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Abstract
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model with stochastic volatility.
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1 Introduction

Many recent papers have highlighted the fact that structural instability seems
to be present in a wide variety of macroeconomic and financial time series
[e.g. Ang and Bekaert (2002) and Stock and Watson (1996)]. The negative
consequences of ignoring this instability for inference and forecasting has
been stressed by, among many others, Clements and Hendry (1998, 1999),
Koop and Potter (2001) and Pesaran, Pettenuzzo and Timmerman (2004).
This has inspired a wide range of change-point models. There are two main
approaches: one can estimate a model with a small number of change-points
(usually one or two). Alternatively, one can estimate a time varying para-
meter (TVP) model where the parameters are allowed to change with each
new observation, usually according to a random walk. A TVP model can
be interpreted as having T − 1 breaks in a sample of size T . Recent influ-
ential empirical work includes McConnell and Perez (2000) who use a single
change-point model to present evidence that the volatility of US economic
activity abruptly fell in early 1984. In a TVP framework, Cogley and Sar-
gent (2001) model inflation dynamics in the US as continuously evolving over
time. In this paper we seek to blend these two approaches in a model that
approximately nests them.
To motivate why such a blend might be useful consider the case of a

small number of breaks and, in particular, the variance break in US economic
activity found by many authors around 1984 [see Stock andWatson (2002) for
a review]. In addition to the obvious question of why the volatility of activity
declined, is a more immediate one: whether the decline be sustained or is only
a temporary phenomenon. Models with a small number of structural breaks
typically do not restrict the magnitude of change in the coefficients that
can happen after a break, but implicitly assume that after the last break
estimated in the sample there will be no more breaks. In contrast, in the
TVP model there is probability 1 of a break in the next new observation.
However, for the TVP model the size of the break is severely limited by
the assumption that coefficients evolve according to a random walk. In the
model we develop, a new break can be forecast after the end of the sample
and size of the break is partly dependent on the properties of the previous
regime, partly dependent on the history of all previous breaks and partly has
a random element.
Bayesian methods are attractive for change-point models since they can

allow for flexible relationships between parameters in various regimes and are
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computationally simple. That is, if we have a model withM different regimes,
then hierarchical priors can be used to allow information about coefficients in
the jth regime (or the duration of the jth regime) to depend on information in
the other regimes. Such an approach can improve estimation of coefficients.
It is particularly useful for forecasting in the presence of structural breaks
since it allows for the possibility of out-of-sample breaks. With regards to
computation, use of a hierarchical prior allows the researcher to structure
the model so that, conditional on unknown parameters (e.g. the change-
points) or a vector of latent data (e.g. a state vector denoting the regimes),
it is very simple (e.g. a series of Normal linear regression models). Efficient
Markov Chain Monte Carlo (MCMC) algorithms which exploit this structure
can be developed. This allows for the estimation of models, using modern
Bayesian methods, with multiple change-points that appear infeasible under
the standard classical approach to change-point problems.1

However, with some partial exceptions [e.g. Pesaran, Pettenuzzo and
Timmerman (2004) and Stambaugh and Pastor (2001)], we would argue that
the existing Bayesian literature in economics has not fully exploited the ben-
efits of using hierarchical priors. In addition, this literature has, following
the existing frequentist literature, focussed on either models with a small
number of breaks or TVP models. Furthermore, as argued in Koop and Pot-
ter (2004), some commonly-used Bayesian priors have undesirable properties.
These considerations motivate the present paper where we develop a model
which draws on our beliefs that desirable features for a change-point model
are:

1. The number of regimes and their maximum duration should not be
restricted ex-ante.

2. The regime duration distribution should not be restricted to be con-
stant or monotonically decreasing/increasing.

3. The parameters describing the distribution of the parameters in each
regime should, if possible, have conditionally conjugate prior distribu-
tions to minimize the computational complexity of change-point mod-
els.

1Many tests require evaluation of something (e.g. a likelihood) at every possible break-
point. If there are M − 1 possible breakpoints, then O

¡
TM−1¢ evaluations are required.

Even for moderate values of M this can become computationally infeasible.
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4. Durations of previous regimes can potentially provide some information
about durations of future regimes.

5. The parameters characterizing a new regime can potentially depend on
the parameters of the old regime.

The plan of this paper is as follows. In Section 2 we review the link be-
tween change-points and hidden Markov chains. In Section 3 we develop our
new model of regime duration. In Section 4 we construct a method for model-
ing the change in regime coefficients based on a similar heirarchical structure
to the TVP model. Section 5 gives an overview of the posterior simulator
used in our Bayesian analysis (a technical appendix contains more details).
Section 6 contains applications to US GDP growth and inflation as measured
by the PCE deflator. We compare the results of our approach with that of
a single structural break and a TVP model and find them to be much closer
to the latter. In general, we find our methods to reliably recover key data
features without making the potentially restrictive assumptions underlying
other popular models.

2 Change-Point Models and Hidden Markov
Chains

In order to discuss the advantages of our model, it is worthwhile to begin by
describing in detail some recent work and, in particular, the innovative model
of Chib (1998) which has been used in many applications [e.g. Pastor and
Stambaugh (2001), Kim, Nelson and Piger (2002) and Pesaran, Pettenuzzo
and Timmerman (2004)]. In terms of computation, our focus is on extending
Chib’s insight of converting the classical change-point problem into a Markov
mixture model and using the algorithm of Chib (1996) to estimate the change-
points and the parameters within each regime.
We have data on a scalar time series variable, yt for t = 1, . . . , T and let

