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Abstract

We show how the interbank payment system can become illiquid following wide-scale
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is large enough, hits a key geographic area, or hits a “too-big-to-fail” participant, then
the coordination of payment processing can break down, and central bank intervention
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of coordination. The paper provides a theoretical framework to analyze the effects of
events such as the September 11 attacks.
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1 Introduction

The events of September 11, 2001 and to a lesser extent the North American blackout of August 14,

2003 highlighted the fact that parts of the financial system are vulnerable to wide-scale disruptions.

Moreover, the events underscored the fact that the financial system consists of a complex network of

interrelated markets, infrastructures, and participants, and the inability of any of these entities to

operate normally can have wide-ranging effects even beyond their immediate counter-parties. Not

surprisingly, the financial industry and regulators are devoting considerable resources to business

continuity measures and planning in order to strengthen the resiliency of the U.S. financial system.

The primary objective is to minimize the immediate systemic effects on the financial system of

large scale shocks.

At the apex of the U.S. financial system are a number of critical financial markets that provide

the means for both domestic and international financial institutions to allocate capital and manage

their exposures to liquidity, market, credit and other types of risks. These markets include Federal

funds, foreign exchange, commercial paper, government and agency securities, corporate debt,

equity securities and derivatives. Critical to the smooth functioning of these markets are a set of

wholesale payments systems and financial infrastructures that facilitate clearing and settlement.1

Operational difficulties of these entities or their participants can create difficulties for other systems,

infrastructures and participants. Such spill overs might cause liquidity shortages or credit problems

and hence potentially impair the functioning and stability of the entire financial system.

Wide-scale disruptions may not only present operational challenges for participants of the core

payment and securities settlement system, but may also induce participants to change behavior

in terms of how they conduct their business. The actions of participants have both the potential

to mitigate, but also to augment the adverse effects.2 Hence, understanding how participants

react when faced with operational adversity by their counter-parties is crucial for both operators

and regulators in terms of designing counter measures, devising policy, and providing emergency

1e.g. Depository Trust & Clearing Cooperation (DTCC), the Clearing House Inter-bank Payment System (CHIPS),
Continuous Linked Settlement (CLS), and the Federal Reserve’s Federal Funds and Securities Services.

2For a description of the extraordinary cooperative efforts undertaken by participants to overcome the problems
for the payment and securities settlement system caused by the events of September 11, 2001 see the 2001 annual
report of the Federal Reserve Bank of New York.
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assistance if called for.

The backbone of the payment and securities settlement system in the U.S. is the Federal Re-

serve’s Fedwire Funds Service R° (Fedwire). Fedwire is a Real Time Gross Settlement (RTGS)

system where payments are settled individually and with instant finality in real time. Over 9,500

participants use Fedwire to send or receive time critical and/or large value payments on behalf of

corporate and individual clients, settle positions with other financial institutions stemming from

other payment systems, clearing arrangements or securities settlement, submit federal tax pay-

ments and buy and sell Federal Reserve funds. The average daily number of payments was 527,000

and the average value transferred was around $2.0 trillion per day in the second quarter of 2005.

Fedwire continued to operate during the events of September 11, 2001 and August 14, 2003, but in

both cases the Federal Reserve had to intervene by extending the operating hours and by providing

emergency liquidity.

On September 11, 2001, the massive damage to property and communications systems in lower

Manhattan made it more difficult, and in some cases impossible, for many banks to execute pay-

ments to one another. The failure of some banks to make payments also disrupted the payments

coordination by which banks use incoming payments to fund their own transfers to other banks.

Once a number of banks began to be short of incoming payments, some became more reluctant to

send out payments themselves. In effect, banks were collectively growing short of liquidity. The

Federal Reserve recognized this trend toward illiquidity and provided liquidity through the discount

window and open market operations in unprecedented amounts in the following week. Federal Re-

serve opening account balances peaked at more than $120 billion compared to approximately $15

billion prior. Moreover, the Federal Reserve waived the overdraft fees it normally charges. On

September 14, daylight overdrafts peaked at $150 billion, more than 60 percent higher than usual

(see Ferguson (2003)). In the days after the blackout in the Midwest and Northeast commercial

banks borrowed $785 million from the discount window, 100 times as much as the week prior (see

Davenport (2003)).

Several recent papers (e.g. McAndrews and Rajan (2000), Bech and Garratt (2003) and McAn-

drews and Potter (2002)) advocate interpreting the payment decisions of banks participating in
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Fedwire as a game. McAndrews and Rajan argue that the timing of payments resembles a coordi-

nation game. This idea emerges in the formal analysis of the intraday liquidity management game

of Bech and Garratt where it is shown that the game played by banks is a type of coordination

game known as the stag hunt game. In this game there are two Nash equilibria, one which involves

early settlement of payments and the other late settlement. Evidence that banks select between

these equilibria is found by McAndrews and Potter who document the breakdown and reemergence

of coordinated payments following the events of September 11, 2001.

In what follows we shed some light on why coordination on early settlement occur in normal

times and how operational difficulties for participants in Fedwire are likely to effect equilibrium

selection. Our argument involves constructing a potential function for the game played by banks.

The potential function is used to summarize welfare changes that result from movements by in-

dividual banks. Changes by individual banks that improve individual welfare necessarily increase

potential. Hence, we look to adjustment processes that converge to potential maximizing strategy

profiles as indicators of how the system will operate. We are able to characterize circumstances

under which the system will converge to an early (versus late) payment equilibrium. Moreover,

we describe the policy options of the central bank and discuss when moral suasion is likely to be

effective. At first, we assume that all banks are identical. Subsequently, we introduce heterogeneity

across banks and are able to add new insight into the question, when a bank is “too big to fail?”.

In addition, we investigate how different degrees of interconnectedness between banks, i.e., network

topologies affect resiliency vis-à-vis wide-scale disruptions.

