.10 0.78 0.76

(-1.10) (0.33) (2.33) (2.41) (2.24) (-0.75) (0.33) (1.42) (1.74) (1.39)
3 -0.44 0.46 0.54 0.82 1.33 -0.17 0.45 0.32 0.56 0.81

(-0.95) (1.23) (1.37) (1.92) (2.42) (-0.39) (1.34) (0.89) (1.41) (1.59)
4 0.24 -0.19 0.40 0.85 0.67 0.47 -0.08 0.30 0.55 0.10

(0.66) (-0.54) (1.20) (2.34) (1.38) (1.38) (-0.24) (0.72) (1.12) (0.19)
5 -0.25 -0.14 0.18 0.20 0.19 -0.09 -0.10 -0.06 -0.16 -0.32

(-0.93) (-0.59) (0.58) (0.63) (0.43) (-0.38) (-0.48) (-0.23) (-0.49) (-0.70)
RMSE 0.852 RMSE 0.607
(p-value) (0.032) (p-value) (0.205)
CPE 0.123 CPE 0.059

(p-value) (0.030) (p-value) (0.253)
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Table 8: Alphas: Three-Factor Model. The table reports the intercept from OLS time-
series regressions of portofolio excess returns on the three Fama and French (1993) factors: the
excess return on the value-weighted market index, HML and SMB. The test assets are the twenty-
five size and B/M sorted portfolios. Below each estimate, t-statistics are given in parentheses. At
the bottom, the table also reports: the square root of the mean squared pricing error over the
twenty-five portfolios (RMSE); the composite pricing error (CPE), which is a quadratic form in the
vector of the twenty-five portfolio pricing errors, where the weighting matrix is a diagonal matrix
with estimated return variances on the main diagonal; and the bootstrapped p-value for these two
statistics. Returns are quarterly compounded returns. The sample period is 1963:Q3-2004:Q4.

B/M quintile
Size q. 1 2 3 4 5
1 -1.62 -0.14 0.14 0.77 0.59

(-4.52) (-0.54) (0.55) (3.03) (2.19)
2 -0.93 -0.38 0.42 0.36 0.27

(-3.44) (-1.65) (1.87) (1.61) (1.23)
3 -0.51 0.09 -0.06 0.21 0.33

(-2.08) (0.37) (-0.26) (0.83) (1.23)
4 0.24 -0.48 0.15 0.43 0.08

(1.00) (-1.70) (0.60) (1.71) (0.28)
5 0.31 0.01 0.01 -0.06 -0.31

(1.68) (0.05) (0.06) (-0.29) (-1.00)
RMSE 0.494
(p-value) (0.000)
CPE 0.033

(p-value) (0.017)
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Figure 1: Kalman Filtered betas. For selected portfolios and for two specifications of the
Kalman Filter, the graphs report the Kalman filtered series of the level of beta (solid line), and

of the long run mean of beta (dashed line). The selected portfolios are the small-growth (11), the

small-value (15), the large-growth (51), and the large-value (55). The two specifications are the

one where no conditioning variables are included in the state equations (BETA and B series) and

the one with all conditioning variables (CAY, HML, term, and market return) included in the state

equation (BETAALL and BALL series). The sample on which the series are estimated is between

1926:Q3 and 2004:Q4. The series are graphed between 1931:Q1 and 2004:Q4.

1.2

1.4

1.6

1.8

2

 

1931 1936 1941 1946 1951 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001
 

BETA11 B11

1

1.5

2

2.5
 

1931 1936 1941 1946 1951 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001
 

BETA15 B15

.9

.95

1

1.05

1.1

 

1931 1936 1941 1946 1951 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001
 

BETA51 B51

0

.5

1

1.5

2

 

1931 1936 1941 1946 1951 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001
 

BETA55 B55

44



Figure 1: (continued)
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Figure 2: Portfolio Pricing Errors. The figure contains graphs of the pricing error for the
twenty-five B/M and size sorted portfolios generated by the different asset pricing models considered

in Tables 4 to 7. The dashed lines depict a two-standard error band around zero.
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Figure 2: (continued)
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