Yi = (y1, . . . , yi)
0 denote the history through time i and denote the future

by Y i+1 = (yi+1, . . . , yT )
0. Regime changes depend upon a discrete random

variable, st, which takes on values {1, 2, . . . ,M}. We let Si = (s1, .., si)
0

and Si+1 = (si+1, . . . , sT )
0. The likelihood function is defined by assum-

ing p (yt|Yt−1, st = m) = p (yt|Yt−1, θm) for a parameter vector θm for m =
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1, . . . ,M ≤ T . Thus, change-points occur at times τm defined as

τm = {t : st+1 = m+ 1, st = m} for m = 1, . . . ,M − 1. (2.1)

Chib (1998) puts a particular structure on this framework by assuming
that st is Markovian. That is,

Pr (st = j|st−1 = i) =

⎧⎪⎪⎨⎪⎪⎩
pi if j = i 6=M

1− pi if j = i+ 1
1 if i =M
0 otherwise

(2.2)

In words, the time series variable goes from regime to regime. Once it has
gone through the mth regime, there is no returning to this regime. It goes
through regimes sequentially, so it is not possible to skip from regime i to
regime i+2. Once it reaches theM th regime it stays there (i.e. it is assumed
that the number of change-points in the sample is known). In Bayesian
language, (2.2) describes a hierarchical prior for the vector of states.2

To avoid confusion, we stress that change-point models can be parame-
terized in different ways. Many models indicate when each regime occurs
by parameterizing directly in terms of the change-points (i.e. τ 1, .., τM−1).
Others are written in terms of states which denote each regime (i.e. ST ).
It is also possible to write models in terms of durations of regimes. In the
following material, we use all of these parameterizations, depending on which
best illustrates the points we are making. However, we do stress that they
are equivalent. So, for instance, a time series of 100 data points with a break
at the 60th can be expressed as τ 1 = 60, or S60 = 1 and S61 = 2, or d1 = 60
and d2 = 40 (where dm denotes the duration of regime m).
There are many advantages to adopting the framework of Chib (1998).

For instance, previous models typically involved searching over all possible
sets of break points. If the number of break points is even moderately large,
then computational costs can become overwhelming [see, for instance, the
discussion in Elliott and Muller (2003) of the approach developed in Bai and
Perron (1998)]. By using the Markov mixture model, the posterior simu-
lator is recovering information on the most likely change points given the
sample and the computational burden is greatly lowered, making it easy to

2A non-Bayesian may prefer to interpret such an assumption as part of the likelihood,
but this is merely a semantic distinction with no effect on statistical inference [see, e.g.,
Bayarri, DeGroot and Kadane (1988)].
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estimate models with many change-points. Appendix A describes this algo-
rithm (which we use, with modifications, as a component of the posterior
simulator for our model).
Chib chose to model the transition probabilities of the states as being

constants. One consequence of this is that regime duration satisfies a Geo-
metric distribution, a possibly restrictive choice. For instance, the Geometric
distribution is decreasing, implying that p (dm) > p (dm+1) which (in some
applications) may be unreasonable. In the model we introduce below, we gen-
eralize this restriction by allowing regime duration to follow a more flexible
Poisson distribution.
Furthermore, the model of Chib (1998) assumes that exactly M regimes

exist in the data. In Koop and Poirier (2004), we show how this implicitly
imposes on the prior a very restrictive form which will tend to put excessive
weight near the end of the sample. That is, the standard hidden Markov
model (i.e. without restrictions such as those given in equation 2.2) will use
probabilities

Pr[sT =M |sT−1 =M ] = pM ,Pr[sT =M |sT−1 =M − 1] = 1− pM−1.

To impose that exactlyM regimes occur, this has to be changed to the equal
probabilities:

Pr[sT =M |sT−1 =M ] = Pr[sT =M |sT−1 =M − 1] = 1.

In our previous work, we explored the consequences of such restrictions and
argued that they can have a substantial impact on posterior inference in
practice. We further argued that other sensible priors which impose exactly
M regimes will also run into similar problems. Partly for this reason, we
argued that it is important to develop a hierarchical prior which treats the
number of regimes as unknown.
In summary, the pioneering work of Chib (1998) has changed the way

many look at change-point models and has had great influence. In terms
of posterior computation, Chib (1998) continues to be very attractive and,
indeed, we use a modification of this algorithm as part of our posterior simu-
lator. However, the hierarchical prior has some potentially undesirable prop-
erties which leads us to want to build on Chib (1998).
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3 A Poisson Hierarchical Prior for Durations

The above discussion illustrates some restrictive properties of traditional hi-
erarchical priors used in the change-point literature and leads to our con-
tention that it is desirable to have a model for durations which satisfies the
five criteria listed in the introduction. In this section we develop our alter-
native approach based on a Poisson model for durations.3 This approach
does not restrict the number or maximum durations of regimes ex-ante, it
has a convenient conjugate prior distribution in the Gamma family and the
regime duration distribution is not restricted to be constant or monotoni-
cally decreasing/increasing. It also allows information about the duration of
past regimes to affect the duration of the current regime and potentially the
magnitude of the parameter change from old to new regime.
We use a hierarchical prior for the regime durations which is a Poisson

distribution. That is, p (dm|λm) is given by:

dm − 1 = τm − (τm−1 + 1) ∼ Po(λm) (3.1)

where Po(λm) denotes the Poisson distribution with mean λm. With this
hierarchical prior it makes sense to use a (conditionally conjugate) Gamma
prior on λm. If we do this, it can be verified that p (dm), the marginal prior
for the duration between change points, is given by a Negative Binomial
distribution.
To provide some intuition, remember that the assumption comparable to

