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1 Introduction

Change-point modeling has become increasingly popular in the last few years
due to an increasing awareness of the importance of this issue for empirical
practice.1 Bayesian methods have proved popular in this field since many
change-point models can be written in a simple and computationally conve-
nient form using hierarchical priors. That is, conditional on some parameters
or vector of latent data (e.g. the breakpoints or the duration of each regime
or a state vector denoting the various regimes), the remainder of the model is
very simple (e.g. a sequence of Normal linear regression or Poisson models).
A key issue is how these parameters or latent data are modeled. In Bayesian
jargon, such model assumptions are made through a (typically hierarchical)
prior and various change-point models can be interpreted as implying dif-
ferent priors. However, as with any modelling assumption, it is important
that the prior chosen has well-understood properties and be suitably flexi-
ble to model empirically-relevant behavior. In this paper, we examine some
common approaches and argue that they have properties which may be un-
desirable in some applications. We use this insight to develop an alternative
approach which surmounts this problem. These developments lead to a dis-
cussion of the case where the researcher does not know M , the number of
regimes. Of course, it is always possible to select the number of regimes by
trying various values ofM and then using a statistical metric (e.g. a marginal
likelihood) to choose M . However, as we shall argue, there are cases where
it is appealing to have a model within which M is a parameter to be esti-
mated. We develop a hierarchical prior which allows for this. Throughout,
we illustrate our points and new developments using an extended empirical
example.
Our starting point will be the influential change-point model developed

in Chib (1998).2 Variants on this model are commonly-used in empirical
work in economics and finance [e.g. Pastor and Stambaugh (2001) and Kim,
Nelson and Piger (2002)]. See also Pesaran, Pettenuzzo and Timmerman
(2004) and Maheu and Gordon (2004) for recent extensions of relevance for

1In economics, the terminology ”structural break” modeling is often used. We prefer
to use the concept of a change-point because the term ”structural break” suggests some
underlying structure has changed. There are many cases in economics where reduced form
relationships can change with the underlying structure remaining constant.

2Other key early Bayesian work in the statistics literature includes Carlin, Gelfand,
and Smith (1992), Barry and Hartigan (1993) and Stephens (1994).
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forecasting in change-point models. Chib’s model grew out of early work
by Chernoff and Zachs (1964). The latter presented a model where, in each
period there is a constant probability of a change to a new regime. If a
change occurs the mean of the dependent variable is perturbed by a mean
zero Normally distributed shock, if no change occurs the mean remains the
same. Chib (1998) generalized the Chernoff and Zachs approach so that
the probability of change could vary through time by treating the change-
point problem using hidden Markov chains. In the approach of Chib (1998),
the problem of locating the change-points is converted into the problem of
determining the duration of a Markov regime. As argued by Chib, this allows
for the estimation of models, using modern Bayesian methods, with multiple
change-points that appear infeasible under the standard approach to change-
point problems.
We build on the insight of Chib (1998) in a number of ways. In particular,

we show that both Chib’s and Chernoff and Zachs’ approaches place a severe
restriction on the duration of regimes. That is, the regime change is most
likely to happen in the first period of the regime, then next most likely in the
second period and so on. Below we examine the implications of this aspect
of the model of Chib (1998). We show that a further interesting issue arises
at the end of the sample relating to the imposition of a fixed number of
change-points. In essence, this issue relates to what sort of prior information
is required to ensure that the specified number of change-points do in fact
occur. We show how the requisite prior has some unusual (and potentially
undesirable) properties which can have a major impact on empirical practice.
In light of this, we develop other priors which do not have these properties.
An additional advantage of our model is that we do not have to assume a
fixed number of change-points. Furthermore, we show how such an approach
is an attractive one for forecasting in the presence of structural change.
The plan of this paper is as follows. In Section 2 we develop the insight

of Chib (1998) on the relationship between change-point models and hidden
Markov chains with a particular focus on the role of prior information. In
particular, we show that the prior required to impose a specified number
of change-points leads to a non-time homogeneous Markov chain at the end
of the sample. Chib’s (1996) algorithm is valid for non-time homogeneous
Markov chains and we show how this algorithm can be used in the change-
point model. We also discuss an apparently plausible "noninformative" prior.
We discuss some undesirable properties of both these priors. In Section
3 we show how these undesirable properties have important implications
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for empirical practice using the coal mining disaster data analyzed in Chib
(1998). Section 4 shows how these undesirable properties can be corrected
through a Uniform prior with support not restricted to in-sample periods.
Section 5 generalizes this prior in a hierarchical fashion in a manner which
nests a wide variety of specifications and allows for the estimation of the
number and timing of change-points. Section 6 concludes.

2 Priors for Change-point Models with Known
Number of Change-points

We begin by describing in detail some recent work and, in particular, the
popular model of Chib (1998) which has been used in many applications.
Our focus is on extending Chib’s insight of converting the classical change-
point problem into a Markov mixture model and using the algorithm of Chib
(1996) to estimate the change-points and the parameters within each regime.
We adopt the following notation (similar to that used in Chib’s pa-

pers): We have data on a scalar time series variable, yt for t = 1, . . . , T
and let Yi = (y1, . . . , yi)

0 denote the history through time i and denote
the future by Yi+1 = (yi+1, . . . , yT )

0. Regime changes depend upon a dis-
crete random variable, st, which takes on values {1, 2, . . . ,M}. We let
Si = (s1, .., si)

0 and Si+1 = (si+1, . . . , sT )
0. The likelihood function is de-

fined by assuming p (yt|Yt−1, st = m) = p (yt|Yt−1,θm) for a parameter vector
θm for m = 1, . . . ,M . Thus, change-points occur at times τm defined as

