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Abstract

Many structural break and regime-switching models have been used with
macroeconomic and financial data. In this paper, we develop an extremely flexible
parametric model that accommodates virtually any of these specifications—and does 
so in a simple way that allows for straightforward Bayesian inference. The basic idea
underlying our model is that it adds two concepts to a standard state space framework.
These ideas are ordering and distance. By ordering the data in different ways, we can
accommodate a wide range of nonlinear time series models. By allowing the state
equation variances to depend on the distance between observations, the parameters can
evolve in a wide variety of ways, allowing for models that exhibit abrupt change as 
well as those that permit a gradual evolution of parameters. We show how our model
will (approximately) nest almost every popular model in the regime-switching and
structural break literatures. Bayesian econometric methods for inference in this model
are developed. Because we stay within a state space framework, these methods are
relatively straightforward and draw on the existing literature. We use artificial data to
show the advantages of our approach and then provide two empirical illustrations
involving the modeling of real GDP growth.
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1 Introduction

Many recent developments in empirical macroeconomics are based on statistical models which
are nonlinear or exhibit structural breaks or time variation in parameters. For instance,
Cogley and Sargent (2001, 2005), Boivin and Giannoni (2006) and Primiceri (2005) use
structural break or time varying parameter models to examine whether monetary policy rules
have changed over time. Other authors (e.g. Sims and Zha, 2006 and Koop and Potter, 2006)
develop regime-switching models to analyze similar issues relating to the e¤ects of monetary
policy. The potential empirical importance of departures from constant parameter linear
models is undeniable. However, in practice, a problem arises since the set of possible models
which exhibit time variation or regime-switching in coe¢ cients is huge and the potential
for data mining is commensurately large. These considerations have lead to an interest in
developing �exible parametric models1 which nest common nonlinear time series and time
varying parameter speci�cations (see, e.g., Hamilton, 2001, 2003, Lundbergh, Terasvirta
and van Dijk, 2003 and Rahbek and Shephard, 2002 and van Dijk, Giordani and Kohn,
2007). Our paper is in the spirit of this latter literature but, we argue, more �exible than
previous work. We remain in a standard state space framework and, thus, textbook results
for estimation, model comparison and prediction are immediately available.
The intuition underlying our modeling framework is based on two ideas: data reordering

and distance between observations. The �rst can be motivated by comparing an autoregres-
sive model for yt with a structural break at time � and a threshold autoregressive (TAR)
model with threshold � (i.e. the AR dynamics if yt�1 < � are di¤erent from those if yt�1 � �).
Suppose we create a new variable y�t which is a simple reordering of yt according to yt�1 (i.e.
y�1 is ys where ys�1 is the smallest value of lagged y, y

�
2 has the second smallest value for

lagged y, etc.). Then the structural break and TAR models are statistically exactly the
same model, but one uses the original data yt and the other uses the re-ordered data y�t . In
general, a wide range of nonlinear time series models with regime-switches can be written as
structural break models using reordered data.
The second idea our modeling framework draws on is distance between observations. This

idea is incorporated in many nonparametric regression methods (see, e.g., Yatchew, 1998).
For instance, when approximating y = f (x), if two observations have similar values for x
(i.e. the distance between their values for x is small) then various nonparametric regression
methods imply that they have similar values for f (x). In a macroeconomic context such
ideas are very useful if dynamic properties vary over the business cycle. For instance, in an
autoregressive model we might want AR dynamics in all recessionary periods to be similar
to one another. Thus, if yt�1 is last period�s GDP growth, then two observations with
similar negative values of yt�1 should have similar AR dynamics. A nonparametric time
series regression model has such a feature, and our modeling framework has it as well.
In next section, we provide more detail on why combining these two ideas results in a

modeling framework that is �exible and nests virtually every popular parametric structural