(3.1) in the model of Chib (1998) was that the duration had a hierarchical
prior which was Geometric (apart from the end-points). Chib (1998) used a
Beta prior on the parameters. This hierarchical prior [and, as shown in Koop
and Potter (2004), the marginal prior p (dm)] implies a declining probability
on regime duration so that higher weight is placed on shorter durations. In
contrast, the Poisson form we use for p (dm|λm) and the implied Negative
Binomial form for p (dm) which we work with have no such restriction.
However, the prior given in (3.1) also has the unconventional property

that it allocates prior weight to change-points outside the observed sample.
That is, there is nothing in (3.1) which even restricts d1 < T much less
dm < T for m > 1. We will argue that this is a highly desirable property

3Of course, there are many other popular options for modeling durations other than
the Poisson. Bracqemond and Gaudoin (2003) offers a good categorization of different
possibilities and explains their properties.
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since, not only does this prior not place excessive weight on change-points
near the end of the sample, but also there is a sense in which it allows us to
handle the case where there is an unknown number of change-points. That
is, suppose we allow for m = 1, ...,M regimes. Then, since some or all of the
regimes can terminate out-of-sample, our model implicitly contains models
with no breaks, one break, up to M − 1 breaks (in-sample).4 The desirable
properties of this feature are explored in more detail in Koop and Potter
(2004).5

Although our model is much more flexible than that used in Chib (1998),
computation is complicated by the fact that the matrix of transition prob-
abilities now depends on the time spent in each regime. To see why this
complicates computation, note that a key step in the Chib (1996) algorithm
(see Appendix A) requires calculating p (st+1|st, P ) where P is the matrix
of transition probabilities given by (2.2). In the model of Chib (1998) this
density is simple due to the constant transition probability assumption. As
discussed in Koop and Potter (2004) and developed in more detail in Ap-
pendix A, Chib’s algorithm can still be applied in the case of a non-time
homogenous transition matrix.
To better understand this point, note that under the Poisson hierarchical

prior in (3.1) we can construct a finite element Markov transition matrix
for any observed sample, under the assumption that regime 1 started some
maximum χ − 1 < ∞ periods before our initial observation. Consider the
first observation in the sample. This is assumed to be generated by regime 1
but we do not know whether this is the first period of regime 1 or any other
period up to χ. Thus, there are χ possible values for d1. The probability of
a transition from regime 1 to regime 2 is:

Pr[s2 = 2|s1 = 1, d1] =
exp(−λ1)λd1−11

(d1 − 1)!
³
1−

Pd1−2
j=0

exp(−λ1)λj1
j!

´ , d1 = 1, . . . , χ,
(3.2)

where
P−1

s=0
exp(−λ1)λs1

s!
is defined to be 0. Thus, instead of the single p21 in the

Chib’s model we already have χ calculations to make. In the third period,
4The specification of a maximum number of regimes, M , is made only for illustrative

purposes. In practice, our model does not require specification of such a maximum. In our
empirical work we set M = T which allows for a TVP model and an out-of-sample break.

5In a different but related context (i.e. a Markov switching model), Chopin and Pelgrin
(2004), adopt a different approach to the joint estimation of number of regimes and the
parameters.
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depending on whether a regime switch occurred in period 2, we would have to
calculate Pr[s3 = 2|s2 = 1, d1] for d1 = 1, . . . , χ+1 and Pr[s3 = 3|s2 = 2, d2 =
1]. In the following period, we would have to calculate Pr[s4 = 2|s3 = 1, d1]
for d1 = 1, . . . , χ+2, Pr[s4 = 3|s3 = 2, d2] for d2 = 1 or 2 and Pr[s4 = 4|s3 =
3, d3 = 1], and so on.
In general, it can be confirmed that

Pr[st+1 = m+1|st = m, dm] =
exp(−λm)λdm−1m

(dm − 1)!
³
1−

Pdm−2
j=0

exp(−λm)λjm
j!

´ , dm = 1, . . . , T−m.

(3.3)
which must be evaluated for all T−m possible value of dm and every possible
value of m from 1 through t. Thus, unlike with Chib’s model (which involves
O (TM) such calculations), calculating the transition probability matrix will
involve O (T 3) calculations.
Another important issue arises which does not arise in models with a

known number of change-points. To motivate this issue, suppose that a true
data generating process with one change-point exists and data is observed
for t = 1, ..., T . Assuming that T is large enough for precise estimation of
the true DGP, the posterior simulator will yield most draws which imply
two regimes within the observed sample (i.e. most draws will have st = 1
or 2 for t = 1, ..., T ) and st = m for m > 2 will mostly occur for t > T .
In this case, most of the regimes occur out-of-sample and there will be no
data information available to estimate their durations. So, if two regimes
exist, there will be a great deal of information to estimate λ1 and λ2 but
apparently none to estimate λm for m > 2. In a Bayesian analysis we do
not necessarily have to worry about this. It is well known that if no data
information relating to a parameter exists, then its posterior is equal to its
prior if the prior exhibits independence. Thus, if an independent prior is
used such that p (λ1, . . . , λT ) = p (λ1) · · · p (λT ) with

λm ∼ G
³
αλ, βλ

´
, (3.4)

then posterior for λm in many of the regimes will simply be G
³
αλ, βλ

´
.6

In theory, there is nothing wrong with using an independent prior such
as (3.4), and simplified versions of the methods described below can be used

6To simplify notation, we are assuming the λms to have the same prior. It is trivial to
relax this assumption.
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for this case. Out-of-sample regimes will have durations which simply reflect
the prior, but this is not important insofar as one is interested in in-sample
results (e.g. estimating the number and timing of change-points in-sample).
However, if one is interested in forecasting, then out-of-sample properties
matter. In many applications, it is reasonable to suppose that the duration of
past regimes can shed some light on the duration of future regimes. In order
to accommodate such a structure, we modify (3.4) and use a hierarchical
prior of the form:

λm |βλ ∼ G (αλ, βλ) , (3.5)

where βλ is an unknown parameter (not a hyperparameter selected by the
researcher).7