2 The n-player intraday liquidity management game

Envision an economy with n identical banks using a RTGS system operated by the central bank to

settle interbank claims. Banks seek to minimize their settlement costs. The business day consists

of two periods: morning and afternoon. Banks start the business day with a zero balance on

their settlement accounts at the central bank. At dawn each bank receives (n − 1) requests from

customers to pay a customer of each of the other (n−1) banks $1 as soon as possible. For simplicity,

assume that banks either process all the requests in the morning period or postpone them all until
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the afternoon period. In order to process a payment request a bank must have sufficient funds in

their account at the central bank. Banks without sufficient funds can borrow funds from the central

bank. Unlike most other central banks, the Federal Reserve does not require intraday overdrafts

to be backed by collateral for banks in good standing. Instead banks are charged a fee for such

overdrafts. Here, it is assumed that banks are charged a fee F > 0 per dollar if their settlement

account is overdrawn at the end of a period.3

Banks can avoid fees by delaying payments. However, delaying has several both private and

social cost associated with it. First, delay of settlement may displease customers and counterparties

as they are left with greater uncertainty or even explicit costs. They may demand compensation

or take their business elsewhere in the future. Second, delaying payments creates an exposure to

operational incidents that may prevent the settlement of payments before the close of business.

Third, the process of delaying might it self be costly as increased resources have to be devoted to

managing intraday positions. Fourth, as argued by Kahn et al. (2003) delay increases the length of

time participants may be faced with credit risk exposures vis-à-vis each other. We assume that the

cost of delaying faced by banks is D > 0 per dollar. Hence, banks have to trade-off the potential

cost of mobilizing liquidity against the cost of customer dissatisfaction.

Formally, the player set is N = {1, 2, . . . n}. The set of strategies for each bank i is Si = {m,a}

where m denotes “all requests processed in the morning” and a denotes “all requests postponed

until the afternoon.” Let N−i = N\{i}. The settlement cost of bank i depends on the strategies

played by all banks and is given by c(si, s−i) where si ∈ Si is the strategy played by bank i and

where s−i ∈ S−i = ×j∈N−iSj is the (n− 1) dimensional profile of opponents strategies. The price

that banks charge for processing is assumed to be fixed and for simplicity it is set to zero. The

payoff function for bank i is thus equal to the negative of the settlement cost function, that is

πi(si, s−i) = −c(si, s−i) (1)

The settlement cost a bank incurs by playing morning is simply the overdraft at noon times the

3See Coleman (2002) for a discussion of the evolution of the Federal Reserve’s intraday credit policies.
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overdraft fee per dollar. The overdraft at noon is given by the number of other banks playing

afternoon, i.e., the number of banks from which the bank does not receive an offsetting payment

(dollar) in the morning. On the other hand, if a bank plays afternoon then the settlement cost is

the amount of payments delayed times the delay cost per dollar. Formally, the payoff function of

bank i, for each strategy choice in Si, is given by

πi(m, s−i) = −(n− 1− |s−i|m)F (2)

πi(a, s−i) = −(n− 1)D (3)

where |s−i|m is the number of banks playing the morning strategy in the strategy profile s−i. In

the following, we restrict ourselves to equilibria in pure strategies.

Example 1 In the 2-player case the game is given by

Bank 2

m a

Bank 1 m 0,0 −F,−D

a −D,−F −D,−D

If D > F then (m,m) is the unique Nash equilibrium. If D < F , then the game is a stag hunt

game. Both (m,m) and (a, a) are equilibria, and (m,m) is the efficient equilibrium.

Due to the structure of the payoff function we can transform the game into an “aggregation

game” (see Rausser et al. (2000)) where it suffices to keep track of the number of opponents playing a

particular strategy. When bank i plays the morning strategy its payoff depends only on the number

of opponents that play the strategy m. When bank i plays the strategy a, its payoff is independent

of the strategies played by the opponents. Hence, the payoff functions πi can be replaced with

the functions π̃i(·) : Si × Z+ → R that are specified as follows: π̃i(m, |s−i|m) ≡ πi(m, s−i) and

π̃i(a, |s−i|m) ≡ −(n− 1)D. The equilibria of the game are given by the following

Proposition 1 If intraday liquidity is relatively cheap, i.e., F < D then the unique Nash equilib-
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rium is (m, . . . ,m). If intraday liquidity is relatively expensive, i.e., F ≥ D then (m, . . . ,m) and

(a, . . . , a) are the only Nash equilibria.

Proof. From Eqs. (2) and (3) we have π̃i(m, 0) = 0 ≥ π̃i(a, 0) = −(n − 1)D < 0 for every

i ∈ N . Hence, (m, . . . ,m) is a Nash equilibrium regardless of the relative magnitudes of F and D.

Suppose F ≥ D. Then, we have π̃i(a, n − 1) = −(n − 1)D ≥ π̃i(m,n − 1) = −(n − 1)F for every

i ∈ N . Hence, (a, . . . , a) is a Nash equilibrium if F ≥ D. We now argue that there are no other

Nash equilibria for any positive values of F and D. Suppose 0 < |s−i|m < n then at least one bank

i ∈ N plays the strategym and at least one bank j ∈ N plays the strategy a. For this to occur it has

to be true that π̃i(m,
¯̄
s−{i,j}

¯̄
m
) ≥ π̃i(a,

¯̄
s−{i,j}

¯̄
m
) and π̃j(a,

¯̄
s−{i,j}

¯̄
m
+1) ≥ π̃j(m,

¯̄
s−{i,j}

¯̄
m
+1).

From Eq. (3) we have π̃j(a,
¯̄
s−{i,j}

¯̄
m
) = π̃j(a,

¯̄
s−{i,j}

¯̄
m
+ 1), and hence from the preceding strict

inequalities, π̃i(m,
¯̄
s−{i,j}

¯̄
m
) > π̃j(m,

¯̄
s−{i,j}

¯̄
m
+ 1), which by Eq. (2) is a contradiction.

Whenever F ≥ D the morning equilibrium (m, . . . ,m) is the efficient equilibrium in terms of

minimizing both individual and aggregate settlement costs. In the analysis that follows we assume

that banks initially have a presupposition to coordinate on the efficient, morning equilibrium and

we examine the impact of a disruption that forces some banks to switch to the afternoon strategy.

We are interested in the strategic adjustment made in response to a disruption by both banks that

are temporarily affected and unaffected banks. In particular, we are interested how this influences

equilibrium selection after the disruption is over.

