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Abstract
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1 Introduction

Banking crises often feature a run by depositors, that is, an event in which many depositors rush

to withdraw their funds from the banking system in a short period of time. Such runs occurred

regularly in the United States in the late 19th and early 20th centuries and have occurred more

recently in Argentina (in 2001), Russia (in 2004), and elsewhere. Competing explanations have

been offered for these events. Some observers claim that runs are invariably caused by fundamental

factors such as a deterioration of banks' asset positions or an unusually high level of liquidity

demand. Others, however, believe that bank runs often have a self-ful�lling nature: each depositor

withdraws because the withdrawals of others threaten the solvency of the banks. In this view, bank

runs can represent a coordination failure.

The literature beginning with Bryant [6] and Diamond and Dybvig [14] asks whether this latter

explanation is plausible from the standpoint of modern economic theory. Can self-ful�lling bank

runs be explained as equilibrium outcomes of a formal economic model? The answer to this ques-

tion has important policy implications, particularly regarding the design, and even the desirability,

of deposit insurance systems. Diamond and Dybvig [14] showed that a run equilibrium can easily

emerge if banks are assumed to offer a simple demand-deposit contract under which depositors

are allowed to withdraw at any time as long as the bank has positive assets. However, if there

is no uncertainty about the aggregate �fundamental� demand for withdrawals, a simple policy of

suspending payments to depositors after meeting this level of demand eliminates the possibility of

a bank run equilibrium.

This result has been interpreted as saying that bank runs could only potentially occur in en-

vironments with substantial uncertainty about the normal level of withdrawal demand. Much of

the subsequent literature has, therefore, focused on such environments, with mixed results.1 We

take a step in a different direction, focusing on the role of commitment. The existing literature has

assumed (often implicitly) that banks can commit to a contract or payment schedule. We study

an environment without commitment, following the literature pioneered by Kydland and Prescott

[29]. This approach seems natural in the context of bank runs and other crises; it amounts to

assuming that the government is unable to commit not to intervene if an (ex post) improvement

1 See, for example, section IV of Diamond and Dybvig [14], Postlewaite and Vives [33], Wallace [36] - [37],
de Nicolò [13], Green and Lin [24], and Peck and Shell [32].
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in resource allocation is possible. We show that, without such commitment, bank runs can oc-

cur in equilibrium in an otherwise-standard model with no aggregate uncertainty. In other words,

simply removing the assumption of commitment leads to self-ful�lling bank runs in the canonical

Diamond-Dybvig framework.

Our analysis is based on a version of the Diamond-Dybvig model that explicitly incorporates

features introduced by Wallace [36], Green and Lin [24], and Peck and Shell [32]. The economy is

populated by a large number of agents called �depositors.� Each individual is uncertain about when

she will need to consume and, therefore, depositors pool their resources for insurance purposes;

the resulting institution resembles a banking system. By a law of large numbers, the fraction of

depositors who will need to consume early is non-stochastic. Each depositor chooses whether to

withdraw her funds early or to wait, based both on the realization of her preferences and on what

she believes others will do. Depositors' actions may be coordinated by some extrinsic, random

signal observable to them but not to the banking authority; as a result, the banking authority may

initially be unsure whether or not a run is underway and will seek to infer this information from the

number of early withdrawals. The banking system faces a sequential service constraint: depositors

who choose to withdraw early must be served in the order in which they arrive.

In the environment with commitment, the banking authority sets a payment schedule � a com-

plete speci�cation of how much it will give to each depositor who withdraws early � before depos-

itors make their withdrawal decisions. By threatening to suspend payments if too many depositors

withdraw early, the banking authority can guarantee the solvency of the banking system.2 When

solvency is guaranteed, it is a dominant strategy for each depositor to wait to withdraw unless she

truly needs to consume early. Hence, commitment to an appropriate suspension plan can rule out

the possibility of a bank run and can uniquely implement the �rst-best allocation.

This type of result led Diamond and Dybvig [14] and others to study environments where the

total demand for early consumption is random.3 Suspending convertibility is more problematic in

such settings because the banking authority does not know the proper point at which to suspend.

2 In a related model, de Nicolò [13] shows how run equilibria can be ruled out under commitment without suspend-
ing payments by using a priority-of-claims provision on �nal date resources. Suspension policies have been stud-
ied in related environments by Gorton [23], Chari and Jagannathan [9], and Engineer [16].
3 A large number of papers study variants of the Diamond-Dybvig model without this uncertainty but with ad hoc
restrictions on the banking contract, such as not allowing payments to be suspended until banks' assets are completely
depleted. (See, for example, Cooper and Ross [12], Chang and Velasco [8], and Goldstein and Pauzner [22],
to name only a few.) While this approach has generated valuable insights, our interest here is in whether or not
self-ful�lling bank runs can occur without such restrictions.
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While this approach offers some advantages, it has several clear drawbacks. First, the optimal

contract no longer resembles a standard banking contract in which each depositor has the right to

withdraw her deposit at face value in �normal� times. Instead, depositors receive payments that

depend on their order of arrival at the bank in a complex way. Second, whether or not the resulting

model admits a bank run equilibrium depends on detailed assumptions about the environment (see

Green and Lin [24] and Peck and Shell [32]). Finally, and most importantly, it seems intuitively

implausible to think that throughout a run on the banking system, the banking authority remains

unsure whether a run is underway or it is simply observing an unusually high level of fundamental

withdrawal demand. Bank runs are extreme events that, once fully underway, are easily recognized.

We therefore focus on the simpler case where the proportion of depositors who need to withdraw

early is known with certainty.

We depart from the previous literature by removing the (implicit) assumption that the banking

authority can commit to the entire payment schedule, including the suspension scheme, ex ante.

Instead, we study an environment without commitment in which the payment schedule is chosen

as a best response to the withdrawal strategies of depositors. Once the number of early withdrawals

exceeds fundamental withdrawal demand, the banking authority will be certain that a bank run is

underway. It is fairly easy to see that the full suspension policy described above, which calls for

suspending payments entirely at this point, is not ex post optimal. The banking authority knows

that if a run is occurring, some of the depositors who have not yet been served have a true need

to consume early. Suspending payments means denying consumption to these individuals. A

better response is to partially suspend convertibility, that is, to offer a smaller � but still positive �

payment on further early withdrawals.

Depositors anticipate this reaction when making their withdrawal decisions. That is, a depositor

knows that the banking authority will not respond to a run by suspending payments entirely and,

therefore, that a run may compromise the solvency of the banks. Hence the partial suspension

scheme that is ex post optimal may generate ex ante incentives for an individual depositor to run

if she expects others to do so. We show that when depositors are suf�ciently risk averse, there

exists an equilibrium in the no-commitment case in which depositors run on the banking system

with positive probability. Once the banking authority infers that a run is underway, it will partially

suspend payments in this equilibrium. The run may halt at this point or it may continue, leading

the banking authority to announce another, more severe partial suspension. Despite the simplicity
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of the environment, the structure of the equilibrium we construct is surprisingly rich; the fraction

of depositors who withdraw early is stochastic and can be close to one with positive probability.

These results are reminiscent of events that took place during the crisis in Argentina in 2001 (see

Dominguez and Tesar [15]). Following a run on the banking system in late November, a suspension

of payments was announced. However, it was recognized that a complete suspension would place

substantial hardships on many depositors and, therefore, each depositor was allowed to continue

to withdraw a �xed amount per week from his/her account(s). In addition, depositors could, under

certain circumstances, obtain court orders that allowed them to withdraw all of their funds.4 As a

result of these policies, a substantial fraction of deposits was withdrawn from the banking system

after the suspension was declared, and these withdrawals placed additional strain on the system.

Our analysis shows how the inability to commit to a complete suspension of payments, which

became so patently evident during the Argentinean crisis, can severely limit the ability of a banking

authority to avoid bank runs.

Our analysis contributes to a small but growing literature on discretionary policy and multiple

equilibria. Most of the work on time-inconsistency issues has studied situations where the inability

of a policy maker to commit leads to an inef�cient outcome in the (unique) equilibrium. In our

setting, the ef�cient outcome is always an equilibrium. A policy maker with commitment power

can rule out other (bank run) equilibria, but a lack of commitment power allows such equilibria to

arise. Hence, our results are more in line with the �ood control example in Kydland and Prescott

[29, p. 477]. In that example, a commitment to not invest in �ood control would convince private

agents to not build on a �ood plain. However, if the policy maker cannot commit, there is an

equilibrium in which agents build on the �ood plain and, as a result, the policy maker ends up

investing in �ood control.5 This second type of inef�ciency resulting from a lack of commitment

power has been studied in the context of �scal policy by Glomm and Ravikumar [21] and in the

context of monetary policy by Albanesi, et al. [3] and King and Wolman [28]. Our analysis shows

how these same forces naturally generate self-ful�lling bank runs in the well-known Diamond-

Dybvig framework.

The rest of the paper is organized as follows. In the next section, we describe the environment

and the decisions of depositors for a given payment schedule. In Section 3, we de�ne equilibrium
4 For an explicit analysis of such institutional features in banking policy and their tendency to create adverse ex
ante incentives for depositors, see Ennis and Keister [19].
5 See King [27] for a more formal analysis of this problem.
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for both the commitment and the no-commitment case. We also show that there exists an equi-

librium in which no run occurs and the �rst-best allocation obtains in each case. In Section 4,

we show that bank runs cannot occur in the environment with commitment. Section 5 contains the

main result: bank runs can occur in the no-commitment case; we also derive some properties of the

run equilibria. Sections 6 and 7 contain a discussion of the results and some concluding remarks.