This new parameter, which reflects the degree of similarity of the du-
rations of different regimes, requires its own prior and it is convenient to
have:

β−1λ ∼ G(ξ
1
, 1/ξ

2
). (3.6)

To aid in prior elicitation, note that this configuration implies the prior mean
of dm (after integrating out λm) is

1 + αλ

Ã
ξ
2

ξ
1
− 1

!
,

if ξ
1
> 1.
It is important to understand the implications of any prior (Appendix

C discusses such properties by simulating from the particular prior used in
our empirical work). As discussed following (3.1), in the model we propose
the hierarchical prior where p (dm|λm) is Poisson, but if we integrate out λm,
we get p (dm|βλ) being a Negative Binomial distribution. The unconditional
prior distribution, p (dm) is found by integrating out β

−1
λ . This does not have

a closed form (and we do not reproduce it here for reasons of brevity). In
general p (dm) inherits the flexible form of p (dm|λm) or p (dm|βλ). However,
it is worth mentioning that if αλ = 1 then we have the restrictive property

7We could also treat αλ as an unknown parameter. However, we do not do so since
our model already has a larger number of parameters and the additional flexibility allowed
would not be great. Choosing αλ = 1 implies λm is drawn from the exponential distribution
(with mean estimated from the data). Other integral choices for αλ imply various members
of the class of Erlang distributions.
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that P (dm = y) > P (dm = y+1). This suggests that, for most applications,
it is desirable to avoid such small values for αλ. It can also be shown that,
for very small values of ξ

2
, with αλ = n we have a high prior probability of

a regime change every n periods. Such considerations can be useful in prior
elicitation.
As noted above, unlike in the model of Chib (1998), the transition prob-

abilities in (3.2) and (3.3) depend upon the duration spent in each regime.
However, in both Chib (1998) and our model, the durations do not enter the
likelihood (i.e. p (yt|Yt−1, st = m) = p (yt|Yt−1, θm) does not depend on the
duration of the regime).
In summary, in this section we have developed a hierarchical prior for

the regime durations which has two levels to the hierarchy. At the first
level, we assume the durations to have Poisson distributions. At the second
level, we assume the Poisson intensities (i.e. λms) are drawn from a common
distribution. Thus, out-of-sample λms (and, thus, regime durations) are
drawn from this common distribution (which is estimated using in-sample
data). This is important for forecasting as it allows for the prediction to
reflect the possibility that a change-point occurs during the period being
forecast.

4 Development of the Prior for the Parame-
ters in Each Regime

In the same way that the change-point framework of Chib (1998) can be
used with a wide variety of likelihoods (i.e. p (yt|Yt−1, st = m) can have many
forms , our Poisson model for durations can be used with any specification
for p (yt|Yt−1, st = m) = p (yt|Yt−1, θm). Here we choose a particular structure
based on a regression or autoregressive model with stochastic volatility which
is of empirical relevance.
We adopt a state space framework where the observable time series sat-

isfies the measurement equation

yt = Xtφst + exp(σst/2)εt, (4.1)

where εt ∼ N(0, 1) and the (K + 1) state vector θst = {φst, σst} satisfies the
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state transition equations

φm = φm−1 + Um, (4.2)

σm = σm−1 + um,

where Um ∼ N(0, V ), um ∼ N(0, η) and and Xt is a K-dimensional row vec-
tor containing lagged dependent or other explanatory variables. The initial
conditions, φ0 and σ0 can be treated in the same way as in any state space
algorithm.8

Note that this framework differs from a standard state space model used
in TVP formulations in that the subscripts on the parameters of the mea-
surement equation do not have t subscripts, but rather st subscripts so that
parameters change only when states change. This difference leads to the
state equations having m subscripts to denote the m = 1, ...,M regimes.
To draw out the contrasts with models with a small number of breaks,

note that the hierarchical prior in (4.2) assumes that θm depends on θm−1.
In contrast, in most traditional models with a small number of breaks, one
assumes θm and θm−1 are independent of one another.9 Furthermore, it is
usually assumed that the priors come from a conjugate family. For instance,
a traditional model might begin with (4.1) and then let θm have the same
Normal-Gamma natural conjugate prior for all m. This approach, involving
unconditionally independent priors, is not reasonable in our model for rea-
sons we have partially discussed above. That is, our approach involves an
unknown number of change-points in the observed sample. So it is possible
that many of the regimes occur out-of-sample. In traditional formulations,
there is no data information to estimate θm if the mth regime occurs out-of-
sample. The hierarchical prior of (4.2) alleviates this problem. An alternative
approach to this issue is given in Pastor and Stambaugh (2001) and Pesaran,
Pettenuzzo and Timmerman (2004). They place a hierarchy on the parame-
ters of the conjugate family for each regime. This is a standard approach
in the Bayesian literature for cross-section data drawn from different groups.
In a time series application it has less merit since one wants the most recent
regimes to have the strongest influence on the new regime. This is a feature
that our prior incorporates.

8In particular, in our state space algorithm the forward filter step is initialized with a
diffuse prior.

9An exception, Pesaran, Pettenuzzo and Timmerman (2004) assumes that all the θms
are drawn from a common distribution.
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The state equations in (4.2) define a hierarchical prior which links θm
and θm−1 in a sensible way. This martingale structure is standard in the
TVP literature and, as we discuss later, it is computationally simple since it
allows the use of standard Kalman filter and smoother techniques to draw
the parameters in each regime. We use a standard (conditionally conjugate)
prior for the innovation variances:

V −1 ∼ W
¡
V −1V , νV

¢
(4.3)

η−1 ∼ G(αη, βη)

whereW (A, a) denotes the Wishart distribution10 and we assume that νV >
K + 1.
Many extensions of this basic model for the link between regimes can be

handled in a straightforward fashion by adding extra layers to the hierarchical
structure. The innovation variance in the state equations can be allowed to
be different (i.e. η and V can be replaced by ηm and Vm and a hierarchical
prior used for these new parameters). Furthermore, in some applications, it
might be desirable for the duration in a regime to effect θm (e.g. if regime
m − 1 is of very short duration, it is plausible that θm−1 and θm are more
similar to one another than if it was of long duration). Such considerations
can be incorporated in a hierarchical prior for θm. For instance, in an earlier
version of this paper, we had a prior which incorporates both such features
as:

V −1m ∼ W

Ã
[λm−1VV ]−1

νV −K − 1 , νV

!

