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1 Introduction

In the monetary policy literature forecast-based Taylor rules are widely used and recommended for

1. However, recent contributes have shown that forecast-based policy rules might

policy analysis
have important drawbacks.

First, they might lead to indeterminate equilibria, as shown by Woodford (2000) and Bullard
and Mitra (2001). Second, Levin, Wieland and Williams (2001) show that their performance is
not robust to uncertainty about the model of the economy. Third, they are not consistent with a
conventional intertemporal loss function, as proved by Svensson (2001).

Moreover, Evans, Honkapohja and Marimon (2001), and Carlstrom and Fuest (2001a) show the
existence of learnable sunspot equilibria if the inflation target equilibrium is indeterminate.

In general, it is a well known result that adopting Taylor rules might generate instability in
the economic system. On one side, a nonlinear Taylor rule (consistent with a zero bound on the
interest rate) implies the existence of two steady states, see Benhabib et al. (2001a). One is the
inflation target and the other is a low inflation/deflation equilibrium. On the other side, Benhabib
et al. (2001b) show that in a simple model where money enters in the production function, linear
and nonlinear Taylor rules might lead to cycles or even chaotic behavior.

The purpose of this paper is to compare the performance of forecast-based and backward-looking
Taylor rules in a class of simple monetary models. Given the existence of multiple equilibria under
perfect foresight (steady states, cycles and sunspots), I verify their ‘robustness’ to adaptive learning.

In the course of the paper I focus on those policy rules that satisfy the ‘Taylor Principle’ and
guarantee local determinacy of the inflation target steady state?. I then consider the possibility of
learnable global equilibria and how the choice of the Taylor rule affects their existence or changes
their stability.

In particular, I study the existence: a) of learnable cycles and sunspots around the determinate
inflation target equilibrium and, b) of learnable liquidity traps implied by the zero bound condition
on the policy rule - and so far considered a mere theoretical curiosity, i.e. in McCallum (2001).

I show that forecast-based Taylor rules have a de-stabilizing effect on the economy: they lead
to learnable cycles and sunspots, even in the case where the inflation target equilibrium is locally
unique and stable under learning. Moreover, the economy can converge to a liquidity trap that is
stable under learning. In contrast, adopting a backward-looking Taylor rule stabilizes the econ-
omy. In fact, equilibrium cycles disappear, while sunspots equilibria and the liquidity trap become

unstable under learning (i.e. not robust to expectational mistakes).

The paper is structured as follows. The second section quickly reviews the model and introduces
the learning algorithm. The third and fourth sections analyze the stability under learning of
steady states, cycles and sunspots under a forecast-based Taylor rule and discuss the main results

!'See, among the others, Batini and Nelson (2001).

%1 therefore restrict the analysis to the best-case scenario where local indeterminacy does not appear.



. The fifth section compares the performance of forecast-based and backward-looking Taylor rules.
Finally, in the sixth section I consider some extensions.

2 The Model

I consider a simple model of the economy with flexible prices, a discrete time version of Benhabib
et al. (2001a). The model has three main components.

The representative agent’s problem. Agents maximize their utility from consumption and
money balances under the following budget constraint:
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where M; = M;"” + M} is nominal money balance (for non-productive and productive purposes
respectively), By is bonds, Ry is the return on bonds and f (.) is the production function, which
depends on real money balances and a fixed input 7. Finally, U (.) and f (.) satisfy all the standard
conditions. I further assume that U,y > 0, that is consumption and money balances are Edgeworth

complements, in order to guarantee local determinacy of the inflation target steady state?.

Policy rules. The Central Bank takes policy decision by using a nonlinear Taylor rule:

A
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where T;1; denotes a measure of inflation: in the case of a (perfect foresight) forecast-based
Taylor rule we have that 7y ; = Eymep1 = me1. In the case of a backward-looking policy rule, I set
1 = 0, while 7, is a weighted average of current and past inflation rates, to be defined below. Also,
7* is the inflation target chosen by the monetary authority and R* is the interest rate consistent

with the equilibrium condition:

5—17_[_* — R*

Optimality conditions. The first order conditions of the representative agent’s problem (1)
give the following Euler equation®:
BU. (ctq1,m;Ty)

Ue (ct, my?) = — Ry (3)

?See Benhabib et al. (2001b).

*The FOCs are obtained by subsituiting the budget constraint in the intertemporal utility function.



where m denotes real money balances, and an (implicit) money demand equation for both

production and consumption money balances:

R —1
=

fH(my) (4)
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where U, is the partial derivative with respect to the argument =x.

()

Role for Money. 1 consider two cases. First, money enters only in the utility function
(MP = 0) and output is constant: f(.) = ¥ (endowment economy). Second, monetary policy
affects economic decisions only through the production function (M™ = 0)°.

Finally, in the paper I do not consider the capital accumulation process. The implicit assumption

is that capital is fixed in the short run®.

2.1 Forecast-based Taylor rule
2.1.1 Money in the production function

By using the equilibrium condition in the goods market, I get the following decision rule for the

representative agent:

0. () = £ { 60 () | 2| ()

where E (.) denotes market’s expectation. Combining the expression:

my = (y)

obtained from the production function and the money demand function (4) gives a negative relation

between output and the interest rate:

yr =y(Ry), y' <0 (7)
Combining (6), (2), (7) with ¢ = 1, I obtain:

U oo ) = B { B0 0 o s [22022)] ®)

Tt+1

°In the sequel, I drop the superscript to avoid complications in the notaion.

SFor discussion, see Woodford (2002).



Assuming perfect foresight, the solution is a well defined one-dimensional map”:

Tire = F (mi41) 9)

2.1.2 Money in the utility function

In this case output is a constant (i.e. it does not depend on money). Using the Euler equation (3)
and the goods market condition:

I obtain the decision rule:

Ue (g, my) = th (10)

Tt+1
From the demand equation (5) I get the following (real) money demand equation:

my=m (R;) m' <0 (11)

Finally using (10), (11), and (2) to substitute for R and m , I obtain the following reduced-form

solution in 7:

BU (g, m (p (7i12)))
Tt+1

Ue (g, m (p(7t41))) = p(met1) (12)

Once again, the solution is well defined one dimensional dynamical system which takes the form
of (9).

2.2 Backward dynamics and learning

In this paper I am mainly concerned with real time learning behavior and thus with the following
(reduced-form) decision rule:

m = EG (7Tt+1) (13)

Given the form of (8) and (12), G might not be a function but a correspondence. This because
m¢4+1 appears both on the RHS and on the LHS of these expressions. In fact, in the next section
I show the existence of two ‘branches’ of G: this implies that for any future value of inflation, the
decision rule gives two choices for current inflation.

The existence of different ‘branches’® of G poses the problem of how current inflation is decided,
given the expectations about the future. In this paper I mainly focus on the local stability of

"As noted already in Benhabihb et al. (2001) and Carlstrom and Fuest (2001), the solution displays nominal
indeterminacy.

8For an example where the branches are in the forward-looking map, see Christiano and Harrison (1999).



the perfect foresight equilibria: I assume therefore that the expectational errors are ‘small’ and
that market participants are somewhat coordinated in a neighborhood of the perfect foresight
equilibrium®. Nevertheless, I also consider the dynamics under learning and show the existence of
other equilibria that depend on which branch of G is selected.

Notice that, under the assumption of perfect foresight, the solutions (8) and (12) can be ex-
pressed in ‘backward dynamics’ m; = G (m¢11), as opposed!” to (9). That can be a useful approx-
imation of the behavior under learning, provided that the agents’ mistakes are not too big.

According to (13), m; depends only on future expected values of 71 1. In order to model learning
behavior, I follow Guesnerie and Woodford (1991) and Evans and Honkapohja (2001a). The agents
are assumed to have a (asymptotically) correct model of the economy: their perceived law of
motion of the economy corresponds to the actual law of motion, if the learning process converges
to the perfect foresight equilibrium. More specifically, the agents believe that the system is at the
equilibrium, even though they do not know which equilibrium (steady state, cycle or sunspot) and
what values of inflation correspond to the equilibrium.

Learning steady states and cycles. Let us first consider the deterministic case where the
agents face two possible equilibria: steady states and (period-two) cycles. They expect 7wy = 7y for
odd-t and 7wy = 79 for even-t, where m1 = w9 = 7 if the system is in steady state. Nevertheless, they
do not observe w1 and mo; they estimate them recursively, updating every period their information
about the state of the system. Given that at the cycle:

w1 =G (m2); ma = Gj(m)

where i and j denote the (possibly different) branches of G, the agents estimate the two states
of the cycle by averaging the past data G (m;_;) for even and odd periods separately'!. Hence, their
forecast will be EG; (m41) = 024 if t + 1 is odd and EGj (m441) = 61, if t + 1 is even, where 0;,
is an estimate of m; (for [ = 1,2). In order to update their estimates of the equilibrium values of

+ as

inflation, market participants make use of the adaptive algorithm!?:
Gi(mas) — 01,5-1 ] (14)

01,5 _ 91,5—1
B2, 2,1 G (m1,s) — 2,51

where s is such that ¢t = 2s + 1 and 7 s = my(s_1)4, allowing to take the data in successive

pairs. This learning rule has the desirable property of being able to detect both steady states and
period-two cycles'?. In fact, if the perfect foresight equilibrium is a steady state, the two estimates

9 Another way to express this is that the agents have strong priors about the equilibrium values of .
1%See Grandmont (1985).