2 The Model

We work with a fairly standard version of the Diamond-Dybvig model with an explicit sequen-

tial service constraint. We begin by describing the physical environment and deriving the �rst-best

allocation in this environment.

2.1 The environment

There are three time periods: t = 0, 1, 2. There is a continuum of agents, whom we refer to as

depositors, indexed by n 2 [0; 1].6 Each depositor has preferences given by

u (c1; c2; �n) =
(c1 + �nc2)

1�


1� 

;

where ct is consumption in period t and �n is a binomial random variable with support� = f0; 1g:
As in Diamond and Dybvig [14], we assume that the coef�cient of relative risk aversion 
 is greater

than 1. If the realized value of �n is zero, depositor n is impatient and only cares about consumption

in period 1: A depositor's type �n is revealed to her in period 1 and remains private information.

Let � denote the probability with which each individual depositor will be impatient. By a law of

large numbers, � is also the fraction of depositors in the population who will be impatient.7 Note

that � is non-stochastic; there is no aggregate (intrinsic) uncertainty in this model.

The economy is endowed with one unit of the good per capita in period 0. As in Diamond and

Dybvig [14], there is a single, constant-returns-to-scale technology for transforming this endow-

ment into consumption in the later periods. A unit of the good invested in period 0 yields R > 1

units in period 2, but only one unit in period 1:

6 Having a continuum of depositors simpli�es our analysis considerably, but is not necessary for the results. In
a companion paper (Ennis and Keister [20]), we construct examples based on a �nite number of depositors.
7 There are well-known technical issues associated with the formal statement of the law of large numbers in an
economy with a continuum of agents. We ignore the technical details here and refer the reader to Al-Najjar [2]
for a discussion, references, and a possible way to deal with such issues.
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There is also a banking technology that allows depositors to pool resources and insure against

individual liquidity risk. The banking technology is operated in a central location. As in Wallace

[36] - [37], depositors are isolated from each other in periods 1 and 2 and no trade can occur among

them. However, each depositor has the ability to visit the central location once, either in period

1 or in period 2 and, hence, a payment can be made to her from the pooled resources after her

type has been realized. We refer to the act of visiting the central location as withdrawing from the

banking technology.

Depositors' types are revealed in a �xed order determined by the index n; depositor n discovers

her type before depositor n0 if and only if n < n0. A depositor knows her own index n and,

therefore, knows her position in this ordering.8 Upon discovering her type, each depositor must

decide whether or not to visit the central location in period 1: If she does, she must consume

immediately; the consumption opportunity in period 1 is short-lived. This implies that the payment

a depositor receives from the banking technology cannot depend on any information other than the

number of depositors who have withdrawn prior to her arrival. In particular, it cannot depend on

the total number of depositors who will withdraw in period 1; since this information is not available

when individual consumption must take place. This sequential-service constraint follows Wallace

[36] - [37] and captures an essential feature of banking: the banking system pays depositors as they

arrive to withdraw and cannot condition current payments to depositors on future information.

Under sequential service, the payments made from the banking technology in period 1 can

be summarized by a (measurable) function x : [0; 1] ! R+, where the number x (�) has the

interpretation of the payment given to the �th depositor to withdraw in period 1. Note that the

arrival point � of a depositor depends not only on her index n but also on the actions of depositors

with lower indexes. In particular, � will be strictly less than n if some of these depositors choose

not to withdraw in period 1: In period 2; we can without loss of generality set the payment to

each depositor equal to an even share of the matured assets in the banking technology.9 Therefore,

the operation of the banking technology is completely described by the function x; which we call

8 This construction follows Green and Lin [25] and is a simpli�ed version of that in Green and Lin [24]. None of
our results depend on the assumption that depositors know this ordering. Exactly the same results would obtain
if depositors made their withdrawal decisions before this ordering is realized (as in Diamond and Dybvig [14], Peck
and Shell [32], and others), only the details would be more complex in some cases.
9 In principle, some type of payment schedule could be applied in period 2 as well. However, since depositors are risk
averse and all information about their actions has been revealed at this point, it will always be optimal to divide
the assets evenly among the remaining patient depositors. Importantly, the type of priority-of-claims provision studied
in de Nicolò [13] would never be used in our setting because it is ex post inef�cient.
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the banking policy. Feasibility of the banking policy requires that total payments in period 1 not

exceed the short-run value of assets, even if all depositors choose to withdraw in that period, that

is, Z 1

0

x (�) d� � 1: (1)

We summarize the behavior of depositor n by a function yn : � ! f0; 1g that assigns a
particular action to each possible realization of her type. Here yn = 0 represents withdrawing

in period 1 and yn = 1 represents waiting until period 2. We refer to the function yn as the

withdrawal strategy of depositor n, and we use y to denote the pro�le of withdrawal strategies for

all depositors.

An allocation in this environment consists of an assignment of consumption levels to each

depositor in each period. An individual depositor's consumption is completely determined by the

banking policy x; the pro�le of withdrawal strategies y, and the realization of her own type �n:We

can, therefore, de�ne the (indirect) expected utility of depositor n as a function of x and y, that is,

vn (x; y) = E [u (c1;n; c2;n; �n)] ;

where E represents the expectation over �n. Different depositors may have different equilibrium

utility levels even if they follow the same strategy and have the same realized type because they

would arrive to withdraw at different points in the period-1 ordering. De�ne U to be the integral

of all depositors' expected utilities, i.e.,

U (x; y) =

Z 1

0

vn (x; y) dn: (2)

This expression can be given the following interpretation. Suppose that, at the beginning of period

0, depositors are assigned their index n randomly, with each depositor having an equal chance of

occupying each space in the unit interval. Then U measures the expected utility of each depositor

before places are assigned. We use U as our measure of aggregate welfare throughout the paper

(as in Green and Lin [24] - [25]).

2.2 The �rst-best allocation

Consider the problem of a benevolent social planner who can observe depositors' types as they

become known and can directly control the banking technology and the time of withdrawal by de-
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positors. In such a situation, the planner can choose how much and in which period each depositor

consumes, contingent on types and subject to the sequential service restriction described above.

We call the allocation this planner would generate the (full information) �rst best.

The problem of �nding this allocation can be simpli�ed using the following observations. First,

note that the planner would give consumption to all impatient depositors in period 1 and to all

patient depositors in period 2. Next, because depositors are risk averse and there is no aggregate

uncertainty, depositors of a given type will all receive the same amount of consumption. The

problem of �nding the �rst-best allocation can, therefore, be reduced to choosing numbers c1 and

c2 to solve

max
fc1;c2g

�
(c1)

1�


1� 

+ (1� �)

(c2)
1�


1� 

(3)

subject to
(1� �)c2 = R (1� �c1)

and non-negativity constraints. The solution to this simpli�ed problem is

c�1 =
1

� + (1� �)A
and c�2 =

RA

� + (1� �)A
; (4)

where

A � R
1�


 < 1: (5)

Notice that RA = R
1

 > 1; which implies c�2 is larger than c�1; patient depositors consume more

than impatient ones. Additionally, c�1 > 1 holds and, hence, this allocation provides liquidity

insurance to depositors as described by Diamond and Dybvig [14]. Equivalently, one could have

the planner choose a payment schedule x and a pro�le of withdrawal strategies y to solve

max
fx;yg

U (x; y) : (6)

subject to the feasibility constraint (1). The solution to (6) sets yn (�n) = �n for all n and x (�) = c�1

for � 2 [0; �], where c�1 is as de�ned in (4).10

The �rst-best allocation described here is the same allocation the planner would choose in an

environment without the sequential service constraint, where the planner could �rst observe all de-

10 Since only the � impatient depositors will withdraw in period 1; the payments for � > � will not occur and need not
be speci�ed. Also, any allocation that differs from the one given here only in the consumption of a set of depositors
of measure zero will yield the same value of U and, hence, also be �rst best. To simplify the presentation, we
ignore issues involving sets of measure zero and refer simply to the �rst-best allocation.
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positor's types and then assign a consumption allocation. In our setting, where there is no aggregate

uncertainty, the sequential service constraint is non-binding in the planner's problem. However,

as we discuss below, the constraint is an important restriction in the decentralized economy where

types are private information.

2.3 The depositors' game

In the decentralized economy, each depositor chooses her withdrawal strategy as part of a non-

cooperative game. It will often be useful to �x the banking policy x and look at the game played

by depositors under that particular policy. Let y�n denote the pro�le of withdrawal strategies for

all depositors except n: An equilibrium of this game is then de�ned as follows.

De�nition 1: Given a policy x, an equilibrium of the depositors' game is a pro�le of strategiesby (x) such that
vn (x; (by�n; byn)) � vn (x; (by�n; yn)) for all yn; for all n:

Because they are isolated, depositors do not directly observe each others' actions. Therefore, even

though these actions take place sequentially, we can think of depositors as choosing their strategies

simultaneously (as in Green and Lin [24]).