3 Wide-scale disruptions

The Interagency Paper on Sound Practices to Strengthen the Resilience of the U.S. Financial System

issued by the Board of Governors of the Federal Reserve System, the Securities and Exchange

commission and the Office of the Comptroller of the Currency defines a wide-scale disruption as an

event that causes a severe disruption or destruction of transportation, telecommunication, power,

or other critical infrastructure components across a metropolitan or other geographical area and

the adjacent communities that are economically integrated with it; or that results in wide-scale

evacuation or inaccessibility of the population within normal commuting range of the disruption’s
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origin.

In the context of our model, we take a wide-scale disruption to mean an event that prevents

a subset of banks from making payments as normal. Specifically, some banks are temporarily

forced to play to the afternoon strategy, which takes the system out of equilibrium. The size of

the disruption can be measured by the share of banks that are disrupted. After the disruption we

assume that the disrupted banks again become operational and that they are, like the non-disrupted

banks, free to choose either the morning or afternoon strategy.

The question we ask is: Will the disruption trigger a move to the inefficient afternoon equilibrium

or back to the efficient, morning equilibrium? The answer depends on the cost parameters and size

of the disruption. However, it turns out that the game played by banks is a potential game a

la Monderer and Shapley (1996), and as such the dynamics of the system are conveniently and

transparently understood by examining the potential function.4 Adjustments that increase the

payoff of individual banks raise the value of the potential and adjustments that hurt banks lower

it. Hence, we can visualize which direction the system will move following a disruption simply by

looking at the “slope” of the potential function at the starting point produced by the disruption.

3.1 Potential function

We now turn to a formal characterization of the potential function we utilize to analyze the n-player

deterministic intraday liquidity management game.

Definition 1 (Potential Function) A function P satisfying for every si, s0i ∈ Si, s−i ∈ S−i and

i ∈ N ,

πi(si, s−i)− πi(s
0
i, s−i) = P (si, s−i)− P (s0i, s−i)

is a potential function for the n-player deterministic intraday liquidity management game.

The function P is unique up to an additive constant. In order to pin down a particular function

4A game with a potential function is called a potential game. A potential function contains all the information
needed to compute the Nash equilibria of a potential game. Local maxima of a potential function correspond to Nash
equilibria. At a local maximum no unilateral deviation increases the potential of the game. At a global maximum
there is no alternative strategy profile that has higher potential.
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we choose the normalization P (m, ...,m) = 0. The following example illustrates the construction of

the potential function for the 2-player intraday liquidity management game

Example 2 In the 2-player case, changes in bank i’s payoff that result from unilateral deviations

are given by

πi(m,m)− πi(a,m) = D

πi(m,a)− πi(a, a) = D − F

Hence, by Definition 1 the potential function has to satisfy

P (m,m)− P (a,m) = D P (m,a)− P (a, a) = D − F

P (m,m)− P (m,a) = D P (a,m)− P (a, a) = D − F

This implies that P (m,a) = P (a,m). Letting P (m,m) = 0 we have

P (s) m a

m 0 −D

a −D F − 2D

If F < 2D then (m,m) globally maximizes P , otherwise (a, a) is the global potential maximizer. If

D < F < 2D then (a, a) is a local maximum. If F > 2D then (m,m) is a local maximum.

The function P maps strategy profiles into real numbers and hence for large numbers of players

it is difficult to visualize. However, in this application the value of the potential function depends

only on the total number of players playing the morning strategy. Hence, we can summarize P with

a new function P̃ : Z+ → R, defined in the following way. For any x ∈ {0, 1, ..., n}, P̃ (x) is equal

to the value of the function P (·) evaluated at any strategy profile in the set {s ∈ S : |s|m = x}.

From Eqs. (2) and (3) we have that

P̃ (x)− P̃ (x− 1) = (x− n)F + (n− 1)D (4)
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for all x ∈ {1, . . . , n}. Solving Eq. (4) by induction and assuming that P̃ (n) = 0 yields (see

appendix A)

P̃ (x) =
1

2
(n− 1− x)(n− x)F − (n− x)(n− 1)D (5)

which is a second order polynomial in x. For large n there is no discernible difference between n

and n− 1 and thus the potential function is approximately equal to

P̆ (θ) = n2(
1

2
θ2F − θD) ' P̃ (x) (6)

where θ ≡ n−x
n is the share of banks playing the afternoon strategy. Hence, θ = 0 corresponds

to (m, . . . ,m) and θ = 1 corresponds to (a, . . . , a). For the ease of exposition, we shall use the

latter version of the potential function below and treat it as a differentiable function defined over

θ ∈ [0, 1].5 The global and local maxima of P̆ (θ) are summarized in the following lemma (without

proof).

Proposition 2 (a))

a) 1. If F < D then θ = 0 globally maximizes P̆ and there are no other local maxima.

b) If D ≤ F < 2D then θ = 0 globally maximizes P̆ and θ = 1 is a local maximum.

c) If F = 2D then both θ = 0 and θ = 1 globally maximize P̆ .

d) If F > 2D then θ = 1 globally maximizes P̆ and θ = 0 is a local maximum.

4 Adjustment process

Monderer and Shapley (1996) specify a simple adjustment process that converges to a Nash equilib-

rium of a potential game in a finite number of steps. In their process it is assumed that, whenever

5The conclusions regarding the dynamics that are drawn from examining P̆ are the same as those that would
be derived from P̃ from almost all starting points. The only difference is that P̃ allows for the possibility of two,
instead of one, minimizers. In this case, individual banks are indifferent between making an adjustment that move
the system from one minimum point to the other. Addressing this issue complicates the analysis but do not affect
the results in any meaningful way (Details are available in our previous working paper). For this reason, and because
the situation is unlikely to arise in a system with many particicpants such as Fedwire, we ignore it here.
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the strategy profile is not a Nash equilibrium, one player deviates to a strategy that makes him

better off. Unilateral deviations that increase the payoff of the deviator raise the value of the

potential while unilateral deviations that increase the payoff of the deviator lower it. Hence, once

a Nash equilibrium is reached (there are no more self-improving, unilateral deviations) the process

terminates and the potential function will be at a maximum in the sense that its value cannot be

increased by varying any single player’s strategy. Endpoints of the adjustment process are local

maxima of the potential function, i.e., Nash equilibria.

