
 
 
 

Federal Reserve Bank of New York 
Staff Reports 

 
 
 
 
 

The Cost of Business Cycles for Unskilled Workers 
 
 
 

Toshihiko Mukoyama 
Ayşegül Şahin 

 
 
 
 
 
 
 
 

Staff Report no. 214 
July 2005 

 
 
 
 
 
 
 
This paper presents preliminary findings and is being distributed to economists and other 
interested readers solely to stimulate discussion and elicit comments. The views 
expressed in the paper are those of the authors and are not necessarily reflective of views 
at the Federal Reserve Bank of New York or the Federal Reserve System. Any errors or 
omissions are the responsibility of the authors. 
 



The Cost of Business Cycles for Unskilled Workers 
Toshihiko Mukoyama and Ayşegül Şahin 
Federal Reserve Bank of New York Staff Reports, no. 214 
July 2005 
JEL classification: E24, E32, E61 
 
 
 
 

Abstract 
 
This paper reconsiders the cost of business cycles under incomplete markets.  Primarily, 
we focus on the heterogeneity in the cost of business cycles among agents with different 
skill levels.  Unskilled workers are subject to a much larger risk of unemployment during 
recessions than are skilled workers.  Moreover, unskilled workers earn less income, 
which limits their ability to self-insure.  We examine how this heterogeneity in 
unemployment risk and income translates into heterogeneity in the cost of business 
cycles.  We set up a dynamic general equilibrium model with incomplete markets, in 
which there is heterogeneity in skills, employment status, asset holding, and the discount 
factor.  We find that the welfare cost of business cycles for unskilled workers is 
substantially higher than that for skilled workers. 
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1 Introduction

In everyday discussions of economic policy, it is usually assumed that business cycles are

harmful and that it is beneficial to eliminate them. Many would agree that stabilization is

beneficial if it comes without cost. However, stabilization policies are often very costly, and

it is not obvious whether we should avoid business cycles when the cost of doing so is large.

What, in fact, is the cost of having business cycles? How much resource cost can be justified

to eliminate business cycles? In an influential study, Lucas (1987) considered these questions.

His result was astounding—the cost of having business cycles is almost zero.1

Lucas’s use of a representative agent and an aggregate consumption series are justified in

an environment where complete Arrow-Debreu markets exist. Under complete asset markets

and a common constant relative risk aversion utility function, the aggregation theorem holds

and the consumption series of each individual will parallel the aggregate consumption series.

In reality, however, it is unlikely that asset markets are complete.2

Under incomplete markets, the costs of business cycles may be larger than the cost in the

representative-agent framework, since individuals have only a limited set of devices to insure

themselves from the shocks.3 More importantly, since individual consumption paths do not

parallel the aggregate consumption path, it is possible that the cost of business cycles differ

across individuals.

In recent papers, Krusell and Smith (1999, 2002) pointed out that the cost of business

cycles may differ among different groups of people. For example, agents with larger asset

holdings would have a greater opportunity to self-insure against unemployment risk. It is

expected that very poor agents would have a larger cost of business cycles. Krusell and Smith

(1999, 2002) reported that there is considerable heterogeneity in the cost of business cycles

1He finds that the welfare cost is 0.008% of the steady-state consumption when the representative agent

has logarithmic utility.
2See Obstfeld (1994) and Barlevy (2004) for other critiques of Lucas’s approach.
3See İmrohoroğlu (1989), Atkeson and Phelan (1994), and Krusell and Smith (1999, 2002) for this point.
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Figure 1: Unemployment Rates by Skill.

Data Source: Current Population Survey

among agents with different wealth.

The analysis by Krusell and Smith (1999, 2002) abstracts from an important source of

heterogeneity—difference in skills. Figure 1 is drawn using annual data from the Current

Population Survey (1970–2001). It illustrates the unemployment processes for unskilled work-

ers (high school diploma or lower) and for skilled workers (some college or above). The two

processes differ dramatically. Unskilled workers are not only subject to a higher level of un-

employment, but also face a more volatile unemployment process. This implies that unskilled

workers are hurt more by recessions.4 Moreover, unskilled workers earn less income, which

limits their ability to self-insure. We examine how this heterogeneity in unemployment risk

and income translates into heterogeneity in the cost of business cycles.

To this end, we set up a dynamic general equilibrium model with incomplete markets. In

the model, there is heterogeneity in skills, employment status, and the discount factor. In

4Mincer (1991) documented that unskilled workers are subject to a substantially larger risk of becoming

unemployed in recessions than are skilled workers. Topel (1993) shows that the unemployment rate of low-wage

men is not only higher, but also much more volatile.
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addition, the heterogeneity in asset holding is endogenously generated. The heterogeneity in

skills are represented by the differences in earnings and the unemployment process.

We find that the welfare cost of business cycles for unskilled individuals, who suffer from

unemployment more frequently and are more likely to have binding borrowing constraints,

is substantially higher than the cost for the representative agent in complete-market models

or the average cost in incomplete-market models.

On average, our quantitative results are comparable to the previous results obtained by

Atkeson and Phelan (1994) and Krusell and Smith (1999, 2002). However, the average num-

ber masks a substantial heterogeneity in the model. In our first experiment, which assumes

that the fluctuations are eliminated during a boom, the gain from eliminating business cycles

is 0.043% (of steady-state consumption) for unskilled workers, while skilled workers gain only

0.005%. In the second experiment, which assumes that fluctuations are eliminated during

a recession, unskilled workers gain 0.119%,5 while skilled workers gain 0.043%. Further,

a borrowing-constrained, unskilled, and unemployed agent can gain 0.622% from eliminat-

ing business cycles, which is nearly eighty times larger than the number found using the

representative-agent framework.

This paper is organized as follows. The next section describes our baseline model. In

Section 3 we analyze the welfare effects of removing business cycles. Section 4 concludes.

2 Model

This section describes the environment and solves the model economy.

5Note that this figure is larger than any of the average gains obtained in Krusell and Smith’s (2002)

experiments, which assumes longer unemployment durations than in our calibration. When we calibrate our

model with similar unemployment processes as Krusell and Smith (2002), the gains for unskilled workers in

both experiments are larger than Krusell and Smith’s (2002) average gains. See Appendix E for details.
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2.1 Setup

Our model is a standard Bewley-Huggett-Aiyagari type dynamic general equilibrium model

with incomplete markets (Aiyagari [1994]). In particular, we build upon the model with

aggregate shocks developed by Krusell and Smith (1998).

There is a continuum of agents, with measure 1, in the economy. They maximize their

discounted utility

U = E0





∞
∑

t=0

(
t

∏

j=0

βj) log ct



 ,

where ct is the consumption in period t and β0 = 1. We allow the discount factor βt to differ

across agents and to vary over time. In particular, βt is assumed to be stochastic and follow

a Markov process. At each point in time, some agents are more patient than others. We

interpret each agent as an altruistic dynasty. Each agent’s patience level may differ across

generations. This formulation serves as a device to produce a realistic wealth distribution.6

There are two types of agents: skilled (η = s) and unskilled (η = u). Each agent’s

skill status, η, may change over time by a stochastic process that is uncorrelated across

agents, but the number of skilled (χs) and unskilled (χu) workers is constant, by the law

of large numbers. A skilled worker can supply more labor than an unskilled worker. We

express this dependence by the function φ(η), where φ(s) > φ(u). The value φ(s)/φ(u) can

be interpreted as the skill premium. We assume that φ(η) is constant over time. The skill

premium is, therefore, acyclical.7

An agent is either employed (ǫ = 1) or unemployed (ǫ = 0). The employment status is

determined by an exogenous random process. When employed, the agent supplies φ(η) units

of labor to the market. When unemployed, she engages in household production. Household

production utilizes the same technology as the market technology,8 but the agent can supply

6This method was developed by Krusell and Smith (1998).
7This assumption is motivated by the empirical studies by Keane and Prasad (1993) and Lindquist (2004).
8It is implicitly assumed that a worker can rent capital for household production without limit. This

assumption is not inconsistent with the household borrowing constraint, introduced below, if the household
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only a fraction h < 1 of her market labor supply. Thus, she is less efficient at home than in

the market.9 The probability of becoming unemployed differs between skilled and unskilled

agents. The unemployment probability also depends on the aggregate state of the economy.