This depositors' game has been the focus of the literature on bank runs since Diamond and

Dybvig [14]. As it is well known, for some policies this game will not have a unique equilibrium.11

We use bY (x) to denote the set of equilibria associated with the policy x: We say that a bank run
occurs in an equilibrium by if more than � depositors withdraw in period 1: Since all impatient
depositors will choose to withdraw in period 1; a run occurs if and only if some patient depositors

withdraw early, i.e., if byn (�n = 1) = 0 for a positive measure of depositors.
Diamond and Dybvig [14] showed how a banking policy resembling a simple demand-deposit

contract can implement the (full information) �rst-best allocation as an equilibrium of this game,

even though depositors' types are private information. Suppose the policy is given by

x (�) =

�
c�1 for � 2 [0; b�]
0 otherwise

�
with b� = (c�1)�1 : (7)

The value of b� is the point at which the funds in the banking technology would be completely
11 The global games approach of Carlsson and van Damme [7] has been applied in a variety of settings to generate
a unique equilibrium in this type of coordination game. As is clear from Goldstein and Pauzner [22], however,
applying this approach to the Diamond-Dybvig environment requires making restrictive (and implausible) assumptions
about the investment technology and banking contracts.
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exhausted in period 1; this policy satis�es the feasibility constraint (1) by construction. Under this

policy, each depositor has the option of withdrawing her deposit at face value (c�1) in period 1; as

long as funds are available.

All impatient depositors will clearly choose to withdraw in period 1. Suppose all patient depos-

itors choose to wait until period 2. Then the payment they each receive will be c�2; the consumption

level associated with patient depositors in the �rst-best allocation, which is larger than c�1: It fol-

lows immediately that (i) this pro�le of strategies is an equilibrium of the depositors' game and

(ii) this equilibrium implements the �rst-best allocation. In fact, the argument shows that the result

will hold for any policy that offers c�1 to the �rst � depositors to withdraw and something less than

c�2 on any further withdrawals. The payments x (�) for � > � do not matter as long as they do not

undermine the incentive for patient depositors to wait.

It is easy to see that the converse of the above statement is also true: in order for a policy to

implement the �rst-best allocation in the depositors' game, it must be the case that (i) the payment

c�1 is offered to the �rst � depositors to withdraw and (ii) no depositors are offered c�2 or more in

period 1. We therefore have a sharp characterization of the set of policies capable of implementing

the �rst-best allocation.

Proposition 1 The policy x implements the �rst-best allocation as an equilibrium of the deposi-
tors' game if and only if it satis�es

x (�) = c�1 for � 2 [0; �] and x (�) � c�2 for � > �: (8)

3 Equilibrium

We now turn our attention to the overall banking game, which includes the determination of the

policy x. We assume the banking technology is operated by a benevolent banking authority (BA),

whose objective is to maximize the welfare function U . The BA is a reduced-form representation

of the entire banking system of the economy, together with any regulatory agencies and other

government entities that have authority over the banking system. Our analysis would be exactly

the same if there were a group of pro�t-maximizing banks competing for deposits in period 0

and if the authority to suspend payments in period 1 were held by the (benevolent) government.

To keep the presentation simple, and in line with the previous literature, we present the model

with this system represented by a single, consolidated entity. We begin our analysis with the total
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endowment deposited in the banking technology and, hence, under the control of this authority.12

3.1 Equilibrium with commitment

We say that the BA has commitment if it chooses the entire policy x before depositors make their

withdrawal decisions and cannot change any part of the policy later. The previous literature has

uniformly assumed commitment. Wallace [36], for example, views the banking location as a cash

machine that is programmed in advance to follow a particular payment schedule. Depositors ob-

serve the policy x and, therefore, the depositors' game is a proper subgame of the �overall� banking

game. This focus is, naturally, on subgame perfect equilibria, where the BA sets a policy x with

the knowledge that the withdrawal strategies will correspond to an equilibrium of the depositors'

game generated by x: If there are multiple equilibria of the depositors' game, the BA must have an

expectation about which equilibrium will be played; equilibrium of the overall game then requires

that this expectation be correct.

As is well known, there cannot be an equilibrium of the overall banking game in which a bank

run occurs with certainty. If the BA knew that depositors would run, it would set the policy in such

a way that running is not an equilibrium strategy; in other words, it would choose a �run proof�

contract (see, for example, Cooper and Ross [12]). A run can only occur in equilibrium if, at the

time it sets its policy, the BA is unsure whether or not a run will occur.13 To allow for this pos-

sibility, we follow the literature in permitting depositors' withdrawal decisions to be conditioned

on an extrinsic �sunspot� variable that is not observed by the BA.14 We assume, without any loss

of generality, that the sunspot variable is uniformly distributed on S = [0; 1]. Each depositor then

chooses a strategy yn : � � S ! f0; 1g in which her action is a (measurable) function of the
sunspot state. In equilibrium, the BA correctly anticipates the pro�le of withdrawal strategies y but

may not (initially) know the pro�le of actions because it does not observe the sunspot state s: In

particular, the BA may not know whether a run is underway until it has observed enough actions

to infer the state.

12 We abstract from what Peck and Shell [32] call the �pre-deposit game� for simplicity. One can show that if
agents were allowed to choose how much of their private endowment to deposit, they would strictly prefer to deposit
everything in the banking system as long as the probability of a run is low enough. In this way, our approach is
without any loss of generality.
13 The issues discussed here are not unique to models of bank runs; they arise in any environment where multiple
equilibria are possible and a policymaker makes some decisions before knowing which equilibrium will be played. See
Bassetto and Phelan [5] and Ennis and Keister [17] for discussions of these issues in models of optimal taxation.
14 See Diamond and Dybvig [14, pp. 409-10], Cooper and Ross [12], and Peck and Shell [32].
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The BA does know that, in each state, play will correspond to an equilibrium of the depositors'

game generated by the chosen policy x. We represent the BA's expectation of depositors' play

by a selection by (x; s) from bY (x) ; that is, a function with by (x; s) 2 bY (x) for all x and all s.
In other words, the BA expects that if it chooses policy x, depositors will play by (x; s) in state
s. An equilibrium of the overall banking game obtains when the BA's policy choice is welfare

maximizing given its expectation of depositors' play and, given this choice, the expectation is

ful�lled. We formally de�ne an equilibrium of the overall game with commitment as follows.

De�nition 2: An equilibrium with commitment of the (overall) banking game is a pair (x�; y�) ;

together with a selection function by (x; s) 2 bY (x) for all x and s; such that
(i) y� (s) = by (x�; s) for each s; and
(ii)

R 1
0
U (x�; y� (s)) ds �

R 1
0
U (x; by (x; s)) ds for all x.

This de�nition can be viewed as a type of correlated equilibrium, using a particular correlating

device (which we label `sunspots') that is asymmetrically observed by depositors and the BA (see

Peck and Shell [31] for this interpretation of correlated equilibrium).

It follows immediately from Proposition 1 that the overall banking game with commitment has

an equilibrium in which the �rst-best allocation obtains in all states. If the BA expects y�n (�n; s) =

�n to be played, independent of s, by all depositors in response to a policy satisfying (8), then such

a policy is clearly an optimal choice for the BA, satisfying condition (ii). Proposition 1 shows that

when such a policy is chosen, the strategy pro�le yn (�n; s) = �n for all s and n satis�es condition

(i). Hence, we have constructed an equilibrium of the overall banking game in which the �rst-best

allocation obtains in all states.

Corollary 1 The banking game with commitment has an equilibrium in which the �rst-best allo-
cation obtains.

Our question of interest, of course, is whether there exists another equilibrium of the banking

game in which some or all patient depositors withdraw in period 1 in some states (i.e., a run

equilibrium). The answer to this question depends crucially on the suspension component of the

policy, that is, the payments x (�) for � > �, and on the BA's ability to commit to the policy. Before

addressing the issue of run equilibria, however, we describe the environment without commitment

and show that the result in Corollary 1 is unaffected by the absence of commitment.
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3.2 Equilibrium without commitment

In an environment without commitment, the banking authority is not able to irrevocably set the

payment schedule before depositors choose their withdrawal strategies. Instead, the payment x (�)

is �nally determined only when it is actually made. This approach captures important features of

reality. While a banking contract is generally agreed on when funds are deposited, governments

routinely reschedule payments during times of crisis. The assumption of the no-commitment case

is that the rescheduling plan cannot be �xed in advance; it will be chosen as a best response

to whatever situation the banking authority �nds itself facing. It is worth emphasizing that the

banking authority in our model is completely benevolent; its objective is always to maximize

the welfare function U . The assumption in this case, therefore, is simply that the government is

unable to commit not to intervene if a crisis is underway and an (ex post) improvement in resource

allocation is possible.

We modify the model presented above to capture the notion of a lack of commitment power

in the following way. When choosing a payment x (�), the BA must clearly recognize that the

actions of all previous depositors have already been made. In addition, the BA cannot commit to

any payments to later depositors, nor will the choice of x (�) affect these future payments.15 The

BA therefore considers the strategies of the remaining depositors to be independent of its choice

of x (�). In other words, in the environment without commitment, the BA chooses each payment

x (�) taking the entire strategy pro�le y� as given. This is actually a standard formulation of a

policy game without commitment; see, for example, the discussion in Cooper [11, p. 137].

The de�nition of equilibrium for the environment without commitment is therefore as follows.

De�nition 3: An equilibrium without commitment of the (overall) banking game is a pair (x�; y�)

such that
(i) y� (s) 2 bY (x�) for all s, and
(ii)

R 1
0
U (x�; y� (s)) ds �

R 1
0
U (x; y� (s)) ds for all x.