"'Note that the agents do not need to know G. They just observe past values of the RHS of (8) and (12), depending
on the model. Hence, they observe past values of inflation, consumption, real money balances and the interest rate.

2For details, see Evans and Honkapohja (1995, 2001a).

1311 the sense that 01 — m1 and 02 — 7o as t — oo.



of the states m; and 72 both converge to a single constant. Also, the algorithm allows the agents
to learn cycles on different branches of G.

This way of modelling the learning process has several advantages, as the fact that I do not
need to assume point expectations or any prior knowledge about the nonlinear function G'*. On
the other side, (14) implies a small deviation from rationality, since the agents are assumed to have
a well specified model of the economy (the MSV solution). In other words, I restrict the range of
regularities that the agents are willing to extract from past data!®. Finally, I rule out the hypothesis
of heterogeneity in the forecasts and in preferences, in order to keep the analysis simple.

Concerning the monetary authority, for the case of forecast-based Taylor rules I maintain the
assumption of perfect foresight. This assumption can be defended on two grounds. First, the
asymmetry in information between the central bank and the market might be due also to imperfect
credibility and thus it is plausible. Second, the assumption is very favorable to a good performance
of the policy rule. Bounded rationality of both the policy authority and the market participants is
likely to be an extra-source of bad outcomes for the policy rule.

Note that when considering a deterministic environment we assume that agents use a fixed gain
algorithm: oy = o € (0,1). This should capture the fact that they expect to operate in a chang-
ing environment (the market structure or Central Bank’s preferences). In the case of stochastic
environment, the fixed gain algorithm does not converge. I therefore assume! for simplicity that
Qg = s~ L

The simple models considered above can also generate perfect foresight equilibrium cycles of
order higher than two. How about their learnability? These cycles could not be detected by
the learning rule above and therefore they are not learnable in this framework, but it would be
straightforward to modify the algorithm to include the possibility of learning higher order cycles.
Nevertheless, this extension does not seem interesting because the results are not likely to be robust
to behavioral and learning heterogeneity. This intuition is reinforced by recent results from Bullard
and Duffy (1998): they study the learnability of cycles in the model of Grandmont (1985), and find
that under heterogeneous learning rules, the only cycles that are learnable are period-two cycles.
Hence, I conjecture that even if there exists a ‘representative’ learning rule under which three and
higher order cycles are learnable, this result might not be robust to heterogeneous expectations.

Given (13) and (14) the system can be expressed in terms of the expectations variable as!”:

BUc
Ti41
output and the interest rate, or the relation between the interest rate and inflation.

"Notice that the agents observe past values of R; but do not necessarily know the relation between, say,

'50n this point see Grandmont (1998).

Y6 The result I obtain holds also for other choices of o, as well known from the literature of stochastic approximation:
see Evans and Honkapohja (2001a).

'"The dynamical system is obtained by substituting the first equation for 61 s in the second equation. After this
substitution, the system becomes 0; = H (6s—1), where 0 = (61,5,02,5).



015 _ 01,51 Gi(025-1) — 01,51
02 s 02,51 Gj(01,5) — 02,51

which gives a two dimensional dynamical system at each branch ¢,j. Learning behavior is

+ o (15)

determined by the behavior of this dynamical system.

Learning sunspots. I also consider the possibility that agents learn to believe in sunspots.
In fact, as shown in the next sections, under the hypothesis of rational expectations there exist
sunspot equilibria. In order to assess their learnability, let us assume that the agents include in
their perceived law of motion the possibility of being at a two-states sunspot equilibrium, generated
by a non-fundamental exogenous ‘sunspot’ process s;. Again, from Evans and Honkapohja (2001a)
they estimate recursively the states 71 and 72 (depending on the current realization of s;) by using
the adaptive learning rule :

010 = 014—1 + t_1¢z,t_1ql_¢1,1(77t71 — 0141+ €-1) (16)

Qs =qi—1+ t_l(ibl,tfl — Q1)

which gives the following actual law of motion:

T = Pl Gi(014) + (1 — 211) Gj (02,4)] + (17)
F94[(1 — 222)Gi (01,¢) + 222G (02,1)]

where, again, ¢ and j denote the (possibly) different branches of G. The algorithm works as
follows. The agents observe a sunspot Markov process s; with two states and a transition matrix:

z11 1=z
1— 22 22
They are assumed to know the transition matrix. They update recursively each estimate of 7
(for I = 1,2) depending on the current state of the sunspot: the variable v, is equal to one if the
sunspot process is in state [ and zero otherwise. Also, g;; represents the fraction of observations in
state [ over the whole sample up to time ¢t — 1. Finally 6;; represents the estimates of 7; in the two
states of the sunspots and ¢; is a measurement error i.i.d, with bounded support.
Notice that the learning algorithm (16) is able to detect cycles and steady states, provided that
the agents learn also about the transition probabilities'®. In other words, the learning rule (14) is

a special case of (16). For simplicity I do not consider this extension, but it should be clear that

the learning rules are kept distinct only for expositional purposes.

181f 211 and 222 are equal to one we have a steady state, while if 211 and z22 are equal to zero we have a cycle.



3 Local Stability of Steady States

Given the dynamical system (15), we are interested in the local stability of the steady states under
learning dynamics, under both the assumption of money in the utility function and money in the
production function.

Consider the case of money in the production function. Linearizing the forward looking map

around the active and passive steady states gives the coefficient!:

Fro= |1+ — (2 1) |70 (18)
= ()

—0€y \€p

where 7 describes deviations from the steady state, €, is the elasticity of R with respect to
T, —0 = % < 0 and ¢, = y,TR < 0. Notice that for consistency with the assumptions about
the utility function described in the next sections, I assume that the intertemporal elasticity of
substitution is constant.

The following proposition describes the steady states and their stability under perfect foresight

and learning dynamics (all the proofs are in the Appendix).

Proposition 1 Consider the map G implied by (8). Then:

(i) The system (15) has two steady states, ™ and 7. At ©™ monetary policy is active and
€p (%) > 1. At T monetary policy is passive and €, (T) < 1.

(i1) Provided €, (m*) is such that |—oe,| < (ep(%*) — 1)/2 both the active and passive steady

states are determinate in the perfect foresight dynamics and stable under learning dynamics for any
a € |0,1].

Remark 2 Determinacy of the fived point is achieved provided that the Taylor rule is ‘sufficiently
active’ at the inflation target. In the next section I clarify for which parameters of the model the
conditions in Proposition 1 hold. As mentioned in the introduction, I focus on the case where the

inflation target is locally unique.

Remark 3 By adding small noise and letting oy = t~' we have that both fized points are strongly
E-Stable in the sense of Evans and Honkapohja (2001) and thus they are robust to overparametrized
perceived laws of motion (i.e. if the agents model were consistent with an n-cycle, it would still
converge to the fized point)?.

Concerning the steady states, forecast based rules can be destabilizing even in the case where
the equilibrium corresponding to the inflation target is locally unique. In fact, for suitable initial
conditions (depending on the shocks hitting the economy) the economy can be driven into a liquidity
trap. We should expect the existence of a “stability corridor”: if the economy experiences small

YThe result is also in Benhabib et al. (2001b)

20See Proposition 12.2 of Evans and Honkapohja (2001).



shocks (i.e. in expectations), than the Taylor rule drives the economy back to the inflation target.
On the contrary, large shocks might lead to a liquidity trap.

In the next section I show that, if we take into account the existence of equilibrium cycles and
sunspots, then the stability corridor is rather small. In fact, small shocks can drive the economy
to sunspot equilibria arbitrarily close to the active steady state.

Consider the model with money in the utility function. Let us assume that U,,, > 0: under this
assumption, we know from the continuos time version of this model that the active steady state is
determinate?!. Linearizing the model (12) I get the following coefficient:

Fre= |1+ —— (2 1) 7t (19)
e (6]

€cm€Em \ €p

where 7 defines deviations from steady state, €.y, = U%i’;m > 0 and ¢, = ’%R < 0.

It is immediate from (19) that the active steady state (e, (7*) > 1) is always determinate, while
the determinacy of the passive steady state (e, () < 1) depends crucially on the parameters of the
model. I also consider the existence and learnability of equilibrium stationary sunspots e—close to
the deterministic steady states (defined ¢ — SSFs in the sequel). Local stability and learnability
of the steady states is described as follows:

Proposition 4 Consider the map G implied by (8) (12). The map has the same steady states of
(8). Consider the deterministic system (15);

(i) the active steady state is determinate and learnable for every a € (0,1);

(i1) for €,(T) such that |€cmem| > (e,)(%) — 1)/2 the passive steady state is indeterminate and
non-learnable for every a € (0,1);

(111) for €,(T) such that |ecmem| < (GpTlf) — 1)/2 the passive steady state is determinate and
learnable for every a € (0,1).