From Eq. (6), we have that the potential function is a second order polynomial in θ with a

minimum at θ∗ = D
F . If the slope of P̆ (θ) is negative then unilateral deviations to morning strategy

are profitable for banks. Unilateral deviations to the afternoon strategy are profitable when the

slope is positive. Hence, the adjustment process has the following properties:6

Proposition 3

a) Suppose F < D. The simple adjustment process leads to the equilibrium (m, . . . ,m) from any

starting point.

b) Suppose F = D. The simple adjustment process leads to the equilibrium (m, ...,m) from any

starting point except θ = 1. At θ = 1 all players are indifferent between playing a or making

a unilateral deviation to m.

c) Suppose D < F . The simple adjustment process leads to the equilibrium (m, ...,m) from

starting points on the left of θ∗ and to the equilibrium (a, ..., a) from starting points to the

right of left θ∗.

Proof. See Appendix B

Assume that the system intially is in the efficient morning equilibrium, but that it is hit by a

disruption which forces a set of banks to play the afternoon strategy. The share of banks playing

the afternoon strategy changes from 0 to θ0 > 0. The different cases outlined in Prop. 3 are

6The convergence results for the simple adjustment process are, in fact, quite more general. In fact, the conditions
presented for convergence of the simple adjustment process apply to any best-response adjustment process based on
arbitrary orderings of sequential unilateral deviations or simultaneous deviations.
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illustrated in Fig. 1. The figure displays the potential function, P̆ (θ), for different values of D

and F. The case of F < D is illustrated by the lowest (dark blue) curve. As indicated by the first

property of Prop. 3 all deviations to m are profitable after a disruption of any size in this case.

The implication is that the system will return to the (efficient) morning equilibrium regardless of

the size of the disruption. In other words, the system is resilient to a disruption of any size in

terms of maintaining coordination on early processing. The same is true for the case where F = D

(illustrated by the red curve) save the situation where the disruption hits all n banks (θ0 = 1), cf.

the last property of Prop. 3

10.90.80.70.60.50.40.30.20.10

Share of Banks Playing Afternoon 

 Potential

F < D, F = D, D < F < 2D, F = 2D, F > 2D

Figure 1: Potential Function, P (θ)

Instances of the case F > D are illustrated by the top three curves in Fig. 1, i.e., the green, the

purple and light blue curves, respectively. In each instance disruptions that are sufficiently large

will move the system to a point to the right of the minimum, i.e., θ0 >θ∗, causing the banks to

converge to the (inefficient) afternoon equilibrium (θ = 1). The higher the cost of liquidity from the

central bank, F , is relative to the cost of delay, D, the smaller θ∗ is and thus the larger is the “basin

of attraction” for the afternoon equilibrium. For example, if F = 2D then the disruption needs to
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hit half or more of the banks in order for the system to converge to the inefficient equilibrium.

In the situation, where a wide-scale disruption hits and the system is either likely to or is in

the process of converging to the inefficient equilibrium, the central bank might intervene in order

to ensure the smooth operation of the payment system. Lacker (2004) provides a detailed overview

of the Federal Reserve’s response to the terrorist attacks on September 11, 2001. Shortly after

the attacks, the Federal Reserve issued several statements to the effect that the Fedwire was open

and operating and that the discount window was available to meet liquidity needs. Moreover, the

Federal Reserve began to make liquidity widely available and for the period from September 11

through September 21, it waived the daylight overdraft fees for all account holders and eliminated

the penalty normally charged in excess of the effective Federal Funds rate on overnight overdrafts.

Both policy responses are consistent with this model. The statements can been seen as an attempt

to encourage the banks to keep coordinating on the efficient equilibrium. Moreover, the infusion

of liquidity and elimination of fees served to lower the cost of liquidity F to virtually zero so that

deviations to m became profitable. Once the system has returned to the morning equilibrium (or

had made sufficient progress) the original F could be restored.

5 Banking structure and network topology

So far, we have considered an economy with a homogenous banking structure consisting of n

identical banks. Obviously, this is - in many ways - an over-simplification. For example, in Fedwire

the top 100 participants account for 95% of the value and 80% of the volume. Moreover, it is often

argued that the financial sector’s resiliency to different types of shocks depends critically on the

interconnectedness of the interbank market cf. Allen and Gale (2000). In the following, we provide

a simple extension of our model that allows us to investigate how both heterogeneity across banks

and different degrees of completeness of interbank relationships might impact the resiliency of the

interbank payment systems to (wide-scale) disruptions.
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5.1 Mergers and payment topology

Envision a new economy with one large bank and a number of smaller identical banks. Assume that

the large bank is created by merging k > 1 out of the n identical banks in our previous economy.

For notational convenience, assume that banks 1 through k < n are the ones that are merged.

Denote the merged bank by k. The new player set is eN = {k, k + 1, . . . n}. A key distinction

is that transfers between customers of the merged bank are handled internally within that bank.

Consequently, following a merger, the total volume of payments transferred via the RTGS system

decreases. The larger the merger the larger the decrease. Specifically, the total volume (and value)

of payments transferred falls to n(n− 1)− 2(k − 1), compared to n(n− 1) before the merger.

In addition, we assume that a merger can lead to a shift in the payment flow. For example,

the merger might lead to an increase in the volume of transactions involving the merged bank.

This would occur , for example, if there are e.g. economies of scale or scope in the processing of

payments. We do not formally model payment flows as an endogenous variable. Rather we consider

different exogenous payment flow effects by including the parameter α ≥ 0, which represents the

fraction of each dollar that small banks continue to transact with each other following a merger.

The remaining 1− α of each dollar small banks transacted with each other before the merger now

goes to the merged bank. For example, if the merger is size k, each small bank sends α dollars to

each of the other small banks and sends k + (1 − α)(n − k − 1) dollars to the merged bank. We

keep the total payment flow fixed, and hence the large bank sends the same amount to each of the

small banks.