Notice the small but important difference between De�nitions 2 and 3. In the environment with

commitment, the BA recognizes that a change in its policy will lead to a change in the behavior

15 With a large number of depositors, the payment to one individual has a negligible effect on total resources and,
hence, on subsequent decision problems. Furthermore, the isolation of depositors implies that only the individual
receiving the payment x (�) directly observes the amount paid; all other depositors must infer the payment using
the structure of equilibrium. Hence the BA cannot use changes in x (�) as a �signal� aimed at in�uencing the behavior
of depositors who have not yet learned their types and whose payments have not yet been determined.
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of depositors as speci�ed in the function by. Without commitment, in contrast, the BA takes the
strategies of depositors as given and must choose a best response to these strategies.

In other words, with commitment the BA can threaten drastic action (such as immediately sus-

pending payments) when faced with a run and depositors know that this threat will be carried out

if necessary. Such a response need not be ex post optimal; as long as the BA has committed to the

action, runs will not occur and the threat will not need to be carried out in equilibrium. Removing

the assumption of commitment imposes a form of credibility on the BA's threats; a threat to sus-

pend payments will be deemed credible by depositors only if suspending is actually the BA's best

response when faced with a run. In other words, our approach involves applying the time consis-

tency notion of Kydland and Prescott [29] to policies that potentially lie off of the equilibrium path

of play.16

Before moving on, we note that the reasoning behind Corollary 1 above also applies to the

environment without commitment. If the BA expects yn (�n; s) = �n for all s and n, it will attempt

to implement the �rst-best allocation by choosing a policy satisfying (8). Given such a policy,

Proposition 1 shows that this strategy pro�le is indeed an equilibrium of the depositors' game and,

hence, we have constructed an equilibrium of the overall banking game.

Corollary 2 The banking game without commitment has an equilibrium in which the �rst-best
allocation obtains.

The difference between the environments with and without commitment, therefore, does not

lie in the ability of the BA to generate the ef�cient allocation as an equilibrium outcome. Rather,

the key difference regards the ability of the BA to rule out undesirable allocations as competing

equilibrium outcomes, as the following sections show.

4 The Commitment Case

The central point of Diamond and Dybvig [14] was that the demand deposit contract described

in (7) does not uniquely (or, fully) implement the �rst-best allocation in the depositors' game.

16 The related work of Bassetto [4] is also concerned with the speci�cation of government policy along potentially
off-equilibrium paths and shows howmultiplicity of equilibria is more common than previously thought. His approach,
however, assumes commitment and only requires that announced policies be feasible along all possible paths of play.
Condition (1) ensures feasibility in our setup; in particular, suspending payments is always feasible. For us, the
ability (or inability) to commit to a policy is the critical issue.
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Under this policy, there exists another equilibrium in which all depositors attempt to withdraw

in period 1. In this equilibrium, depositors who arrive at the BA before it runs out of funds in

period 1 receive c�1; while depositors who arrive later (or who deviate and wait until period 2)

receive nothing. This equilibrium resembles a run on the banking system and leads to an inef�cient

allocation of resources.

Could a run occur in an equilibrium of the overall banking game? Diamond and Dybvig [14]

provided a partial answer to this question by showing how a suspension of convertibility clause

could render the �rst-best allocation the unique equilibrium outcome of the depositors' game.

Suppose that instead of following (7), the BA sets

x (�) =

�
c�1 for � 2 [0; �]
0 otherwise

�
: (9)

In other words, suppose the BA announces that after paying c�1 to a fraction � of depositors in

period 1, it will close its doors and refuse to serve any more depositors until period 2. Then a

patient depositor will know that, regardless of how many people attempt to withdraw in period 1,

the BA will have enough resources to pay her at least c�2 in period 2: Since c�2 > c�1 holds, waiting

to withdraw is a strictly dominant strategy for a patient depositor, and the only equilibrium of the

depositors' game has yn (�n) = �n for all n; independent of the sunspot state.

In fact, this result does not require that the BA suspend payments right at �; it is suf�cient for

the BA to suspend payments at any point where it can still afford to give more than c�1 to depositors

who are paid in period 2: As long as this is true, the actual suspension point chosen does not matter

because a suspension never occurs in equilibrium. Such policies costlessly eliminate the possibility

of bank runs.

The above reasoning implies that an equilibrium of the overall banking game with commitment

must lead to the �rst-best consumption allocation, with impatient depositors receiving c�1 and pa-

tient depositors receiving c�2 in all states. The BA's equilibrium policy x� is not uniquely de�ned,

because many policies beside (9) will lead to the same result. However, if the equilibrium alloca-

tion had a positive measure of patient depositors withdrawing early in some states of nature, the

BA could raise welfare by switching to (9).

Proposition 2 The �rst-best allocation obtains in any equilibrium of the banking game with com-
mitment.
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This result shows that under the assumption of commitment, bank runs cannot occur in equi-

librium because the BA has a policy tool (suspension of convertibility) that costlessly rules them

out.

5 Banking Policy without Commitment

In this section, we investigate the existence of equilibrium bank runs in the environment without

commitment. We �rst show that there cannot be an equilibrium in which all depositors withdraw

early in all states or even in only some states. We then derive conditions on parameter values under

which there exist �partial run� equilibria, where some patient depositors withdraw early but others

wait. We show that the fraction of depositors withdrawing early is stochastic and can be arbitrarily

close to one in some states. In other words, the banking system can experience an arbitrarily large

run with positive probability in equilibrium.

5.1 No �full-run� equilibrium

It is fairly easy to see that, even in the environment without commitment, our model cannot have

an equilibrium in which all depositors choose to withdraw early with certainty. If the BA expects

all depositors to play yn = 0; independent of �n and s; its best response is to set x (�) = 1 for all �;

thereby dividing its assets evenly among the depositors. Under this policy, however, the payment

available to a patient depositor who deviates and withdraws in period 2 is R > 1; regardless of

the number of early withdrawals. Waiting until period 2 is then a dominant strategy for patient

depositors and, hence, there cannot be an equilibrium in which these depositors withdraw early.

A slightly more subtle argument shows that there cannot be an equilibrium in which all patient

depositors withdraw early in some states but wait until period 2 in the remaining states. To see

why, suppose depositors all follow such a strategy, that is,

yn (�n; s) =

�
�n for s > s1
0 for s � s1

�
for all n: (10)

for some s1 2 (0; 1) : This type of strategy pro�le has been discussed extensively in the literature;
see, for example, Diamond and Dybvig [14, pp. 409-10], Cooper and Ross [12], and Peck and

Shell [32]. Faced with this pro�le of strategies, the BA's best response would be of the following

form. The �rst � depositors to withdraw provide no information to the BA, since the fraction of

depositors withdrawing is at least � in every state. The BA will, therefore, give some common
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amount c1 to each of these depositors. The size of the payment c1 will depend on s1; of course, but

the exact amount is not important for the argument.

The BA recognizes that after � withdrawals have taken place, additional withdrawals in period

1 will only occur in states with s � s1; in which case all depositors will withdraw early. The BA

will, therefore, set the payments x (�) for � > � so as to evenly divide its remaining assets among

the remaining depositors, since this is the best response to a run should one occur. Each of these

depositors would then receive

x (�) = c1d �
1� �c1
1� �

for � > �;

where the d subscript indicates that this payment results in an even division of the BA's remaining

assets. Given this payment schedule, does the strategy pro�le in (10) represent an equilibrium of

the depositor's game? The answer is `no' because the payment available to a patient depositor who

deviates and withdraws in period 2 in states s � s1 is Rc1d; which is strictly greater than c1d: A

patient depositor with n > � would, therefore, prefer to wait until period 2 to withdraw. A patient

depositor with n � � may or may not prefer to wait, depending on the relative sizes of c1 andRc1d;

but either way the strategy pro�le (10) is not consistent with equilibrium behavior. We summarize

this argument in the following proposition.

Proposition 3 The strategy pro�le (10) cannot be part of an equilibrium of the banking game
without commitment.

5.2 A partial-run equilibrium

The result in Proposition 3 leaves open the possibility of a partial run equilibrium, in which some

depositors follow (10) and others do not. Based on the discussion above, it seems promising to look

for an equilibrium in which depositors who would arrive relatively late in period 1 choose to wait if

they are patient, while depositors who would arrive relatively early choose to withdraw regardless

of their type. In this subsection, we derive conditions under which there exists an equilibrium of

the overall banking game in which the strategy pro�le of depositors is given by

For s > s1 : yn (�n; s) = �n for all n

For s � s1 : yn (�n; s) =

�
0
�n

�
for
�
n � �
n > �

� (11)
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In other words, depositors who would contact the BA relatively early in period 1 choose to run in

some states, while those who would contact the BA relatively late choose to wait until period 2 if

they are patient, regardless of the state.

We construct this equilibrium in two steps. First, we derive the BA's best response to the strategy

pro�le in (11); let bx denote the best-response policy. We then ask under what conditions the
pro�le in (11) is an equilibrium of the depositors' game generated by bx:We derive a necessary and
suf�cient condition for this to be the case, and we show that the condition holds when s1 is small

enough and 
 is large enough.