The market technology is represented by the aggregate production function

Y = zk̄αn̄1−α,

where k̄ is the aggregate capital and n̄ is the aggregate labor, including the labor supplied

for household production. The economy is subject to aggregate shocks. The aggregate state

is either good or bad. In a good state, z = g and the unemployment rate for skill level η is

µg
η. In a bad state, z = b and the unemployment rate for skill level η is µb

η. We assume that

g > b and µg
η < µb

η for η = s, u; i.e., productivity is higher and the unemployment rate is

lower in booms than in recessions.

We assume that there are no insurance markets for the idiosyncratic shocks. Agents can

hold only one kind of asset – capital. Holding a negative amount of capital (borrowing) is

allowed up to an exogenous limit k.

Aggregate capital and labor are given by

k̄ =

∫

J

kjdj,

n̄ =
∑

η=s,u

φ(η)χη{(1 − µz
η) + hµz

η)},

where J is the set of agents and kj is the capital holding of an agent j. The markets are

competitive, so the interest rate r and the wage w are determined by their marginal products.

Each household’s period-by-period budget constraint is

c + k′ = rk + wφ(η)θ(ǫ) + (1 − δ)k,

production capital can be perfectly collateralized.
9This assumption is made so that an agent can earn some labor income even when she is unemployed.

Alternatively, we can introduce an unemployment insurance system à la Hansen and İmrohoroğlu (1992). In

this case, a government and its budget constraint would need to be incorporated into our setup.
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where

θ(ǫ) =

{

h if ǫ = 0,

1 if ǫ = 1,

k′ is the next period’s capital, and δ is the depreciation rate of capital.

2.2 Probability Structure

There are two types of exogenous shocks: aggregate and idiosyncratic. The aggregate state

evolves stochastically following a Markov process. The probability of moving from state z to

state z′ is denoted as pzz′ .

There are three idiosyncratic shocks: ǫ, β, and η. Following the standard Bewley-style

model, the individual employment process is treated as an exogenous stochastic process.

Idiosyncratic employment shocks ǫ ∈ {0, 1} follow a Markov process with transition proba-

bility πzz′η′

ǫǫ′ . Following the tradition of İmrohoroğlu (1989), we assume that the probability

of becoming unemployed next period (ǫ′ = 0) depends not only on the current employment

status (ǫ), but also on the current and next period’s aggregate state (z and z′). Additionally,

to reflect the heterogeneity exhibited in Figure 1, the probability of becoming unemployed

depends on the skill level in the next period (η′).

The discount factor β is assumed to be stochastic. We assume that β’s process is in-

dependent of the other aggregate and idiosyncratic state variables. The Markov transition

probability is denoted as ωββ′ .

We assume that the individual skill level η ∈ {u, s} follows an exogenous stochastic

process. This transition probability is denoted as qηη′ . Again, we can interpret each agent as

an altruistic dynasty. Within each dynasty, the skill level may differ across generations. The

probability qηη′ reflects the intergenerational mobility of skill levels.10 The skill transition

process is assumed to be independent of the other state variables.

10In our formulation, the timing of the switch in β and η may not coincide. Synchronizing these processes

is possible, but it complicates the analysis considerably and would not substantially alter our main results.
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2.3 Recursive Competitive Equilibrium

Let Γ denote the measure of agents over (k, ǫ, η, β). The state variables relevant to each indi-

vidual are the aggregate state variables (z, Γ) and the idiosyncratic state variables (k, ǫ, η, β).

Let T denote the equilibrium transition function for Γ:

Γ′ = T(Γ, z, z′).

Then, the recursive competitive equilibrium can be defined in a standard manner. In the

recursive competitive equilibrium, consumers and firms optimize given the state variables

and the transition function T. The markets for capital and labor clear, and the transition

function is consistent with the individual decision rules. See Appendix A for the formal

definition.

2.4 Calibration

But for some deviation, we follow a standard calibration. One period is considered to be

six weeks.11 We choose δ = 0.0125 and the average value of β as 0.995. The capital share

α = 0.36. The household production parameter h is assumed to be 0.1. These numbers

closely follow the calibration of Krusell and Smith (1999, 2002). The borrowing constraint

k is set at −13, which is tighter than the “always payback constraint”. This number is

chosen so that the fraction of the people with negative wealth mimics the actual data. In

the following we briefly discuss the calibration of other parameters and stochastic processes.

The details of the calibration can be found in Appendix B.

Aggregate shocks take the values z ∈ {b, g} = {0.99, 1.01}. Following Krusell and Smith

(1999, 2002) we set the average business cycle duration to 2 years. From 1/(1 − pbb) =

1/(1 − pgg) = 16, pbb = pgg = 0.9375.

11The choice of six weeks is the standard one in the unemployment insurance literature (see, for example,

Hansen and İmrohoroğlu [1992]). In the business cycle literature, the choice of one quarter as a period is more

popular (including Krusell and Smith [1998, 1999, 2002]). However, we calibrate the average unemployment

duration in a “good” state to be 12.4 weeks, and as a consequence, we cannot use one quarter (13 weeks) to

be a period choice.
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The skill transition probabilities are calibrated by assuming that the transition probability

from skilled (college graduate) to skilled is 0.65, and the transition probability from unskilled

(high school graduate) to skilled is 0.35 for each generation.12 This restriction provides

quu = qss = 0.9975.

Calibrating individual employment shocks requires using data about unemployment rates

and unemployment durations for different skill groups. We compute unemployment rates for

the skilled and unskilled workers by using the Current Population Survey. Since the average

duration of unemployment is similar across different skill groups (Mincer [1991]), we use the

same unemployment durations for the skilled and the unskilled.

We assume that the discount factor βt follows a three-point Markov stochastic process.

The three values of βt are pinned down so that the resulting distribution of asset holdings

mimics the real wealth distribution. In particular, βl = 0.9923, βm = 0.995, and βh = 0.9977.

We calibrate the Markov transition matrix by following Krusell and Smith’s (1998) approach.

In the model, φ(s)/φ(u) is the skill premium. To calibrate φ(s)/φ(u), we use the estimates

of Murphy and Welch (1992). They compute the ratio of the average wage of college graduate

workers to high-school graduate workers for different experience groups and for several years.

They find that this ratio, which can be interpreted as the skill premium, is between 1.37 to

1.58. To be consistent with their estimates, we set φ(s)/φ(u) to 1.50.13

2.5 Model Solution

Generally, it is computationally burdensome to solve this type of model. The state variables

in the individual optimization include the economy-wide wealth distribution, which is an

12Mayer (2002, Table 1) shows that in PSID data, the intergenerational transition probability (between

fathers and sons) from no-college to college is 35%, while college to college is 73%. Statistics Canada (1998,

p.37) compares the intergenerational transition of schooling attainment across countries. It shows that in the

United States, 64.2% of the population attains postsecondary schooling if their parents attained postsecondary

education. If the parents attain only secondary education, the percentage drops to 35.7%.
13One can also calibrate φ(s)/φ(u) by using the estimates for return to college education. If one assumes

that the return to one year of college education is 10%, which is consistent with the estimates in Card (1995),

then φ(s)/φ(u) is around 1.50.
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infinite-dimensional object. In our model, the wealth distribution is included in the state

variables, since this information is necessary for predicting the next-period prices for each

aggregate state. To predict these prices, the agents have to predict the next period’s aggregate

capital, which requires knowledge of the current period’s wealth distribution. Krusell and

Smith (1998) developed a computational method to overcome this obstacle. They found

that the knowledge of only a few moments of the wealth distribution is often sufficient for

predicting the next period’s aggregate capital. In fact, they demonstrated that a linear

prediction rule based only on the first moment k̄ provides a very accurate prediction. They

call their method “approximate aggregation”.

In our model, we postulate a prediction rule

ln k̄′ = α0 + α1 ln k̄ + α2 ln z.

The “approximate aggregation” method works very well in our setting—the linear prediction

rule with coefficients α0 = 0.1258, α1 = 0.9747, and α2 = 0.0849 provides a very accurate

prediction. The R2 of this prediction rule is 0.99997. This implies that almost all the

variation in k̄′ can be explained by the predicted value in the right-hand-side. The resulting

equilibrium can therefore be viewed as very close to the rational expectations equilibrium.