Consider the stochastic system (16), (17);

(i) for €,(T) such that (EA%) —1)/2 < |ecmem]| < (e,,(%) — 1) there exist € — SSEs around the
(indeterminate) passive steady state.

Remark 5 It is apparent that a sufficiently aggressive rule at the inflation target leads to a very
passive response at the liquidity trap (as it is apparent from the policy rule (2)). Hence, a sufficiently
aggressive rule verify the conditions for a learnable liquidity trap or a learnable sunspot. In the next
section I show how the results depend on the parameters of the model and I provide examples of all

possible cases, for plausible parameter values.

Proposition (4) shows that also in the case, more common in the literature, where money enters
in the utility function, forecast-based Taylor rules may lead to economic instability, even if the

?1See Benhabib et al. (2001a).



active steady state is locally unique. In fact, the economy can either fall into a liquidity trap or

converge to a sunspot equilibria where inflation fluctuates around the passive steady state.
Summing up, these two results partly contradict the findings of Bullard and Mitra (2001) and

McCallum (2001). First, €, > 1 (the Taylor Principle) is not a sufficient condition to stabilize

’ 22 policy rule at the

the economy. The conditions in Proposition (4) show that a ‘too active
inflation target (which implies a too passive policy at the liquidity trap) might be destabilizing
because it leads to learnable liquidity traps. The result is indeed confirmed in the next section,
where functional forms are considered. Combine this with the result from Proposition (1) that
a ‘too’ cautious active policy rule leads to an indeterminate and non-learnable inflation target
equilibrium, while the liquidity trap is learnable. The conclusion is that uncertainty about the
correct specification of the model with respect to the role of money balances makes forecast-based
Taylor rules potentially destabilizing.

Second, regardless of how the model is formulated with respect to the role of money, liquidity
traps are, in some cases, robust to expectational mistakes. This result contrasts with the conclusions
of McCallum (2001), which dismisses the liquidity trap equilibrium as a non-learnable bubble
solution and therefore non-empirically relevant 23.

4 Local Stability of Cycles and Sunspots

In order to study the global behavior of the economic system under the two models mentioned

above, it is necessary to specify the functional forms for utility functions and production functions.

4.1 Money in the production function

Concerning the model with money in the production function, I follow Benhabib et al. (2001b)
and specify a Cobb-Douglas utility function and a CES production function:

f(me) = [(1 = a)mf" + ag")» (20)
lea
Uler) = 17— (21)

Given those functional forms, I calibrate the model by using the equilibrium money demand:

22Note that the optimal monetary policy literature advocates more active Taylor rules (i.e. €,) than our benchmark
case, see Taylor (1999).

23 The result also contrasts with Honkapohja and Mitra (2001). They analyze Markov sunspots equilibria and show
that none is learnable in a class of models with money in the utility function and nominal rigidities.

10



the benchmark parametrization is shown in Table 124, This section discusses the conditions for the

cycles to be learnable as o and the learning parameter o € (0,1) change.

Tablel Benchmark Parametrization
B m :U’LR MS’R T R* 7| a A
0996 | -9 | -3.5 | -50 | 1.0103 | 1.0143 | 1 | 0.000350 | 1.522

The parameter p is chosen to be consistent with both long run and short run log-elasticity of
the money demand: i/ is the parameter consistent with the long run log-elasticity of demand and
w3 is consistent with the log-elasticity in the short run®®. The parameters o and « are considered
the ‘free’ parameters: in the simulations below I consider values for ¢ that range from 1 to 3.5,

that are most commonly used in the literature.

Concerning the model with money in the production function, under the benchmark parame-
trization (with g = —9) the map under perfect foresight has a cycle of period 2, for (approximately)
o € (1,2.42)%. The economy fluctuates between two states of higher and lower inflation, with re-
spect to the inflation target. Figure 1 shows the period-two cycle for a given value of o, under both
F and G.

The thick lines correspond to the branches of the (backward) map G; the thin line describes
the second iterate of the map 7m0 = F (m41) in forward dynamics and the dashed line shows the
first iterate of the map in forward dynamics. As shown in Figure 1, the correspondence G -implied
by the map (8)- is made up of two ‘branches’. The first, G, intersects the 45 degree line at the
passive steady state while G5 intersects the 45 degree line at the active steady state.

Backward (G) and forward (F') maps are equal at the fixed point and at the equilibrium cycle
(shown by the dotted line). Notice that each point of the cycle rests on a different branch of the
backward map. Nevertheless, it is immediate to see that at the cycle:

Gl () = it G (1) =

where 71 corresponds to the point of the cycle where inflation is higher than the inflation target,
while 7o is the point where inflation is lower than the target. Hence, local stability of the cycle
under learning can be studied from the local properties of F.

Let us consider figure 2. It describes the map F2: the different curves show how the cycle

changes for varying o.

*For details on how to calibrate these models, see Benhabib et al. (2001b).

25 Notice that as I change the value of u, I need also to change the value of a, in order to keep the model close to
the data, see Benhabib et al. (2001b).

?6See Benhabib et al. (2001b).
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From the picture we know that the map F2? admits a cycle for certain values of 0. Given that
for o € (1.5,2.5), it exists & such that for 0 < & < 2.5, F2 has four fixed points. For o > & F? has
two fixed points.

From the observation of Figures (1) and (2) and from the form of the policy rule?”, it is possible
to conclude the following:

1. at the point on the cycle where inflation is high (7 ), monetary policy is always active;

2. the degree of aggressiveness of the monetary rule at this point decreases as the two-period
cycles gets closer to the active steady state and subsequently vanishes by “merging” with the
fixed point;

3. as o increases, the cycle gets closer to the fixed point and eventually disappears. Instead, for
low values of o, the point of the cycle where inflation is low (71, is close to the passive steady
state and thus the policy rule is passive. But, as 0 — & we have that €, (m2) — €, (7*) and
it exists o such that for o < og, €,(m2) > 1.

Finally, notice that the qualitative features of the map, described above, are robust to small

changes in the parameters. The following result is thus robust to small deviations from benchmark
peurameters28 .
Proposition 6 Let G be given from (8). Given the deterministic system (15), under the benchmark
parametrization, it exist ¢ and o, (0 < 7) such that for o < & the cycle is stable under learning for
every o € (0,1). For o > & the cycle is unstable under learning for every o € (0,1). For o € [0, 0]
it ezists a, € (0,1) such that for a < @, the cycle is stable under learning, while for o > @, the
cycle is unstable under learning.

Remark 7 The Proposition tells us that if wp is not too close to the inflation target, than the
cycle is stable under learning, at least for some values of the parameter a. Under the benchmark
parametrization ¢ ~ 2 and o =~ 2.182: for small changes of the other parameters, such as the degree
of policy aggressiveness, ¢ and o also change. For example, we have that for o = 2.18, 71y = 4.7%
while wr, = 3.2%, and €, (wr) = 1.18, which implies a mildly active policy. This equilibrium is
learnable for a < 0.21. Given that the target is 4.2%, the cycle is ‘close’ to the active steady state.

Remark 8 Given the standard parametrization a more active policy rule (say A = 2) implies the

existence of learnable cycles for a wider range of o (in the simulations cycles are learnable for
values of o ~ 2.5)%9.

2TNotice that changes in o do not affect the policy rule.
22 The result comes from the structural stability of cycles.

29 Also, more active Taylor rule imply period three cycles and chaos for a wider range of parameters than found in
Benhabib et al. (2001b).
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Remark 9 Simulations show that the result is unchanged if I consider different inflation targets.
For example the (implicit) inflation target for the European Central Bank would be m* = 2% : the

Proposition holds also in this case.

Remark 10 [t is straightforward to show that under the benchmark parametrization the inflation
target steady state is determinate and learnable. In fact, as o decreases both the stability conditions

for the learnability of cycles and steady states are satisfied.

The Proposition leads to two interesting results. First, it provides one example where learnable
cycles exist close to a locally unique equilibrium. In fact, both the cycle and the inflation target are
learnable. The implications for monetary policy are that small shocks are sufficient to destabilize
the economy. Small deviations from the active steady state might lead the market participants
to coordinate on a equilibrium cycle. Second, very active policy rules (i.e. A > 1.5), that are
commonly obtained from optimal monetary policy design, can be destabilizing, given that they

imply learnable cycles for a wider range of parameters.

Dynamics under learning. By considering explicitly the functional forms of the model,
it is also possible to give an intuition about the dynamics under learning. Figure 3 shows the
convergence process of (13) to the active steady state and the liquidity trap, under the hypothesis
of perfect foresight, to give an idea of how the economy can fall into a liquidity trap. A shock can
start the economy on the deflationary path, depending on how the agents react to their expectations
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(i.e. which branch of G we are considering). In this case the economy converges monotonically to
the new equilibrium. Instead, convergence to the central bank’s target implies fluctuations in the
inflation rate.

