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Testing Under Non-standard Conditions in Frequenc
Domain: With Applications to Markov Regime Switching
Models of Exchange Rates and the Federal Funds Rate

Abstract

We propose two test statistics in the frequency domain and derive their ex-
act asymptotic null distributions under the condition of unidentified nuisance
parameters. The proposed methods are particularly applicable in unobserved
components models. Also, it is shown that the tests have considerable power
when applied to a class of Markov regime switching models. We show that,
after transforming the Markov regime switching mo el into the frequency do-
main representation, we only have to face the jssue of unidentified nuisance
parameters in a nonlinear context. The singularity problem disappears.

Compared to Hansen's (1992,1996) LR-bound test of the same Markov
regime switching model, our LM test performs better in terms of finite sample
power, except in the special case of the Markov-switching model in which the
model becomes a Normal mixture model. Our test needs only a one-dimensional
grid ;earch while Hansen’s (1992,1996) test requires a three-dimensional grid
search.

The LM test is applied to Markov regime switching models of exchange rates
and the Federal Funds rate. We used the same exchange rates data in Engel and
Hamilton (1990). The null of random walk is not rejected in the exchange rates
model. The null is rejected for the Federal Funds rate in subsample periods
1955:1-1979:9 and 1982:10-1995:11.

JEL Codes: C12,C15,C22.

Key Words: Markov Regime Switching, Fourier Transformation, Periodogram,
Power Spectrum, Asymptotics, Simulation, Bootstrap.



1 Introduction

In this paper, we propose two statistics for testing under the condition of unidentified
nuisance parameters. The proposed methods are particularly applicable in unobserved
components models. Also, it is shown that the tests have considerable power when

applied to a class of Markov regime switching models.

Markov regime switching models pose two special econometric problems: uniden-
tified nuisance parameters under the null and identical zero scores. Because of these
irregularities, formal statistical testing of the null hypothesis of no switching against
the alternative of Markov regime switching has not been commonly carried out. These
irregularities render the conventional tests (likelihood ratio, Lagrange multiplier, and
Wald) inapplicable because they no longer have standard x? distributions. Because
of these irregularities, formal statistical testing of the null hypothesis of no switching
against the alternative of Markov regime switching has not been commonly carried

out.

In the literature there are non-standard tests available for testing Markov regime
switching models. Hansen (1992,1996) uses a likelihood ratio bound to test Hamil-
ton’s (1989) model of GNP. Garcia (1992) derives an asymptotic distribution for the
likelihood ratio statistic by excluding the singularity points from the null hypothesis.
In Garcia’s (1992) framework, the null is not the “true null” where there is no Markov
regime switching, but a point close to it. Thus, the asymptotic distribution is not the
exact distribution but an approximation which is found to be close to the empirical

distribution.

The difficulty associated with testing Markov switching models is not so much
the problem of unidentified parameters under the null. The difficulty is that, the

information matrix is generically singular under the null for all values of the transition
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probabilities.

In this paper, we show that, after transforming the model into a frequency domain
representation, we only have to face the issue of unidentified nuisance parameters in
a nonlinear context. The intuition is somewhat similar to the suggestion by Lee and
Chesher (1986), who propose examining higher-order derivatives at the null in the
case of identical zero scores. Here we go to higher moments: the spectrum is the
summation of the second moments, and our tests are based on the derivatives of the
spectrum function. While the second-moment based methods allow us to bypass the
singularity problem, we can not apply the paper’s approach to test for a special case
of Markov-switching model in which the model becomes a Normal mixture model.

Likelihood-based approaches such as Hansen (1992,1996) do not have this problem.

Two test statistics — a Difference Test (DT), which is analogous to the LR test, and
a Lagrange multiplier (LM)-type test - are proposed here and their exact asymptotic
distributions are derived. The tests can be carried out eitherin a nonlinear regression
framework or in Whittle’s maximum likelihood framework. Under a set of regularity

assumptions, the two tests are shown to be asymptotically equivalent.

The asymptotic distribution can be obtained by simulating a Gaussian process
with a model-specific covariance function. Since the DT test requires estimating
parameters both under the null and the alternative, the LM test has an advantage in
terms of simulating and bootstrapping finite sample empirical distributions. We find
that the simulated and bootstrapped finite sample approximate distribution is very

close to the simulated asymptotic distribution.

The LM test is applied to Markov regime switching models of exchange rates and
the Federal Funds rate. We used the same exchange rates data in Engel and Hamilton

(1990). The null of random walk is not rejected in the exchange rates model for Engel



and Hamilton (1990)’s sample period 73:1V-88:1. In an expanded sample 73:1V-96:1,
the null cannot be rejected at the 1% level for all the three currencies. At the 5%
level of the asymptotic distribution, the null can be rejected for the French Franc and
the German Mark, but this rejection cannot hold at the 5% level of the bootstrapped
finite sample distribution. For the Federal Funds rate model, the null of random walk

is rejected at the 1% level in subsample periods 55:1-79:9 and 82:10-95:11.

Compared to Hansen’s (1992,1996) LR bound test, the LM test performs better
in terms of finite sample power.! However, at the 10 percent and 5 percent nominal
sizes, our tests have higher rejection rates than Hansen’s (1992,1996) test. At the
20 percent nominal size, the rejection rate of our test is lower than that of Hansen’s
(1992,1996) test. In terms of computional burden, our test is easier to implement
since the test needs only a one dimensional grid search while Hansen’s (1992,1996)

test requires a three-dimensional grid search.

To motivate and show our work in the frequency domain, we first review the
existing literature on testing when nuisance parameters are not identified under the
null and the problems associated with testing Markov switching models. In section 3
we discuss how the nonstandard problem can be transformed into a frequency domain
testing problem with only unidentified nuisance parameters under the null. Section 4
discusses the Difference Test (DT) and the LM test and their asymptotics in a general
setting. The implementation and applications of the tests are discussed in sections 5

and 6.

1Except for a special case of the Markov-switching model in which the model becomes a Normal

mixture model.



92 A Short Review of the Literature

The problem of unidentified nuisance parameters appears in many applications (see
Hansen (1991)). For conventional tests to have a standard x? distribution, the scores
are required to have zero expected values and positive variance, and the likelihood
function must be locally quadratic, so that the information matrix is locally constant
and positive semi-definite. After a Taylor expansion of the score function around the
true parameter values (evaluated at the maximum likelihood estimates), the Central
Limit Theorem can be applied to conclude that the maximum likelihood estimates
have an asymptotic normal distribution. Furthermore, a Taylor expansion of the
likelihood function around the unrestricted estimates and evaluation at the restricted
estimates lead to the conclusion that the standard likelihood ratio has a x? distribu-

tion.

Davies (1977, 1987) is one of the first to investigate the asymptotic theory for
testing in the context of unidentified nuisance parameters. His test statistic concen-
trates on the score function, which is a function of an unidentified parameter; in the

limit, the statistic converges to a Gaussian random process.

The weakness of Davies’ (1977,1987) test is that he does not derive the exact
asymptotic distribution of the supremurm test statistic. Using the bound of the statis-
tic in actual testing may have low power depending on how sharp the bound is. The
weak asymptotic optimality when sample size T — oo and the size — 0 does not

give us any hint about the finite sample performance.

Following Davies’ (1977,1987) work, there has been some recent development in
testing under unidentified nuisance parameters. Hansen (1991) investigates the prob-
lem in testing nonlinear factors in linear regression models. The test statistic he

employs converges asymptotically to a function of a chi-square process. Thus, Monte
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Carlo simulation can be used to approximate the distribution of the statistic. Note
that the distribution of the statistic depends on the covariance function of the chi-
square process, as well as the domain of unidentified parameters and the functional
form of the test statistic. Thus, the distribution is data- and model-dependent, which
makes general tabulation impossible. Nevertheless Hansen’s result is quite general,
because the functional form of the test statistic is quite general, subject only to some

regularity restrictions.

There has been some empirical work which applies the above stated theorems to
test Hamilton’s Markov switching model. Boldin (1990) uses Davies’s (1987) upper
bound test to determine the number of regimes; Garcia and Perron (1991) apply
Gallant’s (1977) test and a J-test of Davidson and MacKinnon (1981) for non-nested

models, and use Davies’ (1977, 1987) test to determine the number of regimes.