If α = 1, then there is no shift in payment volume between the large and the smaller banks, but

the analysis of the banking system is still effected by the merger because there are no longer any

coordination issues associated with transfers within the merged bank. Values α < 1 correspond to

the scenario discussed above where the small banks are losing market share vis-à-vis the merged

bank. If α > 1, then the small banks are gaining market share vis-à-vis the merged bank. In order

to keep all payment flows positive we require α ≤ n−1
n−k−1 = ᾱ.

By varying α, we create different degrees of interconnectedness or network topologies. If 0 <

α < ᾱ, we have a complete graph, where all banks exchange payments with each other. In the two
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special cases where α = 0 or α = ᾱ, we get topologies where not all banks are exchanging payments

with each other. If α = 0, then we have a star graph where the small banks do not interact with

each other, but instead, only interact with the “money center” bank. If α = ᾱ, then we have a

disconnected graph where the small banks are interacting with each other, but not with the merged

bank, which only process internal transactions. Examples of the payment flows in an economy with

five banks before and after a merger of size k = 2 are shown in Fig. 2.

1

5 2

34 45

31,2

45

31,2

45

31,2

0 < α ≤ 1  α = 2  α = 0

Figure 2: Payment flows before and after merger (n = 5 and k = 2)

5.2 Potential function for the heterogenous economy

The payoff function of the merged bank k is given by

πk(m, s−k) = −(k + (1− α)(n− k − 1))(n− k − |s−k|m)F (7)

πk(a, s−k) = −(k + (1− α)(n− k − 1))(n− k)D (8)

The payoff functions of the i = k + 1, ..., n small banks are given by

πi(m, sk, s−{i,k}) = −(n− 1− (k + (1− α)(n− k − 1))1sk=m − α
¯̄
s−{i,k}

¯̄
m
)F (9)

πi(a, sk, s−{i,k}) = −(n− 1)D (10)

where 1sk=m is an indicator function taking value one when sk = m and zero otherwise.

Example 3 Consider the 4-player case and assume that banks 1 and 2 merge (i.e., k = 2). The

payoffs of the merged bank are given by π2(m,a, a) = −2 (3− α)F , π2(m,m, a) = π2(m,a,m) =
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− (3− α)F , π2(m,m,m) = 0, and π2(a, ·) = −2 (3− α)D where the first argument of π2(·) is the

strategy of the merged bank. The payoffs of the small banks (3 or 4) are given by πi(m,m, a) = −αF ,

πi(m,m,m) = 0, πi(m,a, a) = −3F , πi(m,a,m) = − (3− α)F , and πi(a, ·) = −3D where the first

argument of πi(·) is the strategy of bank i, the second argument is the strategy of the merged bank

and the third argument is the strategy of the other small bank.

As before, the payoff to a bank, that plays afternoon, is independent of the strategies played

by the opponents and the structure of the payoff function allows us to transform the game into

an aggregation game. For the small banks it suffices to keep track of the bank’s own strategy,

the strategy of the large bank and the number of other small banks playing the morning strategy.

Hence, the payoff functions πi, i 6= k, can be replaced with the functions π̂i(·) : Si × Sk × Z+ → R

that are specified as π̂i(si, sk,
¯̄
s−{i,k}

¯̄
m
) ≡ πi(si, sk, s−{i,k}). For example, in Ex. 3, π̂i(m,m, 0) =

πi(m,m, a) = −αF . For the merged bank, it suffices to keep track of it’s own strategy and the

number of small banks playing the morning strategy. Thus, we define π̂k(·) : Sk × Z+ → R as

π̂k(sk, |s−k|m) ≡ πk(sk, s−k). Thus, in Ex. 3, we have π̂2(m, 0) = π2(m,a, a) = −2 (3− α)F . For

each strategy choice of the big bank, the value of the potential function depends only on the total

number of small banks playing the morning strategy. Hence, we can proceed using a potential

function for the game, P̂ (·) : Sk × Z+ → R, defined to satisfy

P̂ (sk, |(sk+1..si..sn)|m)− P̂ (sk, |(sk+1..s0i..sn)|m) = π̂i(si, sk, |s−{i,k}|m)− π̂i(s
0
i, sk, |s−{i,k}|m) (11)

and

P̂ (sk, |s−k|m)− P̂ (s0k, |s−k|m) = π̂k(sk, |s−k|m)− π̂i(s
0
k, |s−k|m) (12)

for all i ∈ {k + 1, . . . n} and si, sk ∈ {m,a}. Using Eqs. (7) - (10), we have that

P̂ (m,x)− P̂ (m,x− 1) = −α (n− k − x)F + (n− 1)D (13)

P̂ (a, x)− P̂ (a, x− 1) = −(n− 1− α(x− 1))F + (n− 1)D (14)

P̂ (m,x)− P̂ (a, x) = −(αk + (1− α)(n− 1))((n− k − x)F − (n− k)D) (15)
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for x = 1, . . . , n− k. Solving Eqs. (13) - (15) by assuming that P̂ (m,n− k) = 0 yields

P̂ (m,x) =
α

2
(n− k − 1− x)(n− k − x)F − (n− k − x)(n− 1)D (16)

and

P̂ (a, x) = (n− 1− α

2
(n− k + x− 1))(n− k − x)F (17)

− ((n− k − x)(n− 1) + (αk + (1− α)(n− 1))(n− k))D

for x = 0, . . . , n− k (see Appendix C). Both P̂ (m,x) and P̂ (a, x) are second order polynomials in

x.

Example 4 Continuing Ex. 3 and setting P̂ (m, 2) = 0 yields potential function

P̂ (sk, x) 0 1 2

m αF − 6D −3D 0

a (6− α)F − (12− 2α)D (3− α)F − (9− 2α)D −(6− 2α)D

For large n − k there is no discernible difference between n − k − 1 and n − k and thus the

potential functions in Eqs. (16) and (17) are approximately equal to

P̄ (m, θ) = (n− k)2(
αF

2
θ2 − φDθ) ' P̂ (m,x) (18)

and

P̄ (a, θ) = (n− k)2(
α

2
Fθ2 + ((φ− α)F − φD) θ − (φ− α)D) ' P̂ (a, x), (19)

respectively (see Appendix C). Now θ = n−k−x
n−k is the share of small banks playing the afternoon

strategy and φ = n
n−k is a non-linear measure of the size of the merger, k. Again, for the ease of

exposition, we shall use this version of the potential function below and treat it as a differentiable

function defined over θ ∈ [0, 1]. As before, the maxima of the potential function correspond to the
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Nash equilibria of the game and we summarize them in the following proposition.