Proposition (6) concerns the learnability of equilibrium cycles obtained under perfect foresight.
But learning dynamics also generates other equilibria along bifurcation parameter values®® of the
system (15). As the cycle looses stability and o increases, it is likely that a saddle-node bifurcation
occurs. Hence, given @ as the bifurcation parameter, for some o < & the fixed point of the second
iterate of (15) is surrounded by two other fixed point (i.e. two cycles of period 2). One of them is
stable, and the other is unstable. For ¢ > & the fixed point disappears (as we also see it from the
graph).

Also, the cycle looses stability as a increases for given o € [7,0]. In this case a period-doubling
bifurcation might occur, generating a period four cycle that can be either stable or unstable. Note
that these other fixed points do not exist under perfect foresight. They are generated by the learning
behavior. Hence, forecast-based rules have the potential to further de-stabilize the economy if we
take into account the dynamics under learning?!.

Proposition (6) implies two further results. First, let us add some ‘small’ (in the sense of
sufficiently small support) noise into the model. Then Evans and Honkapohja (1995) show the
existence of noisy REE cycles that are learnable if the deterministic cycle is learnable, provided

s used instead of a). Hence, the results in

the learning parameter is decreasing over time (i.e. s~
Proposition (6) are robust to the introduction of small noise.

Second, using results from Azariadis and Guesnerie (1986), Grandmont (1986, 1987) and Evans
and Honkapohja (2001a), it is possible to show that (locally) learnable sunspots equilibria exist

arbitrarily close to the period two cycle and to the determinate active steady state.

Proposition 11 Let G be given by (8), under the benchmark parametrization. Given the stochastic
system (16) and (17);

(i) for o < & (as defined in Proposition (6)) there exist learnable € — SSEs relative to the
deterministic cycle;

(ii) for o < & the € —SSFEs are strongly E-Stable and therefore robust to model over-parametrization;

(iii) there ezist learnable “liquidity trap” sunspots, where the economy fluctuates between the

active and passive steady states;

30Note that, given the standard parametrization of the model, the eigenvalues at the fixed points are real (and
with opposite sign), while the eigenvalues at the cycle are complex when stable and real-saddle (with one eigenvalue
greater than one) when unstable. In particular, the eigenvalues are real before becoming unstable. Also, for o € (7, 0)
the cycle loses stability as « increases and, again, the change in stability involves real eigenvalues. The ustable cycle
is a saddle with one eigenvalues less than minus one.

31 These bifurcations occur only if extra conditions are satisfied, see Wiggins (1990). More precisely, the problem
can be reduced to a one dimensional bifurcation through a center manifold reduction. But we do not go further in
the analysis.
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(iv) for any 1 < o <7, let m1 (0) € (7", 7 (0)) and 72 (o) < 7p, (o), where g (o) ,7r, (o) Tep-
resent the equilibrium cycle, for given o. Then there exist z11, zoa such that the sunspot equilibrium

(m1 (o), w2 (0), 211, 222) 1s learnable (whether or not the cycle is learnable).

Remark 12 Result (iv) is somewhat new in the literature. I construct the sunspots on different
branches of G by using results from Grandmont (1986, 1987) -see the Appendiz. For example, it
can be shown that for o = 1.9, the SSE given by m1 = 1.0104 (4.25% in annual terms), o = 1.0075
(8%), z11 = 0.2, 299 = 0.3 is learnable. Note that mq =~ ©*. Moreover, assuming o = 2.35, for which
the cycle is indeterminate and non-learnable, the SSE given by w1 = 1.046 (6%), ma = 1.0087(3.5%),
z11 = 0.19, 290 = 0.25 is learnable and ‘close’ to the deterministic cycle. Note that in both the

inflation states monetary policy is active.

Remark 13 As mentioned above for Proposition 8, Proposition 4 is proved for the benchmark

parametrization, but the result is robust to small perturbations of the benchmark parameters.

This result is important in its simplicity because it shows the possibility of learnable equilibria,

32 Even

other than the inflation target, for any parameter value of o for which the cycle exists
though we have local unicity and learnability of the inflation target equilibrium, the agents learning
process can still converge to a sunspot equilibrium that is ‘close’ to it. This also means that the
‘stability corridor’ mentioned in the previous section is indeed extremely small if it exists at all.
Hence, forecast-based Taylor rules are likely to be destabilizing, under this model of the economy.

Christiano and Rostagno (2001) and Benhabib et al. (2001c) propose the following policy. If the
economy is hit by an important shock (so that we have a substantial deviation from the inflation
target) the monetary authority should switch to a money rule, thus avoiding liquidity traps or other
destabilizing equilibria. This solution would not be helpful in our case because, as showed in the
Remarks, cycles and sunspot equilibria can be very close to the active fixed point. Thus, such a

scheme would eliminate the stabilization properties of the Taylor rule.

4.2 Money in the utility function

Because of our uncertainty about the ‘correct’ model of the economy, it is useful to consider the

behavior of forecast-based Taylor rule when money enters in the utility function®3.

In order to
allow comparisons between the two models and match the data I assume that, in the model where

money enters in the utility function the functional form is CES:

32Qunspots equilibria may seem a more empirically plausible explanation for the instability generated by the Taylor
rule. In fact, the regular behavior implied by deterministic cycles is not observed in the data.

33 Carltrom and Fuest (2001a) point out the fact that the way money enters in the utility functions has important
implications for the stability properties of the Taylor rule. I consider the standard approach in this section and a
different trading environment in the extensions.
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This specification allows the money demand implied by (7) and (11) to be exactly the same.
Hence, the two models have the same calibration as showed in Table 1.

We know from Proposition (4) that the stability of the fixed point, for a given Taylor rule,
depends on the elasticities €. €. This is also true for the global dynamics of the system. It is easy
to show that €€, is increasing in both ¢ and p. Figures 4 and 5 show the map under different
values of o and u. First, notice that if I use values for u close to the short run value, no cycle exists,
as shown in Figure 5. This is good news, but we know from Proposition (4) that for €€, not
too low, there exist learnable sunspots around the indeterminate and non-learnable passive steady
state.

For example, if we fix p = —9 and choose ¢ > 2 than the conditions for the existence of learnable
sunspots are verified. Hence, the economy can fall into a liquidity trap for very plausible parameter
values.

A period two cycle emerges as both p and o increase. Given the uncertainty about these
parameters I consider a choice of 4 < u*f and o < 4 as plausible parameter values. For example,
for 4 = —3.5 and 0 = 3.1 (and the other parameters at their benchmark values) there exists a

cycle around the passive steady state, as shown in Figure 4. The result holds for higher © and it is

17



1.01} sigma=2.1 mu=-9 )
1.009 - / i

Active ss

1.008
1.007
1.006
1.005
1.004
1.003

1.002

inflatiqn

1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.01

Figure 5: Figure (5)

robust to parameters’ perturbation. For lower p the values of o required to get the cycle are not
interesting. But also in this case, a too active monetary policy is further destabilizing. For example,
if A =2, then the cycle appears for p = —9 and ¢ 2 1.5. Given that A = 2 has been suggested
to describe the policy stance of the post-Volker period®?, the existence of cycles holds for a large
portion of the ‘plausible’ parameter space. The results are described in the following Proposition.
Again, the results remain valid for small deviations from the benchmark parametrization.

Proposition 14 Let G given by (12) and under the benchmark parametrization but with A = 2,
such that for o > @ a period-two cycle exists.

Under the deterministic system (15);

(i) for @ < o < & the cycle is not learnable under rule (14) for any value of a € (0,1);

(ii) for o € (5', 8/), o' < @, there exists an @' such that for every o < @', the cycle is learnable;

(iii) for o > G the cycle is learnable for every a € (0,1).

Under the stochastic system (16) and (17);

(iv) for o > &' there exist learnable SSE e-close to the cycle. For o > &' the sunspots are robust
to agent’s overparametrization.

(v) there exist learnable ‘liquidity trap’ sunspots e-close to the two fized points.

31GQee Clarida et al. (2001).

18



Remark 15 Under the benchmark parametrization & ~ 2.23 and &' ~ 2.89. Again, changing the
parameters affects &', 0. It is straightforward to verify that under the benchmark parametrization,
the inflation target, the liquidity trap, the cycle and the sunspots are all locally stable under learning.

Remark 16 FEwven if a formal proof is omitted for brevity, it can be shown that also for the case of
money in the utility function there exist learnable sunspots that are ‘close’ to an indeterminate and
non-learnable cycle. Assume that o = 1.8 and A = 2, while the other parameters are set according
to Table I. Let us consider the following equilibrium: w1 = 1.002 (0.08%), w5 = 0.9975 (—0.1%),
with z11 = 0.15, 290 = 0.15. This is relatively close to the indeterminate and non-learnable cycle
where high inflation is g = 1.001 (0.04%) and low inflation is wr, = 0.997 (—0.12%). The economy
fluctuates among almost zero inflation and negative inflation. It can be shown, by using (54) in the
Appendiz, that this sunspot is learnable. Hence, also for the case of money in the utility function I

conjecture the existence of learnable sunspots for all values of o such that the cycle exists.