However, as Hansen (1992) points out, the asymptotic theories and testing pro-
cedures developed by Davies (1977, 1987) and Hansen (1991), which account for
unidentified nuisance parameters, do not allow for identical zero scores and singular
information matrix. Thus, these theorems cannot be applied to test Markov regime
switching models. Andrews and Ploberger (1992) also point out that their optimal
test procedure could not cover the problem of testing regime switching models with
unobserved states, since the singularity of the information matrix under the null

violates one of the regularity assumptions (Assumption 1 (f) in their paper).

Recognizing the difficulties associated with the first- and second-order derivatives
of the likelihood function under the null, Hansen (1992, 1996) focuses on the likeli-
hood surface and treats the likelihood as a function of unknown parameters. He then
applies empirical process theory to bound the asymptotic distribution of the stan-
dard likelihood ratio statistic. He finds that the distribution of the likelihood ratio

can be bounded by the distribution of the supremum of a Gaussian process. Like



Davies’ (1977, 1987) tests, Hansen’s (1992,1996) test could have power problems.
Non-rejection of the null may be due to the use of a bound as the critical value. Also,
Hansen’s (1992,1996) test is computationally intensive. For Markov regime switching

models, the test requires a three-dimensional grid search.

Garcia (1992) derived an asymptotic distribution for a likelihood ratio statistic by
restricting the Markov transition probabilities away from zero and one. However, the
singularity problem still exists in his test. His test is valid only if the null is not the
“true null” where there is no Markov regime switching, but a point close to it. Thus,
the asymptotic distribution is not the exact distribution but an approximation which

is found to be close to the empirical distribution.
To see this point, let us look at a simple Markov regime switching model:

¥y = ap+ 1S + €
P(Se=1|Si1=1)=p (1)
P(5;=0]| Sty = 0) =g,

where {y;} is a stationary process and ¢ is iid. N(0,0%). Asin Hamilton (1996),

we assume that the state S; follows a Markov chain that is independent of lagged y.

Let § = {ao,a1,0%} and v = {p,q}. Once the transition probabilities p,q are
restricted away from zero, the only way to test the null of no regime switching agé,inst
the alternative of Markov regime switching is to set the null to be ¢ = 0. The problem
is, even if p and g are restricted away from zero and one, under the null of oy = 0,
the information matrix will still be generically singular. To see this, we note that the
scores can be written as (for a proof, see Equation A.5 and Appendix A of Hamilton

1996):

dlog L(Yr | 6,
sty - ZealOnl0)



ZE alogP(yt |st, ) p(s, | vis0,7), ®

t==1 8,=0

where Yr = {y1,¥2,...,yr}. For model (1), the scores are:

ST 3logf(3/T,---,y1;9ma)

aao
T 1 €&
= ZZ S‘IyTr"'yyl;goa’Y)
t=1 a¢=0
T = Olog f(yr,-..,1;00,)
o 6011
= Z E 6‘( t)stp('s! ' Y1y - 7y1;00’7) (3)
t=1 ;=0
ST2 - alogf(yTy"':yl;aﬂaa)
’ 302
€ —
= 3 |yT» 'ay1;0017)'
Z;s,z_:o 204 ‘

We see that, even if we restrict p and ¢ away from zero or one, under the null of
o =0, p(se =1 yr,...,41;00,7) = constant, ST and ST are proportational to
each other and the information matrix is singular. Garcia’s asymptotic distribution
will hold only if the null is not the true null oy = 0. However, if the null is a point
where a; # 0, all the parameters in the model are identifiable under the null and we
would have a standard testing problem; i.e., all the conventional test statistics should

work.

So far there is still no exact asymptotic theory regarding the distribution of the
likelihood ratio test statistic for Markov regime switching models. In the follow-
ing sections, we show that, after transforming the model into a frequency domain
representation, the singularity issue is avoided and only the problem of unidentified

nuisance parameters in a nonlinear context remains to be addressed.



3 The Frequency Domain Problem

3.1 A Class of Markov Regime Switching Models

Let us consider the following type of a Markov regime switching model:

®(L)(y: — a0 — 18¢) = €&
or
ye=0g+ s+ & Y (L)e,
where
Plsy =1 |sei=1)=p
P(s; =018 =0)=¢q
¢, is white noise (0,0%), and ®(L) is the polynomial lag operator

®(L)=1-$L—...— Lt

4)

(5)

(6)

Note that E(s; | s.-a =1)=p and E(8; | $¢-:1=0)=1-1g, and one can write

the AR(1) representation of s as follows,

8 = 1—q+(p+q—1)sH+m

= 7o+ 7S8t-1+ He

(")

where y = p+ ¢ — 1. Given the transition process of s, the distribution of . is the

following,

if 8y = L,

1 —p with probability p
Be =

—p  with probability 1-p



if s = 0, (8)
q with probability 1-q
He =
g — 1 with probability q
We see that E(g, | 8;-1) = 0 and Ep, = 0. It is also easy to show that Uy s
uncorrelated with s,_, for all 7 > 1. Thus y, is serially uncorrelated white noise with

mean zero. The conditional variance is:

E(ui | s-i=1) = p(1-p)
E(pl|s-1=0) = g(1—9q)
Thus, the variance of u; is:
var(pe) = E(py) = p(1 = p)7 + ¢(1 - g)(1 — ), (9)

where 7 is the unconditional probability of state “1”; 7 = (1 — ¢)/(2 — p — q). With

this, we can write the spectrum of y, as,

_ advar(pe) _ . 2
Fy(w) - (1 — "/63}[1(—;10))(1 — 7e:cp(zw))+ I o l(emp(—-zw)) ' ’UGT(Q)
a%(p(l —'p)7r + q(l —q)(l - 7I'))+ I @_I(CCEP(—Z"LU)) |2 o? (10)

1 4 4% — 2ycos(w)
Note that for the Markov chain s,, the expected duration in state se=1is ﬁ, and
the expected duration in state s, = 0 is 1—_—1_-5; thus the expected period of each cycle

is:

1 1 2 _p—
)‘=1_P+l_q=(1—pil—?q) (11)
and we can write,
2
Fy(w) 7 +a’;511+23)05)18(—w1)’;8 :Z)_ q)+ | (Il"l(ea:p(—-iw)) Iz o?

of 7+1 1 . 2 2

Altq2- 27cos(w)+ | @7 (ezp(—iw)) |* @
= bg(w,v) + f(w,0) (12)



3.2 Unobserved Factor Moaodels

The Markov regime switching model outlined in section 3.1 is a special type of
unobserved-factor models. A example of linear unobserved factor models is the fol-

lowing:

o+ oz + $(L)er
1[)(.[4)1):,

Ye

2t

where 2 is the latent factor and (L), P(L) are polynomial lag operator functions.
As in general state-space models, the shocks to the factor, v, is assumed to be

uncorrelated with the “measurement error” €, at all leads and lags.

An interesting testing problem would be: whether there is such an unobserved

factor z that significantly affects the variation of ;.

In this case, the spectrum of y:

F(w) = adlp(e ™ol +|o(e™)Por

59(w,7) + f(w,0),

where § = o2, v = (¥,0v), 0 = (¢ o.). We see that, under the null § = 0, 7 is not
identified. The functional form of the spectrum has the same structure as that of
Markov regime switching models. Statistical testing for models of this type can be

addressed in the frequency domain as shown in the following sections.

3.3 The Testing Problem in the Frequency Domain

Suppose we have T observations {w:},t = 1,2,...,T, and the periodogram of y; is
I,{w;), where w; = Z%j-, i=0,1,...,[T/2]
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Define N = [T/2] = T/2if T is even, N = [T/2] = (T — 1)/2if T is odd. Let
€; = I, (w;)/ Fy(w;) (13)

If we assume ¢; ~ N(0,0?), under the null, {; ~ x%/2 for w; # 0,7; and & ~ x?
for w; = 0,7 (see Harvey, 1991). Thus ¢; is independent and identically distributed
except for j = 0 and j = T'/2 when T is even.

Even if we do not assume a Gaussian process for y,, as long as y; is a stationary
process, the distributional results for §; hold asymptotically (Brillinger, 1981; Brock-
well and Davis, 1995; Harvey, 1991). Thus our asymptotic theorems developed in the
next section always hold for a general stationary process y; under suitable conditions
outlined in Brillinger (1981). Franke and Hardle (1992) use the fact that ¢; is i.i.d in
large samples and the relation (13) to address the sampling uncertainty of spectrum

estimates by a bootstrap procedure of resampling from I, (w;).