The aggregate capital fluctuates between the values k̄ = 139.8 and k̄ = 148.4. The average

value of k̄ is 143.9. On average, skilled agents hold k = 176.1 and unskilled agents hold k =

111.7. Since the earning ratio is 1 : 1.5, the difference in asset holdings is more pronounced

than the earnings difference.14 This large difference in asset holdings is important, since

wealth holdings are the only means of self-insurance for unemployment in our incomplete-

market setting.

The wealth distribution is matched to the data. In the data,15 the Gini coefficient of the

14This property can also be seen in data. The average wealth-earnings ratio of a college graduate is higher

than that of a high school graduate. See Burd́ıa Rodŕıguez, Dı́az-Giménez, Quadrini, and Ŕıos-Rull (2002).
15All the data in this paragraph are drawn from Burd́ıa Rodŕıguez, Dı́az-Giménez, Quadrini, and Ŕıos-Rull

(2002). Wolff (1995) employs a slightly different definition of wealth (the most notable difference is that he
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Figure 2: Wealth distributions for the skilled and the unskilled (truncated at k = 500)

wealth distribution is 0.80, while in the model, it is 0.79. In the right tail of the distribution,

the top 10% of wealth-rich people hold about 69% of the real economy’s total wealth, while

68% of wealth is held by the top 10% in the model. In the data, the top 20% (fifth wealth

quintile) hold 82% of the total wealth, while the corresponding number is 85% in the model.

In the left tail of the distribution, in the model, 7.2% of the agents hold negative wealth and

additional 1.8% of agents hold wealth less than 1 (the average wage of an unskilled worker is

about 3.6). In the data, 7.4% of the population report negative wealth and 2.5% report zero

wealth.

The model produces a substantial heterogeneity in asset holdings. As is expected, there is

a large difference in asset holdings across different β: the average value of k is 47.6 for β = βl,

124.3 for β = βm, and 382.5 for β = βh. Asset distributions are very different between skilled

agents and unskilled agents. About 2% of individuals hold negative wealth within the group

does not include vehicles and pension plans). In Wolff (1995), the top 20% hold 85% of the total wealth and

the Gini coefficient is 0.84.
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of skilled agents, while nearly 16% of unskilled agents fall into this category. About a quarter

of unskilled people own less wealth than their average wage level. The model produces more

wealth inequality within unskilled agents than within skilled agents: Gini coefficients are 0.85

and 0.73, respectively. Both groups contain wealth-rich people: 1.3% of the unskilled and

2.3% of the skilled own more than ten times the average wealth. Figure 2 shows the wealth

distributions for the skilled and the unskilled workers. (The total number of agents is 50,000.

We truncated the Figure at the upper bound of k = 500.) Clearly, there are more unskilled

workers who are close to the borrowing constraint.

3 Removing Business Cycles

The main question to be answered is: What will happen to individuals’ welfare when business

cycles are eliminated? To answer this, we follow Lucas’s tradition in not describing specific

policies to eliminate cycles. We directly eliminate shocks that are driving the aggregate

fluctuations. The elimination is permanent, and this event is unanticipated by the agents.

3.1 Aggregate Shocks

Since the aggregate shocks are the driving force of the business cycles, a natural way to

eliminate cycles is to replace the aggregate stochastic process by a deterministic process. In

the spirit of Lucas, we replace the aggregate stochastic process by its conditional mean. The

aggregate state z starts at z = 1.01 or z = 0.99, depending on the timing of the removal, and

z converges monotonically to the value 1, which is the unconditional mean of z.

3.2 Idiosyncratic Shocks

We assume that when the business cycles are eliminated, the part of the idiosyncratic risk

which is correlated with the aggregate shocks is also eliminated. Krusell and Smith (1999,

2002), who first proposed this procedure coined it the “integration principle”. Formally,

when an idiosyncratic random variable y can be written as a function ḡ(i, z) of the aggregate

11



variable z and a random variable i which is independent from z, then the new idiosyncratic

variable after the elimination of the cycles is given by

ŷ(i) =

∫

ḡ(i, z)fz(z)dz, (1)

with density fi(i) for each i. Here, fz(z) and fi(i) are the marginal density functions for z

and i, respectively.

As an example,16 consider an individual variable y = z + i, where z ∼ N(µz, σ
2
z) and

i ∼ N(µi, σ
2
i ) [thus, y ∼ N(µz + µi, σ

2
z + σ2

i )]. Our procedure results in ŷ(i) = µz + i. Since

i ∼ N(µi, σ
2
i ), it follows that ŷ(i) ∼ N(µz +µi, σ

2
i ). Notice that the mean is the same between

y and ŷ(i), but the variance is reduced after applying the integration principle.

In our model, the individual random variable ǫ is a two-state Markov process, so the

decomposition is more complicated. Krusell and Smith (2002) have shown how to construct

idiosyncratic shocks in this case using the integration principle, and have developed a state

representation for the distribution of these shocks. In general, the distribution of idiosyncratic

shocks is time-varying when there is an unanticipated and permanent elimination of business

cycles. For our purposes, since we have heterogeneity in skill levels, an extension of the

Krusell-Smith approach is necessary. See Appendix C for details.

The resulting employment process ŷ has less dispersion than ǫ. Simulating for 10,000

periods, it turns out that the coefficient of variation of ŷ is approximately 15% smaller than

ǫ for agents whose initial state is η = s, and about 30% smaller for the agents whose initial

state is η = u. Therefore, agents face less earnings risk in an economy without business

cycles. The other individual random variables, η and β, are independent of the aggregate

shocks, and therefore their processes are unchanged after the elimination of business cycles.

16This example follows Lucas (2003).
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3.3 Competitive Equilibrium

The equilibrium after removing business cycles does not have a recursive structure for two

reasons. First, the evolution of aggregate capital k̄ and aggregate labor n̄ (both are now

deterministic) is time-dependent. Second, to calculate ŷ at each time period, the entire

history of idiosyncratic shocks has to be taken into account.17 The competitive equilibrium

of this economy can be defined in the standard way—consumers and firms optimize given

prices, and the markets for capital and labor clear. See Appendix A for the formal definition.

We employ three approximations to reduce the computational burden. First, since n̄

converges to a constant value fairly quickly, we treat n̄ as a constant after a sufficient number

of periods. Second, we reduce the evolution of k̄ to a single law of motion after a sufficient

number of periods. Third, we approximate the stochastic process of ŷ by a five-point Markov

process. These approximations serve to reduce the computational time dramatically, while

providing a fairly accurate approximation of the original economy.

3.4 Results

Our experiment is to eliminate business cycles at a specific point from the fluctuating econ-

omy.18 The timing of this “elimination” (call it time 0) is selected according to a specific

level of capital stock and aggregate shocks. It is natural to select a capital stock level around

the average of the fluctuating economy. Therefore, we choose k̄ = 144. In the following, we

pick two timings, z = g and z = b, and compare the results.

After time 0, the economy experiences the transition to a non-fluctuating steady state.

We compare the welfare of each agent at time 0, taking this transition into account. The

17In Appendix C, it is shown that the necessary information about the history of the idiosyncratic shocks

can be summarized by two state variables. However, the evolution of those variables is also time-dependent.
18The algorithm used for the computation can be found in Appendix D.
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welfare cost from business cycles is defined (following Lucas) as λ which satisfies

E0





∞
∑

t=0

(
t

∏

j=0

βj)U((1 + λ)co
t )



 = E0





∞
∑

t=0

(
t

∏

j=0

βj)U(cs
t )



 ,

where {co
t}

∞
t=0 is the consumption stream in the “original” economy (with business cycles),

and {cs
t}

∞
t=0 is the consumption stream in the “smoothed” economy (without business cycles).

For logarithmic utility, we can show that

λ = exp[(Vs − Vo)/B] − 1,

where Vo ≡ E0

[

∑∞
t=0(

∏t
j=0 βj)U(co

t )
]

is the expected (average) discounted utility under the

original economy, Vs ≡ E0

[

∑∞
t=0(

∏t
j=0 βj)U(cs

t )
]

is the expected (average) discounted utility

under the smoothed economy, and B ≡ E0

[

∑∞
t=0(

∏t
j=0 βj)

]

.