Proposition 4

a) If F < D then sk = m and θ = 0 globally maximize P̄ and there are no other local maxima.

b) If D ≤ F < 2D then sk = m and θ = 0 globally maximizes P̄ and sk = a and θ = 1 is a local

maximum.

c) If F = 2D then sk = m and θ = 0 as well as sk = a and θ = 1 globally maximize P̄ .

d) If F > 2D then sk = a and θ = 1 globally maximizes P̄ and sk = m and θ = 0 is a local

maximum.

If liquidity is relatively cheap (F < D) then our game has a unique equilibrium and coordination

is not needed to sustain the efficient equilibrium. Moreover, the adjustment process always leads

to the efficient equilibrium. Hence, early processing of payments will not be affected by a wide-

scale disruption. In contrast, if liquidity is relatively expensive (F ≥ D) then our game has two

equilibria, one where all banks play the morning strategy and one where they play the afternoon

strategy. We shall focus on the latter case below.

5.3 Convergence following a disruption

Once more, we assume that the system initially is in the efficient morning equilibrium, but that it

is hit by a disruption which forces a set of banks - that may or may not include the merged bank

- to play the afternoon strategy. In other words, the share of small banks playing the afternoon

strategy changes from 0 to θ0 > 0. The adjustment process following a disruption is governed

by the potential functions P̄ (sk, θ), sk ∈ {m,a} in Eqs. (18) and (19). The potential functions

are second order polynomials in θ and an illustrative example is shown in Fig. 3.7 If the slope

∂P̄ (sk,θ)
∂θ for sk ∈ {m,a} is negative then a unilateral deviation by a small bank from the morning

to the afternoon strategy increases the potential and is profitable for the small bank. Conversely,

if the slope is positive then a unilateral deviation decreases the potential and is not profitable for

7F = 2D, φ = 2 and α = 1.
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Figure 3: P̂ (m, θ) and P̂ (a, θ)

the small bank. For the merged bank the interesting quantity is the difference between the two

potentials, i.e., P̄ (m, θ)− P̄ (a, θ), which gives the change in potential associated with a unilateral

deviation. If the change in potential is positive then it is profitable for a merged bank playing the

morning strategy to switch to the afternoon strategy and vice versa. Consequently, the minima as

well as the intersection point of P̄ (m, θ) and P̄ (a, θ) are important in terms of the dynamics of the

adjustment process. We have the following lemma

Lemma 1 Let θ∗m be the minimum of P̄ (m, θ), θ∗a be the minimum of P̄ (a, θ) and θc be the point

at which P̄ (m, θ) and P̄ (a, θ) intersects. We have that θ∗a < θc < θ∗m for 0 < α < φ.

Proof. In Appendix C, we show that θ∗a =
φ
α
D
F −

φ−α
α , θc = D

F and θ∗m = φ
α
D
F for 0 < α < φ.

Lemma 1 implies that there are potentially four qualitatively different cases to consider in terms

of the adjustment process following a wide-scale disruption to the economy with heterogenous

banking structure.
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1. Self-reversing. In this case the share of small banks affected is relatively small, i.e., θ0 < θ∗a

and thus we have that ∂P̄ (m,θ)
∂θ < 0, ∂P̄ (a,θ)

∂θ < 0 and P̄ (m, θ)− P̄ (a, θ) > 0. Hence unilateral

deviations back to the morning strategy are profitable from the perspective of both the small

banks and the large bank is profitable. The system will revert back to the morning equilibrium

even if the merged bank is hit by the disruption.

2. Potentially self-reversing. In this case, θ∗m < θ0 < θc and thus we have that ∂P̄ (m,θ)
∂θ < 0,

∂P̄ (a,θ)
∂θ > 0 and P̄ (m, θ) − P̄ (a, θ) > 0. Unilateral deviations back to the morning strategy

are profitable from the perspective of the small banks if and only if the merged bank is not

affected by the disruption. Hence, if the merged bank is not affected by the disruption, then

the system will revert back to the morning equilibrium on its own. On the other hand, if the

merged bank is affected by the disruption, then it is profitable for smalls banks not affected

to change their strategy to afternoon and for small banks that are affected to stick with the

afternoon strategy. Immediately following the disruptions, it is profitable for a merged bank

to revert back to the morning strategy. However, this will not continue to be true after enough

small banks have adjusted to the afternoon strategy. Once θ increases above θc, the merged

bank will not revert back to the morning strategy. Basically, the adjustment process following

the disruption is a horse race between the merged bank becoming operational again and the

number of small banks deciding to cease coordinating on early processing.

3. Likely self-perpetuating. In this case, θc < θ0 < θ∗m and thus we have that ∂P̄ (m,θ)
∂θ < 0,

∂P̄ (a,θ)
∂θ > 0 and P̄ (m, θ) − P̄ (a, θ) < 0. Here, the disruption affected so many small banks

that the merged bank does not have an incentive to maintain or restore coordination on the

the morning equilibrium. Hence, the system will perpetuate towards the inefficient afternoon

equilibrium if the merged bank is affected by the disruption and it will only move towards the

efficient morning equilibrium if the merged bank is slow to respond after a disruption that

does not affect it. Once enough small banks become operational again and switch back to

the morning strategy (i.e., θ falls below θc) the merged bank will no longer have an incentive

to deviate to the afternoon.
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4. Self-perpetuating. In this case, θ∗m < θ0 and thus we have that ∂P̄ (m,θ)
∂θ > 0, ∂P̄ (a,θ)

∂θ > 0

and P̄ (m, θ)− P̄ (a, θ) < 0. Hence, unilateral deviations back to the morning strategy are not

profitable from the perspective of the small banks or the merged bank. So if many small

banks are disrupted the systems will move towards the inefficient afternoon equilibrium even

if the merged bank is not hit by the disruption.