η−1 ∼ G(νη,
[λm−1Vη]−1

νη − 1
)

where VV and Vη are parameters to be estimated. In our applications to
macroeconomic time series extension this did not outperform the simpler
version. Nevertheless, in some applications such an extension might be war-
ranted and it is worthwhile mentioning that the requisite methods can be es-

10We parameterize the Wishart distribution so that if Z ∼ W (A, a) and ij subscripts
denote elements of matrices, then E (Zij) = aAij . The scalar a is a degrees of freedom
parameter.
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timated using straightforward extensions of the MCMC algorithm described
in the next section.
Note also that (4.1) and (4.2) assume that regime changes occur at the

same time for the coefficients and the volatility. Having separate regime
structures for these is conceptually straightforward but practically compli-
cated. In some cases, the researcher may want to simplify our model by
having change-points only in some of the parameters. For instance, in an
autoregressive model for GDP growth it might be plausible that the AR co-
efficients are constant and only the volatility is changing over time. We adopt
such a specification for GDP growth in our empirical section.
To summarize, the prior we have developed has the form:

p (θ1, .., θM , λ1, .., λM , V, η, βλ, χ)

=
nQM

m=1 p (θm|θm−1, V, η) p (λm|βλ)
o
p(θ0)p (βλ) p (χ) p (V, η)

(4.4)

where p (θm|θm−1, V, η) is given by (4.2), p(θ0) is diffuse, (V, η) is given by
(4.3) is given by (4.4), p (λm|βλ) is given by (3.5) and p (βλ) is given by
(3.6). To simplify our computation, we set χ = 0, and thus we ignore this
parameter in the following discussion.11

5 Posterior and Predictive Simulation

In this section we outline the general form of the MCMC algorithm used to
estimate the model. Precise details are given in Appendices A and B. To
simplify notation we define Θ = (θ01, ..., θ

0
M)

0 and λ = (λ01, ..., λ
0
M)

0. Note
that our MCMC algorithm draws a sequence of states (ST ) that includes the
values for the regime durations, dm. Furthermore, we will setM = T so that
we can nest a standard TVP model. However, it is possible to set M < T if
one wishes to restrict the number of feasible regimes.
Our MCMC proceeds by sequentially drawing from the full posterior

conditionals for the parameters ST , θ, λ, V, η, βλ. The posterior conditional
p (ST |YT ,Θ, λ, V, η, βλ) = p (ST |YT ,Θ, λ) can be drawn using the modified
algorithm of Chib (1996) described in Appendix A with transition probabil-
ities given by (3.2) and (3.3). p (Θ|YT , ST , λ, V, η, βλ) can be simulated from
using extensions of methods of posterior simulation for state space models

11Appendix A describes how one can carry out Bayesian inference for χ.
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with stochastic volatility drawing on Kim, Shephard and Chib (1998) and
Carter and Kohn (1994). That is, the TVP model is a standard state space
model and thus, standard state space simulation methods can be used di-
rectly. However, when regimes last more than one period, the simulator has
to be altered in a straightforward manner to account for this.
The (conditional) conjugacy of our prior implies that, with one exception,

p (λm|YT , ST ,Θ, V, η, βλ) for m = 1, ...,M have Gamma distributions. The
exception occurs for the last in-sample regime and minor complications are
caused by the fact that this last regime may not be completed at time T .
For this Poisson intensity we use an accept/reject algorithm.
Standard Bayesian results for state space models can be used to show

p (V −1|YT , ST ,Θ, λ, η, βλ) isWishart and p (η−1|YT , ST ,Θ, λ, V, βλ) is Gamma.
p
¡
β−1λ |YT , ST ,Θ, λ, V, η

¢
can also be shown to be a Gamma distribution.

The predictive distribution of yT+J can be generated by noting that, if
one knew what regime yT+j was in, then standard results for simulating
a predictive distribution in the Normal linear regression (or autoregressive
model if Xt contains lags of the dependent variable). That is, the properties
of p (yT+J |YT , ST+J ,Θ, λ, V, η,VV ,Vη, βλ) can be calculated using standard
simulation methods using output from the MCMC algorithm. Note that the
probability of future states ST+J are provided at each iteration of our MCMC
algorithm by using the underlying Markov chain.

6 Application to US Inflation and Output

In economics, many applications of change-point modeling have been to the
decline in volatility of US real activity and changes in the persistence of
the inflation process. With regards to GDP growth, Kim, Nelson and Piger
(2003), using the methods of Chib (1998) (assuming a single change-point),
investigate breaks in various measures of aggregate activity. For most of
the measures they consider, the likelihood of a break is overwhelming and
Bayesian and frequentist analyses produce very similar results.12 On the