τm = {t : st+1 = m+ 1, st = m} for m = 1, . . . ,M − 1. (2.1)

Chib (1998) puts a particular structure on this framework by assuming
that st is Markovian. That is,

Pr (st = j|st−1 = i) =

⎧⎪⎪⎨⎪⎪⎩
pi if j = i 6=M

1− pi if j = i+ 1
1 if i =M
0 otherwise

(2.2)

In words, the time series variable goes from regime to regime. Once it has
gone through the mth regime, there is no returning to this regime. It goes
through regimes sequentially, so it is not possible to skip from regime m to
regimem+2. Once it reaches theM th regime it stays there (i.e. it is assumed
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that the number of change-points in the sample is known). In Bayesian
language, (2.2) describes a hierarchical prior for the vector of states.3

To avoid confusion, it is worth stressing that change-point models can be
parameterized in different ways. Many models indicate when each regime oc-
curs by parameterizing directly in terms of the change-points (i.e. τ 1, .., τM−1).
Others are written in terms of states which denote each regime (i.e. ST ). It
is also possible to write models in terms of durations of regimes. In the fol-
lowing material, we use all of these parameterizations, depending on which
best illustrates the points we are making. However, we do stress that they
are equivalent. So, for instance, a time series of 100 data points with a break
at the 60th can be expressed as τ 1 = 60, or S60 = 1 and S61 = 2, or d1 = 60
and d2 = 40 (where dm denotes the duration of regime m).
There are many advantages to adopting the framework of Chib (1998).

For instance, previous models typically involved searching over all possible
sets of change-points. If the number of change-points is even moderately
large, then computational costs can become overwhelming [see, for instance,
the discussion in Elliott and Muller (2003) of the approach developed in
Bai and Perron (1998)]. By using the Markov mixture model, the posterior
simulator is recovering information on the most likely change-points given
the sample and the computational burden is greatly lowered, making it easy
to estimate models with many change-points.
Chib chose to model the transition probabilities of the states as having a

constant hazard. This is similar to Chernoff and Zachs (1964) who assumed
a constant probability of transition (although Chib allowed the transition
probability to be different for different regimes). One consequence of the
constant hazard is that regime duration satisfies a Geometric distribution.
The Geometric distribution is decreasing in the duration and, thus, the im-
plied distribution of the change-points also adopts this property.4 For many
applications, this might be sensible. However, for others it may be too re-
strictive. For instance, in the case of a single change-point, τ 1, is it always
the case that earlier values of τ 1 should be preferred to later? The classical
change-point literature implicitly reveals a preference for priors on τ 1 which
are Uniform (i.e. before seeing the data, every value for τ 1, apart from initial
conditions and endpoints, is treated as being equally likely). Such informal

3A non-Bayesian may prefer to interpret such an assumption as part of the likelihood,
but this is merely a semantic distinction with no effect on statistical inference [see, e.g.,
Bayarri, DeGroot and Kadane (1988)].

4This statement will be qualified below in our discussion relating to endpoints.
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discussion suggests we should at least investigate the consequences of this
particular choice of hierarchical prior and consider possible alternatives.
Equation (2.2) defines a hierarchical prior for the states. To complete the

model, a prior for pm is required. Chib (1998) and subsequent papers have as-
sumed this to be a Beta prior with hyperparameters δ1, δ2.

5 See, e.g., Poirier
(1995), pages 104-105 for the definition and properties of the Beta distribu-
tion. In this paper, we will refer to the change-point model with hierarchical
prior given by (2.2) with the Beta prior for the transition probabilities as the
Chib model. Note, also, that in the following material, we discuss hierarchical
priors for various features (e.g. in the Chib model, the hierarchical prior for
durations is Geometric and depends upon the transition probabilities which
in turn have their own Beta prior) as well as marginal priors (e.g. in the
Chib model, we can derive a marginal prior for the durations by integrating
out the transition probabilities using their Beta prior). It is important for
the reader to keep clear these two types of priors. Note that the marginal
prior probability for the regime durations for the Chib model is:

p(dm) =
B(δ1 + dm − 1, δ2 + 1)

B(δ1, δ2)
, d = 1, 2 . . . , . (2.3)

where B(δ1, δ2) =
Γ(δ1)Γ(δ2)

Γ(δ1+δ2)
is the Beta function. It can be confirmed that if

δ2 ≤ 1 then the expected duration does not exist. Further, p(dm) > p(dm+1)
so that this distribution is monotonically decreasing. This illustrates a point
we have mentioned above: this prior implies that regime durations of d are
more likely than d+ 1 . Note that this property is present both both in the
hierarchical prior, p (d|pm), and the marginal prior, p (d).
There is another, possibly undesirable, property of the Chib model which

is not as obvious and which a naive researcher could miss. This property can
be most easily seen in the context of the posterior simulator commonly used
with this model. Bayesian inference in the model of Chib (1998) is based on
a Markov Chain Monte Carlo (MCMC) algorithm with data augmentation.
If Θ = (θ01, . . . , θ

0
M)

0 and P = (p1, . . . pM−1) then the algorithm proceeds by
sequentially drawing from

Θ, P |YT ,ST (2.4)

5Throughout this paper, we use a notational convention where lower bars (e.g. δ1)
denote prior hyperparameters chosen by the researcher. Thus, when we use hierarchical
priors, only the hyperparameters at the final stage of the hierarchy will have lower bars.
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and

ST |YT ,Θ, P. (2.5)

Simulation from the latter is done using a method developed in Chib (1996).
This involves noting that:

p (ST |YT ,Θ, P ) = p (sT |YT ,Θ, P ) p
¡
sT−1|YT ,S

T ,Θ, P
¢

(2.6)

· · · .p
¡
st|YT ,S

t+1,Θ, P
¢
· · · p

¡
s1|YT ,S2,Θ, P

¢
.