In the intermediate cases (potentially self reversing and likely self-perpetuating) the system’s

response to a disruption is qualitatively different depending on whether or not the merged bank is

affected or not. In both cases, a dispruption to the merged bank tilts the adjustment process towards

the inefficient afternoon equilibrium. The pivotal role of the merged bank suggests that a bank

might be considered “too big to fail” in part due to its role in terms of maintaining coordination

on smooth processing of payments.8

The width of the regions over which the adjustment process belong to the four cases, depends

on the set of parameters. In particular, changes in either the cost of delay, cost of liquidity, a

shift in the topology of the payment flow and the size of the merger either widens or narrows the

different regions as shown in Tab. 1

.

Self-reversing Potentially self-reversing Likely self-perpetuating Self-perpetuating
D ↑ Widens Widens Narrows Narrows
F ↑ Narrows Narrows Widens Widens
α ↑ Widens Narrows Narrows Widens
φ ↑ Narrows Widens Widens Narrows

Table 1: Regions and changes in parameters

However, not all cases are necessarily relevant for all values of parameters as illustrated in Fig.

4. For example, in the money center case where α = 0 the potential functions become first order

polynomials in θ and the system is either potentially self-reversing or likely self-perpetuating and

never self-reversing or self-perpetuating. Conversely, in the disconnected case where α = α = φ

the two potential functions are identical. In other words, the strategy of the large bank is not

important and the adjustment process is either self-reversing or self-perpetuating as in the case of

the economy with a homogenous banking structure.
8See Stern and Feldman (2004) chapter 12 for a general discussion of too big to fail policy and the payment system.
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Figure 4: P̂ (m,x) and P̂ (a, x)

As in the economy with a homogeneous banking sector, the central bank may intervene by

lowering the cost of liquidity if the system is converging to the inefficient equilibrium and this might

be particularly attractive if the large bank is affected by the disruption. However the analysis

of the economy with a heterogenous banking sector also showed that there might be scope for

targeted policies vis-à-vis large banks. In the potentially self-reversing case the ability of a large

bank to recover quickly was shown to be instrumental in terms of achieving coordination on the

efficient equilibrium. Ex ante, stakeholders in the interbank payment system may push for stronger

resiliency requirements for larger banks.9 On the other hand, the large bank being patient in

terms of responding to a disruption (that does not affect it) was shown to be helpful in the likely

self-perpetuating case. Ex post, the central bank may wish to contact large banks bilaterally to

encourage them to continue to process payments in a timely fashion. Moral suasion is likely to

work in this instance because the central bank facilitates a correlated equilibrium (as defined by

Aumann (1974, 1987)), in which the central bank recommends the morning profile (m, ...,m) with

probability one. It is in the best interests of any given bank to obey this recommendation given

that each of the other banks will obey

6 Conclusion

The containment of systemic risk within the U.S. financial system in the event of a wide-scale

disruption rests on the rapid recovery and resumption of the core clearing and settlement activities

9See, for example, “Best Practices to Assure Telecommunications Continuity for Financial Institutions and the Pay-
ment & Settlements Utilities” published by the Payments Risk Committee (www.newyorkfed.org/prc/telecom.pdf).
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that support the financial markets. Fedwire is a one of the most critical components of clearing and

settlement process and hence the resilience of the system itself and its participants is of paramount

importance. As shown by McAndrews and Rajan (2000) and McAndrews and Potter (2002),

coordination in the transmission of payments is a vital part of the day-to-day operations in Fedwire.

The ability to maintain coordination, where banks tend to settle promptly and synchronize their

payment activity, can potentially be instrumental in mitigating the impact of a wide-scale disruption

to the financial system.

In this paper we have investigated how a wide-scale disruption is likely to impair the smooth

functioning of the interbank payment system. Such a disruption will almost by definition - create

operational difficulties for the system and its participants in some way or another. However, we

address a problem that is perhaps less obvious: the operational difficulties of some participants may

induce other participants to change behavior in terms of how they process payments. In particular,

this may lead to a break down of coordination.

This paper argues that the ability of banks in Fedwire to maintain payment coordination fol-

lowing a wide-scale disruption depends critically on a number of different factors. First of all, it

depends on the size of the disruption. A disruption that affects a large part of the nation or a

disruption that hits a key geographical area is more likely to result in the break down of payment

coordination as more banks will experience operational difficulties. Secondly, it also depends on

the relative cost of liquidity and the cost of postponing payments. The cheaper the liquidity, the

more likely banks will be to maintain coordination by themselves. The Fed’s response to the tragic

events of September 11, 2001 in terms of providing unprecedented amount of liquidity to the system

at virtually zero cost was in part aimed at minimizing the risk of banks holding back processing

payments. Thirdly, we argue that the banking structure can influence the smooth functioning of

the payment system after a wide-scale disruption and that a bank can be considered too big to

fail in a new interesting way. We showed that the resiliency of a large bank could be important

not only in terms of its share of the payment flow but also in terms of this bank being pivotal in

maintaining the coordination. Fourthly, we showed that the Federal Reserve can play a critical role

in avoiding coordination failures by advocating patience to large banks and encouraging them to
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continue with timely processing of payments following a disruption to small banks. If the Federal

Reserve can persuade the large banks to wait for small banks to resume timely processing following

a disruption, then more drastic measures, such as reducing the liquidty costs, might not be required

to restore coordination. This is an instance where moral suasion can be effective.

Obviously, this is not a comprehensive list of factors determining whether or not payment

coordination can be maintained. Another important factor, not addressed specifically in this paper,

is the timing of the disruption. The clearing and settlement cycle over the course of the day consists

of a range of critical times where different type of processes take place. For example, settlement

of foreign exchange transactions through Continuous Linked Settlement (CLS) bank occur in a

narrow window very early in the morning whereas the bulk of the activity from the money and

U.S. Treasury markets occur in the afternoon. The effect of a disruption is going to depend on

what time of the day it occurs and how long it persists. On one hand, an early time of impact give

Fedwire and its participants more time to recover but on the other hand less of the days business

has already settled. The overall effect is ambiguous and is a topic for future research.