12Since such papers consider only a single break, it is relatively easy to evaluate all the
possible break points. Kim, Nelson and Piger (2003) assume that the conditional mean
parameters remain constant across the break and the only change is in the innovation
variance. If one allowed both the conditional mean and variance to break and assumed an
exchangeable Normal- Gamma prior then the model can be evaluated analytically. This
was the approach followed in Koop and Potter (2001) and it has the advantage that one
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other hand, Stock and Watson (2002) present evidence from a stochastic
volatility model that the decline in variance might have been more gradual,
a thesis first forward by Blanchard and Simon (2001).
Clark (2003) discusses the evidence on time variation in persistence in

inflation. Cogley and Sargent (2001, 2003) present evidence of time variation
in the inflation process both in the conditional mean and conditional variance
of a smooth type. Stock (2001) finds little evidence for variation in the
conditional mean of inflation using classical methods and Primiceri (2003)
finds some evidence for variation in the conditional variance but little in the
conditional mean.
Accordingly, in our empirical work we investigate the performance of our

model using quarterly US GDP growth and the inflation rate as measured by
the PCE deflator (both expressed at an annual rates) from 1947Q1 through
2004Q2. With both variables we include an intercept and two lags of the
dependent variable as explanatory variables. We treat these first two lags as
initial conditions and, hence, our data effectively runs from 1947Q3 through
2004Q2.
In addition to our Poisson hierarchical model for durations we also present

results for standard TVP with stochastic volatility [see Stock and Watson
2002] and one-break models estimated using Bayesian methods. Both of
these can be interpreted as restricted versions of our model. The TVP model
imposes the restrictions that the duration of each regime is one (i.e. st = t
for all t). The one-break model imposes the restriction that there are exactly
two regimes with st = 1 for t ≤ τ and st = 2 for t > τ (and the coefficients
are completely unrestricted across regimes with a flat prior on the coefficients
and error variances).13

Appendix C describes our selection of the prior hyperparameters αλ,ξ1,ξ2,αη,βη,V V

and νV and comparable prior hyperparameters for the TVP model. Here we
note only that we make weakly informative choices for these. In a more
substantive empirical exercise we would carry out a prior sensitivity analy-
sis. The researcher interested in more objective elicitation could work with
a prior based on a training sample.

can also integrate out over lag length in a trivial fashion.
13We restrict the prior for the change-points such that the change-point cannot occur

in the first or last 5% of the sample.
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6.1 Empirical Results

Figure 1 presents information relating to the TVP for GDP growth. The
posterior means of the coefficients (i.e. φt for t = 1, .., T ) are given in Figure
1a and the volatilities (i.e. exp(σt/2) for t = 1, .., T ) in Figure 1b. Figure 2
presents similar information from the one-break model.
Consider first results from the standard TVP and one break models for

real GDP growth. The most interesting findings for this variable relate to the
volatility. Both models indicate that volatility is decreasing substantially over
time, with a particularly dramatic drop occurring around 1984.14 However,
with the TVP model this decline is much more smooth and non-monotonic
than with the one break model. The question arises as to whether the true
behavior of volatility is as suggested by the TVP model or the one break
model. Of course, one can use statistical testing methods which compare
these alternatives. However, an advantage of our model is that it nests these
alternatives. We can estimate what the appropriate pattern of change is and
see whether it is the TVP or the one break model — or something in between.
Our findings relating to volatility of GDP growth are not surprising given

previous results starting with McConnell and Perez (2000). There is some
evidence from the TVP model that volatility started to decline in the 1950s
but this decline was reversed starting in the late 1960s. The single break
model (by construction) does not show any evidence of this. It dates the
single break to be at or very near to 1984. With regards to the autoregres-
sive coefficients, with both models the posterior means indicate that suggest
that little change has taken place. However, posterior standard deviations
(not presented) are quite large indicating a high degree of uncertainty. In
the literature [e.g. Stock and Watson (2002)] these findings have been inter-
preted as implying that there has been no change in the conditional mean
parameters.
In light of this approximate constancy of the coefficients (and to illustrate

our methods in an interesting special case), we estimate our model with
variation only in the volatilities and not in the coefficients. That is, the
first equation in (4.2) is degenerate (or, equivalently, V = 0K×K). Figure
3 plots features of the resulting posterior. Figure 3a, by definition, implies

14Note that, in the one break model, the posterior means of the coefficients and volatil-
ities, conditional on a particular change-point, will behave like step functions. However,
when we present unconditional results, which average over possible change-points, this
step function pattern is lost as can be seen in the figures.
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constant values for all the coefficients. Figure 3b plots the posterior mean of
the volatility. This figure is slightly smoother but otherwise quite similar to
the comparable TVP result in Figure 1b, but differs quite substantially from
the one break model result. Thus, we are finding evidence that the TVP
model is more sensible than the one break model. However, we found such
evidence in the context of a model which could have allowed for very few
breaks. In fact, as can be seen in Figure 3c, our model indicates that there
are about 40 regimes in-sample, as opposed to the 2 regimes of the one break
model or 227 of the TVP model.
Let us now turn to inflation. Given findings by other authors and an

interest in the persistence of inflation, we use the unrestricted version of our
model and allow the AR coefficients to change across regimes. Figures 4,
5 and 6 present results from the TVP, one break and our models, respec-
tively. Figure 4a, containing the two autoregressive parameters from the
TVP model, shows a slight but steady increase in the persistence of inflation
up to the late 1970s followed by a steady decrease. The fact that the level
of inflation increased throughout the 1970s and early 1980s before declin-
ing in the 1990s is picked up partly through the pattern in the intercept.15

The volatility of inflation shows a similar pattern, with a noted increase in
the 1970s and early 1980s. These sensible results are consistent with evi-
dence presented in Cogley and Sargent (2001), although at odds with some
of the evidence presented in Primiceri (2003). Note, however, that our model
yields a smoother evolution especially of the volatility since it finds smoother
changes in persistence than the standard TVP model. Thus it is able to allo-
cate more of the high standard deviation of inflation in the 1970s to changes
in the conditional mean and does not require an increase in the variance of
the innovations to inflation. The single break model indicates quite different
patterns (see Figure 5). It wants to put the single break near the beginning
of the sample, totally missing any changes in the level, persistent or volatility
of inflation in the 1970s and early 1980s. One could force the break later by
adopting a prior that the change-point is later in the sample. As one can see
by concavity in Figure 6c our model is able to assign many change-points
early in the sample then adapt to a slower rate of regime change later in the
sample.
The last panel of all of the figures plots the predictive density one period