Draws from st can be obtained using the fact [see Chib (1996)] that

p
¡
st|YT ,S

t+1,Θ, P
¢
∝ p (st|Yt,Θ, P ) p (st+1|st, P ) . (2.7)

Since p (st+1|st, P ) is the transition probability and the integrating constant
can be easily obtained (conditional on the value of st+1, st can take on
only two values in the change-point case), we need only to worry about
p (st|Yt,Θ, P ). Chib (1996) recommends the following recursive strategy.
Given knowledge of p (st−1 = m|Yt−1,Θ, P ), we can obtain:

p (st = k|Yt,Θ, P ) =
p (st = k|Yt−1,Θ, P ) p (yt|Yt−1,θk)Pk

m=k−1 p (st = m|Yt−1,Θ, P ) p (yt|Yt−1,θm)
, (2.8)

using the fact that

p (st = k|Yt−1,Θ, P ) =
kX

m=k−1
pmkp (st−1 = m|Yt−1,Θ, P ) , (2.9)

for k = 1, ..,M . The recursive algorithm is started with p (st|Y1,Θ, P ).
Thus, the algorithm proceeds by calculating (2.7) for every time period

using (2.8) and (2.9) beginning at t = 1 and going forward in time (we will
refer to this as the forward iteration). Then the states themselves are drawn
using (2.6), beginning at period T and going backwards in time (we will refer
to this as the backward iteration).
This algorithm was designed for the general Markov mixture model of

Chib (1996). However, special considerations apply for the change-point
model. In particular, the fact that exactly M regimes are assumed to exist
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in the observed sample of size T implies that in period 1 we are in regime 1
and in period T we are in regime M . In the algorithm described above, this
implies that p (sT =M |YT ,Θ, P ) = 1 and p (s1 = 1|YT , S2,Θ, P ) = 1 for all
possible observed dataYT . It is tempting to think that one can simply impose
these restrictions by fixing s1 = 1 at the start of the forward iteration and,
in the backward iteration, fixing sT = M. However, this is not enough. At
this point, we explain in detail why this is so, as it illustrates some restrictive
properties on this model and motivates our own more flexible specification.
Chib (1996) assumes a standard time homogeneous Markov transition

matrix in the development of his algorithm. But for the change-point prob-
lem, we have to relax this homogeneity assumption. Under the structure in
(2.2) for the change-point problem, there is nothing to ensure that all the
regimes are visited with positive probability in all samples of size T start-
ing from regime 1. One way to see this is to consider the duration of each
regime. As we have seen, by construction the duration of each regime, dm,
has a Geometric distribution and, thus, the expected duration is given by
1/(1 − pm). Without further restrictions, there is positive probability that
even the second regime will not be reached in a sample size of T.
One solution to this problem, consistent with the a priori belief of M

regimes in the observed sample of size T , is to relax the assumption of time
homogeneity on the transition probabilities to ensure that all regimes are
covered in a sample of T .6 Thus in the case ofM = 4, at times T−3 through
T − 1 we would have the following structure for the transition matrix:

T − 3 T − 2 T − 1⎡⎢⎢⎣
0 1 0 0
0 p2 1− p2 0
0 0 p3 1− p3
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

p1 1− p1 0 0
0 0 1 0
0 0 p3 1− p3
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

p1 1− p1 0 0
0 p2 1− p2 0
0 0 0 1
0 0 0 1

⎤⎥⎥⎦
Thus, we must alter the hierarchical prior for sT−3, sT−2 and sT−1 to ensure
that all regimes occur (for other time periods, we maintain the prior given in
equation 2.2). However, this new prior requires a slight modification of the
algorithm presented Chib (1996).
Consider the backward iteration which begins by fixing sT = M. There

are two feasible regimes for sT−1, M or M − 1. Equation (2.6) involves sT−1
being drawn from p

¡
sT−1|YT ,S

T ,Θ, P
¢
∝ p (sT−1|YT−1, θ, P ) p (sT |sT−1, P ).

6Barry and Hartigan (1993) provide a different solution.
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Consider the term p (sT |sT−1, P ). The unmodified version of Chib’s algorithm
will use probabilities

Pr[sT =M |sT−1 =M ] = 1,Pr[sT =M |sT−1 =M − 1] = 1− pM−1,

which has to be changed to the equal probabilities:

Pr[sT =M |sT−1 =M ] = Pr[sT =M |sT−1 =M − 1] = 1 (2.10)

in constructing p (sT |sT−1, P ). In many applications the estimates of pM−1
tend to be close to 1 suggesting that considerable bias is introduced at this
initial step if the unmodified version of Chib’s algorithm is used.
Now consider p (sT−1|YT−1, θ, P ) from the forward iteration. If a time

homogeneous transition matrix is used andM ≥ 3 then this contains positive
probability on regimes 1, . . . ,M − 2 that are infeasible at time T − 1. Thus,
the non-time homogenous transition matrix must ensure that the forward
iteration begins removing low numbered states at time T−M . This discussion
shows how the algorithm must be modified for drawing sT−1. The same sort
of modifications must be made at times t = T − 2, . . . , T −M in updating
p (st|Yt, θ, P ) to p (st+1|Yt, θ, P ) .
In summary, it is not difficult computationally to impose the restriction