The results are obtained with the same procedure as for the model with money in the production
function and the proof is therefore omitted. Also in this model, forecast-based Taylor rules can be
destabilizing: the economy can converge to equilibria in which inflation fluctuates below the target.

Uncertainty about the correct model of the economy and the parameter o make a forecast-based
Taylor rule an hazardous choice. In fact, the last three Propositions lead to the following conclusion.
If the ‘true ¢’, which the Central Bank is not likely to observe, is low and the economy is better
approximated by a model with money in the production function, then forecast-based Taylor rules
are going to be destabilizing. On the other side, if the true o is high and the correct model has
money in the utility function we get the same conclusion. Hence, whatever is the ‘estimate’ of o
that it is used for calibration, there exist a model of the economy for which the forecast-based Taylor
rule generates instability.

In the case of money in the utility function, switching to a money rule after a moderate negative
shock to the economy might be effective, given that the ‘bad’ equilibria are around the passive
steady state. In fact, in a neighborhood of the steady state the rule would preserve the stabilizing
properties of a Taylor rule, while for large shocks it would be optimal to shift to a money growth rule.
Nevertheless, it would be appropriate to study the effects of such a rule on market expectations.
How would such a more complicated rule impact on the investors’ learning process? The answer is
left to further research.

5 Backward-Looking Taylor Rule

In this section I argue that the instability generated by a forecast-based Taylor rule can be com-
pletely eliminated by shifting to a Taylor rule that reacts to current and past inflation. In fact, I

show that such a policy rule improves on the forward looking rule in two important ways.
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First, for plausible parametrizations, the economy does not have equilibrium cycles. Second, a
backward-looking policy rule reverses the stability properties of the liquidity trap, leaving a unique
learnable equilibrium: the inflation target.

Let us consider the case where the Central bank responds to inflation with some inertia. This is
justified in Woodford (2002) and Benhabib et al. (2001a) as a more plausible description of Central

Banks operating rules:

“In practice, monetary policy will never involve feedback from an instantaneous rate

of inflation [...], because available inflation measures will always be time-averaged over

at least a period such as a month”3?

In this case the Central Bank is assumed to react to an exponential moving average of current
and past inflation rates that takes the form:

F=(1=0)> dm (23)
j=0

where 0 < 0 < 1 defines how much weight is given to current inflation, as it is easily seen by
re-writing (23) as:

T = (1 — 5)71'{/ + 071 (24)

By taking 7; as the inflation measure to which the Central Banker reacts, we can write the
Taylor reaction function as:

T

Ri=1+(R*—1) (7”>(R*A_1) (25)

The next sections evaluate the properties of this rule under the two models used in the previous

sections.

5.1 Money in the production function
Under the Taylor rule (25), the reduced-form model becomes?3¢:

Uetulo (m) = B {80 -9 U0 o o)) | LT ]| (26)

Tyl — 0Ty

Local stability and learnability conditions are considered in the following Proposition:

¥ Woodford (2002), Chapter 2, p. 44.

30In both models, the solution for the backward looking Taylor rule is a non invertible (in both the forward and
backward dynamic) one dimensional difference equation. Also, by computing the map numerically, it is possible to
notice that both steady state belong to the same branch. The second branch either does not exist or it exists for
values of the inflation rate that do not make economic sense.
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Proposition 17 Let G be given by (26). Given the system (15). Assume;

o < max _(ep(ﬂ*)ey(ﬁ))_l_ 1 1
< { -9 %@ (”epm*))} 27

(i) Then the inflation target is determinate and learnable for every a, while the passive steady

state is indeterminate and non-learnable for every oo. Moreover, condition (27) is verified for every
parameter value that gives a locally determinate inflation target under the forecast-based Taylor

rule.

(ii) given the benchmark parametrization, for pu € (MSR, LR), no cycles exist around the active

I
steady state;

Given the system (16), (17);

(iii) There exist € — SSEs around the indeterminate passive steady state but they are unstable
under learning.

(iv) for any o, it exists §* such that (27) holds;

Remark 18 Note that under the (implausible) case where 6 = 0, statements (i)-(iii) hold for values
of u e (MSR,MLR) and for 3.5 > o > 1, provided” % < 2.3.

Remark 19 From the linearized equation it is possible to check that the economy converges monoton-
Yo =y —1

ically to the inflation target, for benchmark parameters (provided o < —%}.

Remark 20 From the condition (27), the set of parameters which lead to local determinacy under

the backward-looking Taylor rule is larger than for the forecast-based Taylor rule. Also, the set

of parameters for which (i), (ii) and (iii) hold increases for more backward-looking policy rules

(06— 1).

Remark 21 By simulating the map numerically, it is clear that no cycles exist for the mentioned

parameter values.

The Proposition says that if the policy rule is sufficiently backward-looking, then it guarantees
a unique learnable equilibrium, i.e. a unique equilibrium that it is robust to expectational mis-
takes. Hence, it is always possible to find a policy rule that is enough backward-looking to stabilize
the economy. Also a contemporaneous Taylor rule guarantees a unique equilibrium, for plausible

parameter values.

37Notice that the last condition must hold only in the worse case where u = u*® and ¢ = 3.5. With these parameter
values the elasticity of output with respect to the interest rate at the passive steady state is very high in absolute

value. Under the standard parametrization the condition becomes 1?* < 12!
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5.2 Money in the utility function

The reduced-form under the backward-looking rule (25) becomes:

_ BU(G,m (p(Ti41))) (1 = 9)
Tyl — OT¢

Ue (@, m (p (7)) p (7t) (28)

The stability properties of the Taylor rule are discussed in the following Proposition.

Proposition 22 Let G be given by (28). Given the system (14) we have that for any parameter
value;

(i) the active steady state is determinate and learnable for any a € (0,1);

(ii) the passive steady state is indeterminate and non-learnable for any « € (0,1);

(#ii) no cycles exist around the active steady state;

Given the system (16), (17);

(iii) there exist € — SSE sunspot equilibria around the passive steady state but they are not

learnable.

Remark 23 The result is quite strong in that it holds for any parameter value. Shifting to such a
rule guarantees stability, under the assumptions of this model. It actually holds for also in the case
Ue < 0, provided ecp, > m. Hence, by choosing the appropriate ¢ it is possible to obtain

a stabilizing Taylor rule even in the case Ugqpy < 0.
Remark 24 As for Proposition (17), convergence to the inflation target is monotonic.

Remark 25 By simulations it is possible to show that no cycles exist, given that the map G is

monotonic.

Also for the case of money in the utility function, if the central bank responds to a weighted
average of current and past inflation rates it exists a unique equilibrium that is stable under learning:
the inflation target.

Concluding, from the Propositions 6 and 7 it is apparent that more backward-looking Taylor
rules should be preferred to forecast-based rules for the following reasons: 1) they eliminate the
possibility that adverse shocks might lead the economy to a liquidity trap, where the inflation
target is systematically missed; 2) they reduce possible sources of instability in the economic system,
generated by equilibrium fluctuations around the inflation target; 3) they increase model robustness,
given that the parameter values for which we obtain a unique learnable equilibrium is increased.
Notice also that the results are obtained allowing uncertainty about what the correct model of
the economy should be, at least concerning the role of money: in fact the results are robust to
both specifications of the model. In the next section I verify if the results hold under different

assumptions on the model of the economy.

22



6 Extensions

6.1 Cash In Advance Constraint (CIA)

Let us consider a different trading environment as in Carlstrom and Fuest (2001b). They show
that under CIA timing the stability of the model under a Taylor rule dramatically changes. Under
a forecast-based Taylor rule determinacy is achieved by a passive policy stance. The goal of this
paragraph is to show that, on the contrary, the previous results are robust to a modification in the
trading environment.

In the simplest case of an endowment economy, the budget constraint becomes:

Myiw=My+7+ Bi_1Ri—1 — By — Piey + Pyy

and the CIA constraint is:

At = Mt + 7+ Bt—lRt—l - Bt

where A; denotes the liquidity available to the representative agent in the current period.
Substituting back the CIA constraint in the utility functional (defined over current consumption
and real liquidity) and solving the optimization under the resource constraint we obtain a money

demand equation:

a=H(R) H <0

and the following reduced-form:

t@@iuRow=axaHomRHn»ﬂiﬁwRHn (20)

In the following Proposition I compare the stability properties of forecast-based and backward-
looking Taylor rules. As above, I consider the most favorable case where the rules lead to local
determinacy and I study the possibility of learnable equilibria other than the inflation target. Where
needed, the functional form for the utility function is CES. This leads to a demand for money that

is equivalent to the case of money in the production function.