First, consider the case where we remove the business cycles when k̄ = 144 and z = g. The

transition of aggregate capital is depicted in Figure 3. Capital stock initially increases (since z

is still larger than one for a while), then declines until k̄ = 143.4 and slowly converges to a new

steady state with k̄ = 143.8, which is slightly lower than the average value in the fluctuating

economy. (Figure 3 also depicts the capital stock of the fluctuating economy as a dotted

line.) Krusell and Smith (2002) similarly observed a lower steady-state level of capital. They

argued that the reason is because individuals have less incentive to save for precautionary

motives, due to the lower risk in their income. The fact that the capital stock is lower during

the most of the transition and at the new steady-state has an important implication for the

welfare comparison. From the fact that w = (1 − α)zk̄αn̄−α and r = αzk̄α−1n̄1−α, a lower k̄

increases r and decreases w. Depending on whether a particular agent relies on wage income

or capital income, this change will affect the agents differently.

In the new steady state, the Gini coefficient increases to 0.82. Inequality increases within

both the unskilled and skilled groups: Gini coefficients rise from 0.85 to 0.88 and from 0.73

to 0.76, respectively. This is consistent with Krusell and Smith’s (2002) argument that there

is less precautionary saving in the new steady-state. With less precautionary saving, the
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Figure 3: Path of Aggregate Capital after Removing Business Cycles with k̄ = 144 and z = g

left tail of the distribution is extended. In fact, the number of agents with negative assets

increases to 14.0% in total (24.5% for unskilled and 3.5% for skilled), which is almost double

compared to the fluctuating economy.

Our main goal is to compare the welfare between the two economies. We follow the

method described above and calculate the value of λ for each agent. The average value

of λ is 0.024%, which is more than three times larger than Lucas’s (1987) result, and is

comparable to the numbers found in previous studies by Atkeson and Phelan (1994) and

Krusell and Smith (2002). There is a large heterogeneity between skill levels: unskilled

agents gain 0.043% from the elimination of business cycles, while skilled gain only 0.005%.

Therefore, the gain for unskilled agents, who are more frequently unemployed and more likely

to face binding borrowing constraints, is much larger than the gain suggested by the average

value of λ. As a result of stabilization, 85.3% of unskilled workers have increased utility, while

the fraction of skilled workers with a positive gain is much smaller at 33.7%. In fact, the

majority of skilled workers experience lower utility after stabilization. Two effects produce

the difference in the cost of business cycles between skilled and unskilled workers. First, a
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asset level (in total wealth distribution)

constrained bottom 1% 10% 50% 90% 99%

η = u, ǫ = 0 0.150% 0.065% 0.026% -0.027% -0.067% 0.133%

η = u, ǫ = 1 0.117% 0.090% 0.068% 0.021% -0.036% 0.153%

η = s, ǫ = 0 0.053% -0.008% -0.043% -0.083% -0.041% 0.112%

η = s, ǫ = 1 0.027% 0.015% -0.004% -0.013% 0.011% 0.143%

Table 1a: The values of λ for β = 0.995, k̄ = 144, and z = g

asset level (in total wealth distribution)

constrained bottom 1% 10% 50% 90% 99%

η = u, ǫ = 0 0.622% 0.373% 0.258% 0.138% 0.074% 0.300%

η = u, ǫ = 1 0.222% 0.168% 0.131% 0.066% 0.035% 0.286%

η = s, ǫ = 0 0.476% 0.297% 0.191% 0.081% 0.120% 0.292%

η = s, ǫ = 1 0.063% 0.041% 0.024% -0.002% 0.069% 0.267%

Table 1b: The values of λ for β = 0.995, k̄ = 144, and z = b

majority of the skilled agents have already accumulated enough wealth to insure themselves

against the idiosyncratic risk. Unskilled workers tend to gain more since their level of wealth

is lower on average. Second, at an individual level, the unskilled agents were facing larger

unemployment risk under business cycle fluctuations. (There is also the general equilibrium

effect, whose direction is ambiguous. This effect is discussed below.)

The costs at an individual level are shown in Table 1a. We focus on the agents with

β = 0.995.19 We observe even larger heterogeneity at an individual level. For example, for

a wealth-constrained agent with η = u (unskilled) and ǫ = 0 (unemployed), the cost is more

than six times the average. (These are the agents whose cost is the highest.) This figure,

0.150%, is nearly twenty times larger than the number obtained by Lucas (1987).

19Heterogeneity of costs across different β is discussed in detail by Krusell and Smith (2002). It would be an

interesting exercise to incorporate different forms of uninsurable idiosyncratic shocks, such as one’s spouse’s

health or employment status. Clearly, this will add more dimensions to the heterogeneity in the economy.

Unfortunately, it is not computationally straightforward to incorporate these shocks into our current model,

since it will increase the number of state variables in the dynamic programming problem of the individuals.
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Avg λ Avg λ for η = u Avg λ for η = s % of u gaining % of s gaining

z = g 0.024% 0.043% 0.005% 85.3% 33.7%

z = b 0.081% 0.119% 0.043% 100.0% 56.3%

Table 2: Average gains from different starting points

Next, consider the case where business cycles are eliminated when the aggregate state z

is b. After the elimination of business cycles, the economy moves toward the same steady

state as before. The average value of λ is higher in this case—it is 0.081% now. Again,

unskilled workers gain more (0.119% on average) than skilled workers (0.043% on average).

The ratio of the skilled workers who experience a positive gain is now 56.3%, while almost all

the unskilled workers experience a positive gain. The comparison between z = g and z = b

is summarized in Table 2.

The individual costs are summarized in Table 1b. In every cell, the value of λ is larger

than in Table 1a. The largest gain comes from the constrained agent with η = u and ǫ = 0.

The largest gain, 0.622%, is almost eighty times larger than what is found in Lucas (1987).20

When considering the welfare effect on individuals, two factors have to be taken into

account. First, the direct effect of the risk reduction, and second, the general equilibrium

effect. The first is straightforward. When business cycles are eliminated, the aggregate shocks

are completely smoothed out (the interest rate and the wage become deterministic variables),

and the idiosyncratic employment risk is reduced. This benefits all agents, especially the

agents who cannot self-insure by their own savings. The second effect calls for a more careful

analysis. Since the capital stock is lower after eliminating business cycles, on average, the

interest rate rises and the wage falls. This benefits an agent for whom capital income is more

20This is somewhat smaller than the figure obtained in Krusell and Smith (2002). There are two factors

that reduce our numbers compared to theirs. First, in our calibration, the average duration of unemployment

is substantially shorter than Krusell and Smith’s. Second, our borrowing constraint is tighter, therefore the

“constrained agents” here are not as wealth-poor as Krusell and Smith’s. Indeed, when we calibrate our model

in a similar manner as Krusell and Smith, the largest gain for the unskilled workers increases to 1.807% (the

largest gain for the skilled workers is 1.427%). See Appendix E for details.
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important than wage income.

Keeping the employment status and skill status constant (within each rows of Table 1a

and Table 1b), the gains from eliminating business cycles exhibit a “U-shape” pattern.21

Borrowing-constrained agents have a larger gain, reflecting the fact that they cannot self-

insure their risk by their own assets. The direct effect of the reduction in the idiosyncratic risk

is very large for these agents. The “middle class” tends to have small or negative gains. For

these agents, the benefit from the reduction in the idiosyncratic risk is small, since they have

enough assets to insure themselves. In this case, the general equilibrium effect dominates.

The middle-class agents whose income is largely coming from wage may experience lower

welfare due to the wage loss. Very rich agents realize welfare gains since their income is

largely coming from capital income.

Keeping the wealth level constant (within each columns of Table 1a and Table 1b), we

cannot always determine whether unemployed agents gain more than employed agents, or if

unskilled agents gain more than skilled agents, due to the presence of the general equilibrium

effect. For borrowing-constrained agents, the direct effect of the risk reduction tends to

dominate. For agents who are not constrained, the direct effect is smaller and the general

equilibrium effect is more pronounced. The general equilibrium effect works in an ambiguous

fashion. Given the wealth level, wage income is more important for the employed agents

than for the unemployed agents, simply because the employed agents earn higher wages.