For the Markov regime switching model, the testing problem can be addressed in

the following nonlinear regression framework:

log(1y(w;)) = log(Fy(w;)) + Elog(¢;) + (log(&;) — Elog(é;))

_‘ﬁ 7+1 -1 . 2 2 .
A 1+'y’—2fycos(wj)+|¢ (ezp(—iwy)) [P 0°} +uj,  (14)

Zj

= ¢+ log{
where u; is a zero-mean i.i.d. process.
Now the test we want to conduct is:
Hy: a =0

H]! (s3] # 0 (15)

Note that, after the transformation into a frequency domain problem, the test

can be easily carried out in a nonlinear regression context. It is still a nonstandard
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problem in the sense that, under the null, we have unidentified nuisance parameters

~ and A

It is interesting that, from the above specification, we can see when the test would
have low power against the Markov switching alternative in finite sample: If in the
DGP the a; is very small or the expected period A of the Markov chain is very long
compared to the sample length, then 5} would be very small and the power would
be poor. When the expected duration of each state is large, the whole finite sample
may have been collected from one regime and there would be no information about

the Markov chain in the sample periodogram.

Hansen (1991) derives the Wald and LM type statistics for testing under uniden-
tified nuisance parameters in a linear regression context with additive nonlinearity.
For the preceding testing problem in nonlinear regressions with unidentified nuisance

parameters under the null, we provide general asymptotic theory in the next section.

4 The General Framework

4.1 Tests Based on Nonlinear Regressions

The testing problem can be cast in the following general form:

z; = log{(f(z;,0)+bg(z;»7)} +uj

= F(z;:0,6,7) +u; (16)
Ho: & =0
B 6 40 17)
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Here, 8 is a vector of identified parameters under the null, and v is a vector of
. unidentified nuisance parameters. {z;},j = 1,...,N is a vector of nonstochastic

exogenous variables. u; is i.i.d. white noise WN(0,02).
Define

N
Qv = 50— Flasi 0,87 (18)
j=1

Given a set of regularity assumptions Al in Appendix A, the parameters in the
model can be estimated by minimizing Q. Statistical testing for 6§ = 0 can then be
carried out. To implement the test, we need to make some regularity assumptions to

ensure the consistency and asymptotic normality of the estimates.

Assumption 1 Let 3 = (0,6), suppose the true parameter is 1o, and denote f;(0) =

£(2,9), 9i(7) = g(z3,7), and Fj(,7) = log{f;(0) + 8g;(7)}. There ezists an open
neigborhood Ny, of 1o such that:

of .- . .
1.1 Fff' exists and is continuous on Ny,.

1.2 f; is continuous in 8 € © uniformly in j. That is, for every € > 0, there is a
v > 0 such that | f;(6) — £;(8) |< € whenever (8 — 65)'(6 — 6o) < v.

1.3 g; is continuous in the compact set T'.

1.4 % TiL1 Fi($1,7) Fi(2,7) converges uniformly in (1,%2) € Ny, for all yxT.

1.5 limyace N7 23 (5 (%0,7) = F5(9,7))° # 0 if & # o

Given these assumptions, the NLS estimates of the parameters based on minimiz-

ing n are consistent (see Amemiya, 1985, Theorem 4.3.1).
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The scores evaluated at the null 1o = (8o, 0) are:

bo
) = VRO |ym 225 O, >:1G1u = "
) = VRO = 25 80 5= 6 =" (19
where
P TUN® T VN i)
G = e = o (20)

Note that, the score Sy (y) measures the correlation between the residual u; and the
variable g;(7). Under the null, u; is ancorrelated with both G} and G?. Thus, for
any given 7,

ES™(y) = B{S) S¥(n)Y =0

Let:
Gi(y) = {G} GinY
G"y) = {Gi()s-- -GN}
G' = {Gi,....Gy} I=12
so that:

S¥(y) = (S5, SN (MY =GV () xu

Now, define the covariance function of the scores:

Vn(m,72) = E(SN(‘Yl)SN("/z)')=E(GN(’71)uu'GN(’72)')
(G ()G (1))
G'(m)G(n) G'(m)Gm)
G )G (n) G(n)G*(n)
V(v,7) (22)

14
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We assume the following:

Assumption 2 Letp € ¥, y €T,

2.1 imy_,o Vn(3,7) = V(¥,7) ezists, and is continuous uniformly in (,v) €
Ny, X T, where Ny, is a neighborhood of 1o.

2.2 V() = V(to,7) is positive definite uniformly over vy € I’
Let SN(7) = (57 (), SF (1)) Ivo,

2.8(a) SN(v) = S(v) on v € T, where S(y) is a mean-zero Gaussian process
with covariance function V(v1,72) = limy_c Vw(71,72), “=” denotes convergence

in distribution.
Or instead of 2.3(a), we assume

2.8(b) SN () is stochastically equicontinuous.

Assumption 2.3(b) ensures 2.3(a) (see Pollard, 1990, Theorem 10.2).

4.1.1 The Difference Test

Given v, let 1/3('7) = argmin@n(¥,7), the unrestricted estimates of 1 given ~; let
P = argminQn(¥,7) |u,= argminQn(1), the null estimates of ¥; and let (1,[;,'7) =
argmin@n(1,v) be the unrestricted estimates of (¥, 7).

Define the difference test statistic DT (analogous to the likelihood test) as fol-

lows:

NOE) — Qn($(1),7)
Qn(¥)
H(DTn(7)), (23)

DIn(y) =
DTN

i

15



where h(.) takes the form of either a supremum or an average over ¥ € T as follows:
DTy = h(DTn(7)) = sup DTn(y)
or
DTy = K(DTw(1)) = [  HOTWIM& (24)
H(.) is a integrable function and II(y) is a density measure over .

In order to get the asymptotic distribution of DTn(v), we need to make the

following regularity assumptions about the second moments of the objective function:

Assumption 3 Let Mn(4,7) = gfg-dpQN(zp,'y), and Ny, is a neighborhood of Yo,
3.1 Qn(,7) is twice differentiable in 3 for allyeT.
8.2 M(¢,7) = limy—co EMn(1,v) is conlinuous uniformly in (,7) € Nyo X I'.

3.9 Mn(¥,7) —» M (3, 7) for all (¥,7) € Ny xT, where “—” means convergence

in probability.

3.4 M(~) = M(3o,7) is positive definite uniformly over vy € T'.

Recall that ¥ = (8,6), and let R = (0,1)', so that the null hypothesis can be

written as:

Hy: R=*9v=0

Theorem 1 Under the set of assumptions 1, 2, 3, we have

DTn(Y) = 5}7'2‘S(‘/)'M(’Y)_lR(R'M(v)"R)“R'M(7)"3(7)

= S(rY(20 R M(1) ™ R)7'S(7) (25)

16



and

DTN = h{DTN("/)}
= h{S(7) (20, ' M(7)'R)7'5()},

where “ =" means convergence in distribution, S() is a zero mean Gaussian process
with covariance function V(vy1,7,) as defined in equation (21) and assumption 2.1,

and

S(y) = R'M(y)™'S(v)

The proof of Theorem 1 is shown in Appendix B. Note that, if v is known, then
the statistic DTy(v) converges to a x? asymptotically.

4.1.2 The LM Test

As mentioned earlier, the scores measure the correlation between the residual and the

random variable g(y). If the alternative is true and we only estimate the model under
the null, then the information of g(v) will be left in the residual, and the scores will
able to pick up the correlation. The LM test, like standard LM tests, is just based

on this observation.
Define
LMy(7) = SN (7YV (7)1 (y) (26)
to be the LM statistic estimated under the null given v € I.

The LM test statistic proposed is h(LMr(v)), where A(.) is a continuous function

which takes two forms:

17



T1: The supremum test:

LM = h(LMn(7)) = s;térr’{LMN(’Y)} @7

T2: Average Score test:

LM = h(IMy(n) = [ HEMy@)Ien, (28)

where H(.) is a integrable function and II(7) is a density measure over T.

Theorem 2 Under the set of assumptions 1, 2, 3, we have that

LMn(7) = 5(7)’(R'M('7)"R)"R'V(‘r)"R(R’M(*r)“R)"S(’r)
KLMy(7)) = h{g(v)'(R’M(‘r)”‘R)"R’V(v)"R(R’M('r)“‘R)"S('r)}

where “=>” means convergence in distribution.
The proof of Theorem 2 is provided in Appendix C.