that exactly M regimes exist in the data by simply adding more prior in-
formation of the sort given in (2.10) and the algorithm of Chib (1996) can
be used. However, it is possible that such prior information is undesirable
in the sense of placing a great deal of prior weight in favor of change-points
near the end of the sample.
Such considerations suggests that we may wish to investigate other pri-

ors. An apparently plausible thing to do would be to consider a Uniform
distribution [see Koop and Potter (2001) for a Bayesian application and Bai
and Perron (1998) and subsequent literature for the frequentist application]
for the prior for the change-points or, equivalently, the durations. Below, we
will refer to this prior as the Restricted Uniform prior since it restricts the
prior to impose a fixed number of change-points on the model. In the case of
a single change-point, such an approach is straightforward. Simply setting:

p (τ 1) =
1

T − 1 for τ 1 = 1, .., T − 1 (2.11)

is unambiguously “flat” and imposes exactly one regime change in the sample.
However, such a prior does not generalize well to more than one change-
point. We illustrate this in the case with two change-points, τ 1 and τ 2. The
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apparently sensible extension of (2.11) would write the prior as p (τ 1, τ 2) =
p (τ 1) p (τ2|τ 1) where

p (τ 1) =
1

T − 2 for τ 1 = 1, .., T − 2 (2.12)

p (τ 2|τ 1) =
1

T − τ 1 − 1
for τ 2 = τ 1 + 1, .., T − 1. (2.13)

This prior does impose exactly two regime changes in sample and the prior
for τ 2|τ 1 appears noninformative. However, it can be verified that, if we
integrate out τ 1, the marginal prior for τ 2 is very non-Uniform, once again
giving more weight to change-points late in the sample:

p (τ 2 = j) =
1

T − 2

jX
i=2

1

T − i
for j = 2, .., T − 1. (2.14)

This prior (for a sample size of 112) is shown in Figure 1b. Its shape is the
reverse of a Geometric distribution. Similar results and prior shapes hold
when we haveM > 3 regimes in our sample. Is this property of our Restricted
Uniform prior undesirable? Of course, this depends on the empirical context.
However, there is a possibility that a researcher could use this prior, thinking
it is "noninformative", but empirical results could be affected by the greater
prior weight for τ 2 near the end of the sample.

3 Prior Sensitivity in Change-Point Models

in Practice

In the previous section, we showed how two plausible priors: the one un-
derlying the Chib model and what we have called the Restricted Uniform
prior have some possibly undesirable properties. In this section, following
Chib (1998), we investigate the empirical performance of our priors in a
commonly-used data set. We consider the coal mining disaster data of Jar-
rett (1979) and consider the cases of zero, one or two change-points.
The prior for the Chib model requires the selection of prior hyperpara-

meters for the transition probabilities, δ1 and δ2. To aid in prior elicitation,
an examination of (2.3) indicates that, for values of δ2 close to zero and δ1
relatively large, we have p(dm) ≈ p(dm + 1) for larger values of d. Perhaps
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reflecting a preference for priors which are ”flat” over possible change-points,
in many applications [for example Chib (1998) Kim and Nelson (1999) and
Kim, Nelson and Piger (2003)] δ2 has been set to less than 1. In Chib (1998)
the choice δ2 = 0.1 and δ1 = 8 was made.We will also use these values for the
case with one change-point. Note that this implies that the marginal prior
of regime duration is approximately flat, but the expected duration does not
exist (see discussion after equation 2.3). Hence, such a choice of prior hy-
perparameters may get around the possibly unattractive property that the
prior favors shorter durations to longer ones, but raises the possibility that
the problems relating to the restrictive prior required to ensure exactly M
regimes exist may be exacerbated.
The model of Chib requires us to add restrictions analogous to (2.10) to

ensure that number of change-points assumed in the model do in fact occur.
This can be done by truncating the distribution of the duration of regime 1
at d = T − 1 and assigning all the remaining probability to this point. In
the coal mining disaster data there are 112 observations, hence, for the one
change-point case we can use (2.3) to set

P [τ1 = 111] = P [d1 = 111] = 1−
110X
d=1

B(7 + d, 1.1)

B(8, 0.1)
= 0.76. (3.1)

Thus, the prior required to impose exactly one change-point is allocating a
great deal of weight to regime changes at the end of the sample. The prior
required to impose exactly two change-points is the obvious extension of (3.1)
and has a similar property. The properties of this prior can be seen in Figure
1a for the one change-point case (similar patterns hold for cases with more
change-points). There is a huge spike in the prior at the end of the sample.
Other than this, these choices for δ1 and δ2 imply that the prior is fairly
flat, although the property that the duration distribution is decreasing can
be seen at the beginning of the sample.
To carry out our application, we need to specify a likelihood and a method

for posterior analysis. Since this data is a count of mining disasters by year
a Poisson likelihood is reasonable. Chib assumes the priors on the Poisson
intensities in the different regimes, θm, to be G(αm, βm)

7 for m = 1, . . . ,M .
Throughout the following material, we use the same values for αm, βm as
in Chib (1998). That is, for the zero and one change-point cases, we set

7G (a, b) denotes the Gamma distribution with mean ab and variance ab2.
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αm = 2, β
m
= 1. For the two change-point case, we set αm = 3, β

m
= 1.