15Note, of course, that the unconditional mean depends on the intercept and the AR
coefficients.
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ahead. For both GDP growth and inflation, results using our model and
the TVP model are similar to one another. This is not surprising given that
both models imply similar coefficients and volatilities at the end of the sample
and it is either certain or quite probable that a regime switch occurs out-of-
sample. This latter feature accounts for the fact that the one break model
exhibits a predictive density which has slightly smaller standard deviation
and thinner tails. For inflation, results are particularly strong with the one
break model indicating both a much tighter density but also one shifted
upwards relative to our model and the TVP model.
When comparing results from the TVP and one-break model to ours, as

a general rule we are finding our model supports many change-points rather
than a small number and thus the movements of the conditional mean and
variance parameters are closer to the TVP model. We take this as evidence
that our methods are successfully capturing the properties of a reasonable
data generating process, but without making the assumption of a break every
period as with the TVP model. That is, we are letting the data tell us what
key properties of the data are, rather than assuming them. Our empirical
results also show the problems of working with models with a small number
of breaks when, in reality, the evolution of parameters is much more gradual.

7 Conclusions

In this paper we have developed a change-point model which nests a wide
range of commonly-used models, including TVP models and those with a
small number of structural breaks. Our model satisfies the five criteria set
out in the introduction. In particular, the maximum number of regimes in
our model is not restricted and it has a flexible Poisson hierarchical prior
distribution for the durations. Furthermore, we allow for information (both
about durations and coefficients) from previous regimes to affect the current
regime. The latter feature is of particular importance for forecasting.
Bayesian methods for inference and prediction are developed and applied

to real GDP growth and inflation series. We compare our methods to two
common models: a single-break model and a time varying parameter model.
We find our methods to reliably recover key data features without making
the restrictive assumptions underlying the other models.
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9 Appendix A: A Modified Version of Chib
(1996)’s Algorithm

Bayesian inference in the model of Chib (1998) is based on a Markov Chain
Monte Carlo (MCMC) algorithmwith data augmentation. IfΘ = (θ01, . . . , θ

0
M)

0

and P = (p1, . . . , pM−1) and we expand the definition of the state to include
the duration of a regime in addition to the number of the regime then the
algorithm proceeds by sequentially drawing from

Θ, P |YT , ST (A.1)

and

ST |YT ,Θ, P. (A.2)

Simulation from the latter is done using a method developed in Chib (1996).
This involves noting that:
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p (ST |YT ,Θ, P ) = p (sT |YT ,Θ, P ) p
¡
sT−1|YT , ST ,Θ, P

¢
(A.3)

· · · .p
¡
st|YT , St+1,Θ, P

¢
· · · p

¡
s1|YT , S2,Θ, P

¢
.

Draws from st can be obtained using the fact [see Chib (1996)] that

p
¡
st|YT , St+1,Θ, P

¢
∝ p (st|Yt,Θ, P ) p (st+1|st, P ) . (A.4)

Since p (st+1|st, P ) is the transition probability and the integrating constant
can be easily obtained (conditional on the value of st+1, st can take on only
two values in this case and a finite number in the general one), we need only to
worry about p (st|Yt,Θ, P ). Chib (1996) recommends the following recursive
strategy. Given knowledge of p (st−1 = m|Yt−1,Θ, P ), we can obtain:

p (st = k|Yt,Θ, P ) =
p (st = k|Yt−1,Θ, P ) p (yt|Yt−1,θk)Pk

m=k−1 p (st = m|Yt−1,Θ, P ) p (yt|Yt−1,θm)
, (A.5)

using the fact that

p (st = k|Yt−1,Θ, P ) =
kX

m=k−1
pmkp (st−1 = m|Yt−1,Θ, P ) , (A.6)

for k = 1, ..,M . The recursive algorithm is started with p (st|Y1,Θ, P ).
Thus, the algorithm proceeds by calculating (A.4) for every time period

using (A.5) and (A.6) beginning at t = 1 and going forward in time. If there
is uncertainty over χ then the prior over the unobserved duration of the
initial regime is used to initialize the algorithm. If there is not uncertainty
then it is assumed that the first period of the first regime is the first period
of the sample. Then the states themselves are drawn using (A.3), beginning
at period T and going backwards in time. Of course, the draw of sT will
be of a regime number and a duration. The duration will locate the time
when the regime started, thus it immediately identifies the last change-point
in sample. This information is used to find the appropriate time period at
which to evaluate (A.4). In the case where χ = 0 the draw of the duration
of the second regime directly gives the duration of the first regime and the
this is the final iteration. In the case where there is uncertainty over χ the
final iteration of the algorithm will involve drawing the duration of regime 1
using (A.3) and (A.4).
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10 Appendix B: MCMC Algorithm

The posterior conditionals used in our MCMC algorithm are described in
Section 5. Further details are provided in this Appendix. The states are
drawn from p (ST |YT ,Θ, λ) using a modification of the algorithm of Chib
(1996) as described in Appendix A.

p (Θ|YT , ST , λ, V, η, βλ) can be drawn from using methods of posterior
simulation for state space models with stochastic volatility drawing using
standard algorithms for state space models [e.g. Kim, Shephard and Chib
(1998), Carter and Kohn (1994), DeJong and Shephard (1995) or Durbin
and Koopman (2002)]. These algorithms can be used for our change-point
models with simple modifications. To fix ideas consider the simplest case
where Xt contains only an intercept. Then