Theorem 3 Under the set of regularity assumptions A2 as outlined in Appendiz A,
the Difference Test DT in Theorem 1 is asymptotically equivalent to the LM test in
Theorem 2.

The proof of Theorem 3 is provided in Appendix D.

When 7 is given, both the LMy (7) and DTn(y) have asymptotic x* distribution.
We have to estimate the model only under the null to carry out the LM test. As
the usual LR test, the DT test requires estimation both under the null and the

alternative.
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4.2 Tests Based on Asymptotic Efficient Estimates

We can also base our tests on an efficient estimation procedure.

Suppose we have T observations {y,},¢ = 1,2,...,T, and the periodogram of y,
is I,(w;), where w; = 24, j = 0,1,...,[T/2]. Let F(w;;8,6,7) denote the spectrum
density outlined in section 3.1, and 6 = 3} Define N = [T/2].

Whittle’s (1951) Maximum likelihood function in frequency domain is the follow-

ing:
1 N
Wn(8,6;7) = logL =—Nlog2r — 5 Zlog F,(w;;0,8,7)
7=1
N .
1 Iy (w;) , (29)
253 Fy(w;;0,6,7)
where

Fy(w;i0,6,7) = f(w;0) +8g(wj7)
y+1

9(wiin) = 1442 — 2vycos(w;)
f(w;;0) = | @7 (exp(—iwy)) | o
6 = (®,0%

For a general stationary process, estimation based on maximizing Wy is asymp-

totically equivalent to the ML estimator (see Harvey, 1991). Tests can be based on

this efficient estimation procedure.

We want to test § = 0. Under this null, « is not identified. Thus we still have a

nonstandard testing problem.

Denote = (8,6)', and the true parameter ¥ = (6,0)’. Given a nuisance

parameter 4, the estimation of ¢ is a standard procedure. We define the scores
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‘ evaluated at the null o = (80,0) as the following:

1 3WN dlog f(wj, bo)

Sgl('\/) = \/N lil'o 2\/_:’2—:1 f(w_noo) ) 90 2
= )G}
Z o e

_1__ 6WN g(w;,7)
o Ivo= 2¢‘,§‘f(w,,oo> D 5wy, o)

= Z f(wj’oo) - I)G?('Y)

S5 (1)

J—l
where
T ('3logFJ dlog fi(60)
G = o= ""g¢
Blo F; gi(v
G = 288, = 20 (30
Let
R B
61 - f(wj’eo) !

It is shown in Harvey (1991) that ¢'s are ii.d and E§; = 0, var(¢;) = 1. If we do

not assume normality, these results hold asymptotically (see Brillinger, 1981; Harvey,

1991).

Define the score vector

sN(y) =157 S¥(Y

The covariance matrix of the scores (the information matrix) is given by:

vn(r) = EESVMSV())
1 N GYG) Z,-lG"G”(v)

TV, GH1)G Tin Gz(v)’G’(v)
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and

V(v) = lim Vn(7)

N—=oco
1 7. GHw)G (w)dw I GYw)G*(w,v)dw
8 | 17, G*w, ) GHw)dw [T, GPw,7)G*(w,7)dw

Further, in Harvey (1991), it is shown that the second moment of the objective

function Wy is the following:

1 9 1 X
My (7) = Mn(o,7) = ENWWN(#’,’Y) =N Y. Gi(M)G;(v) = 2Vn()

Mey) = Jim My()=2v()

With all these results, we can define the DT test and LM test as follows:

4.2.1 The Difference Test (Likelihood Ratio Test):

2N (Wn((7),7) — W (%))
h(DTn(7)) (31)

DTn(7)
DTN

where h(.) takes the form of either a supremum or an average over ¥ € I' as follows:
DIn = h(DIn(y)) = sup DTn(7)
Y

or D TN

MDIn(1) = [ _ HDTW()(7)dy (32)

where H(.) is a integrable function and II(%) is a density measure over I

4.2.2 The LM Test

Define
LM(3) = 8V B2 8% (1) = 38V (1) V)5V () (3)
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to be the LM statistic estimated under the null given y € T

The LM test statistic proposed is h(LMn(7)). h(.) is a continuous function which

takes the two forms as in the DT tests.

As in the previous section, define

Wi ye) = E(SN (11)8" (1)),

so that V(y) = limy_e Vn(r,7). If we maintain the same assumptions about
“Vn(112) Mp(y) and SN(y) as outlined in the previous section, we would have

the following theorem.

Theorem 4 Under the set of assumptions 1, 2, 3, the test statistics DTn(7y) and

LMn(x) converge in distribution to

S(yYM(y)*R(EM(7)'R)R'M ()18
S(yY(R'M(v) " R)'S(7) (34)

T(v)

DTy and LMy converge in distribution to
T = h{3(y)(RM(7) R)"'S(1)}
where S(7) s a zero mean Gaussian process with covariance function V(71,72),

V(‘h,’h)

I}%VN('Yl,'Yﬂ
FE [Eﬁ-ll GYMYG ) T GhmVGim) }
AN W= | SN GHnYGll) £l GHn) Gi)

_ _L{ff,G‘(w,vx)’G‘(w,vz)dw I, GMw, 11 )G (w, 12)dw ](35)
B | 7 GP(w, )G (w,ya)dw [T, GP(w, 1) G (w, ma)dw

and

5(v) = RM(7)7'5(7)
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We can basically follow the same procedure as in the previous section to prove the
theorems. In proving the convergence of DTy(y) and LMy(7), one needs to use the

results regarding the consistency of the estimates from Brockwell and Davis (1995).

To summarize this section, we propose two test statistics, LMy and DTy, for
testing the null of § = 0. The LM test, like the usual LM tests, is designed to
capture the possible correlation between the residual and the omitted variable g(., y).
The DT test, like the usual LR test, reflect the difference between the objective
function under the null and the alternative. Under the null, v is not identified and
the statistics have non-standard distributions. We have derived their asymptotic
distributions and shown that under some regularity assumptions the two tests are

asymptotically equivalent.

5 Implementation of the Tests

In this section we discuss procedures to implement the tests in a simple Markov
regime switching model. The model are chosen for illustration purpose. We have
shown earlier that, the distribution of the test statistics is model-specific, since the
covariance function of the x? process is model specific. This prevents the general
. tabulation of the distribution. Based on the specific model in hand, one has to find
the covariance function of the x? process, either analytically or numerically, and
simulate or bootstrap the asymptotic and finite sample distributions. This section

serves as an illustration of the whole testing process.

Since the DT test requires estimating parameters both under the null and the
alternative, the LM test has an advantage in terms of simulating and bootstrapping

finite sample empirical distributions. The trade off can be the power, as in the
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situation of usual classical tests. For illustrative simplicity, we opt to simulate and

bootstrap the LM test in this section.

In the following subsections, we first illustrate the model and derive the covariance
function for the x? process (Lemmas 1 and 2). We then show procedures to simulate
the asymptotic distribution, simulate and bootstrap the finite sample distribution.
After the null distribution is obtained, we proceed to use some actual alternative

DGPs to investigate the power of the LM test.

5.1 Switching Between Two Normals with Different Means:

The Test

The model (hereafter we call it Model I) is given by:

w = atudte

where ¢ is N(0,0?). The test we want to conduct is:

Ho! oz;=0
H: o # 0

We restrict y =p+¢—1€ [~a,a], where a is some positive number less than
one. Note that in the time-domain maximum likelihood framework, under the null,
(p, q) are not identified and the information matrix is singular even if we treat (p, 9)

to be nuisance parameters and restrict them in (0, 1).
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From equation (12), the spectrum of y, is

2
~a__ atl s
Hlw) = A 1+ 42 — 2ycos(w) to

(37)

where ) is the expected duration of each cycle for the Markov chain S;, and v =

p+q—1, as defined before.

Following the form of equation {14), we have

log(I(w;)) = log(fy(w;)) + log(¢;)

of 7+1

A1+ 72 ~ 2ycos(w;

al T+1

M1+72— 2vcos(w;)
y+1

1492 — 2ycos(w;)

Zj

= ¢+ log{ )+02}+u,«

= log{ +oi} +u;

= log{é + 0%} +u;

. 3 . 2
where u; is a mean zero white noise, § = 1.