Thus unemployed agents should gain more from the general equilibrium effect. In the future

however, the wealth level is not given. Given the current wealth level, the future wealth level

is higher for the employed agents. Therefore, employed workers benefit more from the higher

interest rate in future. The relative level of this current and future effect determines who will

gain more from eliminating business cycles. This same logic is applied to the relationship

between the skilled agents and the unskilled agents.

21This pattern is also observed in Krusell and Smith (2002). We observe some non-monotonicity after 99%.
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4 Conclusion

In this paper we calculated the costs of business cycles for different groups of people under

incomplete markets. We focused primarily on the difference in skills. Unskilled agents face

more cyclical unemployment risk and have less opportunity to self-insure. As a result, the

cost of business cycles is much larger for a typical unskilled agent compared to a typical

skilled agent. If business cycles are eliminated at booms, unskilled agents gain 0.043% (of

steady-state consumption) on average, while skilled workers gain only 0.005%. If business

cycles are eliminated in recessions, unskilled agents gain 0.119% on average, while skilled

workers gain 0.043%. In this case, borrowing-constrained, unskilled, and unemployed agents

gain as much as 0.622%, which is nearly eighty times larger than the number found using

the representative-agent framework.

This substantial heterogeneity raises natural questions about optimal policy. How should

the stabilization policy be conducted? Is it possible for the government to transfer risks

from unskilled to skilled workers instead of stabilizing the economy? Is there an optimal

mix of stabilization policy and insurance policy? These are important questions for future

research.22 The difference in costs also has an important implication in the political process.

It is likely that the majority of unskilled agents favor a stabilization policy (if it comes

with a small cost), while many skilled agents may vote against such a policy, if the burden

falls evenly on different groups. A policy that directly transfers cyclical risk from unskilled to

skilled workers may be politically more agreeable. To analyze such possibilities, incorporating

specific policies and political processes into an incomplete markets setting seems to be a

promising future research topic.

22See Lucas (2003) for related points.

19



Appendix

A Formal Definitions of Equilibrium

A.1 Recursive Competitive Equilibrium for the Economy with Fluctua-

tions

Definition 1 (Recursive Competitive Equilibrium) The recursive competitive equilib-

rium consists of the value function v(k, ǫ, η, β; z, Γ), a set of decision rules for consumption

and asset holdings {c(k, ǫ, η, β; z, Γ), k′(k, ǫ, η, β; z, Γ)}, aggregate capital and labor {k̄(z, Γ), n̄(z, Γ)},

factor prices {w(z, Γ), r(z, Γ)}, and a law of motion for the distribution, Γ′ = T(Γ, z, z′),

which satisfy

1. Given the aggregate states, {z, Γ}, prices {w(z, Γ), r(z, Γ)}, and the law of motion for

the distribution, Γ′ = T(Γ, z, z′); the value function v(k, ǫ, η, β; z, Γ) and the individual

decision rules {c(k, ǫ, η, β; z, Γ), k′(k, ǫ, η, β; z, Γ)} solve the following dynamic program-

ming problem:

v(k, ǫ, η, β; z, Γ) = max
c,k′

{log c + βE[v(k′, ǫ′, η′, β′; z′, Γ′)|ǫ, η, β, z,Γ]}

subject to

c + k′ = r(z, Γ)k + w(z, Γ)φ(η)θ(ǫ) + (1 − δ)k,

k′ ≥ k,

and

Γ′ = T(Γ, z, z′).

2. Firms optimize:

w(z, Γ) = (1 − α)zk̄αn̄−α,

r(z, Γ) = αzk̄α−1n̄1−α.
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3. Markets clear:

k̄ =

∫

kdΓ,

n̄ =

∫

φ(η)θ(ǫ)dΓ.

4. Consistency:

Γ′(K, E, X, B) =

∫

K,E,X,B

[
∫

K,E,X ,B
I{k′=k′(k,ǫ,η,β;z,Γ)}π

zz′η′

ǫǫ′ qηη′ωββ′dΓ

]

dk′dǫ′dη′dβ′

for all K ⊂ K, E ⊂ E, X ⊂ X , and B ⊂ B. K, E, X , and B are the sets of all possible

realizations of k, ǫ, η, and β, respectively. The indicator function I{·} takes the value

1 if the statement is true, and 0 if it is false. πzz′η′

ǫǫ′ , qηη′, and ωββ′ are the transition

probabilities.

A.2 Competitive Equilibrium for the Economy without Fluctuations

Definition 2 (Competitive Equilibrium without Aggregate Shocks) Let time 0 be

the moment when the business cycles are removed. Denote the history of idiosyncratic shocks

for an agent j by ht
j. The competitive equilibrium consists of individual decision rules for

consumption and the next period capital {ct(h
t
j), kt+1(h

t
j)}, factor prices {wt, rt}, and the

aggregate variables {k̄t, n̄t} that satisfy

1. Given {wt, rt}, consumers optimize:

E0

∞
∑

t=0

(
t

∏

j=0

βj) log ct,

with β0 = 1, subject to

ct + kt+1 = rtkt + wtφ(ηt)ŷt + (1 − δ)kt,

kt+1 ≥ k.
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2. Firms optimize:

wt = (1 − α)k̄α
t n̄−α

t ,

rt = αk̄α−1
t n̄1−α

t .

3. Markets clear:

k̄t =

∫

J

kt,jdj,

where kt,j is the asset holding of an agent j at time t,

n̄ =

∫

φ(ηt)ŷtdΓt,

where Γt is the measure over ηt and ŷt.

B Calibration

In the following, we discuss how we calibrate the parameters and stochastic processes in

detail.

Aggregate Shocks

Aggregate shocks take the values z ∈ {b, g} = {0.99, 1.01}. The transition matrix is:

[

pbb pbg

pgb pgg

]

,

where pij is the probability of the transition from state i to state j. Following Krusell and

Smith (1999, 2002) we set the average business cycle duration to 2 years. Our model period is

six weeks, therefore the average duration is 16 periods. From 1/(1− pbb) = 1/(1− pgg) = 16,

pbb = pgg = 0.9375, so
[

pbb pbg

pgb pgg

]

=

[

0.9375 0.0625

0.0625 0.9375

]

.

The invariant distribution is [0.5 0.5].

Skill Transition
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For each generation, the transition probability from skilled (college graduate) to skilled

is 0.65, and the transition probabilty from unskilled (high school graduate) to skilled is 0.35.

The transition matrix satisfies23

[

quu qus

qsu qss

]240

=

[

0.65 0.35

0.35 0.65

]

.

This provides
[

quu qus

qsu qss

]

=

[

0.9975 0.0025

0.0025 0.9975

]

.

The invariant distribution is

[

χu χs

]

=
[

0.5 0.5
]

.

Note that if we start from the invariant distribution, the fraction of skilled workers remains

constant by the law of large numbers.

Individual Employment Shocks

For individual employment shocks ǫ ∈ {0, 1}, the transition matrix has to be conditioned

on last period’s aggregate state (z), today’s aggregate state (z′), and today’s skill level (η′).

Denote this matrix as Πzz′η′

. Here, we illustrate the case of z = b, z′ = b, and η′ = u.

Πbbu =

[

πbbu
00 πbbu

01

πbbu
10 πbbu

11

]

.

The unemployment rate of skill level η when the aggregate state is z is denoted as µz
η. We

calibrate µz
η from the Current Population Survey. Each year between 1970 to 2001 is divided

into two categories (with an equal number of good and bad years) by ranking the years

according to the total unemployment rate. µz
η is given as the average unemployment rate of

23Mayer (2002, Table 1) shows that in PSID data, the intergenerational transition probability (between

fathers and sons) from no-college to college is 35%, while college to college is 73%. Statistics Canada (1998,

p.37) compares the intergenerational transition of schooling attainment across countries. It shows that in the

United States, 64.2% of the population attains postsecondary schooling if their parents attained postsecondary

education. If the parents attain only secondary education, the percentage drops to 35.7%.
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the skilled and the unskilled for the good and the bad years.24

The number of people who were unskilled and unemployed in the last period is χuµb
u.