We calculate the BA's best response to (11) by working backward, considering �rst the payments

x (�) for � > �: Let  denote the per-capita amount of resources the BA has left after the �rst �

withdrawals, that is,

 =
1�

R �
0
x (�) d�

1� �
:

The BA recognizes that the payments for � > � will only take place in states s � s1: If these

payments are made, therefore, the BA knows that (i) a run will have occurred, meaning that the

�rst � withdrawals were made by a mix of patient and impatient depositors, but (ii) all additional

withdrawals in period 1 will be made by depositors who are truly impatient. The total fraction of

depositors withdrawing in period 1 will, therefore, be � + � (1� �) = 1� (1� �)2 :17

Because depositors are risk averse, the BA will offer a common payment to all of the (impatient)

depositors who withdraw after �:We denote this payment c1;2; where the latter subscript indicates

that the payment is associated with the 2nd �stage� of the payment schedule. The BA will also give

a common payment c2;2 to the (patient) depositors who withdraw in period 2: These payments will

be chosen to maximize the BA's objective function (2) and hence will solve the following problem

max
fc1;2;c2;2g

�
(c1;2)

1�


1� 

+ (1� �)

(c2;2)
1�


1� 

(12)

subject to

(1� �)c2;2 = R [ � �c1;2]

and non-negativity constraints. Notice the similarity between this problem and (3). The strategy

pro�le in (11) implies that when a run occurs, it necessarily halts after � withdrawals have been

17 Note that the withdrawals � > 1 � (1� �)2 will never be made under the strategy pro�le in (11) and, hence,
the best-response levels for these payments are not determined.
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made. From that point onward, only impatient depositors withdraw in period 1 and, therefore, the

BA is able to implement the �rst-best continuation allocation from that point on, given the amount

 of resources per capita remaining.

The solution to this problem is given by

bc1;2 =  
1

� + (1� �)A
and bc2;2 =  

RA

� + (1� �)A
(13)

where A is as de�ned in (5). Here we see that the �rst-best continuation allocation after � with-

drawals resembles the overall �rst-best allocation (4), but with the payments scaled by the available

resources per capita  :We will see below that  < 1 holds, and hence these payments represent a

scaling down of the �rst-best allocation. Let V denote the value of the objective in (12) evaluated

at the solution, that is

V ( ) = �
(bc1;2)1�

1� 


+ (1� �)
(bc2;2)1�

1� 


;

or, using (13) and (5),

V ( ) = (� + (1� �)A)

 1�


1� 

:

We next ask how the BA will set the payments to the �rst � depositors who withdraw. The

BA does not know whether these payments will go to only impatient depositors, as will happen

if s > s1; or to a mix of patient and impatient depositors participating in a run, as will occur if

s � s1: Regardless of which case applies, however, the BA will want to give the same payment to

all � depositors. In other words, any payment schedule for which x (�) is not constant for (almost)

all � � � is strictly dominated by another policy that makes the same total payment to these

depositors (leaving  unchanged), but divides the resources evenly among them.

Therefore, the BA will set x (�) = c1 for � 2 [0; �] ; where c1 is chosen to solve the following
problem.

max
fc1;c2g

(1� s1)

 
�
(c1)

1�


1� 

+ (1� �)

(c2)
1�


1� 


!
+ s1

 
�
(c1)

1�


1� 

+ (1� �)V ( )

!
(14)

subject to

(1� �)c2 = R (1� �c1) and

 =
1� �c1
1� �

:
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The solution to this problem is

bc1 = 1

� + (1� �)A1
and bc2 = RA1

� + (1� �)A1
; (15)

where

A1 =
�
(1� s1)R

1�
 + s1 [� + (1� �)A]

� 1

 :

It is straightforward to show that RA1 > 1 holds, so that bc2 is larger than bc1: In other words, if a
run does not occur (that is, if s > s1), then depositors withdrawing in period 2 will receive more

than depositors withdrawing in period 1. Also, when s1 > 0 and, hence, a run is possible, it can

be shown that bc1;2 is smaller than bc1; that is, depositors who withdraw in period 1 after it becomes
clear that a (partial) run has taken place suffer a �discount� relative to depositors who were earlier

in line. In this way, the optimal ex post response to a partial run is to partially suspend payments.

Summarizing, the BA's best response to the pro�le of withdrawal strategies (10) is given by

bx (�) = � bc1bc1;2
�
for � 2

�
[0; �]�

�; 1� (1� �)2
� � : (16)

We next ask if the strategy pro�le in (11) is an equilibrium of the depositors' game generated

by bx: In other words, if the BA were to follow the payment scheme in (16), would each depositor
�nd it optimal to follow (11) if she believed others would do so? Impatient depositors will always

choose to withdraw in period 1; so we only need to consider the actions of patient depositors. In

states s > s1; a patient depositor receives bc2 if she waits until period 2 to withdraw, but receives bc1
if she deviates and withdraws early. Since bc2 > bc1 holds, waiting to withdraw is clearly the optimal
choice in these states.

In states s � s1; the payment a patient depositor receives if she chooses to withdraw early

depends on her index n: For a patient depositor with n > �; the choice is between bc1;2 if she
withdraws early and bc2;2 if she waits. Since RA > 1; it is optimal for her to wait, as speci�ed by

(11). What about patient depositors with n � �? Such a depositor will also receive bc22 if she waits
until period 2; but will receive bc1 if she withdraws early. Withdrawing early is more attractive
for this depositor than for someone with n > � because she will receive the �pre-suspension�

payment bc1: She will choose to follow (11) and withdraw early if bc1 > bc22; using (15) and (13),
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this inequality can be shown to be equivalent to

f (
; s1) � R

0@(1� s1)
R1�
�

� + (1� �)R
1�




�
 + s1

1A < 1: (17)

If this condition holds, the pro�le of withdrawal strategies (11) represents an equilibrium of the

depositors' game generated by the policy bx: Since bx is, by construction, the BA's best response to
(11), we have constructed an equilibrium of the (overall) banking game without commitment.

When will (17) hold? If the parameters R; 
; and � are such that

f(
; 0) = R
R1�
�

� + (1� �)R
1�




�
 < 1; (18)

then, by continuity, (17) will hold if s1 is small enough. In other words, if condition (18) holds, we

can use the above construction to generate an equilibrium in which the �rst � depositors run with

positive probability. We have, therefore, proven the �rst of our results on the existence of a bank

run equilibrium.

Proposition 4 If (18) holds, there exists an equilibrium of the banking game without commitment
in which a fraction � of depositors run on the banking system with positive probability.

Notice that for any given values of R and �, condition (18) will hold if 
 is large enough. In

other words, if depositors are suf�ciently risk averse, the partial-run equilibrium described above

will exist.18

5.3 A run equilibrium with two waves

We showed in Section 5.1 that there cannot be an equilibrium in which all depositors run with

certainty because the BA, anticipating the run, will divide its resources in such a way that patient

depositors would rather wait to withdraw. Similarly, the partial-run equilibrium described above

cannot continue beyond the �rst � withdrawals with certainty, because the BA would again be able

to anticipate the continuing nature of the run and would choose (as part of the ex post optimal

policy) a payment schedule that convinces patient depositors to wait.

18 Gu [26] studies a model with demand-deposit contracts and generates a partial-bank-run equilibrium by having
depositors observe imperfectly correlated sunspot signals. In her setting, a partial run occurs in some states and
a full run in others. In our environment, in contrast, only partial runs are observed; a full run cannot occur in any state.
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It is, however, possible for the run to continue with positive probability. In this subsection we

discuss in some detail one such equilibrium. This equilibrium has the property that, after the �rst

� depositors have withdrawn during a run, the run may either halt, as in the previous subsection,

or the crisis may �deepen� as a second wave of patient depositors withdraws early after the partial

suspension has been declared. In the latter case, a fraction � of the remaining depositors will

withdraw before the BA is able to infer that the run has not stopped. At this point, the BA will

choose to further suspend convertibility and (in the equilibrium we construct here) the run will halt.

In the following subsection, we state and prove a more general result that includes the equilibrium

discussed here as a special case.

Consider the following pro�le of withdrawal strategies:

for s � s1 : yn (�n; s) = �n for all n

for s 2 [s2; s1) : yn (�n; s) =

�
0
�n

�
for
�
n � �
n > �

�

for s < s2 yn (�n; s) =

�
0
�n

�
for
�
n � 1� (1� �)2

n > 1� (1� �)2

� (19)

for some s1 > s2 > 0: In this pro�le, there are two sets of states associated with a run on the

banking system. For values of s in [s2; s1) ; a fraction � of depositors will run, as in the previous

subsection. For s below s2; however, these depositors are joined by a fraction � of the remaining

depositors. Think of s2 as being small relative to s1:

We use this pro�le to construct an equilibrium. In this equilibrium, the BA believes that, condi-

tional on a run occurring, the crisis is likely (but not certain) to halt after the �rst wave of depositors

has withdrawn and a (partial) suspension of payments has been declared.

What is the BA's best response to the strategy pro�le in (19)? Even without going into the

details of the calculations, we can see that it will be of the form

bx (�) =
8<: c1

c1;2
c1;3

9=; for

8<:
� < �

� 2
�
�; 1� (1� �)2

�
� > 1� (1� �)2

9=; : (20)

The reasoning behind the form of (20) is exactly the same as that behind (16) in the previous

section. When the �rst � withdrawals are taking place, the BA is unsure whether these withdrawals

are being made only by impatient depositors or a run is underway. It assigns probability s1 to the
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latter case. Regardless of this probability, however, it will choose to offer a common payment c1 on

all of these withdrawals. This payment level can be found by solving a problem similar to (14), but

with the value function in the second term of the objective modi�ed to re�ect the richer structure

of the strategy pro�le (19) (see the proof of Proposition 5 in the appendix for details).