The original test is equivalent to the following test,

Ho: 6=0

Following the form of equation (16), we have

fi(8) = of

+1
gi(v) = 7

1+ % — 2ycos(w;)

The scores are:

i} 9 N, N
Sl = VN 62:; == 5 = 3G,
1= =
a 2 N g N
e = VNG b= = 72 b = 26l
1= i=1

We have the following lemma:
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Lemma 1 For Model 1, the covariance function for the Gaussian process S() in

Theorem 1 is equal to:

402 | 1 o
Vinm) = o3 P (42)
1

5 U & < /& / EN—
T-vm  (=m)(1-n)1-v)

The proof of Lemma 1 is achieved by using contour integral technique in the limit,

as shown in Appendix E.

From equation (42) we see that if 4 = 0, the covariance function is singular. So,
in addition to restricting v to be strictly less than 1 and greater than -1, we need to

restrict v # 0.

It is also easy to check that all the assumptions A2 in Appendix A are sat-

isfied by Model 1. In particular, in A2.1, limN_.oo%ZN 9%"-‘@ o 9%%:11 o=

i=1
1¥(y,7) is a finite nonsingular matrix. For A2.2 and A2S5, ﬁ}:?’ﬂ %ﬂﬂ;%;—'l,

* Ef_’:l F'j(zbl,’y)%%’,—"l l¢, will converge to integrals of some integrable, finite and

continuous function of w € [0,7] as N — o0. A2.3 and A2.4 can also be easily

checked. Thus, we have the following lemma:

Lemma 2 For Model 1, the following relationship holds for the moment matriz

1 1
M(r) = —2-;;V(7,7) = E;av('v)

Thus, the LM test is equivalent to the DT test, and both of these tests have asymptotic

distribution of a Chi-square process
T(v) = SV (™80, (43)
where S(7) is a Gaussian process with coveriance funclion

V(m,m) = RM(1) ' Vin,m)M(n) 'R (44)
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and

V(1) = V(1,7) = 20{R'M(7)'R

The proof of the lemma is shown in Appendix F.

To obtain the asymptotic distribution, one needs to simulate the Gaussian process

S(+) with covariance function V(11,72). Now,

V(r,72) = [0, IM (1) V(n, 1) M(72) ™! [ ? }

Note that

M(v)“[o] = {gzvo” [ }

1 1
3 ﬁt 1 = B 0
B -“1)121 1

of (L= )(1 —v)? 2)(1_ A4y __l_][o]

(1—'7’)(1—-"/)2 1-

2

ol
GgUu=7=7)
4

1- 7)’(1 -7?) —%
1

Hence, one gets:

Vi) = Ao0=m)0-%)" A +2)01+7)
Y1, 72 9 " P 1-7172

“0m,12) (45)

crla

We can see that the distribution of the Chi-square process

T(y) = S(vY V(%) *5(y)
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does not depend on model parameters o and o2. The distribution of T'(7) is the

same as the distribution of the Chi-square process

Sa(7Y Q7)™ Sa(7),

where Sq(7) is a Gaussian process with covariance function £(71,72) that depends

on v only.

The simulated asymptotic null distribution of the DT and LM test statistic for
Model 1 is provided in Table 1.2

5.2 Simulating and Bootstrapping the Approximating Dis-

tribution in Finite Sample

Having found the covariance function of the x? process, we now discuss procedures

to simulate the distributions.

As discussed earlier, although for Model I the distribution of the Chi-square pro-
cess does not depend on other identifiable model parameters 1 except 7, in general
the form of the covariance function V(m,v2) is model-specific and depends on the re-
gion T as well as other model parameters 3. One has to simulate the null distribution
of the tests according to a specific model in hand. Sometimes it may not be possible
to find an explicit expressions for V(m,72) and M (7), and one has to approximate
them with Viv(71,72) and Mn(7). In what follows, we discuss ways to approximate

the null distribution in finite sample.

Note that, since our testing problem is in a nonlinear framework with unidentified

nuisance parameters under the null, to simulate the pull distribution it is always desir-

2Garcia (1992) discusses a method for simulating a Chi-square process given a covariance function.

The algorithm is presented in Appendix G.
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able to estimate the model only under the null to avoid the local minimum/maximum
problem under the alternative; otherwise one has to search the whole parameter space
to ensure that the loss is minimized globally. A numerical minimization program can
easily end up with a local minimum, with a loss that is higher under the alternative
than under the null. Thus, in the following, we obtain the finite sample distribution

based on the estimates under the null only.

5.2.1 Procedure I: Approximate Distribution by Gaussian Parametric

Simulation

(1) First, estimate the model under the null aud get the parameter estimates P

and the residuals @;,7 =1,...,N.

(2) Calculate

Vn(m, ) = R My(n) Wv(n, 1) Mn(1) ' R, (46)
where
VN('h,’Yz) = E(SN(%)SN(%)')
} &,[zﬁ,éz(vl)é}(vz) zﬁlé;(vl)é}(vz)] W)
| o @G S GG |

and My (7) is accordingly defined.

(3) Simulate SV¥*(v) according to:

S'Nk(’y) — Z?’:l é’:(')l)&uff ‘ (48)
§V=1 é3(7)&uef

where ef, j=1,...,N are from N(0,1). Gaussian simulation is justified here because

SN (v) converges to a Gaussian process.
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Calculate
ol K o () =1 ENK
S (1) = R'My(7) 15V (v) (49)

and find the statistic

~ Nk ~ +Nk
T =sup S (Y Vn(2)8 " (1) (50)
¥

Repeating step (3) K times, k = 1,..., K, one gets an approximate distribution

for the test statistic Tl with sample size N (N = [T/2]).

The simulated distributions for Model I with K = 1000, different sample size
are reported in Table 1. We restrict v € T' = [0.05,0.95) + [—0.95,-0.05) with
increments of 0.01. We see that the simulated distributions are very close to the
asymptotic distribution, even with a finite sample of 200 observations. Moreover, the

distributions are not sensitive to the increments of v.

5.2.2 Procedure IT: Approximate Distribution by log Chi-square(2) Para-

metric Simulation

Under the null, we know that u; is a mean adjusted log x%(2) for Model 1. Thus, we
can simply generate ef from the log x?(2) distribution in step (3) above and find the
distribution of the statistic. The simulated distribution for the LM test with sample
size of 200 is reported in Table 2. We see that, this distribution is very close to
the asymptotic distribution and the distribution sirnulated by the Gaussian simula-
tion procedure. But the upper-end of the distribution is higher than the asymptotic

distribution and Gaussian simulated distribution.
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5.2.8 Procedure III: Empirical Finite Sample Distribution by Bootstrap

Procedure I uses the fact that asymptotically, S (v) is a Gaussian process, and thus
S7 () is simulated by a Gaussian simulation procedure. This approximation may not
be good in finite sample. Procedure II is better in finite sample in the sense that, if
y, is normal under the null, u; will come from a log x?(2) distribution, even in finite
sample. However, if we do not assume y; to be Gaussian under the null, the finite
sample distribution of u; is unknown.? In this case, the empirical finite sample null

distribution of the LM test can still be generated by a bootstrap procedure as follows:
(1) Estimate the model under the null and get the residual u; and estimated 2.
(2) Resample {u}} from {u;} with replacement, and calculate the LM statistic.

Repeating step (2) K-times for a large K, one gets the empirical null distribution
of the LM statistic.

The finite sample (with 200 observations) LM distribution by the bootstrap pro-

cedure is reported in Table 2.

Here, the bootstrapped distribution of the LM statistic can be viewed as an em-
pirical distribution as compared to the simulated asymptotic distribution. It is only
for comparison. In general, the bootstrapped distribution could be biased if the finite
sample distribution of LMy depends on parameters o}, since we do not know the
true of and we are bootstrapping LMp(6%). However, for Model I we know that the
asymptotic distribution does not depend on model parameter 0%, so the bias problem

is not particularly serious here in large sample.

3u; is still i.i.d. distributed asymptotically. See Brillinger (1981).
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5.3 Finite Sample Size and Power of the LM test

Having the null distributions in hand, we want to know how powerful the LM test
is. We also want to know the actual rejection rates for data generated under the null
when the test is implemented by the proposed procedure. In following we generate

data under the null and under several alternatives and report the rejection rates.