They remain unskilled in the current period with probability quu. Thus, the number of people

who were unskilled and unemployed in the last period, and remain unskilled in the current

period is χuµb
uquu. The amount of people who were skilled and unemployed in the last period

is χsµ
b
s. They become unskilled in the current period with probability qsu. Thus, the amount

of people who were skilled and unemployed in the last period, and become unskilled in the

current period is χsµ
b
sqsu. Summing up, the people who were unemployed in the last period

and unskilled in the current period is χuµb
uquu + χsµ

b
sqsu. The people who were employed in

the last period and unskilled in the current period is χu(1 − µb
u)quu + χs(1 − µb

s)qsu. Thus,

as the transition occurs

[

χuµb
uquu + χsµ

b
sqsu χu(1 − µb

u)quu + χs(1 − µb
s)qsu

]

[

πbbu
00 πbbu

01

πbbu
10 πbbu

11

]

=

[

πbbu
00 χuµb

uquu + πbbu
00 χsµ

b
sqsu + πbbu

10 χu(1 − µb
u)quu + πbbu

10 χs(1 − µb
s)qsu

πbbu
01 χuµb

uquu + πbbu
01 χsµ

b
sqsu + πbbu

11 χu(1 − µb
u)quu + πbbu

11 χs(1 − µb
s)qsu

]′

.

Since the current period is a bad state, the first entry has to be equal to χuµb
u. This provides

us with the first restriction. (The second entry has to be equal to χu(1−µb
u), but it is easy to

show that this is automatically satisfied by the first restriction, provided that χ is the invariant

distribution.) Now we have two unknowns, πbbu
00 and πbbu

10 , and one equation (the other

unknowns are determined by the condition that the probabilities sum up to one: πbbu
00 +πbbu

01 =

1 and πbbu
10 + πbbu

11 = 1). Another restriction is provided from the unemployment duration

data. The Current Population Survey provides the average duration of unemployment in each

year. We calculated the average duration in the good years and in the bad years (defined by

the total unemployment rate), and obtained that the duration is 12.4 weeks for good years

24The skilled are defined as individuals with some college or college completion, and the unskilled are defined

as those with high school completion or less. Since the population of each group changes over time, we have

taken the weighted average of the unemployment rates in each group using the number of individuals aged 24

and up (the population is taken from the census data) at each year.
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and 15.9 weeks for bad years.25 Mincer (1991) shows (using PSID data) that the average

duration of unemployment is not significantly different between skilled and unskilled workers,

and therefore we use the same numbers for the skilled and the unskilled. The restriction is

1/(1 − πbbu
00 ) = 15.9/6. When selecting πbgη′

00 and πgbη′

00 , there exist two approachs:

1. πbgη′

00 = πggη′

00 and πgbη′

00 = πbbη′

00 (İmrohoroğlu [1989])

2. πbgη′

00 = 0.75 · πggη′

00 and πgbη′

00 = 1.25 · πbbη′

00 (Krusell and Smith [1999, 2002]).

We follow Krusell and Smith.

From the data on unemployment between 1970 and 2001 (described above), we calculate

µb
u = 0.087, µg

u = 0.056, µb
s = 0.038, and µg

s = 0.026.

Given above numbers, πbbu
10 is derived from

πbbu
10 =

χuµb
u − πbbu

00 (χuµb
uquu + χsµ

b
sqsu)

χu(1 − µb
u)quu + χs(1 − µb

s)qsu
.

In general, πzz′η′

10 is derived from

πzz′η′

10 =
χη′µz′

η′ − πzz′η′

00 (χuµz
uquη′ + χsµ

z
sqsη′)

χu(1 − µz
u)quη′ + χs(1 − µz

s)qsη′

.

The resulting Π matrices are:

Πbbu =

[

0.6226 0.3774

0.0383 0.9617

]

,

Πgbu =

[

0.7783 0.2217

0.0483 0.9517

]

,

Πbgu =

[

0.3871 0.6129

0.0269 0.9731

]

,

Πggu =

[

0.5161 0.4839

0.0309 0.9691

]

,

25İmrohoroğlu (1989) uses the duration of 10 weeks in good times and 14 weeks in bad times. Krusell and

Smith (1999, 2002) use 19.5 weeks and 32.5 weeks.
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Πbbs =

[

0.6226 0.3774

0.0152 0.9848

]

,

Πgbs =

[

0.7783 0.2217

0.0184 0.9758

]

,

Πbgs =

[

0.3871 0.6129

0.0123 0.9877

]

,

Πggs =

[

0.5161 0.4839

0.0134 0.9866

]

.

Stochastic β

Following Krusell and Smith (1998), we assume that the discount factor βt follows a

three-point Markov stochastic process. Let βt ∈ {βl, βm, βh}, where βl < βm < βh. An

agent with the discount factor β = βl is impatient, and an agent with the discount factor

β = βh is patient. First, we calibrate the Markov transition matrix by imposing the following

restrictions.

• 10% of the total population has β = βl, 80% of the population has β = βm, and 10%

of the population has β = βh.

• There is no direct transition in between β = βl and β = βh.

• The average duration of the extreme states, β = βl and β = βh, is one generation (30

years).

The transition probabilities from state βi to state βj , ωij are







ωll ωlm ωlh

ωml ωmm ωmh

ωhl ωhm ωhh






=







239/240 1/240 0

1/1920 959/960 1/1920

0 1/240 239/240






.

Second, the values of βl, βm, βh are pinned down so that the resulting distribution of asset

holdings mimics the real wealth distribution. In particular, βl = 0.9923, βm = 0.995, and

βh = 0.9977.
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C Applying the “Integration Principle” to Idiosyncratic Shocks

Applying the “integration principle” to a two-point process is more difficult than the contin-

uous example in the main text. Here, starting from the static case, we extend the analysis

step by step.26

C.1 Static Case

Let z take two values, g and b, and ǫ take two values, 0 and 1. The aggregate state z occurs

with the probability πz(z), and ǫ’s probability depends only on the current z. The conditional

probability of ǫ given z is denoted as π(ǫ|z). We define i ∼ U(0, 1), and

ḡ(i, z) =

{

1 if i ≤ π(1|z),

0 otherwise.

Thus, when i ∈ [0, π(1|b)],

ŷ =
∑

z

ḡ(i, z)πz(z) = ḡ(i, g)πz(g) + ḡ(i, b)πz(b) = 1 · πz(g) + 1 · πz(b) = 1.

When i ∈ (π(1|b), π(1|g)],

ŷ = ḡ(i, g)πz(g) + ḡ(i, b)πz(b) = 1 · πz(g) + 0 · πz(b) = πz(g).

When i ∈ (π(1|g), 1],

ŷ = ḡ(i, g)πz(g) + ḡ(i, b)πz(b) = 0 · πz(g) + 0 · πz(b) = 0.

In sum, ŷ = 1 with probability π(1|b), ŷ = πz(g) with probability π(1|g) − π(1|b), and

ŷ = 0 with probability 1 − π(1|g).

C.2 Correlation over Time

When z and ǫ are correlated over time, applying this procedure becomes more complicated.

Suppose that z evolves by a first-order Markov process and that ǫt depends on zt, zt−1, and

26For exposition, in this section we utilized slightly different notation than the main text. The correspon-

dence should be clear, however.
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ǫt−1. Let it be an i.i.d. random variable which follows U [0, 1]. We must then find a function

ḡ(·, ·) which satisfies

ḡt({is}
t
0, {zs}

t
0) = gt({ǫs}

t
0, {zs}

t
0), (2)

and then integrate ḡt({is}
t
0, {zs}

t
0) over {zs}

t
0. Note that the right hand side is the employ-

ment variable, gt({ǫs}
t
0, {zs}

t
0) = ǫt.

C.2.1 Brute-Force

One way to do this is by brute-force simulation: generate zt and it randomly, and then create

ǫt from the realization. Iterate the simulation many times. Then, for each {is}
t
0, there will

be a distribution of ǫt (depending on the realizations (history) of z, ǫ can be different for the

same {is}
t
0). Average this out and use as the new idiosyncratic shocks at each t. We did not

utilize this method here.