Under these assumptions the posterior of the change-points can be found
directly as described in the Appendix. Note there is no need to use a Gibbs
sampler to do this nor to use a Markov chain interpretation of the regimes.
Posterior results for the Chib model, the change-point model with the

Restricted Uniform prior and something which we call the Unrestricted Uni-
form prior (and will explain later) are given in Table 1 and Figures 2 and
3. Figure 1 plots the priors (except the obvious ones which, e.g., are simply
Uniform).
For the case where a single change-point is assumed to exist, the Chib

model with (3.1) imposed (see Figure 1a) and the Restricted Uniform prior
yield essentially the same posterior so, for the sake of brevity, they are not
plotted. However, when we assume two change-points we begin to see the
effects of prior assumptions. For this case, with Chib’s model we follow Chib
(1998) and assume independent Beta priors for the two transition probabili-
ties, each with hyperparameters 5 and 0.1 (and impose prior restrictions on
the endpoints analogous to equation 3.1). The posteriors for τ 1 and τ 2 for
the Chib model and Restricted Uniform prior are plotted in Figures 2a,b
and 3a,b, respectively. Note that the sample ends in 1962. The reason for
the X-axis of these figures running past 1962, along with an explanation of
Figures 2c and 3c will be given in the next section.
For the first change-point, the posteriors under the two priors are roughly

the same (although some differences occur at the beginning of the sample).
However, for the second change-point the two priors are yielding substan-
tively different posteriors. Note in particular that the posterior of τ 2 for
Chib’s model has a huge spike at the end of the sample. This is due to
the restriction analogous to (3.1) which imposes exactly two change-points
in-sample.8 Thus, we are finding prior sensitivity even when staying in the
class of models which impose a precise number of change-points.
The reader may suspect that our findings of prior sensitivity are occurring

in a model which is not supported by this data. To investigate this issue, we
report marginal likelihoods for the various models. Note that these can be
calculated analytically since, conditional on the change-points, a closed form
expression for the marginal likelihood exists (see Appendix). These condi-
tional marginal likelihoods can be averaged over the change-points using the

8In the two change-point case, we were unable to exactly re-produce the posteriors in
Figure 6 of Chib (1998).
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appropriate prior to yield an exact (unconditional) marginal likelihood. Ta-
ble 1 contains the log marginal likelihoods calculated in this way. It presents
strong evidence that at least one change-point is present. The one and two
change-point models receive roughly equal support. Note also that the mod-
els with Uniform priors receive more support from the data than the Chib
model. Thus, we are finding sensitivity to the prior in a model which does re-
ceive appreciable support from the data. Furthermore, one might argue that
it is the more reasonable prior (i.e. the Restricted Uniform prior) that is re-
ceiving more support from the data.9 We take this as additional motivation
for extending the traditional approach.
The last row of Table 1 presents the log of the marginal likelihood for

a Uniform prior which treats the number of change-points as unknown. We
have not explained what this is. However, note that the model with this prior
receives more support from the data than the other 2 change-point models.
We now turn to this prior.

Table 1: Log Marginal Likelihoods for Different Priors
Model Log Marginal Likelihood
No change-points −206.21
1 change-point Chib model −178.35
1 change-point Restricted Uniform −176.76
2 change-point Chib model −178.96
2 change-point Restricted Uniform −177.35
Unrestricted Uniform −177.19

4 UniformPriors on Change-Points: Unknown
Number of Change-points

In the previous section, we used what we called a Restricted Uniform prior.
This had the conditional priors of τm|τm−1 being Uniform. However, we ar-
gued that, in terms of the marginal prior for τm form > 1, it was very non-flat
indeed. Let us now consider what would happen if we worked which is "flat"
in another sense. We will illustrate using the two change-point case, with

9For the case of no change-points the marginal likelihood is very close to the estimate
of Chib (1998) which was based on the simulation approach in Chib (1995). However, as
one would expect, given the discussion in Section 2, for the log marginal likelihoods of the
change-point models there are some differences
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the extension to more change-points being obvious. As with the Restricted
Uniform prior we begin with p (τ 1, τ 2) = p (τ 1) p (τ 2|τ 1) and assume

p (τ 1) =
1

T − 2 for τ 1 = 1, .., T − 2. (4.1)

However, we replace (2.13) by

p (τ2|τ 1) =
1

T − 2 for τ 2 = τ 1 + 1, .., T + τ 1 − 2. (4.2)

Note that this prior, which we refer to as the Unrestricted Uniform prior,
now has the very sensible property that both p (τ 2|τ 1) and p (τ 2) are Uniform.
However, it also has the unconventional property that it allocates prior weight
to change-points outside the observed sample. We will argue that this is a
highly desirable property since, not only does this prior not place excessive
weight on change-points near the end of the sample, but also there is a sense
in which it allows us to handle the case where there is an unknown number
of change-points. That is, the prior given by (4.1) and (4.2) does impose
that there are two change-points, but since one of them can occur out of
sample, it implicitly allows for one (in-sample) change-point as well. The
generalization discussed in the following section is even more flexible.
For our coal-mining data, the last row of Table 1 presents the marginal

likelihood using the Unrestricted Uniform prior as given in (4.1) and (4.2).
It is substantively higher than the marginal likelihoods for the other priors
for the two change-point models.10 As with our other prior, this marginal
likelihood is a weighted average of the marginal likelihoods for every possible
(τ 1, τ 2) combination. However, unlike the other priors, the set of possible
values for (τ 1, τ 2) include some where τ 2 is out-of-sample. The marginal
likelihood will be the same for these. For instance, in our data set with
T = 112, the (conditional) marginal likelihoods for (τ 1 = 70, τ 2 = 115) and
(τ 1 = 70, τ 2 = 116) will be the same (and both will indicate one change-point
models). When calculating the (unconditional) marginal likelihood presented
in Table 1 we include these two identical (conditional) marginal likelihoods.
It can be confirmed that this implies a very attractive property: the set of
models with one change-point in sample receive the same amount of prior
weight as the set of models with two change-points in sample.