Proposition 26 Let G be given by the CIA model. Assume:

mmm>;(%éﬂ+9 (30)

where e denotes the elasticity of the demand for money. Under the forecast-based Taylor rule;

(i) the active steady state is determinate and learnable for every a,, under the learning rule (14);

(ii) the passive steady state is determinate and learnable for every a;

(tii) it exists €, (m*) consistent with (30) such that for e, (7*) > €,(n*) there exist learnable
cycles and € — SSE around the active steady state, under the learning rules (14) and (16) respec-
tively;
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Under the backward-looking Taylor rule;

(iv) the active steady state is determinate and learnable for every o and no cycles or sunspots
exist around it for u € (MSR,MLR) , under the learning rules (14) and (16) respectively;

(v) the passive steady state is indeterminate and non-learnable for every a under rule (14);
there exist € — SSE sunspots around it but they are not learnable under (16).

(vi) for any value of ecmerr, it exists §* such that (iv) and (v) hold;

Remark 27 A forecast-based policy rule that is aggressive enough to satisfy (30) exists provided
the elasticity of money demand is not too low (i.e. p — p*%). Condition (30) is verified for quite
high values of A. Under the most favorable condition (o — 1 and p — %) there exists A < 3 for
which the condition holds.

Remark 28 As for Proposition 5, it is possible to show the existence of learnable sunspots around
indeterminate and non-learnable cycles. Consider the following example, as shown in Figure (6).
Set p = p°f, 0 = 1.01, A = 3.2 and the other parameters as in Table I. Then the sunspot
equilibrium m = 1.0117 (4.7%), mo = 1.0068 (2.7%) and z11 = 0.027, 2922 = 0.19 is learnable. It
is relatively close to the indeterminate and non-learnable cycle where high inflation m = 1.0118

(4.8%) and low inflation 77, = 1.0071 (2.8% )*%.

38In this case the stability conditions are calculated numerically, given that the map is not invertible both in
backward and forward dynamics.
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Remark 29 Figures (7),(8) make clear the result in (iv), for a given parametrization. It is imme-
diate to see that the cycle appears only as the active steady state becomes indeterminate and thus

(30) is violated.

Remark 30 Also in this case, the properties of the backward-looking Taylor rule are preserved for
a wider set of parameter values than implied by condition (30): in other words, a backward-looking
Taylor rule is stabilizing also for parameter values that imply indeterminacy under a forecast-based
rule. Also, a more backward-looking rule (higher 0) increases the parameter space for which (iv)

and (v) hold -see the proof of (vi).

Figures (6), (8) give an example of the possible equilibria in the two cases. It is apparent that
also in a different trading environment, forecast-based Taylor rules generate instability®?: a too
passive policy generates local indeterminacy, while a too active policy leads to multiple learnable
equilibria around the locally determinate and stable inflation target equilibrium. Instead, shifting
to a sufficiently back-ward looking rule guarantees a unique equilibrium. Hence, changing the

trading environment does not reverse my results.

39We know from Carlstrom and Fuest (2001b) that a passive forward-looking Taylor rule achieves local determinacy.
Nevertheless, it can be shown that a too passive Taylor rule leads to learnable ‘inflationary traps’. The economy
converges to a sunspot equilibrium where inflation fluctuates at hyperinflationary levels.
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6.2 The model with sticky prices

Let us consider endogenous labor supply, monopolistic competition and price stickiness. In this
section I show that a contemporaneous Taylor rule (6 = 0) maintains the ‘good’ properties described
in the previous sections. I analyze the latter case for analytical simplicity, but it is also the least
favorable parametrization to study the stability properties of a backward-looking Taylor rule, if
prices are flexible. Nevertheless, Benhabib et al. (2002) find, in a continuos time version of the
sticky price model, that instability can arise under perfect foresight, even if backward-looking rules
are adopted. A study of the discrete time model with § > 0 implies a three dimensional system
and it is left to further research®’.

I use a simplified version of the standard model considered in the literature on Taylor rules, i.e.
Woodford (1999)*'. The consumer-producer solves the following intertemporal problem:

%) i 2
max _Zﬁt U(et,my) +V (he) — 0 (pz — 77*) (31)

at,me,he,pl 0 2 pﬁ,l

497t is not immediate to extend the result in continous time to the discrete time model, because of timing issues.
Also, there is the question of the learnability of the other equilibria that are discussed in Benhabib et al. (2002).

*'The model is a discrete time version of Benhabib et al. (2001a,b).
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ar+ ¢ =
where V' (.) represents the dis-utility from labor and 6 captures the costs of price revisions.
Finally 7 is a transfer from the government. As in the previous sections, I consider both cases of
money in the production function and money in the utility function.
6.2.1 Money in the utility function
Given the equilibrium condition:

j
f (heymy) = m(%) — o (32)

and the problem (31) we obtain the following first order conditions:

Ue (ct41, mes1) Ry

Uc (Ct, mt) = B (33)
T+1
%@WFU@WQQQ (34)
) C ) Rt
O(my— 7 )my = 0 (M1 — ) g1 +
1 + n Z/ (ht)
+ciUe (e, ) m < — 7 (h) U (Ct,mt)> (35)

which define respectively the consumption Euler equation, the money demand and the price
setting equation (which generates a version of the Phillips curve). From (32), (33) and (34) it is
possible to express ¢; as a function of m; and R;. By substituting it in both the Euler equation
and the Phillips curve, and by using the contemporaneous Taylor rule, I obtain a two dimensional
dynamical system in ¢ and ¢;. It is possible to show that the system is well defined under perfect
foresight, under the functional form specification described above??. But, as in the case of flexible
prices, the backward dynamics is not well defined. For this reason, I restrict the analysis to the
local stability of the system under learning.

6.2.2 Money in the production function

In this case the first order conditions become:

U (er) = plelrs) e (36)

T41

42Notice that the money demand equation that we obtain from the FOC has the same specification that the one
obtained under flexible prices, thus allowing for the same calibration.
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U, (Ct) (Rt]{—t 1) _ fh;z'}fthiibt)fm (htymt) (37)

O(me —7* ) = O(mpp1 — 7°) meg1 +

L s
+Ue () tn( n fl<ht)Uc(Ct))

By using the equilibrium condition ¢; = f (ht,m¢), and equations (36) and (37) it is possible to
express h: and m; both as a function of ¢; and R;. By substituting these expressions into the Euler

(38)

equation and the Phillips curve and using the Taylor rule we obtain a two dimensional dynamical
system in m; and ¢;. Also in this case, it is possible to show that it is well defined in forward
dynamics*® but not in backward dynamics.

6.2.3 Learning and Simulation Results

Unlike in the previous sections, it is not possible to give analytical results. Therefore, I study the
stability properties of the system by numerical simulations. I consider a grid of plausible parameters’

values: it is described in the Table 2 below**. The other parameters are left at benchmark values.

Table 2
Param. | Min | Max
n -50 -3.5
o 1.001 | 5
0 35 350
A 1.4 3

Cycles and complex behavior. Under perfect foresight there is no evidence of local bi-
furcations and cycles around the active and passive steady states, in both cases of money in the
production function and money in the utility function, for the parameter values described in the
Table 2. As in the continuos time case®®, the active steady state is a source and the passive steady
state is a saddle. For no parameter values the active steady state or the passive steady state reverse
their stability so that I exclude local bifurcations. Under perfect foresight there is global indeter-
minacy as in Benhabib et al. (2001), so that, after a small shock, the economy might converge to
a liquidity trap. Are these equilibria robust to expectational mistakes?

"3 This is achieved by imposing the restriction that the dis-utlility from labor. If this restriction is not satisfied,
then also the forward map is a corrispondence.

M Notice that these parameter values include the case where Ugm<o.

*Described in Benhabib et al. (2001b).
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Learnability of the steady states. The model under backward dynamics can be represented
as follows:

¢t = Gi(cry1,mep1)

= Ga(ciy1, 1)

Having excluded the existence of cycles under perfect foresight, I simplify the analysis by re-
stricting to the possibility of learning steady states. Hence, under the (asymptotically correct)
agents’ perceived low of motion, the economy evolves as (¢t, ) = (¢,7), where the ™ denotes a
steady state value. Since the steady state values are unknown, the agents use the following simple
rule to estimate them recursively:

0 = 071+ (G (051,07 1) —074)
07 = 071 +a(G2(07 1,07 1) —074) (39)
where ¢ is the estimate for ¢, 8™ is the estimate for 7, and « is the learning parameter, as in the

last sections. In order to study the learnability of the steady states, I linearize the backward map
around the active and passive steady state and I evaluate the stability under learning for various

parameter values (including o). The linearized system can be written as*0:
/C\t — DGE,_, Et+1
T Tt4+1
and local stability under learning depends on:
1 DGy —1 DG
g | 1ta (DG11 —1) aDG (40)
aDGy 1+« (DG22 — 1)

Simulations show that the active steady state is learnable for every a € (0,1). On the other
side, the passive steady state is never learnable for any a € (0,1). The liquidity trap that the
model predicts under the assumption of perfect foresight is not robust to learning. Moreover, using
a result from Honkapohja and Mitra (2001) I can exclude, from the numerical simulations, the
existence of learnable sunspots around the passive steady states?”.