If more than � withdrawals take place in period 1, the BA will recognize that a run is underway

and will implement a partial suspension. At this point, however, the BA is unsure whether the

run will halt, with all additional period 1 withdrawals being made by impatient depositors, or if it

will continue. The run will halt if s 2 [s2; s1) and will continue if s < s2; hence, the BA assigns

(conditional) probability s2=s1 to the event that the run continues. Based on this probability, the

BA will choose to give a common payment c1;2 to the next � (1� �) depositors who withdraw.

Similarly, if more than 1� (1� �)2 withdrawals take place in period 1; the BA will be able to infer

that s < s2. In this case it will solve a problem similar to (12) to �nd the optimal payment c1;3.

The remaining question is whether or not the withdrawal strategies (19) are an equilibrium of

the depositors' game generated by the policy (20). Would each individual depositor be willing to

follow the strategy in (19) if she expected all others to do so? The answer will be af�rmative if and

only if the payments induced by the policy (20) satisfy

c1 � c2; c1;2 � c2;2; and c1;3 � c2;3; (21)

as well as

c1 � c2;2; c1 � c2;3; and c1;2 � c2;3: (22)

Recall that the payment a depositor receives depends both on her index n and on the realized state

s: The inequalities in (21) guarantee that if a run is not currently underway when a patient depositor

has the opportunity to withdraw (either because a run never started or because it has halted), she

will be willing to wait until period 2. The �rst inequality applies to states s � s1; where each

depositor receives c1 if she withdraws in period 1 and c2 if she waits until period 2: The second

applies to states s 2 [s2; s1) and depositors n > �; in this case a run has occurred but has halted and

these depositors will receive either c1;2 in period 1 or c2;2 in period 2: Similarly, the third inequality

applies to states s < s2 and depositors n > 1� (1� �)2 : It can be shown, by deriving expressions

similar to (13) and (15), that these inequalities always hold.

The inequalities in (22) guarantee that a patient depositor is willing to participate in the run if
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one is underway when she has the opportunity to withdraw. The �rst inequality guarantees that

depositors with n � � are willing to run in states s 2 [s2; s1) ; while the second ensures that these
same depositors are willing to run in states s < s2: The third inequality guarantees that depositors

with n between � and 1 � (1� �)2 are willing to run in states s < s2: If all of these inequalities

hold, every depositor will choose to follow (19) if she expects all others to do so and, hence, that

strategy pro�le is an equilibrium of the depositors' game.

Whether or not the inequalities in (22) hold will depend on the cutoff states s1 and s2; which

have a large impact on the payments that the BA chooses. It can be shown that there exist s1 >

s2 > 0 such that all of these inequalities hold if and only if condition (18) holds. In other words, the

condition on the parameters R; 
; and � that guarantees the existence of an equilibrium in which

a fraction � of depositors choose to run in some states also guarantees that there is an equilibrium

in which 1 � (1� �)2 choose to run in some states. Rather than presenting the details of these

calculations, we move directly to our main result, which includes the two-wave run equilibrium as

a special case.

5.4 Run equilibria with many waves

Nothing in the analysis above dictates that a run must end with certainty after a second wave of

early withdrawals. In fact, the same type of reasoning can be used to construct an equilibrium

in which a run may occur in any �nite number of waves and hence, for some states, the run can

involve a fraction of depositors that is arbitrarily close to one (that is, almost all the depositors in

the system). The main proposition of the paper states this result.

Proposition 5 If (18) holds, then for any � < 1 there exists an equilibrium of the banking game
without commitment in which the fraction of depositors withdrawing in period 1 is greater than �
with positive probability.

A detailed proof is given in Appendix A. Given some � < 1; the �rst step is to determine the

number of waves and suspensions a run would have to go through in order to involve at least � of

the depositors. An equilibrium with the required number of waves is then constructed following

the type of approach used in the previous subsection. After each wave, the BA is unsure if the

run will halt or continue and it reschedules payments in a way that re�ects this uncertainty. These

rescheduled payments are then shown to satisfy the analog of the conditions in (22) and, hence,
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they permit the run to continue in some states.

An interesting feature of the run equilibrium identi�ed in Proposition 5 is that, even if nearly all

depositors end up withdrawing in period 1, the BA is always �optimistic� that the run has ended.

As discussed above, if the BA ever believed that a full run was underway, it would reschedule

payments in such a way that the remaining depositors would choose not to run. The only way a run

can continue (or even get started) is if the BA is fairly optimistic and, therefore, sets the payment

on early withdrawals relatively high. This fact implies that bank runs must occur in waves in our

environment, with the run likely to end after each wave. In this way, each time the BA learns that

it has faced a run, it remains optimistic that the run will not continue.

Peck and Shell [32] construct run equilibria in a model with aggregate uncertainty about the

fraction of impatient depositors. While their environment is different from ours in several ways,

there is an interesting similarity. In their setting, it is possible that all depositors will be impatient

and, hence, the BA can never be certain that a run is underway. In fact, in the examples they

construct the realization of a high level of fundamental withdrawal demand is much more likely

than a run. As a result, even after experiencing a large number of early withdrawals the BA remains

optimistic that a run is not underway and, therefore, that the withdrawals will soon stop. This

optimism, in turn, leads the BA to set payment levels that make running an equilibrium behavior.

In this sense, the aggregate uncertainty in their model plays the role of the wave structure of

equilibrium in ours.

6 Discussion

6.1 The probability of a run

The results presented above show that there exist equilibria in which runs occur with positive

probability. How large can the equilibrium probability of a run be? This question is easiest to

answer for a single-wave run. For that case, we can solve (17) as an equality to �nd the cutoff

probability s such that a run equilibrium exists for any s1 < s: Doing so yields

s =
1
R
�B

1�B
;
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where

B =
R1�
�

� + (1� �)R
1�




�
 :
The value of B is strictly decreasing in 
 and, hence, s is strictly increasing in 
: In other words,

when depositors are more risk averse, the maximum probability of a run is higher. Figure 1 plots

the area where s1 < s is satis�ed.

Figure 1: The maximum probability of a run

In the limiting case where 
 goes to in�nity, s converges to R�1:While it is not clear what pa-

rameter values should be considered �realistic� in our stylized model, this calculation nevertheless

demonstrates that runs need not be rare events in this environment. If, for example, R = 1:1; then

when depositors are very risk averse there exists an equilibrium in which the probability of a run

is greater than 90%:

6.2 The degree of risk aversion

Figure 1 also shows that, for any given values of R and �; the single-wave run equilibrium exists

for some values of s1 when 
 is large enough. In other words, bank runs can occur in equilibrium

whenever depositors are suf�ciently risk averse. In fact, this statement applies to the many-wave

run equilibrium constructed in Proposition 5 as well, since both single- and many-wave run equi-

libria exist if and only if (18) holds. We state this result as a corollary.
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Corollary 3 Given R and �; if depositors are suf�ciently risk averse, bank runs can occur with
positive probability in an equilibrium without commitment.

How risk averse must depositors be? Condition (18) holds for some values of R and � if and

only if 
 > 2: In other words, the curve in Figure 1 always begins to the right of 
 = 2; and there

are values of R and � for which it begins arbitrarily close to 
 = 2: Even this requirement can

be weakened, however, through a relatively straightforward modi�cation of the model. Cooper

and Ross [12] studied a two-technology speci�cation of the Diamond-Dybvig model with costly

liquidation (see also Ennis and Keister [18]). While they ruled out suspensions of convertibility by

assumption, they showed how having two technologies and a non-trivial portfolio choice weakens

the requirement on risk aversion needed for the run equilibrium to exist. The same is true in our

model.

Suppose that, in period 0, the BA had to divide its resources between a liquid investment, which

yields a return of 1 in either period 1 or 2, and an illiquid investment that yields R in period 2 but

only 1 � � in period 1; where � � 0 represents a liquidation cost. When � = 0; the liquid asset

will not be used and the model reduces to the one studied here. It can be shown that increasing

the liquidation cost shifts the boundary in Figure 1 upward, increasing the set of run probabilities

consistent with equilibrium for any given 
: Furthermore, as the liquidation cost becomes large,

the starting point of the boundary approaches the origin of the diagram. In other words, for any

level of risk aversion 
 > 1; there exists a level of the liquidation cost that permits a run to occur

with positive probability.19

6.3 The fraction of impatient depositors

An examination of (18) shows that it cannot hold when there are very few impatient depositors. In

the extreme case where � is set to zero, the value of f (
; 0) is R > 1 and the condition is clearly

violated. By continuity, it is also violated for values of � close to zero. Using the fact that f is

strictly decreasing in � delivers the following result.

Corollary 4 Given R and 
; there exists � 2 (0; 1] such that bank runs can occur with positive
probability in an equilibrium without commitment if and only if � > �:

19 Villamil [35] also studies the role that the ability of banks to early liquidate investment has in the possibility of
bank runs. Her argument relies on a knife-edge result that occurs when � = 1 (that is, when no resources can
be obtained by liquidating early).
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Intuitively, when � is small the BA will discover whether or not a run is underway fairly quickly.