5.3.1 When data are generated under the null

We generate data of three sample sizes: 200 observations, 500 observations, and 1000
observations from the null. The DGP is a standard normal with mean zero and
a standard deviation of one. We calculate the LM statistic and report the actual

rejection rates in Table 3. The rejection rates are calculated from 1000 replications.

We see that the actual rejection rates are higher than the nominal size of the
simulated asymptotic distribution. But the rejection rates are close to the nominal

size, specially when we have a large sample.

5.3.2 When data are generated under the homoskedastic alternative

To see the power of the LM test against the Markov switching alternative specified

in Model I (Equation 36), we generate two types of observations according to:

Sample Type I: In equation (36), we set ap = ~1, oy = 2, p =009, ¢ = 0.75,
with o, = 0.5. In this sample, the data is less noisy and the two regimes have clear
separation (the mean of one regime is more than two standard deviations away from

the mean of the other regime).

Sample Type II: In equation (36), we set ap = =L,y =2,p=09, ¢ =0.75,

32



with o, = 1. In this sample, the data is more noisy than type I sample and the two
regimes have less clear separation (the mean of one regime is exactly two standard

deviations away from the other).

We generate a sample of Type I with 200 observations, three samples of Type 11
with 200, 500, and 1000 observations each, estimate the model under the null, and
calculate the LM statistic (28). We repeat the process for 1000 replications. The

rejection rates for both sample types under the alternative are reported in Table 4.

For Sample Type I with 200 observations, at the significance level of 5%, the power
is 100% according to the asymptotic distribution, and the power is greater than 99%

according to the finite sample bootstrapped distribution.

For Sample Type II with 200 observations, at the significance level of 5%, the
power is 96% using the asymptotic distribution, and the power is 93% if we use the
finite sample bootstrapped distribution. The higher noise reduces the power of the

LM test somewhat in the finite sample, but the test still has considerable power.

Now if we draw 500 and 1000 observations from Sample Type II, the power of the
LM test increases a lot even for the noisy data. In fact, at the 1% significance level
of the asymptotic distribution, the rejection rate is 100%; and at the 1% level of the
bootstrapped distribution, the rejection rate is 99.5% for 500-obs sample and 100%
for the 1000-obs sample.

5.3.3 Comparison between our test and Hansen’s (1992,1986) test

The comparison of the finite sample size and power of the LM test and Hansen’s
(1992,1996) LR bound test is reported in Table 5. We see that the LM test has worse

sizes than Hansen’s (1992,1996) test at the nominal sizes of 5 and 10 percent, but it
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has a better size than Hansen’s (1992,1996) at the nominal size of 20 percent. The
finite sample power performance of the LM test is better than that of the Hansen’s
- (1992,1996) test.* Note that our test is much easier to compute, we only have to do
an one-dimensional grid search, while Hansen’s (1992,1996) test needs grid search in

three-dimensions. This is why we are able to report rejection rates for 1000 trials.

5.3.4 When data are generated under the heteroskedastic alternative

A limitation of the test in frequency domain is that, the distribution is derived under
homoskedastic assumption. The spectrum is the summation of the information about
the unconditional second moments. It can’t identify conditional heteroskedasticity.
However, if the alternative DGP is Markov switching in both mean and variance, we
show that the LM test has power against this alternative and would reject the null.
When the null is rejected, further testing of heteroskedasticity can be carried out in
a standard fashion, using the regular LR, LM, or Wald tests. This is discussed in
detail by Hamilton (1996).

We generate three samples of 200, 500, and 1000 observations each according to

the following parameter setting:

Sample Type III: In equation (36), we set ap = -1, =2,p=1009, q = 0.75.
The volatility in each regime is different, with 0o = 1.3, 0y, = 1. In this sample, the
data is very noisy and the mean of one regime is within two standard deviations of

the other regime.

For these three samples, the rejection rates are shown in Table 6.

4One could otherwise say that comparison of the size and power of the LM test and those of
Hansen’s (1992,1996) test is not exactly accurate-the rejection rates reported in Hansen (1992,1996)

is only from 50 trials, so his rejection rates would have large standard errors.
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As we see, the LM test has power against the heteroskedastic alternative. The
statistic can detect the effect of the switching mean. Once the null is rejected, one

can proceed to carry other specification tests in a standard fashion.

5.3.5 When data are generated under the alternative with p + ¢ close to

one

As discussed in section 5, our test wound not work when p+¢ = 1,ory = p+¢—1=0.
How well will the LM test performance in the neighborhood of p + ¢ = 17 Here we
generate a Sample Type IV: In equation (36), we set ao = -1, 04 =2,p =06,
q = 0.395, and o, = 1. The sample size is 200.

The actual rejection rates from 1000 replications are reported in Table 7. We see

that the LM test has no power when p + g is close to one.

6 Applications: Test Results of Two Actual Data

Examples

6.1 Testing Whether Exchange Rates Have Two Regimes
With Different Means

Engel and Hamilton (1990) propose a Markov regime switching model for exchange
rates. The changes in exchange rate y; = € — €1 are modeled as draws from two
different Normals depending on the value of unobserved “state” or “regime” s, where
s, is modeled as a Markov chain process as in Model 1, e, equal to 100 times the log

of the exchange rate measured in Dollars per unit of foreign currency. Here we ask
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the question: Is the two-regime model for exchange rates significant against the null

of a single regime model?

The null here is that the log of exchange rates follow a random walk process. The
alternative is the Markov switching process as in Model I. We use the same data
sets as the one used in Engel and Hamilton (1990).5 They use three currencies: the
German Mark, the French Franc, and the British Pound. The sample period of their
data set is 73:IV to 88:1.

The estimated LM statistics for the three currencies are reported in Table 8. We
see that, for all the three currencies, the LM statistics are not significant, no matter
whether we use the asymptotic distribution in Table 1 or the bootstrapped finite

sample distribution in Table 2.

Since the test also has power against the heteroskedastic alternative as specified
in Engel and Hamilton (1990), the tests tell us that the estimated Markov regime
switching models for the three exchange rates as reported in Engel and Hamilton
(1990) are not significant against the null of a single state random walk process, at

least for the given sample they used in their paper.

To check the robustness of the results, we conduct the same test to an expanded
sample: 73:1V to 96:1 for the three currencies. The estimated LM statistics are re-
ported in Table 8. We see that, at the 1% significance level, the null of random walk
cannot be rejected, either by the simulated asymptotic distribution or by the boot-
strapped distribution, for all the three currencies. Even at the 5% significance level
of the bootstrapped distribution, the null cannot be rejected for the three currencies.
The null can be rejected at the 5% level of the asymptotic distribution, for French
Franc and German Mark, in the sample period 73:1V-96:1.

5We would like to thank Hamilton for providing the data sets.
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6.2 Testing a Two-Regime Markov Switching Model of the
Federal Funds Rate

The Federal Reserve changed the method of monetary control twice in October 1979
and October 1982. In the last change, the Federal Reserve altered the way of imple-
menting monetary policy from monitoring money supply to managing interest rates.
Specifically, the Fed has carried out monetary policy by either slowly easing or slowly
tightening the Federal fund target rates. Rudebusch (1995) finds that a change in the
Fed funds target is likely to be followed by another change in the same direction.

The Model in section 5.1 can be a proper statistical model to characterize the
two regimes in the Fed’s monetary policy, where regime 0 and 1 represent easing
or tightening. Let y: = 1t — T be the monthly changes in the Federal Funds
rate, where r; equal to 100 times the log of Federal Funds rate. The easing regime
would correspond to a negative mean state for yy; and the tightening regime would
be a positive mean state. The expected policy durations are characterized by the

transition probabilities p and g.

Monthly data of Federal Funds rate are obtained from the Federal Reserve Bank
of New York. We have data from January 1955 to November 1995. The sample is
divided into three subsamples-Sample 1: January, 1955 to September, 1979; Sample
2: October 1979 to September 1982; Sample 3: October 1982 to November, 1995.
The sample divisions are set according to the timing of the two major changes in the
Federal Reserve’s policy, which are likely to cause structural changes in the model
parameters. Huizinga and Mishkin (1986) and Roley (1986) have documented shifts
in the stochastic process of interest rates in October 1979 and October 1982. We
choose the subsamples because we want to test if there was significant policy regimes

(easing/tightening) during each policy period (before October 1979 and after October
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1982) and we don’t want the rejection of random walk simply because of structural

breaks.