10For the one change-point model the Restricted and Unrestricted Uniform priors are
identical.
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Figures 2c and 3c present the posteriors for τ 1 and τ 2 using the Unre-
stricted Uniform prior. In-sample these posteriors look quite different from
those obtained from the Chib model, but similar in shape to those from the
Restricted Uniform prior. Out-of-sample (i.e. after the year 1962) the impli-
cations of our Unrestricted Uniform prior can be seen. Note the substantive
probability allocated Uniformly in the region of (roughly) 1963-2000. This is
the region where the model effectively becomes a single change-point model.
Since Table 1 indicates that the single change-point model receives consid-
erable support, it is not surprising that we are recovering this through the
posterior for τ 2 allocating substantial weight out-of-sample. After (roughly)
2000, the probability drops off. This is due to the fact that the posterior
of τ 1 is concentrated in the late 1880s/early 1890s. Models with τ 1 beyond
(roughly) this value receive little support and, since τ 2 is defined on the in-
tegers τ 1+1, .., T + τ 1−2, models with τ 2 > 1890+T receive little support.
Note that the Unrestricted Uniform prior as defined in (4.1) and (4.2) does
not allocate any prior probability to models with no breaks. In the following
section, we discuss a generalization which does.
Another way of examining the effect of the various priors is to examine

the predictive distribution, p (yT+1|YT ), for an out-of-sample observation.
The Appendix describes how Bayesian predictive inference can be done. For
the Chib model and the Restricted Uniform prior, Bayesian model averag-
ing across models with differing number of change-points can be done in a
straightforward fashion by weighting the resulting forecast distribution by the
posterior probabilities of the various change-points models. The latter can
be directly calculated from the log marginal likelihoods in Table 1. Predic-
tions using the Unrestricted Uniform prior already implicitly average across
models with differing numbers of change-points.
It can be seen that the calculation of the predictive distributions depends

crucially on the prior over the change-points assumed. Figure 4a provides
a benchmark for comparison. It is the forecast distribution provided by the
model with no change-points. Figures 4b, 4c and 4d are forecast distributions
provided using our three different classes of prior. For the Chib model and
Restricted Uniform prior, we average over one and two change-point models.
The Chib model prior yields a forecast distribution which is very different
from either of the Uniform priors. Note that Figure 4b (as well as 4a) both
place probability of more than 1/3 on two or more disasters per year. How-
ever, our Uniform priors yield forecast distributions (see Figures 4c and 4d)
which indicate roughly 1/5 chance of two or more mining disasters per year.
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This reinforces a central message of this paper: priors matter in change-point
models.
It is worth mentioning that an unrestricted version of the prior used in

the Chib model can be derived in an analogous manner to what we have done
with our Uniform priors (i.e. by not imposing a restriction such as (3.1) and
allocating prior weight outside of the observed sample). For brevity we do
not do this here. Such a prior does not have the poor properties seen in
Figure 1a and the resulting posteriors look a bit more like those found using
the Uniform priors. But substantive differences exist and, in this application,
marginal likelihoods indicate that Uniform priors are preferred.

5 A Generalization of the Unrestricted Uni-
form Prior

Another way of looking at these issues is to note that many of the undesirable
properties of the priors discussed in the previous section arise since they
assume a fixed number of change-points. Any model which makes such an
assumption is going to require a prior that imposes this feature and this
will typically lead to undesirable properties. By relaxing this assumption
we can obtain more sensible priors. As a bonus, this relaxation also allows
us to treat the case where the number of change-points is unknown and to
forecast breaks out-of-sample. Below we derive a particular prior which has,
we argue, attractive properties, but we stress that many other attractive
possible priors exist when we enter a world where some change-points can
occur out of sample. For instance, in this paper we focus on priors that
are Uniform over durations: a common noninformative choice. In Koop and
Potter (2004), we develop an alternative model with a Poisson hierarchical
prior over durations.
In the previous section, we worked with (4.1) and (4.2), which allowed

for two breaks which could occur at any time period. The case where there
are possibly many more than two breaks can be handled in a straightforward
manner. However, if there are potentially many breaks such priors might not
be sensible. Much recent empirical work has found evidence of many change-
points. For instance, Pastor and Stambaugh (2001) find 30 change-points in
a financial application. In macroeconomics, time-varying parameter (TVP)
models have become quite popular [e.g. Cogley and Sargent (2001), (2003)].
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TVP models implicitly allow for T − 1 change-points. Note, however, that
the prior given in (4.1) and (4.2) can be interpreted as implicitly favoring
models with few breaks. For instance, if the researcher believes many change-
points are plausible then it is also plausible that the first change-point will
occur relatively early in the sample. In this case, even a prior such as (4.1)
could be interpreted as allocating too much weight to the end of the sample.
Accordingly, an empirical useful generalization of our Unrestricted Uniform
prior allows for the regime durations (or, equivalently, the change-points
themselves) to be Uniform over a bounded interval.
For the case where there is a maximum of M − 1 breaks in-sample, we

write our prior as p (τ 1, τ 2, .., τM−1) = p (τ 1)
PM−1

j=2 p (τ j|τ j−1) and assume

p (τ 1) =
1

[cT ]
for τ 1 = 1, .., [cT ] . (5.1)

and

p (τ j|τ j−1) =
1

[cT ]
for τ j = τ j−1 + 1, .., τ j−1 + [cT ] (5.2)