By converse, different results are obtained under forward looking Taylor rules. From simulations
I obtain the following results:

46Note that this stability condition is weaker than E-stability.

4TThe result states that learnablility of sunspot equilibria around an indeterminate steady state is excluded if DG
has at least one eigenvalue that has real part greater than one, as it is verified in this model for all the plausible
parameter values.
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1) under perfect foresight, there are parameter values for which the stability of the active steady
state changes in both models with money in the utility function and money in the production
function;

2) under learning, there are parameter values for which the stability of the active steady state
under learning changes as a changes. In both cases the system is likely to undergo an Hopf
bifurcation®®, thus generating instability even in the case of a locally determinate or learnable
inflation target;

3) liquidity traps are non learnable for the model with # > 0. But in the case that prices are
fixed for a finite time'?, the model can be approximated (asymptotically) by the solution of (31)
with § = 0, and liquidity traps become learnable under both elastic labor supply and monopolistic
competition.

Summing up, under more general assumptions about the market structure and market frictions
the results discussed in the previous section seem to hold, for plausible parameter values. Taking
into account more sources of uncertainty about the ‘correct’ model of the economy does not seem

to change the predictions of the simple version of the model.

7 Conclusions

The paper shows that forecast-based Taylor rules can lead to bad outcomes, even in the case
of local stability of the inflation target equilibrium and after excluding equilibria that are not
robust to expectational mistakes. I study a very simple model with flexible prices, under different
assumptions about the role of money. I find that in both cases where money enters in the utility
or in the production function forecast-based Taylor rules are de-stabilizing in the following sense.
Even if the inflation target (or active) steady state is locally unique and stable under learning, there
exist other ‘global’ equilibria that are also stable under learning. In particular, the economy can be
driven into a liquidity trap, under both model specifications. Also, the economy can converge to
learnable cycles and sunspots that can be either close to the inflation target or to the liquidity trap
equilibrium, depending on the role of money. These results show that the multiplicity of equilibria
generated by the forecast-based Taylor rule are not just a theoretical curiosity but they seem to be
robust, at least to expectational mistakes.

On the other hand, more backward-looking policy rules stabilize the economy in the following
sense. The equilibria that exist under forecast-based Taylor rules either cease to exist or are not
robust to expectational mistakes. In fact, backward-looking Taylor rules lead to a unique learnable

"8In this case, for nearby parameters we have that the active steady state is sourraunded by an attracting closed
curve. In different models, Grandmont et al. (1998) and Bloise (2001) show the possibility of constructing sunspots
that might be learnable. DeVilder (1995) shows, under the assumption of perfect foresight, that a Hopf bifurcation
might lead to higher period cycles that also might be learnable.

gee Carltrom and Fuest (2000).
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equilibrium: the inflation target. Deterministic cycles, sunspots equilibria or the liquidity trap
cease to exist or are not stable under learning.

Moreover, the results are robust to different model specification. I consider the case of a different
trading environment, as in Carlstrom and Fuest (2001), and I show that my results do not change.
This is somewhat surprising, given that Carlstrom and Fuest (2001) show how conclusions about
determinacy can change dramatically as we change the timing of the model. I also extend the
model with endogenous labor supply, monopolistic competition and sticky prices and show that a
contemporaneous (reacting only to the current inflation rate) Taylor rule stabilizes the economy, as
for the case of the simple model.

Hence, the paper shows more evidence of the superiority of Taylor rules based on current and
past information rather than forecasts.
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8 Appendix

Proof of Proposition (1)

(i) T just re-state the results in Benhabib et al. (2001a, 2001b). Notice that the fixed points of
F and (15) are exactly the same.

(ii) In order to verify the local stability of the system (15), under the backward map implied by

(8), these conditions on the Jacobian need to be verified:

D| = ‘(1 - oz)z‘ <1 (41)

7| = ‘G’(%)2a2—2a+2’ <1+ D (42)

where 7 denotes the fixed point. It is straightforward to show that (41), (42) imply the following
necessary and sufficient condition for the learnability of the steady state:

|G (m)] <1
We do not need to know explicitly on which branch of G the fixed point is. In fact, I use the
fact that around the fixed point:
1
()

Hence, determinacy implies learnability and indeterminacy implies non-learnability. Given that

G (m)

the condition in the Proposition implies determinacy of both steady states (as it is easy to see from
(18)), (ii) is proved.

Proof of Proposition (4)

(i)-(iii) the proof follows the same steps as in Proposition (1) and it is therefore omitted.

(iv) this follows directly from Evans and Honkapohja (2001b): if G’ (7) < —1 then there exist
E-Stable (and therefore learnable under (16) and (17) ) stationary sunspot equilibria around the
fixed point. This condition is verified exactly for —(ep(%) —1) < eemem < —(ep(%) —-1)/2.

Proof of Proposition (6)

First, notice again that although we cannot provide an analytical expression for G; we can use
1) the fact that locally the map is conjugate to a linear map, and; 2) its relation with the forward
looking map F'.

The conditions for stability of the cycle under learning are:

ID| = ’(1—@)2‘ <1 (43)

T (o) = |v(0)@® —2a+2| < |1+ D| (44)
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where:

1
F(my (0)) F' (7, (0)

= 12, [1 + _06;. () (epil(a) N 1)]

and where —o, €, and € are the elasticities computed at the two values of 7 over the cycle. From

(43), (44) it is straightforward to obtain a necessary and a sufficient condition for local stability of
deterministic cycles of period 2 °°. We have:

local stability = IT2_,G% < 1 (45)

}H%ZlGﬂ < 1 = local stability (46)

where ¢ denotes the branch where the derivative is evaluated.

A sufficient condition for stability under learning, for every value of « is:

G5 (71 () Gy (71, (0))]
= [v(o)] <1

which implies |1/v(0)| = |F' (7g (0)) F' (71, (o)) > 1. Now, we know that at 7 (0):

1 1
falo)= —0oey1 (o) <€p1 (o) 1> <7 0

given the requirement that the active fixed point is stable. The stability condition can be
rewritten as:

1+ A1 (0) + Az (0) + A1 (0) Az (0)] > 1

Az (o) = —06:2 (0) (5;721(‘7) B 1>

Let us start with the negative inequality:

where:

1/v(e) < —-1=

Bao) > ~1RHO (49)

0The result is obtained by Guesnerie and Woodford (1991), pag. 118 for a similar learning algorithm.
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From the Figure 2 and (47) we have that as o increases A (o) decreases, as the policy rule
becomes more active at 7y, (). Conversely A; (o) increases as g — 7*. Hence, the RHS of (48)
increases as o increases (using the fact that Ay (0) < —2). From continuity of F' with respect to o
it exists o such that :

24 A1)
1+ A, (5)

and thus for o < & we have stability under learning for every admissible a.

Ay (5) = > -1 (49)

Let us consider the case where:

~1<1/v(6) <0 (50)

Under (50) the sufficient condition (46) is not satisfied, and o > &. But, from (45), the necessary
conditions for stability are:

of which only the latter is also sufficient. It is easy to verify that v(c)~! < 0 holds for As (o) > —1.
Since we know that Ay (o) is decreasing in o, from continuity it exists ¢ > o (where Ay (o) = —1)
such that for o € (o,0) the necessary condition is satisfied.

Now it is clear from (43), (44) that in this case there exists an @, of low enough value such that
the stability conditions are verified.

In order to show what happens in the case o € [7,7) I use the second necessary (and sufficient)
condition implied by (46):

1/v(o) > 1

It is easy to see that this condition is verified if F’(7p) is large and negative: in other words, if
the policy rule at 7 (o) is sufficiently active. Given that Ay (o) is decreasing in o, we could have
a 0 < o < @ where the cycle is stable. We now prove that this is not possible.

We have that for ¢ = ¢ + ¢, for € > 0 arbitrarily small, v(c) > 1. But we know that this
implies that the stability conditions (43), (44) are violated for any a. As ¢ — @ we have that
v(o) — 1 =v(7), where |T'(7)| = |1 4+ D|. But this is the point where the cycle disappears. Hence,
there is no ¢ < @ such that 1/v(c) > 1 and the cycle exists. Hence, for o > & we have instability
under learning, for every parameter of o and this completes the proof.

Proof of Proposition (11)

(i) first using Proposition 12.5 of Evans and Honkapohja (2001a) the existence of sunspots e-
close to the deterministic cycle is guaranteed, provided Ga(wg (0))G1(mr (0)) # 1. Since we know
that this condition is violated only in the case where the cycle is destroyed (o0 = @), then it is
possible to construct stationary sunspots on the deterministic cycle for all o < @.