The estimated LM statistic for the three subsamples are: LM = 21.98 for Sample
1; LM = 6.74 for Sample 2; LM = 28.38 for Sample 3. Thus, even at the 1%
significance level of both asymptotic distribution and the bootstrapped distribution,
the null of single policy regime can be rejected for both the periods 55:1-79:9 and
82:10-95:11, indicating different policy regimes in which the Federal Funds rate were
either slowly raising or falling. For the subsample 2, the null cannot be rejected at
the 1% level, but the sample is too small (only 36 observations) for any meaningful

conclusions.

Note that, the first sample has much more observations than the third sample,
yet the LM statistic is higher in the last sample period, during which the Fed has
carried out monetary policy by slowly adjusting the Federal Funds rate. This again
indicates the power of the LM test.

7 Conclusion

This paper proposes a framework for testing under nonstandard conditions in the
frequency domain, which can be applied to test the null of single state in a class
of Markov regime switching models. It is shown that if we transform the Markov
switching model into a frequency domain testing problem, we only have to face the
issue of unidentified nuisance parameters in a nonlinear context. Two tests, the DT
test and the LM test, are proposed and the exact asymptotic distributions are derived.

Under a set of regularity assumptions, the two tests are asymptotically equivalent.

The asymptotic distribution can be obtained by simulating a Gaussian process
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with a model-specific covariance function. Since the DT test requires estimating
parameters both under the null and the alternative, the LM test has an advantage in

terms of simulating and bootstrapping finite sample empirical distributions.

The LM test is applied to Markov regime switching models of exchange rates and
Federal Funds rate. We used the same exchange rates data in Engel and Hamilton
(1990). The null of random walk is not rejected in the exchange rates model for Engel
and Hamilton (1990)’s sample period 73:IV-88:1. In an expanded sample 73:IV-96:1,
the null cannot be rejected at the 1% level for all the three currencies; at the 5% level
of the asymptotic distribution, the null can be rejected for French Franc and German
Mark, but this rejection cannot hold at the 5% level of the bootstrapped finite sa\mple
distribution. For the Federal Funds rate model, the null of random walk is rejected

at the 1% level in subsample periods 55:1-79:9 and 82:10-95:11.

Compared to Hansen’s (1992,1996) LR bound test, under the null the LM test has
higher rejection rate at the nominal sizes of 5 and 10 percent but has lower rejection
rate at the nominal size of 20 percent. The LM test performs better in term of finite
sample power, except in a special case of the Markov-switching model in which the
model becomes a Normal mixture model, where the LM test is inapplicable. For our
test statistics, we have the exact asymptotic distribution, while Hansen (1992,1996)
has only the asymptotic bound for his LR statistic. Also his test requires three-

dimensional grid search while the tests here only need a one-dimensional grid search.

Finally, it should be noted that, testing the Markov regime switching models is
only a special application of the tests, the framework is particularly applicable to a

class of models with unobserved state variables.
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8 Appendix A

Assumption Al
Regularity assumptions about the objective function Qp:
For ¢ = (0,6) € ¥, v € I, assume

(1) @n(%,7) —p Q(,7) for all (¥,7) € (¥,T), where (¥,T') are compact set,
and Q(¢,T) = limy_.0o EQn(3,7) is continuous uniformly in (¥,v) over ¥ x I,

(2) @n(%¥,7) — Q(¢,7) is stochastically equicontinuous in (¥,7) over (¥,T).
(3) Forall yeT, Q(zb,'):) is uniquely minimized over ¢ € ¥ at 1.
Assumption A2

Regularity assumptions about the second order derivatives of Qn(¥,7) given «:
Let Ny, be an opén neighborhood of 1, given v € T, we assume

(1) limy_o & TN, 8—%12 o 6—%,11 lw= C(7) = 3V(7) exists, and is a finite

nonsingular matrix. V(¥) is defined in Assumption 2.

2) % }:f.’__l %ﬂ%ﬁ converges to a finite matrix uniformly for all ¢ € Ny,.

(3) %‘fb’—'f’l is continuous in (1,7) € Ny, x I' uniformly in j.

(4) Hmp oo 7 T { B2 = 0 for all (,7) € Ny, x T

(5) TN, F}(qbl,'y)a—?ﬁ%ﬁ—',’) ly, converges to an finite matrix uniformly for all

(¢11 ¢2) € N'Jlo
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9 Appendix B: Proof of Theorem 1

First expand Qn(#,7) around ") given 7,

Q1) = Q) + 2 | 5= )+ 50 B M) 6 (=),
where ¥ is a point between % and b,
By definition, 2922} | ;= 0. Thus:
Qn(P) = Qn(h1) = Qu(,7) + 55 — ) Mw() g (9 = )
We then have:

QN(¢) - Qn(d7) _
Qn($) 2QN(,/;)‘/_('/’ $)Mn(7) ls VN@ - %) (51)

Now, expanding the score

N(py) = \/—‘aQN »7)
around 1, we have
SN (h,7) = SN ($0,7) + VNMN($,7)(# — ¥o) (52)
and
0 = S¥,7) =SV (we,7) + VNMu(H,7)(H — vo)
VW@ - o) = —Mn($,7)'SV (1) = -M(1)7'S(r) as N —oco (53)

As for the limit of VN (z/~) — tpp), note that 1 is the solution when
Qn(,7) — ARY
is minimized.
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+ must satisfy:

VNSV(,7) - AR = 0
Ry =0

Expanding the last two equations around g, we have

VNSY(0,7) + My, 7)VN(@ — o) = AR’ = 0

R’('ﬁ—l/)o) =0
and
My(,7) R || VE@ o) | _ | SV(bo,7)
R 0 A 0
Thus:
VN@ ~ o) = —Mn(7)"(I - R(R'Mn(v)"'R)™ R'My(7)"")S™ ()
= —M(Y)™'(I - R(RM(7)"'R)'R'M(y)™")S(y) (54)

From equations (56) and (57), we have

VN —40) = Mn(y)" R(R'My(7)" R)™ R My(7)"*Sn(7)
= M(y)'R(RM(y)'R)7'R'M(v)7S(v) (55)

Plugging the above equation into equation (54), we get the result in Theorem 1

as desired. Q.E.D.
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10 Appendix C: Proof of Theorem 2

For the LM test, we estimate the score under the null, and denote the score as

$N(v) = SN(%,7). From equations (55) and (57) we have:

SN(y) = SY(%o,7) + VNMu($,7)(¥ — o)
= SM(y)+ Mn(7) * {-Mn(v)'(I + R MN()'R)'R My(1)™)SN (M)}
= (R(RMn(7)"R)"'R'Mn (1) ™H)S"(9)
= R(R'My(7)'R)'8N ()

= R(R'M(7)*R)7'S(v), (56)
where
8N () = R My(7)"' 8" (7) = RM(7)7S(7) = 5(7) (57)
Thus:
LMy(y) = S¥(V»TE()

= S(1)(RM)RRV()REM)TR)TS()  (58)

Q.E.D.
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11 Appendix D: Proof of Theorem 3

Given the assumptions A2 in Appendix A, one can show that

M(v) plim{Mn(7)} = plim{———Qn(¥,7)}

61/)31/;’
/)

OF; F;
N_.OONZ Bg o i v

Aim, *(G('r)G(v))= Am o szv(*r) V(7) (59)

]

Now replace V() by 202M(r) in Theorem 2 to get

LMn(v) = SOY(RM()"'R)™ R (203M (7)) R(E'M (7)™ R)™5(v)
= S(1)@oIRM(7) ' R)TS(y)

Thus, LM = k(LMn(7)) has the same asymptotic distribution as DT = h(DTn(y)).
Q.E.D.
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12 Appendix E: Proof of Lemma 1