Note that this prior has all the desirable properties of the Unrestricted Uni-
form prior discussed in the previous section, but introduces a scalar para-
meter c which controls the maximum duration of each regime. The notation
[cT ] indicates the smallest integer such that cT ≤ [cT ]. Thus, if c = 1

T
we

obtain the TVP model, whereas as c becomes larger we obtain priors which
place more weight on models with fewer regimes. For instance, our prior of
the previous section had a maximum of two change-points in-sample and set
c = T−2

T
. At the extreme, the researcher might wish to consider values for

c in the interval
£
1
T
, 2
¤
as this would nest everything from the TVP model

(with a break every period) through a model which allocates appreciable (i.e.
50%) prior weight to a model with no change-points at all (in-sample). In
practice, the researcher would likely wish to consider a much narrow range
of values for c.
Note also that the researcher would want to choose M with likely values

of c in mind. As an extreme case, note that if the researcher chooses M = 2
and c = 1

T
, then the prior imposes that a change-point must occur after

T = 1, but the choice of M implies there are no additional change-points in
the model. Hence, such a prior would imply a very odd pattern of structural
change.
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The researcher can, of course, simply choose any values of M and c and
estimate the model as outlined in previous sections (see Appendix for de-
tails).11 However, in the common case where the number of change-points
in-sample is unknown, it is desirable to treat c as an unknown parameter and
estimate it from the data. In a Bayesian context, this involves choosing a hi-
erarchical prior for c, p (c|a), where a is a vector of hyperparameters selected
by the researcher. For instance, the researcher could set p (c|a) = U (a1, a2)
where a1 and a2 are upper and lower bounds selected to cover a suitable
range of change-points.
Using the methods outlined in the Appendix, it is straightforward to de-

rive methods of posterior and predictive inference for this model when the
marginal likelihood conditional on the change-points has an analytical form.
For the case where no analytical form is known, an MCMC algorithm which
builds on Chib (1996) is described in the Appendix. For forecasting, the
use of the hierarchical prior has a great advantage in that the updating of c
implies that information in-sample can be used for predicting the likelihood
of a break out-of-sample. Many authors have argued that poor forecast-
ing performance of many macroeconomic models is largely due to structural
breaks [see, among many others, Clements and Hendry (1999) or Pesaran,
Pettenuzzo and Timmerman (2004)]. In light of this issue, a model, such as
the one introduced here, which attempts to model the probability of out-of-
sample change is potentially of great use.12

In the coal mining disaster data, there is fairly clear evidence of one or
two breaks, but not more. Hence, this empirical example is not well designed
to show the advantages of our Generalized Uniform prior. However, if we set
M = 2 and p (c|a) = U

¡
1
2
, 2
¢
we obtain predictive distributions which are

quite similar to those given in Figures 4b and 4c. Furthermore, the posterior
mode occurs at c = 1

2
and, for this value, the log of the marginal likelihood

is −176.71 which is better than any of the other priors. Marginal likelihoods
have a strong reward for parsimony and it is reassuring to see that this (less
parsimonious) model is out-performing the (more parsimonious) one change-

11If the researcher does not wish to choose M , it can simply be set to T − 1, thus
allowing for the maximum feasible number of breaks in-sample, and let c alone control the
number of breaks. As noted in the Appendix, such an approach can be computationally
demanding.
12Hierarchical priors for regime-specific likelihood parameters, θm, can also be of use in

improving forecast performance in the presence of structural change. See Koop and Potter
(2004) for such an approach.
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point models despite the fact that Table 1 indicates only weak evidence in
favor of the presence of a second change-point. And it is worth stressing
that, with our Generalized Uniform prior, we did not need to assume a fixed
number of change-points (in-sample). We are successfully recovering the
reasonable inferences from other models, without making the assumptions
that were necessary in those other models.

6 Conclusions

In this paper, we have discussed prior elicitation in change-point models. We
have shown how some common and apparently sensible priors have poten-
tially undesirable properties. Relaxing these priors to eliminate these prop-
erties results in priors which allocate probability to change-points occurring
out-of-sample. Much of the paper is devoted to showing how this apparently
odd property actually is highly desirable, leading to a model which effectively
allows for the number of change-points to be unknown. Furthermore, by al-
lowing for change-points out-of-sample, we obtain a model which is highly
beneficial for forecasting and treats in a sensible manner the issues raised in,
e.g., Maheu and Gordon (2004) and Pesaran, Pettenuzzo and Timmerman
(2004). Simple methods for predictive and posterior inferences under all our
priors have been developed and illustrated using the coal mining disaster
data of Jarrett (1979).
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8 Appendix

Posterior and Predictive Inference with Poisson Likelihoods

We use a Poisson likelihood with m = 1, ...,M regimes. The Poisson
intensity in each regime is denoted by θm and each of these intensities has
an independent G(αm, βm) prior. In the case of no breaks the posterior
distribution of θ1 is:

p(θ1|YT ) =

nQT
t=1 exp(−θ1)θ

yt
1

o
θ
α1−1
1 exp(−θ1/β1)

m0

QT
t=1 yt!Γ(α1)β1

α1
, (A.1)

where m0 is the marginal likelihood of the observed data (assuming no
breaks) and {yt} is the number of coal mining disasters in year t. Not-
ing that the numerator is in the form of a Gamma density with parameters
α1 +

PT
t=1 yt, [1/β1 + T ]−1, the marginal likelihood can be expressed as

m0 =
Γ(α1 +

PT
t=1 yt)[1/β1 + T ]−(α1+

T
t=1 yt)QT

t=1 yt!Γ(α1)β
α1
1

(A.2)

Conditional on knowing the change-points, comparable results for m > 1
regimes involve using equations like (A.1) and (A.2) defined over the relevant
sub-periods. For instance, in the case of a single change-point, the marginal
likelihood conditional on the change-point τ 1 is given by:

m1 =

Γ(
τ1
t=1 yt+α1)Γ(

T
t=τ1+1

yt+α2)[1/β1+τ1]
− τ1

t=1 yt+α1[1/β2+T−τ1]
− T

t=τ1+1
yt+α2

Γ(α1)β
α1
1 Γ(α2)β

α2
2 yt!