This allows it to adjust payments through a partial suspension before it has given away many

resources during a run. The BA will also discover quickly if the run has halted or if it continues

following each wave. Because the BA is able to make inferences frequently and adjust payments

accordingly, it will be able to retain a relatively large amount of resources for making payments

in period 2: A depositor who sits out the run will then receive a relatively large payment and, as a

result, running will not be equilibrium behavior.

Of course, if � is very small depositors do not face much uncertainty about their consumption

needs. In such cases, the value of the risk sharing provided by the banking system is limited.

Viewed this way, Corollary 4 says that the banking sector must be suf�ciently important in order

for the possibility of bank runs to arise.

6.4 The equilibrium concept

Following Green and Lin [24], [25], we have assumed that depositors know the order in which they

would arrive at the bank if they chose to withdraw early. This approach differs from the original

Diamond-Dybvig model and most of the subsequent literature, where a depositor �rst chooses

whether or not to withdraw and then is assigned a place in line. The known-ordering approach

simpli�es our analysis above because, together with the law of large numbers, it implies that each

depositor knows precisely how much she will receive if she withdraws early; in other models this

payoff is random. Our results, however, do not depend critically on depositors knowing the order.

In particular, the type of run equilibria we construct can also be shown to exist in an environment

that is closer to the original Diamond-Dybvig model. In this subsection, we brie�y describe how

this works.

Consider an environment where withdrawal decisions are initially made without any informa-

tion about the ordering. Depositors who choose to withdraw are randomly assigned places in line.

Suppose, however, that when a partial suspension of payments is announced, depositors who are in

line but have not yet been served are able to re-evaluate their decision to withdraw. This is the key

feature of the alternative environment: a depositor may not know how much she will receive if she

withdraws early, but if the amount is less than the �standard� payment then she is able to change

her mind. In this way, she can effectively discern the withdrawal payment she would receive before

making a �nal decision.
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It is fairly straightforward to construct a run equilibrium with a single wave in this modi�ed

environment. The BA follows the partial suspension policy in (16). All depositors initially attempt

to withdraw. After a proportion � of agents withdraw, the banking authority discovers that a run is

underway and partially suspends payments.20 In response, the remaining patient depositors in line

reevaluate their decision and decide to wait until period 2. This behavior represents an equilibrium

under exactly the same conditions as in our analysis above. In particular, if (18) holds, then the

initial run can occur with positive probability in equilibrium.

Run equilibria with many waves can be constructed in this alternative environment in a simi-

lar fashion. To decide the speci�cs of a partial suspension, the banking authority needs to form

expectations over the possible reaction of depositors. In formalizing this process it is convenient

to introduce explicit coordination devices. In particular, suppose that after each partial suspension

is announced, the remaining depositors in line can condition their actions on the realization of a

new sunspot variable. The run could then halt in some states, but in others it could continue until

the next phase of the suspension plan is announced. At that point, yet another sunspot variable is

realized and the process can repeat any number of times.

Decision making in this alternative environment has a more dynamic nature, with actions being

decided in stages rather than all at once. While this property is somewhat appealing on intuitive

grounds, it also raises the usual complications associated with dynamic games. In addition, the idea

that depositors can change their decisions based on the payments offered by the BA is somewhat

at odds with the isolation assumption. One rather appealing aspect of our formulation above is

that it captures the important features of the �dynamic� story without introducing unnecessary

complications.

7 Concluding Remarks

The issues of commitment, credibility, and time-inconsistency are pervasive in economics and

have been studied extensively. In banking theory, however, the importance of these issues has

received relatively little attention, apart from often informal treatments of bank bailouts.21 In

this paper, we analyze for the �rst time the role of commitment in banking policies designed to

20 Because of the random assignment of places in line, only �2 of these �rst � depositors are actually impatient.
The rest are patient depositors who successfully withdraw during the run.
21 Two notable exceptions are Mailath and Mester [30] and Acharya and Yorulmazer [1], both of which deal with
credibility issues in policies regarding bank closure.
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respond to the possibility of runs on the banking sector. We show that in an environment without

commitment, the often-discussed policy of suspending all payments in response to a run will never

be used. Instead, a banking authority will only partially suspend the convertibility of deposits, and

this ex post reaction to a run may provide depositors with ex ante incentives to participate in a run.

The extent to which the policies followed by banking authorities open the door to the possibility

of runs depends on a policymaker's prior assessment of the chances of experiencing such a run.

Speci�cally, when the banking authority considers a crisis unlikely and, more generally, considers

a major crisis much less likely than a minor one, the policies it will follow in response to early

indications of a run are not �strong� enough to persuade depositors to stop running (or to not run

in the �rst place). In this manner, our paper is the �rst to suggest that it may be the combination

of lack of commitment and optimism (or a tendency towards it) on the part of policymakers during

a crisis that lies at the root of the problem of self-ful�lling runs. We �nd this a useful new way of

thinking about the fundamental problem and believe it provides important insight into the causes

and consequences of banking instability.

We use the simple Diamond-Dybvig framework for our analysis because it is widely known

and it allows us to present our ideas in a clear and transparent way. Many of the simplifying

assumptions in this model, however, are not essential for our purposes. For example, assuming

that there is no aggregate uncertainty about fundamental withdrawal demand, and hence that the

banking authority knows the exact point at which suspending payments is appropriate, may be

considered extreme. Changing the model so that the fraction of depositors who are impatient is

random will complicate matters, but our insights will remain valid as long as the support of the

distribution is not too large. What is important for our analysis is that there is a upper bound

on the level of normal withdrawal demand, and that suspending payments to depositors once this

bound is reached would rule out the possibility of a self-ful�lling bank run. In any such setting,

the credibility of the threat to suspend comes into question and the issues highlighted in this paper

are relevant.

The willingness of a banking authority to suspend payments in reality is likely to depend on how

long the banking system needs to remain closed. In the model, the time lapse between periods 1 and

2 corresponds to the maturity time of banks' investments. More generally, it can be thought of as

the time necessary for banks to liquidate their portfolios without incurring signi�cant losses. If this

period is fairly short, the fraction of depositors who need �early� access to their funds may be rather
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small, which would correspond to a low value of � in the model. Our result in Corollary 4 shows

that if � is low enough, the banking authority can uniquely implement the �rst-best allocation. In

other words, if only a short suspension of payments is required, an inability to commit to a policy

is less likely to cause problems. The longer the time period involved, however, the greater is the

need for additional early payments and, hence, the more the banking authority will deviate from

the commitment solution. It was clear to observers that the banking crisis in Argentina in 2001 was

not likely to be sorted out quickly, which undoubtedly made a strict suspension of payments more

dif�cult and may have contributed ex ante to individuals' decisions to run. This reasoning suggests

that a banking systemwith fundamental weaknesses, where a longer suspension of payments would

likely be required, should be more susceptible to a run than a system that is fundamentally sound.

Formalizing this argument would require a more fully dynamic model and seems a promising

avenue for future research.

Studying suspension policies in a longer-horizon setting would introduce other interesting is-

sues. It is well known, for example, that reputational concerns can substitute for commitment in

some settings (see Stokey [34] and Chari and Kehoe [10]). The extent to which the desire to build

a reputation for being �tough� in the face of a run would enable the banking authority to credibly

suspend payments (and thereby rule out runs) is an interesting question. The answer will likely

depend on how, if ever, the reputation is tested given that bank runs potentially lie off the equi-

librium path. While these dif�cult issues are beyond the scope of the present paper, we believe

that our analysis provides a critical �rst step by highlighting their relevance. Once it is recognized

that suspension of convertibility policies may not be time consistent even in simple settings, issues

of both static and dynamic credibility become important. Our analysis using the classic model of

Diamond and Dybvig should serve as a useful benchmark for future work on the issue.
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Appendix A. Proof of Proposition 5

Proposition 5: If (18) holds, then for any � < 1 there exists an equilibrium of the banking game

without commitment in which the fraction of depositors withdrawing in period 1 is greater than �

with positive probability.

The proof is constructive. Let K be the smallest integer such that

1� (1� �)K+1 > �

holds. Consider the strategy pro�le

for s � s1 : yn (�n; s) = �n for all n

for s 2 [sk+1; sk) : yn (�n; s) =

�
0
�n

�
for n

�
�
>

�
1� (1� �)k

(23)

for k = 1; : : : K; where

1 > s1 > : : : > sK > sK+1 � 0:

Under this strategy pro�le, the fraction of depositors withdrawing in period 1 is 1�(1� �)K+1 with

probability sK > 0: Therefore, if we can show that (23) is part of an equilibrium of the banking

game without commitment, the proposition will be proved. We break this task into two steps,

which are addressed in separate lemmas below. First, Lemma 1 derives the BA's best response to

this strategy pro�le, which we denote bx: Lemma 2 then shows that when (18) holds, we can choose
the numbers sk such that (23) is an equilibrium of the depositors' game generated by bx: The result
in the proposition follows immediately from these two lemmas.