Second, by using Proposition 12.7 and 12.9 in Evans and Honkapohja (2001a) we have that

necessary and sufficient condition for learnability of sunspots with the algorithm (14) is that:
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Gy(mr (0))Gi(mL (0)) <1

But we know from Proposition (6) that this condition holds for every ¢ < o.

(ii), from Proposition 12.2 of Evans and Honkapohja (2001a)®! we have that strong E-Stability
is obtained for |G4(7 g (0))G) (7L (0))| < 1. From Proposition6 this is verified if o < &.

(iii) this is an application of Proposition 12.7 and 12.9 in Evans and Honkapohja (2001a):
sunspots constructed on the active and passive steady state exists and are learnable if and only if
|G5(71 (0))] < 1 and |G (72 (0))| < 1 which is verified under the condition in Proposition (1).

(iv) If we consider explicitly the map in its backward dynamics, it is actually possible to show
that sunspot equilibria exist outside a neighborhood of the deterministic cycle, both in the cases
where the cycle is learnable and not. The result depends on the existence of the two branches Gy
and Gs.

These sunspots can be constructed by using the global methods of Grandmont (1987): a sunspot
equilibrium exists if and only if 71 (o) and 73 (o) are included in the open interval formed by their
images:

Gi(m1(0)) <mi(0) <m2(0) < Gj(m2(0))
Gi(ma(0)) <71 (o) <ma (o) <G (71 (o)) (51)

where i and j denote the branch of G. Figure 9 gives an example: as o = 2.35 > 7, the cycle
is indeterminate in forward dynamics, and non-learnable. By continuity of the eigenvalues, also
sunspots in the neighborhood of the cycle are not learnable. But it is possible to construct sunspots
relatively close to the cycle by choosing the appropriate branch of G.

The Figure shows how to construct such a cycle: it is easy to verify that condition (51) is
satisfied.

Since it is possible to show numerically that the correspondence G keep the same form for
o € (1,7) - under the benchmark parametrization -, it is evident that it is also possible to construct
sunspot equilibria on the two branches for any admissible o.

Let us consider the learnability of such sunspots. First, given a two-state sunspot equilibrium
(I limit my analysis to those equilibria) we have that:

m (o) = znGi(m(9)) + (1= z1n)Ga (2 (0))
™2 (O‘) = (1 —222) Gl (7I'1 (U))+222G2 (7T2 (O‘)) (52)
where (52) says that, given 7 (o) the agents choose the current 7 using the first branch, while

given 7 (o) the decision is taken using the second branch, as in Figure 9. From (52) it is possible
to recover the value of the transition probabilities as a function of the states 71 (o), 72 (0):

Slpg. 303.
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learnable sunspot ‘close’ to the indeterminate cycle
1.012F

1.011-

1.01-

1.009

1.008 -

1.007 -

1.006 -

1.005-

Gi(pi1)

1 1 1 . 1
1.007 1.008 1.009 1.01 1.011 1.012

Figure 9: Figure (9)

a1 = [Gami(0) = Gi(ma(0))] ' [m1 (o) — Gi(m2 (0))]
2 = [Ga(m(0) = Gilma (0))] " [Ga(mi (0)) — 2 (0)] (53)

The condition (51) guarantees that the values found for z1; and z99 are probabilities.
Second, it is well known from Evans and Honkapohja (1995) that local convergence under
learning can be studied by considering E-Stability conditions®2.

This is verified if the eigenvalues of the following matrices are less than one:

211G (1 (o)) (1= 211)G(m2 () (54)

(1= 222)G(m1(0))  222G5(m2 (0))

Now, using trace and determinant, stability conditions are:
D ()] = [(z211 + 222 — 1) G (71 (0)) G (w2 (0))] < 1 (55)
|—211G1 (71 (0)) — 222G3(m2 (0))| < [L+ D (o)) (56)

2For details see Evans and Honkapohja (2001), Evans and Honkapohja (1995).
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For 0 < & the conditions are satisfied because |G (71 (0))Gh(m2 (0))] < 1: it is sufficient to
choose the states inflation values close to the cycle.

Let us consider the case o > 7. First notice that —1 < G4 (w2 (o)) = m < 0 because
Go(me (0)) > 7, for every o. Fix 7y (0) such that w3 (o) < 7 (i.e. the low inflation rate at the
equilibrium cycle).

Second, fix 71 (o) such that G (71 (o)) > 0. This value exists for every admissible o: in fact,
as w1 (0) = 7 GY(m1 (0)) = m turns positive and decreases in absolute value, given that
F' (%) > 1 for every o. Moreover, I checked numerically®® (and it is clear from the picture, for a
given o) that 0 < G(7*) < 1, for every o. Hence, it is possible to choose 7 (o) € (7%, 7 (o))
such that 0 < G (7*) < 1. But this implies that both (55) and (56) are satisfied and the sunspot

is learnable.

Proof of Proposition (17):

(i) The linearization gives the following difference equation:

(~oo — 52) 7, (57)
(—oe — 15)

Given that at the active ss €, > 1, local uniqueness is clearly guaranteed by (27). Learnability

Tt+1 =

follows as in Proposition (1). On the other hand, for €, < 1 the result is reversed.

(ii) let us consider the map G, under the contemporaneous rule. From the linearized equation,

it is apparent that for |—oe,| < m no bifurcation occurs. In fact, at the active steady state

0 < G (7*) < L.For & such that |-Ge,| = —— the derivative is not defined and there is a

(1-0)ep
discontinuity. For —% > o >0 we have that G/ (7*) < 0. Hence, G/ (7*) does not cross

1. Instead, for |o| = —26;@ (1 + - ér*)> it is straightforward to check that the system undergoes

a flip bifurcation (it exists a o* such that G.. (7*) = —1). The next Lemma, shows that this
bifurcation is sub-critical: this means that as the active steady state is determinate (and thus (27)

holds), no cycle around it exists.

Lemma At each p € (MSR,MLR) there exists o(p) = —5—— (1 + l) such that a period-

2ey (1) €p
doubling bifurcation occurs. For o < o(u) the active steady state is determinate and for o > o(u)
it is indeterminate. (2) For o > o(u) and sufficiently close to the bifurcation point a period two
cycle exists. For any o < o(u) no cycle exists.

Proof of Lemma. From Devaney (1989) we know that the condition for a period doubling

. (; <227§)2+; <§;§>) £0at (7%,0 (1))

331 checked numerically that for o > 1.001 and ¢ < 2.5 (> 7,given that the cycle does not exists for that values of

bifurcation is:

o) the derivative has values ranging from 0.15 to 0.85.
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Moreover, given

Oo

we have that if g > 0 then the bifurcation is sub-critical (the cycle exists when the fixed point

is stable). It is trivial to verify from the linearized equation that d < 0. It is also possible to show
SR MLR)

at 0 = o(p) F' is equal to —1. Hence (1) and (2) follow. This proves that no cycles exist around

numerically®* that e < 0 for p € (/J, . Moreover, from the linearized equation we have that

the active steady state.

ii) the linearized equation implies that under condition (27), we have:

G (7)>1
where G represent the backward map under the contemporaneous rule. This is the condition for the
non-learnability of sunspots equilibria, as in Propositions 12.6 and 12.10 in Evans and Honkapohja

(2001a).
(iv) trivial from (27). This completes the proof.

Proof of Proposition (22):
(i) After linearization, the local behavior of the system is determined by the linear difference
equation:

(1—-0)ep+0
€emm — A8,
o) 7 (58)

Tet1 =
-1
<€cm€m (175)%)
which gives determinacy (and learnability) under active monetary policy, for any parameter
values. By converse, passive policy imply indeterminacy (and non-learnability).
(ii) follows the same steps as (ii) in Proposition (17).
(1-8)ep+d
(Ecmem‘ T=9ep )
(Ecm€m7(172)6p>

) > 1 and Proposition 12.6 and 12.10 in Evans and Honkapohja (2001a) allow to

(iii) it is apparent that is always positive. Hence, at the passive steady state

(1—8)ep+d
<Ecm€m_ 0=5)ep

(Ecmfmf (17{‘5)6/))
exclude learnability of the sunspots equilibria.

Proof of Proposition (26)

(i)-(v) In the case of backward-looking, the linearization leads to:

1=0)(,-1 |4

~ _ |1
it + €cm€HE (1 —0) — 0 T+l

In the case of forward looking;:

54The Maple program is available on request.
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(GcmGH + é)

T == @@ "7
2 (EcmEH + 1)

Tit1

The proof follows following the same steps as for Proposition (6), Proposition (11) and Propo-
sition (17). Concerning (iv): it is possible to show numerically, as I do for the Lemma, that the
change of stability of the inflation target leads to a subcritical bifurcation for p € (,uLR, MSR).
Figure 7 shows the bifurcation cycle for a given value of p.

(vi) it is easy to verify that (iv) and (v) hold if:

(e, —1) )
2¢, €p(1—90)
Then, by letting § — 1 the statement is proved.

|€cmemr| >
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