(A.3)
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This defines the marginal likelihood conditional on τ 1. To get an uncondi-
tional marginal likelihood, the appropriate prior can be used to integrate out
τ 1. Since τ 1 is a discrete random variable this integration is straightforward.
Noting that m1 = p (YT |τ 1) and that Bayes rule implies:

p (τ1|YT ) ∝ p (YT |τ 1) p (τ 1) , (A.4)

it follows that knowledge of m1 and p (τ 1) are all that is required to carry
out posterior inference on change-points. The case with many change-points
is the obvious extension.
With regards to prediction, it can be shown that, conditional on the last

change-point τm, p (yT+1|YT , τm) has a Negative Binomial distribution with
probability of success:

1/β
m
+ T − τm

1/β
m
+ 1 + T − τm

,

and number of successes:

αm +
TX

t=τm+1

yt.

Using the fact that p (yT+1|YT ) =
P

p (yT+1|YT , τm) p (τm|YT ), it follows
that the unconditional predictive distribution, p (yT+1|YT ), is a probability
weighted combination of the Negative Binomial distributions for p (yT+1|YT , τm)
with the weights being given by p (τm|YT ).
If a change-point occurs out-of-sample there is no data information to

learn about and, hence, its prior equals its posterior. For instance, if τ 1 > T ,
(A.4) would imply p (τ 1|YT ) ∝ p (τ 1). In this case, we would also have
m1 = m0. That is, the one-break model with change-point occurring out-of-
sample reduces to the no-break model. Such considerations do not effect the
methods of posterior and predictive inference described above. Furthermore,
as discussed in the body of the text, for the Uniform prior such an approach
has the desirable property that the classes of models with differing numbers
of change-points receive equal prior weight.

Generalization of Uniform Prior

For the Generalization of the Uniform prior involving a hierarchical prior
for c, minor modifications of the preceding material are required. All of
the probability distributions above are the same if we condition on c. For
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instance, m1 = p (YT |τ 1, c) , p (τ1|YT , c) is given by (A.4), etc.. The methods
described previously involved integrating over change-points using their prior
(i.e. to get the unconditional marginal likelihood) or using (conditional)
marginal likelihoods to work out the posterior for change-points (i.e. see
A.4). The same methods can be used to integrate out c or calculate its
posterior.
In cases where analytical integration results are not available or the max-

imum number of change-points is very large, then the following MCMC al-
gorithm based on Chib (1996, 1998) can be used.
Our Generalized Uniform prior is flat over durations. It implies the fol-

lowing transition probabilities (see Section 2):

P [st+1 = m+ 1|st = m, dm] =

⎧⎨⎩
0 if m > t
1

cT−dm+1 if dm < cT

1 if dm = cT
,m = 1, . . . ,M

where dm is the duration of regime m. If M < T then we also need to add
in the restriction P [st =M |st−1 =M ] = 1. As discussed in Section 2, Chib’s
1996 algorithm applies to this non-time homogeneous Markov chain. Hence,
the formulae in Section 2 are relevant with the transition probabilities given
above. Unfortunately, the computational burden is greater since we have to
follow both the regime and duration (i.e. the transition probabilities now
depend on dm). Koop and Potter (2004) shows how the initial condition for
the chain can be found when this is unknown. Here we simplify and assume
P [|s1 = 1, d1 = 1] = 1.
In order to understand the computational difficulties of this algorithm,

consider the case c = (T − 1)/T and M = T . Thus, in time period 1 we
only have 1 possible state, in time period 2 we have 2 possible states, in time
period 3 we have 4 possible configurations to track in our algorithm:

[{s3 = 1, d1 = 3} , {s3 = 2, d2 = 2} , {s3 = 2, d2 = 1} , {s3 = 3, d3 = 1}] .

In a sample of size T we would have T − 1 + T − 2 + · · · + 1 =T (T − 1)/2
configurations by the last observation. This, of course, is many more than
with Chib (1998)’s model. Nevertheless, the algorithm is computationally
feasible for moderate T and, if desired, larger/smaller values of c/M can be
chosen to greatly reduce the computational complexity.
When we treat c as an unknown parameter, the MCMC algorithm can

be extended appropriately. Conditional on the durations, we can work out a
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convenient conditional posterior for drawing c. Define

c = max(d1/T, d2/T, . . . ,Dr/T, a1),

where dm is the realized duration of (completed) regimem, Dr is the ongoing
duration of the last regime observed (for r = 1, 2, ..,M) and a1 is the lower
bound of support of c in the prior. The likelihood of a completed regime,
dm/T is given by

1

c
, c ≥ c

and for an ongoing regime

1−
Dr/TX
d=1

1

c
, c ≥ c

thus the overall likelihood isµ
1

c

¶r µ
c− Dr

T

¶
, c ≥ c.

This likelihood can be combined with a prior to form a conditional posterior.
Depending on the exact for of the prior, a suitable algorithm (e.g. rejection
sample, Metropolis-Hastings or evaluating the posterior at a grid of values
for c) can easily be obtained.
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