A Potential function, homogenous case

From Eq. (4) we have

P̃ (n)− P̃ (n− 1) = (n− 1)D

P̃ (n− 1)− P̃ (n− 2) = −F + (n− 1)D

P̃ (n− 2)− P̃ (n− 3) = −2F + (n− 1)D

P̃ (n− 3)− P̃ (n− 4) = −3F + (n− 1)D (20)

...

P̃ (2)− P̃ (1) = −(n− 2)F − (n− 1)D

P̃ (1)− P̃ (0) = −(n− 1)F + (n− 1)D
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Let P̃ (n) = 0. Then P̃ (n− 1) = −(n− 1)D and so forth

P̃ (n− 2) = P̃ (n− 1) + F − (n− 1)D = F − 2(n− 1)D

P̃ (n− 3) = P̃ (n− 2) + 2F − (n− 1)D = 3F − 3(n− 1)D

P̃ (n− 4) = P̃ (n− 3) + 3F + (n− 1)D = 6F − 4(n− 1)D (21)

P̃ (n− 5) = P̃ (n− 4) + 4F + (n− 1)D = 10F − 5(n− 1)D
...

Hence, we have

P̃ (x) =
1

2
(n− 1− x)(n− x)F − (n− x)(n− 1)D (22)

For large n the potential function is approximately equal to

P̆ (θ) = n2(
1

2
θ2F − θD) ' 1

2

n− 1− x

n

n− x

n
F − n− x

n

n− 1
n

D (23)

where θ ≡ n−x
n ∈ [0, 1].

B Convergence of the adjustment process

Proof. The derivative of the potential function P̆ (θ) is n2 (Fθ −D) and the minimum is at θ∗ = D
F .

If F < D then dP̆ (θ)
dθ < 0 for all θ ∈ ]0, 1[ . Hence all unilateral deviations from a to m are profitable,

and the simple adjustment process converges to (m, . . . ,m). If F = D then dP̆ (θ)
dθ = n2D (θ − 1) < 0

for all θ ∈ ]0, 1[ and dP̆ (θ)
dθ → 0 for θ → 1. If D < F then dP̆ (θ)

dθ < 0 if θ < θ∗. Hence starting

from points to the below θ∗ the simple adjustment process leads to the equilibrium (m, . . . ,m)

and starting from points to the above θ∗ the simple adjustment process leads to the equilibrium

(a, . . . , a) as dP̆ (θ)
dθ > 0 if θ > θ∗.
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C Potential function, heterogeneous Case

Let P̂ (m,n− k) = 0. From Eqs. (13) - (15) we have that P̂ (m,n− k− 1) = −(n− 1)D. Moreover,

we have

P̂ (m,n− k − 2) = P̂ (m,n− k − 1) + α (n− k − (n− k − 1))F − (n− 1)D

= αF − 2(n− 1)D,

P̂ (m,n− k − 3) = P̂ (m,n− k − 2) + α (n− k − (n− k − 2))F − (n− 1)D

3αF − 3(n− 1)D, (24)

P̂ (m,n− k − 4) = P̂ (m,n− k − 3) + α (n− k − (n− k − 3))F − (n− 1)D

= 6αF − 4(n− 1)D

and so forth. Hence, we have

P̂ (m,x) =
α

2
(n− k − 1− x)(n− k − x)F − (n− k − x)(n− 1)D (25)

for x = 1, ..., n− k. Furthermore, from Eq. (15) we know that

P̂ (a, x) = P̂ (m,x) + (αk + (1− α)(n− 1))((n− k − x)F − (n− k)D) (26)

Substituting in Eq (25) yields

P̂ (a, x) = (
α

2
(n− k − 1− x) + αk + (1− α)(n− 1))(n− k − x)F (27)

− ((n− k − x)(n− 1) + αk + (1− α)(n− 1)(n− k))D
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for x = 1, ..., n− k. Both P̂ (m,x) and P̂ (a, x) are second order polynomials in x. For large n− k

the potential functions are approximately equal to

P̄ (m, θ) = (n− k)2
³α
2
θ2F − φθD

´
(28)

' (n− k)2
µ
α

2

n− k − 1− x

n− k

n− k − x

n− k
F − n− k − x

n− k

n− 1
n− k

D

¶

and

P̄ (a, θ) = (n− k)2
³α
2
Fθ2 + ((φ− α)F − φD) θ − (φ− α)D

´
= (n− k)2

³α
2
θ2F + (φ− α) θF − (θφ+ φ− α)D

´
= (n− k)2

³α
2
θ2F + (α (φ− 1) + (1− α)φ) θF − (θφ+ α (φ− 1) + (1− α))D

´
(29)

' (n− k)2
µµ

α

2

n− k − 1− x

n− k
+ α

k

n− k
+ (1− α)

n− 1
n− k

¶
n− k − x

n− k
F − [◦]D

¶
' (n− k)2

µ
[◦]F − (n− k − x

n− k

n− 1
n− k

+ α
k

n− k
+ (1− α)

n− 1
n− k

¶
D

where θ = n−k−x
n−k ∈ [0, 1] and φ = n

n−k ∈]1, n[. Both potential functions are second order polyno-

mials in θ. We have that P̄ (m, θ) = P̄ (a, θ) for φ = α. Otherwise, P̄ (m, θ) intersects P̄ (a, θ) at

θc = D
F . P̄ (m, θ) and P̄ (a, θ) attain their minima at

∂P̄ (m, θ)

∂θ
= αFθ − φD = 0⇒ θ∗m =

φ

α

D

F
(30)

and
∂P̄ (a, θ)

∂θ
= αFθ + (φ− α)F − φD⇒ θ∗a =

φ

α

D

F
− φ− α

α
, (31)

respectively. The partial derivatives of the minima and the intersection point with respect to the

different parameters are given in the following table
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∂θ
∂z θ∗a θc θ∗m
D φ

α
1
F > 0 1

F > 0 φ
α
1
F > 0

F −φ
α

D
F 2

< 0 − D
F 2

< 0 −φ
α

D
F 2

< 0

α φ
α2
(1− D

F ) > 0 0 − φ
α2

D
F < 0

φ − 1α(1−
D
F ) < 0 0 1

α
D
F > 0

Table 2: Partial Derivatives
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