C.2.2 Recursive

Instead, we utilized the following method, which exploits the recursive structure of the

problem. From the distributional assumptions, to express ǫt by an i.i.d. random variable

it ∼ U(0, 1), the additional information required is zt−1, zt, and ǫt−1. That is, given zt−1, zt,

and ǫt−1, ǫt can be determined by the rule

ǫt =

{

1 if it ≤ Ω(zt−1, zt, ǫt−1),

0 otherwise,
(3)

where Ω(zt−1, zt, ǫt−1) is the threshold value calculated from the original Markov transition

matrices. However, we can not integrate this yet. Ω(zt−1, zt, ǫt−1) still depends on ǫt−1. To

construct the ḡt(·, ·) function, we still require ǫt−1 to be expressed by i and z. By working

from t = 0 using (3) (ǫ−1 is given), we can express ǫt−1 by {{is}
t−1
0 , {zs}

t−1
0 }. Clearly, this

procedure has recursive structure.

Equation (2) can be expressed as ḡt(it, zt, zt−1, ǫt−1) = ǫt, where ǫt−1 on the left hand side

is actually a function of {{is}
t−1
0 , {zs}

t−1
0 }. The integration principle requires us to calculate,
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for each {is}
t
0,

ŷt =
∑

zt

· · ·
∑

z0

ḡt(it, zt, zt−1, ǫt−1) · πz(zt, . . . , z0).

This can be rewritten as

ŷt =
∑

zt−1

· · ·
∑

z0

ḡt(it, g, zt−1, ǫt−1) · πz(g, zt−1 . . . , z0)

+
∑

zt−1

· · ·
∑

z0

ḡt(it, b, zt−1, ǫt−1) · πz(b, zt−1, . . . , z0).

The first part can be rewritten as

∑

zt−1

· · ·
∑

z0

ḡt(it, g, zt−1, ǫt−1) · πz(g, zt−1 . . . , z0)

=
∑

zt−2

· · ·
∑

z0

ḡt(it, g, g, ǫt−1) · πz(g, g, zt−2 . . . , z0)

+
∑

zt−2

· · ·
∑

z0

ḡt(it, g, b, ǫt−1) · πz(g, b, zt−2 . . . , z0).

(4)

The second part can be expressed in a similar way.

Let Pt−1(g, ǫ) be the probability that, for given {is}
t−1
0 , the realization of {zs}

t−1
0 induces

(i) zt−1 = g and (ii) ǫt−1 = ǫ.

Further, let πz(zt|zt−1) be the conditional probability. Then, the first part of (4) can be

rewritten as:
∑

zt−2

· · ·
∑

z0

ḡt(it, g, g, ǫt−1) · πz(g, g, zt−2 . . . , z0)

= ḡt(it, g, g, 1) · πz(g|g) · Pt−1(g, 1) + ḡt(it, g, g, 0) · πz(g|g) · Pt−1(g, 0).

(5)

Here, ḡt(it, g, g, 1) is either 0 or 1, and is easy to calculate using (3). πz(g|g) is given by the

Markov transition matrix. Thus, given Pt−1(zt−1, ǫt−1), ŷt can be calculated only from the

information of it, using (5) for all possible combinations of zt−1 and zt.

How can we get Pt−1(zt−1, ǫt−1)? It can be calculated recursively. First, notice that

Pt−1(zt−1, 0) + Pt−1(zt−1, 1) = πz(zt−1), where πz(zt−1) can be mechanically calculated from

the Markov transition matrix and the initial value z0. Thus, we only need to keep track of

Pt−1(zt−1, 1). To obtain Pt(g, 1), we have to calculate the probability of (i) zt = g and (ii)

ǫt = 1. This can be done by just picking up the zt = g part in the ŷt calculation (sum of
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(5) for all possible combinations of zt−1 and zt), since ḡt(it, zt, zt−1, ǫt−1) = 1 if ǫt = 1 and

ḡt(it, zt, zt−1, ǫt−1) = 0 if ǫt = 0. That is,

Pt(g, 1) = ḡt(it, g, g, 1) · πz(g|g) · Pt−1(g, 1)

+ ḡt(it, g, g, 0) · πz(g|g) · Pt−1(g, 0)

+ ḡt(it, g, b, 1) · πz(g|b) · Pt−1(b, 1)

+ ḡt(it, g, b, 0) · πz(g|b) · Pt−1(b, 0).

In the same way,

Pt(b, 1) = ḡt(it, b, g, 1) · πz(b|g) · Pt−1(g, 1)

+ ḡt(it, b, g, 0) · πz(b|g) · Pt−1(g, 0)

+ ḡt(it, b, b, 1) · πz(b|b) · Pt−1(b, 1)

+ ḡt(it, b, b, 0) · πz(b|b) · Pt−1(b, 0).

Note that

ŷt = Pt(g, 1) + Pt(b, 1)

by construction. Up to this part, our procedure follows Krusell and Smith (2002).

C.3 Extending to Multiple Skill Levels

Suppose that the employment probability is also dependent on skill level η ∈ {u, s}, which

evolves stochastically. The evolution of η is first-order Markov, and independent of ǫ and z.

Specifically, yt(= ǫt) depends on ǫt−1, zt−1, zt, and ηt. Now, (3) has to be modified to27

ǫt =

{

1 if it ≤ Ω(zt−1, zt, ǫt−1, ηt),

0 otherwise.
(6)

Here, ǫt−1 depends on {{is}
t−1
0 , {ηs}

t−1
0 , {zs}

t−1
0 }. Clearly, after integration, ŷ is a func-

tion of {{is}
t
0, {ηs}

t
0}. Similar steps from the previous case apply. Given {{is}

t
0, {ηs}

t
0},

ŷt =
∑

zt

· · ·
∑

z0

ḡt(it, zt, zt−1, ǫt−1, ηt) · πz(zt, . . . , z0).

This can be rewritten as

ŷt =
∑

zt−1

· · ·
∑

z0

ḡt(it, g, zt−1, ǫt−1, ηt) · πz(g, zt−1 . . . , z0)

+
∑

zt−1

· · ·
∑

z0

ḡt(it, b, zt−1, ǫt−1, ηt) · πz(b, zt−1, . . . , z0).

27Clearly, Ω(zt−1, zt, ǫt−1, ηt) here should be set to π
zt−1ztηt

ǫt−11
in the main text.
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The first part can be rewritten as

∑

zt−1

· · ·
∑

z0

ḡt(it, g, zt−1, ǫt−1, ηt) · πz(g, zt−1 . . . , z0)

=
∑

zt−2

· · ·
∑

z0

ḡt(it, g, g, ǫt−1, ηt) · πz(g, g, zt−2 . . . , z0)

+
∑

zt−2

· · ·
∑

z0

ḡt(it, g, b, ǫt−1, ηt) · πz(g, b, zt−2 . . . , z0).

(7)

The second part can be expressed in a similar way.

Let Pt−1(g, ǫ) be the probability that, for given {{is}
t−1
0 , {ηs}

t−1
0 }, the realization of

{zs}
t−1
0 induces (i) zt−1 = g and (ii) ǫt−1 = ǫ.

Further, let πz(zt|zt−1) be the conditional probability. Then, the first part of (7) can be

rewritten as:
∑

zt−2

· · ·
∑

z0

ḡt(it, g, g, ǫt−1, ηt) · πz(g, g, zt−2 . . . , z0)

= ḡt(it, g, g, 1, ηt) · πz(g|g) · Pt−1(g, 1) + ḡt(it, g, g, 0, ηt) · πz(g|g) · Pt−1(g, 0).

(8)

Here, ḡt(it, g, g, 1, ηt) is either 0 or 1, and can be calculated by (6). πz(g|g) is given by the

Markov transition matrix. Thus, given Pt−1(zt−1, ǫt−1), ŷt can be calculated only from the

information of it and ηt, using (8) for all possible combinations of zt−1 and zt.