Lemma 1 The BA's best response to (23) is

bx (�) =  kY
j=1

Aj
� + (1� �)Aj

!
1

Ak
for � 2

�
1� (1� �)k�1 ; 1� (1� �)k

i
;

where

Ak =
�
(1� qk)R

1�
 + qk (� + (1� �)Ak+1)

� 1
 ; for k = 1; : : : ; K + 1: (24)

Proof: Wework backwards. De�ne  K to be the per-capita resources remaining after 1�(1� �)K
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withdrawals have been made, that is,

 K =
1�

R 1�(1��)K
0

x (�) d�

(1� �)K
:

We �rst derive the payments x (�) for � 2
�
1� (1� �)K ; 1� (1� �)K+1

i
:22 The BA recog-

nizes that under (23) these payments will only be made in states s < sK and that all of these

payments, in the event they are made, will go to impatient depositors. The remaining patient

depositors will wait until period 2 to withdraw. Because depositors are risk averse, the BA will

choose to give the same amount to all impatient depositors; we denote this amount c1;K+1; where

the latter part of the subscript indicates that these payments would apply after there have been K

waves of withdrawals and the run has halted. Let c2;K+1 denote the payment that the remaining

patient depositors will receive in period 2. These payment amounts will be chosen to solve

max
c1;K+1;c2;K+1

�
(c1;K+1)

1�


1� 

+ (1� �)

(c2;K+1)
1�


1� 

(25)

subject to

(1� �)c2;K+1 = R [ K � �c1;K+1]

and non-negativity constraints. Notice that this problem resembles that for �nding the �rst-best

allocation, but with per-capita resources set to  K instead of 1: The solution is

bc1;K+1 =  K
1

� + (1� �)AK+1
and bc2;K+1 =  K

RAK+1
� + (1� �)AK+1

; (26)

where

AK+1 � R
1�


 < 1: (27)

Let VK+1 denote the value of the objective in (25) evaluated at the solution, that is

VK+1 ( K) = �
(bc1;K+1)1�

1� 


+ (1� �)
(bc2;K+1)1�

1� 


;

or, substituting in (26),

VK+1 ( K) = (� + (1� �)AK+1)

 ( K)

1�


1� 

:

22 Under (23), there are no circumstances in which the payments associated with � � 1 � (1� �)K+1 will be
made. The best-response levels for these payments are, therefore, indeterminate and do not matter for our analysis.
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Next, we consider the payments in the interval

� 2
�
1� (1� �)k�1 ; 1� (1� �)k

i
for any k 2 f1; : : : ; Kg :

These payments will be made in states s � sk�1: Unlike in the previous case, the BA is not sure

if these payments will go only to impatient depositors, as will occur if s 2 [sk; sk�1) ; or to a mix
of patient and impatient depositors during a continued run, as will occur if s < sk: Regardless of

which case applies, however, the BA will want to give the same payment to all depositors who

withdraw in this interval. In other words, any payment schedule for which x (�) is not constant

for (almost) all � in this interval is strictly dominated by another policy that makes the same total

payments to these depositors, but divides the resources evenly among them. Let c1;k denote the

payment given to depositors withdrawing in this interval in period 1: Let c2;k denote the payment

that will be received by patient depositors in period 2 if there are no further withdrawals in period

1, that is, if s 2 [sk; sk�1) :
Before we write the optimization problem for choosing these payment levels, we introduce

some notation to simplify the statement of the problem. First, de�ne  k�1 to be the amount of

resources per capita that remain after 1� (1� �)k�1 withdrawals in period 1, that is,

 k�1 =
1�

R 1�(1��)k�1
0

x (�) d�

(1� �)k�1
for k = 1; : : : ; K:

Straightforward calculations then yield the following relationship between  k�1; the payments c1;k;

and the per-capita resources  k remaining after these payments are made,

 k =
 k�1 � �c1;k
1� �

: (28)

Next, de�ne

qk =
sk
sk�1

= Prob [s < sk j s < sk�1] for k = 1; : : : ; K;

with s0 � 1: In other words, qk is the probability that the run will continue into the kth wave, given
that it has lasted for k � 1 waves. Finally, let Vk

�
 k�1

�
denote the average expected utility of

depositors with n > 1 � (1� �)k�1 conditional on s < sk�1: In other words, Vk measures the

expected utility of depositors who have not yet been served when the BA discovers that the run has
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at least k � 1 waves. Then the BA will choose the payment c1;k to solve

max
c1;k;c2;k

(1� qk)

 
�
(c1;k)

1�


1� 

+ (1� �)

(c2;k)
1�


1� 


!
+ qk

 
�
(c1;k)

1�


1� 

+ (1� �)Vk+1 ( k)

!

subject to
(1� �)c2;k = R

�
 k�1 � �c1;k

�
;

(28), and non-negativity constraints. The �rst term in the objective function represents utility in the

event that the run halts after k�1waves. In this case, the remaining impatient depositors all receive
c1;k and the remaining patient depositors receive c2;k in period 2: The second term represents utility

in the event that the run continues into the kth wave, which occurs with probability qk: In this case,

the �rst � depositors to withdraw (a mix of impatient and patient depositors) will receive c1;k: The

remaining depositors will receive payments after the next phase of the suspension takes effect; the

utility of these depositors is captured by the value function Vk+1:

Solving this problem recursively backward, substituting the value function for each value of k

into the problem for k � 1 yields

bc1;k =  k�1
1

�+(1��)Ak ; bc2;k =  k�1
RAk

�+(1��)Ak ; and

Vk
�
 k�1

�
= (� + (1� �)Ak)


 ( k�1)
1�


1�
 ;

where Ak is given in (24). We can then replace the  k terms as follows. Since  0 = 1 (by

de�nition), we have bc1;1 = 1

� + (1� �)A1
:

Then we can calculate the amount of resources remaining after the �rst � withdrawals

 1 =
1� �bc1;1
1� �

=
A1

� + (1� �)A1
;

and use this amount to �nd the optimal payment levels following the �rst partial suspension

bc1;2 = A1
� + (1� �)A1

1

� + (1� �)A2
and bc2;2 = A1

� + (1� �)A1

A2
� + (1� �)A2

R:

Continuing this process forward yields

 k =

kY
j=1

Aj
� + (1� �)Aj
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and

bc1;k =  kY
j=1

Aj
� + (1� �)Aj

!
1

Ak
and bc2;k =  kY

j=1

Aj
� + (1� �)Aj

!
R; (29)

which establishes the Lemma. �

Lemma 2 If (18) holds, there exist 1 > s1 > : : : sK > 0 such that (23) is an equilibrium of the
depositors' game generated by bx:
Proof: Since impatient depositors will always choose to withdraw early, we only need to check the

optimal behavior of a depositor when she is patient. The strategies in (23) are individually optimal

if
(a) bc1;j � bc2;k for j = 1; : : : k � 1
(b) bc1;k � bc2;k

�
for k = 1; : : : ; K + 1:

The inequalities on line (a) imply that patient depositors are willing to participate in the run. If

the run lasts for k � 1 waves, then a patient depositor who chooses not to run will receive bc2;k: A
patient depositor who withdraws early receives bc1;j for some j < k that depends on her index n:

If each of these inequalities hold, then all patient depositors who have an opportunity to withdraw

during the run will choose to do so. The inequalities on line (b) are often referred to as the incentive

compatibility constraint. They imply that if a run is not underway, or has halted before a depositor

is served, then a patient depositor will be willing to wait and withdraw in period 2.

We examine line (b) �rst. From (27) we have RAK+1 = R
1

 > 1: Then, using (24), we have

RAk = ((1� qk)R + qk (�R + (1� �)RAk+1)

)

1

 ; for k = 1; : : : ; K:

Applied recursively from k = K down to k = 1; this expression demonstrates that

RAk > 1 for k = 1; : : : ; K + 1:

It then follows immediately from (29) that (b) holds.

Next, we examine line (a) : First, from (29) we have

bc1;j+1 = Aj
� + (1� �)Aj+1

bc1;j: (30)
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It is straightforward to show that

Aj
� + (1� �)Aj+1

< 1 for j = 1; : : : ; K:

Equation (30) therefore shows that in each wave of the partial suspension, the payment received

by depositors is smaller than in the previous wave, an intuitive result. More importantly, this result

also implies that instead of checking the k� 1 inequalities on line (a) for each value of k; we only
need to check the last one:

bc1;k�1 � bc2;k for k = 2; : : : ; K + 1:

This inequality can be written as

bc1;k�1 =  k�1Y
j=1

Aj
� + (1� �)Aj

!
1

Ak�1
�
 

kY
j=1

Aj
� + (1� �)Aj

!
R = bc2;k;

which can be reduced to

(AkR)



�
(1� qk�1)

R1�


(� + (1� �)Ak)

 + qk�1

�
< 1 for k = 2; : : : ; K + 1: (31)

By replacing the Ak terms recursively, using (24), we have K inequalities involving only the

parameters R; 
; �; and the (endogenous) probabilities q1; : : : ; qK : The question is under what

conditions these probabilities can be chosen so that all K inequalities hold.

Suppose we set qk = 0 for all k: Then Ak = R
1�


 for all k and (31) reduces to the same

inequality for all values of k :

R
1



R
1�




� + (1� �)R
1�




< 1;

which is exactly condition (18). Since the inequalities (31) are clearly continuous in the variables

qk; we therefore know that when (18) holds, there exists a number q > 0 such that (31) holds for

all k if we set qk = q for all k:We can then back out the cutoff states s1; : : : ; sK by

s1 = q

sk = qsk�1 = qk for k = 2; : : : ; K:

Since sK > 0 holds, we have established the lemma. �
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