In this case,

4
. 1 VN - 1=—
i GG ) = Jim z: -
. 1+7
10 V(2 —
]\}1_{20 GH(m)G(m) N AN alN }: 1+ 42 — 27sc08(w;)
= 4 / " 147
= wotJo 1493 — 2y2c0s(w)
_ 4 /”' 147
= onol Jor 1 + 42 — 272c08(w)
. 4 . 1+ T
200 VO -
Iél-tgoa (n)G'(n) 2ro} /_n 1 + 43 — 2m1c08(w)
. 1+m 147
2 2 -
l\}l—rgo GG () o alN X:(1 4% — 2yscos(w;) 1+ 7% — 2yocos(w;)
Irod Jox' 1+ 42 — 2micos(w)’ 1473 — 2vzcos(w)
To calculate the integral
- [ 147
h o= /_« 14 72 — 2ycos(w)
we set z = e; thus dw = —idz and 2cos(w) = z + 27!, and we have the following

contour integral along the unit circle in the complex domain,

1+ -1
—d
1472 —7(2+z“) P

1+7}{
2?2 — _th+1

- Il+7f — dz

I

T Nz=7)
Since | v |< 1, by the residual theory, we have
L o= IEE Y worl s lim—
v =Tz =
_ 2,,1 i A A 27

v 1= 1l-9
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Similarly,

I, = /" l+m 1+7
—n 1+ 4% — 2yic08(w) 1 + 7% ~ 275c08(w;)
14+7 147 -1
- foemer e e &
_ (Q+7)(1 +7) z
= -1 N (22 - L, +1)(22 - I l)dz
n Y2

I+m)A+7) z
I T2 f(2—7fﬂ2~%ﬂz—7fxl—7ﬂ@
- U4m)(d+7) }‘ f(2)dz

T2

where  f(z) = (z_.a,ll)(z—'yl)(z—’h )z =)

Again, by the residual theory, we have

14+7)(1+ 1 o1 -
I = IL%—‘—YQ*2 I*Zz_’z"ma m—l(z zk) f(Z)

where z = z; is the k’th singular point for f(2) inside the unit circle. Since all the

singular points are of order one, and m > 1, we choose m = 1, and

L+7)1 +72) z
I e 2 4 97+ { lim
: N7 L*“&—vﬂxz—wxz—h)
V4
+ lim — =
LY P T s
1+ 71172

- 20—wm0—%m—%)

Thus, we get the variance matrix in lemma 1.
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13 Appendix F: Proof of Lemma 2

Note that in Theorem 1,
5(7) = RM(x)*S()

and
DTu(r) = 58 (RM() RS
= S(7)(202R' M(v)*R)™'5()
and
E(8(m)S(m)) = R'M(’Yl)_lE(S(’Yl)5(72)')M(’72)_IR
= R'M(m) 'V(n,r)Mmn)7R
Thus,
E(S)3()) = BM@) V(MR
= 202R'M(7)"'R
QED.

14 Appendix G

The algorithm discussed in Garcia (1992) to simulate a Chi-square process with co-

variance function V(7;,72) is the following:

(1) Select a set of N values in the parameter space T, say, 71,721+ -2 IN-
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(2) Calculate the Cholesky decomposition P of the matrix:

V('Yh’h) V(’h, Y2) .- V(”hf)’N)
5= Virm) Vimm) - V(v
Vivw,m) Vamr) .- Vi)
where PP’ = %,

(3) Generate the Gaussian process as follows,
S(m) = Pue(l)
S(12) = Pue(l) + Pre(2)
S(w) = Pune(l) + Pyae(2) + ... + Pune(N)

where ¢(I) are i.i.d N(0,1).

times to generate a distribution of sup T'(y). Thus, we get the simulated asymptotic

null distribution of the DT and LM tests.
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Asymptotic | Approximate Dist | Approximate Dist

% of Distribution SMPL = 200 SMPL = 1000

Distribution | Critical Value |  Critical Value Critical Value
99% 9.65 8.12 8.60
95% 6.27 6.14 6.48
90% 5.12 5.07 5.16
80% 3.75 3.84 3.96
70% 3.04 2.99 3.11
60% 2.44 2.44 2.40
50% 2.04 2.07 1.93
40% 1.63 1.68 1.556
30% 1.32 1.33 1.20
20% 1.02 0.97 0.94
10% 0.65 0.64 0.60
5% 0.43 0.42 0.45
1% 0.16 0.20 0.24

Table 1: Asymptotic and Approximate Finite Sam

For Model 1

Note: For Table 1, the approximate distribution is simulated by the normal parametri

ple Null Distribution of the Tests

as discussed in the paper. v € [0.05,0.95] + [~0.95, -0.05] with grid = 0.01

49

¢ simulation



Asymptotic | Approximate Dist | Bootstrapped
% of Distribution by x? Distribution

Distribution SMPL =200 SMPL =200

CriticalValues | Critical Values | Critical Values
99% 9.65 10.51 11.44
95% 6.27 6.47 8.40
90% 5.12 5.13 6.83
80% 3.75 3.79 5.31
0% 3.04 3.01 4.28
60% 2.44 2.46 3.53
50% 2.04 2.04 3.03
40% 1.63 1.63 2.47
30% 1.32 1.32 2.02
20% 1.02 0.99 1.53
10% 0.65 0.67 1.04
5% 0.43 0.47 0.76
1% 0.16 0.27 041

Table 2: Comparison of Simulated and Bootstrapped Finite Sample Null Distribution
For Model 1

Note: For Table 2, ¥ € [0.05,0.95] + [-0.95, —0.05] with grid = 0.01
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Actual Rejection Rates Under the null
Nominal Size | SMPL = 200 | SMPL =500 | SMPL = 1000
1% 4% 3% 1%
5% 12% 11% 8%
10% 17% 15% 13%
20% 26% 25% 22%

Table 3: The Rejection Rates under the Null Using Asymptotic Null Distribution

Note: For Table 3, the LM statistics are calculated by sett

grid = 0.01. Rejection rates are calculated by 1000 replications of each sanﬁple

ing v € [0.05,0.95] + [-0.95,—0.05) with

Significance | Type I Sample | Type 1I Sample | Type II Sample | Type 11 Sample
Level SMPL =200 | SMPL =200 | SMPL =500 SMPL = 1000
1% 98% 88% 100% 100%
5% 100% 96% 100% 100%
10% 100% 97% 100% 100%
20% 100% 99% 100% 100%

Table 4: The Power of The LM Test Against Markov Switching Alternative For Model

1: Rejection Rates Using Asymptotic Null Distribution

Note: For Table 4, the LM statistics are calculated by setting v € [0.05,0.95] + [-0.95,—0.05] with

grid = 0.01. Rejection rates are calculated by 1000 replications of each sample
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Nominal size 20% 10% 5%
Size of the LM test | 22.8% 13.5% 7.7%
Power of the LM test | 95% 91% 88%
Size of Hansen’s test | 26%  10% 2%
Power of Hansen’s test | 86%  80% 74%

Table 5: Comparison of the Finite Sample Size and Power of the LM Test and
Hansen’s (1992) LR Bound Test For Model I

Note: in Table 5, for the LM test, the sample data is generated by using Hamilton’s (1989) point
estimates of the GNP model, setting the autoregressive parameters to zero. The sample length is

131. The power is calculated by 1000 replications. The size and power of Hansen’s test is from

Hansen (1995), Table IV. He uses the same DGP.
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Significance | Type III Sample | Type 111 Sample | Type III Sample
Level SMPL =200 SMPL =500 | SMPL=1000
1% 85% 99.5% 100%
5% 92% 100% 100%
10% 96% 100% 100%
20% 98% 100% 100%

Table 6: The Power of The LM Test Against Markov Switching Alternative For

Model 1: Rejection Rates When the True DGP is Regime Switching both in Mean

and Variance

Note: For Table 6, the LM statistics are calculated by setting 7 € [0.05,0.95] + [—0.95, —0.05] with

grid = 0.01. Rejection rates are calculated by 1000 replications of each sample

Nominal Size

1% 5%

10% 20%

Actual Rejection Rates

6% 12%

18% 28%

Table 7: Actual rejection rates when sample is generated under the alternative with

p+ ¢ = 0.995, or v = —0.005, Sample Size is 200

Note: For Table 7, the LM statistics are calculated by setting v € [0.05,0.95) + [—0.95, —0.05] with

grid = 0.01. Rejection rates are calculated by 1000 replications
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p —value p — value
Currency LM statistic | by Asymptotic | by Bootstrapped
Distribution Distribution
Engel & Hamilton (1990) Samples:73:1V-88:1
British Pound 5.09 0.11 0.23
French Franc 2.38 0.42 0.61
German Mark 3.18 0.29 0.48
Expanded Samples: 73:1V-96:1
British Pound 5.36 0.09 0.20
French Franc 7.30 0.03 0.07
German Mark 6.74 0.04 0.11

Table 8: The LM Test for o; = 0 in Model I

Note: For Table 8, v € [0.05,0.95] + [—0.95, —0.05] with grid = 0.01
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