One could calculate Pt−1(zt−1, ǫt−1) recursively. First, notice that again Pt−1(zt−1, 0) +

Pt−1(zt−1, 1) = πz(zt−1), where πz(zt−1) can be mechanically calculated from the Markov

transition matrix and z0. Thus, we only need to keep track of Pt−1(zt−1, 1). To obtain

Pt(g, 1), we have to calculate the probability of (i) zt = g and (ii) ǫt = 1. This can be done by

just picking up the zt = g part in the ŷt calculation (sum of (8) for all possible combinations

of zt−1 and zt), since ḡt(it, zt, zt−1, ǫt−1, ηt) = 1 if ǫt = 1 and ḡt(it, zt, zt−1, ǫt−1, ηt) = 0 if

ǫt = 0. That is,

Pt(g, 1) = ḡt(it, g, g, 1, ηt) · πz(g|g) · Pt−1(g, 1)

+ ḡt(it, g, g, 0, ηt) · πz(g|g) · Pt−1(g, 0)

+ ḡt(it, g, b, 1, ηt) · πz(g|b) · Pt−1(b, 1)

+ ḡt(it, g, b, 0, ηt) · πz(g|b) · Pt−1(b, 0).

(9)
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In the same way,

Pt(b, 1) = ḡt(it, b, g, 1, ηt) · πz(b|g) · Pt−1(g, 1)

+ ḡt(it, b, g, 0, ηt) · πz(b|g) · Pt−1(g, 0)

+ ḡt(it, b, b, 1, ηt) · πz(b|b) · Pt−1(b, 1)

+ ḡt(it, b, b, 0, ηt) · πz(b|b) · Pt−1(b, 0).

(10)

Note that

ŷt = Pt(g, 1) + Pt(b, 1)

by construction.

D Algorithm of the Economy without Fluctuations

Denote the last period with aggregate fluctuations as t = 0.

1. For each agent, given z0, ǫ0, and η0, simulate it and ηt, and thus obtain the sequence

of Pt for t = 1, 2, .... Sum up and obtain the aggregate labor supply n̄t at t = 1, 2, ....

Check when n̄t and the distribution of the labor supply settles down. Call that period

N1. (We used N1 = 40 to 100, depending on the starting point.) From the process of

Pt, we can obtain the time series of ŷ. Instead of using Pt in the individual decision

problem, we approximate this process of ŷ by a finite-state Markov process and use

this as the individual shocks.

2. Pick N2 > N1. (We used N2 = 1000.) Use the average of the law of motions in t < 0

to guess k̄t, t = 1, 2, ..., N2. Call them k̄0
t .

3. Given the law of motion for k̄ and the stationary value of n̄t, perform the value-function

iteration (part of Krusell-Smith’s [1998] method) to obtain the value function for the

periods t = N1 + 1, ..., N2. Note that the decision problem is

V (k, ŷ, η, β; k̄) = max
c,k′

{

log c + βE
[

V (k′, ŷ′, η′, β′; k̄′) |ŷ, η, β
]}
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subject to

c + k′ = rk + wφ(η)ŷ + (1 − δ)k,

k̄′ = H(k̄),

k′ ≥ k,

r and w calculated from n̄ and k̄.

4. From t = N1, work backwards to obtain value functions and decision rules for t =

1, ..., N1.

VN1
(k, ŷ, η, β) = max

c,k′

{

log c + βE
[

V (k′, ŷ′, η′, β′; k̄N1+1) |ŷ, η, β
]}

subject to

c + k′ = rk + wφ(η)ŷ + (1 − δ)k,

k′ ≥ k,

r and w calculated from n̄N1
and k̄0

N1
.

5. Simulate the economy from t = 0, using the initial distribution at t = 0 and the decision

rules obtained above.

6. Compare the simulated path of k̄ and k̄0. If they are not close enough, update the

k̄ sequence by the weighted average. Also obtain the new prediction rule for k̄ by

performing OLS for the new k̄t, t = N1, ..., N2.

E Krusell-Smith Calibration

To see how our model can be compared to Krusell and Smith (1999, 2002), we conducted

the same experiment with a calibration similar to Krusell and Smith (1999, 2002). Krusell

and Smith’s calibration exhibits longer unemployment durations and higher unemployment

rates.

33



One period is considered to be a quarter following Krusell and Smith (1999, 2002). We

choose δ = 0.025 and the average value of β as 0.9894. The capital share α = 0.36. The

household production parameter h is assumed to be 0.1. These numbers closely follow the

calibration of Krusell and Smith (1999, 2002). The borrowing constraint k is set at −6, which

is tighter than the “always payback constraint”. We set skill premium (φ(s)/φ(u)) to 1.50

as in our baseline calibration.

As in Krusell and Smith (1999, 2002), aggregate shocks take the values z ∈ {b, g} =

{0.99, 1.01}. The transition matrix is:

[

pbb pbg

pgb pgg

]

=

[

0.8750 0.1250

0.1250 0.8750

]

.

The invariant distribution is [0.5 0.5].

The skill transition matrix is set so that the stochastic process of skill is the same as the

benchmark case (adjusted to the quarterly period):

[

quu qus

qsu qss

]

=

[

0.995 0.005

0.005 0.995

]

.

The invariant distribution is

[

χu χs

]

=
[

0.5 0.5
]

.

We follow Krusell and Smith (1999, 2002) and set duration of unemployment to 1.5

quarters in good times and 2.5 quarters in bad times. In Krusell and Smith (1999, 2002),

unemployment rate is set to 4% in good times and 10% in bad times. To calibrate the

unemployment rates of skilled and unskilled separately, we compute µb
u/µb

s and µg
u/µg

s from

our baseline calibration:

µb
u

µb
s

= 2.28 and
µg

u

µg
s

= 2.15.

Then we pick the unemployment rate of the skilled and unskilled workers so that the average

unemployment rates are consistent with Krusell and Smith’s calibration. We set µb
u = 0.1390,
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µg
u = 0.0546, µb

s = 0.0610, and µg
s = 0.0254. After following the same procedure as in the

baseline calibration, the resulting Π matrices are:

Πbbu =

[

0.6000 0.4000

0.0648 0.9352

]

,

Πgbu =

[

0.7500 0.2500

0.1038 0.8962

]

,

Πbgu =

[

0.2500 0.7500

0.0232 0.9768

]

,

Πggu =

[

0.3333 0.6667

0.0385 0.9615

]

,

Πbbs =

[

0.6000 0.4000

0.0257 0.9743

]

,

Πgbs =

[

0.7500 0.2500

0.0429 0.9571

]

,

Πbgs =

[

0.2500 0.7500

0.0107 0.9893

]

,

Πggs =

[

0.3333 0.6667

0.0173 0.9827

]

.

For β, we follow the calibration of Krusell and Smith (1999, 2002). The transition prob-

abilities from state βi to state βj , ωij for the quarterly model are







ωll ωlm ωlh

ωml ωmm ωmh

ωhl ωhm ωhh






=







119/120 1/120 0

1/960 958/960 1/960

0 1/120 119/120






.

The values of βl, βm, βh follow Krusell and Smith (1999, 2002). In particular, βl = 0.9858,

βm = 0.9894, and βh = 0.9930.

We follow the same computational procedure as in the benchmark case. The average value

of k̄ in the fluctuating economy turns out to be around 46, and we conducted the experiment

at k̄ = 46.0. To highlight the difference from the benchmark model, Table 3 summarizes the
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asset level (in total wealth distribution)

constrained bottom 1% 10% 50% 90% 99%

η = u, ǫ = 0 1.807% 1.024% 0.681% 0.315% 0.286% 0.406%

η = u, ǫ = 1 0.629% 0.440% 0.321% 0.127% 0.171% 0.334%

η = s, ǫ = 0 1.427% 0.874% 0.551% 0.266% 0.325% 0.536%

η = s, ǫ = 1 0.218% 0.141% 0.090% 0.042% 0.162% 0.431%

Table 3: The values of λ for β = 0.9894, k̄ = 46, and z = b

results that corresponds to Table 1b in the main text. (That is, the result when z = b.) In

this experiment, the average value of λ for the unskilled workers is 0.283% (while the skilled

λ is 0.128%). This is much larger than the corresponding average numbers (0.110% with

low aggregate capital and 0.096% with high aggregate capital) in Krusell and Smith (2002).

When z = g, the average value of λ for the unskilled workers is 0.096% (while the skilled λ

is 0.067%). Again, this is larger than the corresponding average numbers (0.089% with low

aggregate capital and 0.087% with high aggregate capital) in Krusell and Smith (2002).
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