1

dm

X
st=m

Yst = Y m = φm + εm,

with εm ∼ N(0, exp(σm)/dm). The draw of the φm (conditional on σ) could
then proceed using the analyst’s favorite algorithm in the time scale given
by the change points. For σm (conditional on φm) one can apply a sto-
chastic volatility algorithm [e.g. Kim, Shephard and Chib (1998)] using the
measurement equation:X

st=m

(Yst − φm)
2 = exp(σm)εm,

where εm ∼ N(0, dm) in the time scale given by the change-points. Since,
most algorithms analyze the stochastic volatility conditional on draws for
the φm, the extension to the case where Xt contains more than just an inter-
cept is immediate. We take draws of σm with a one-step sampler using an
acceptance/rejection approach from Kim, Shephard and Chib (1998).
In the case where Xt contains more than just an intercept we proceed by

first forming the predictive distribution for φm using the transition equation:

φst =

½
φm if st = st−1 = m

φm + Um+1 if st = m+ 1, st−1 = m
,

and then use the Kalman filter to derive:

p(φst|Yt, ST ) for t ∈ {st+1 6= st}.
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We then draw φM from p(φsT |YT , ST ) and proceed back throughM−1, . . . , 1.
We use the Carter and Kohn (1994) sampler, modified for the time scale
given by the change-points. For out-of-sample regimes we use the transition
equation and values of V and η to generate draws starting from the value of
φM .
The Poisson intensities are drawn from p (λm|YT , ST ,Θ, V, η, βλ) for m =

1, ..,M . These posterior conditionals are:

λm|YT , STV, η, βλ ∼ G
¡
αm, βm

¢
where

αm = αλ + dm

βm =
£
β−1λ + 1

¤−1
Note, however, that for the last in-sample regime dm is not observed. Suppose
the ongoing regime has lasted Dm periods by the end of the sample. Then
the conditional posterior is proportional to

exp(−λm/βm)λαm−1m

∞X
y=Dm−1

exp(−λm)λym
y!

= exp(−λm(1 + 1/βm))λαm−1m

∞X
y=Dm−1

λym
y!

≤ exp(−λm(1 + 1/βm))λαm−1m exp(λm)

= exp(−λm/βm)λαm−1m .

Thus, a simple accept/reject step is available to draw λm for the regime with
on-going duration. For large values ofDm relative to the values of λm implied
by the Gamma distribution based on αm, β

−1
m the rejection rate will be high.

This should not happen to frequently, but if it does this step can be converted
into a Metropolis-Hastings one.
We next turn to the posterior conditionals p (V −1|YT , ST ,Θ, λ, η, βλ) and

p (η−1|YT , ST ,Θ, λ, V, βλ). These are:

V −1|YT , ST ,Θ, λ, η ∼W
¡
V V , νV

¢
,

where
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V V =

"
V V +

MX
m=1

¡
φm − φm−1

¢ ¡
φm − φm−1

¢0#−1
and

νV = νV +M.

Furthermore,

η−1|YT , ST ,Θ, λ ∼ G
¡
αη, βη

¢
where

αη = αη +
M

2

and

βη =
1

β
η
+ 1

2

PM
m=1 (σm − σm−1)

2

Finally, we have

β−1λ |YT , ST ,Θ, λ, V, η ∼ G
³
αβ, β

−1
β

´
where

αβ =Mαλ + ξ
1

and

ββ =
MX

m=1

λm +
1

ξ
2

11 Appendix C: Properties of the Prior

In the body of the text, we developed some theoretical properties of the
prior. However, given its complexity, it is also instructive to examine its im-
plications using prior simulation. Accordingly, in this appendix, we illustrate
some key properties of our prior for the hyperparameter values used in the
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empirical work. We use informative priors. For highly parameterized mod-
els such as this, prior information can be important. Indeed, results from
the Bayesian state space literature show how improper posteriors can result
with improper priors [see, e.g. Koop and Poirier (2004) or Fernandez, Ley
and Steel (1997) for more general results]. One strategy commonly-pursued
in the related literature [see, e.g., Cogley and Sargent (2001, 2003)] is to
restrict coefficients to lie in bounded intervals such (e.g. the stationary in-
terval). This is possible with our approach. However, this causes substantial
computational complexities (which are of particular relevance in our model
where many regimes can occur out-of-sample and reflect relatively little data
information). Training sample priors can be used by the researcher wishing
to avoid subjective prior elicitation.
In this paper, we choose prior hyperparameter values which attach ap-

preciable prior probability to a wide range of reasonable parameter values.
To aid in interpretation, note that our data is measured as a percentage and,
hence, changes in σm in the interval [−0.5, 0.5] are the limit of plausibility.
For AR coefficients, the range of plausible intervals is likely somewhat nar-
rower than this. With regards to the durations, we want to allow for very
short regimes (to approach the TVP model) as well as much longer regimes
(to approach a model with few breaks). We choose values of the prior hyper-
parameters, αλ, ξ1, ξ2, αη, βη, V V and νV which exhibit such properties.
Figure C plots the prior for key features assuming αλ = 12, ξ1 = αλ, ξ2 =

αλ, αη = 1.0, β
η
= 0.02, V V = 0.1IK and νV = 3K. Note that, by con-

struction, the priors for all our conditional mean coefficients are the same so
we only plot the prior for the AR(1) coefficient. Figure C1 plots the prior
over durations and it can be seen that the prior weight is spread over a
wide range, from durations of 1 through more than 50 receiving appreciable
prior weight. Figures C2 and C3 plot prior standard deviations for the state
equation innovations (see 4.2). It can be seen that these are diffuse enough
to accommodate anything from the very small shifts consistent with a TVP
model through much bigger shifts of a small break model.
For the TVP model, we make the same prior hyperparameter choices

(where applicable). The prior for the one break model has already been
described in the text.
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