1Nonparametric approaches are also a promising avenue, although they are less popular in this literature
since macroeconomic data sets tend not to be that large (see also the reasons outlined in the introduction
to Hamilton, 2001).
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break and regime-switching model. We argue that an advantage of our approach is that,
instead of assuming a particular model (e.g. a TAR or an AR model with a �xed number of
breaks), it can allow the data to tell us which (if any) departure from linearity is appropriate.
Thus, our approach is �exible. However, it is also simple. We remain in a familiar class of
models which are easy to understand and easy to handle econometrically. That is, conditional
on a distance function, every model we consider is a state space model. Since Bayesian
methods for state space models are well-developed, we can use such methods and only add
a block to an existing posterior simulator which characterizes the distance function. In
the third section of this paper, we describe such a posterior simulation algorithm for an
empirically-relevant implementation of our approach. This applies our modeling framework
to both conditional mean and volatility parameters. The fourth section contains empirical
work. After illustrating our approach with arti�cial data we apply our techniques to the
modeling of US GDP growth. We start with the univariate time series properties of GDP
growth. We �nd overwhelming evidence in favor of time variation in the conditional variance
with a form similar to stochastic volatility. We then add lags of oil price in�ation as covariates
with time varying coe¢ cients. In this application, we �nd evidence in favor of a regime-
switching model where oil price changes averaged over the past year trigger the switch
between regimes.

2 A Flexible Parametric Modeling Framework

In this section, we outline the general features of our modeling framework in terms of a
simple variant of our model. In the following section we introduce a more general model
suitable for empirical research. In this intuitive section, we assume that the error variance
is homoskedastic and do not discuss volatility issues. However, our general model described
in the next section does apply our �exible parametric framework to volatility issues.
Consider a time varying parameter (TVP) model written in state space form with mea-

surement equation given by:
yt = �txt + �""t; (1)

for t = 1; :::; T where xt is a scalar (e.g. a lag of the dependent variable) and state equation
given by:

�t = �t�1 + �vvt (2)

and "t and vt are i.i.d. N (0; 1) (and independent of one another).
This model is of interest in and of itself (e.g. Cogley and Sargent, 2001 use a VAR ex-

tension of it), nests some interesting models (e.g. �v = 0 is the linear model) and textbook
methods for statistical inference (e.g. MCMC algorithms) are available. The relationship
between state space models such as (1) and (2) and nonparametric kernel smoothing algo-
rithms is well-developed in the state space literature (e.g. Harvey, 1989 and Harvey and
Koopman, 2000). Even without the extensions considered in this paper, state space models
such as (1) and (2) are a �exible and powerful tool for time series analysis.
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What we do in this paper is maintain the framework given by (1) and (2) (and, thus,
still use standard MCMC algorithms), but extend it as follows:

yt = �g(zt)xt + �""t; (3)

where

�s = �s�1 + �vd
�
z�s ; z

�
s�1
�
vs; (4)

and s indexes a reordering of time according to the function g of an index variable zt (i.e.
zt is an observed exogenous variable such as a lagged dependent variable). To de�ne g take
the observations of the index variable zt and place them in ascending order (using a * to
denote the reordered values) as z�1 � z�2 � :: � z�T . Then g(zt) is the rank of zt in the
ordering: So, for instance, if zt = yt�1, and zt has the tenth smallest value of yt�1, then
g (zt) = 10. Formally, let the T � 1 parameter 
 with 
t = g (zt) for t = 1; :::; T be used
to de�ne the ordering of the data (e.g. 
 = (1; :::; T )0 denotes data in the usual time series
ordering, 
 = (T; T � 1; ::; 1)0 denotes the data in reverse time ordering, etc.). d

�
z�s ; z

�
s�1
�

is a (non-negative) distance function measuring the distance between z�s and z
�
s�1. We treat


 and d =
�
d (z�2 ; z

�
1) ; d (z

�
3 ; z

�
2) ; ::; d

�
z�T ; z

�
T�1
��0

as vectors of parameters (with hierarchical
priors) and, thus, our methods allow for their data-based estimation.
Di¤erent reorderings of the data and di¤erent distance functions can be used to nest a

wide range of common speci�cations as the following discussion make clear. To draw out the
connections with existing nonlinear time series models most clearly, the following discussion
assumes xt contains a lag of the dependent variable.

2.1 The Role of the Distance Function if the Data is Not Re-
ordered

Consider �rst, the sorts of models which result if the data are in standard time series order.
In terms of our de�nitions, we have 
 = (1; :::; T )0, zt = z�t = t for t = 1; :::; T (i.e. the
index variable is already in ascending order and, thus, no reordering of the data is required
to de�ne s or z�s). Thus, the model is:

yt = �tyt�1 + �""t; (5)

where

�t = �t�1 + �vd (t; t� 1) vs: (6)

Two cases are immediately clear. First, a standard linear AR model is obtained if
d (t; t� 1) = 0 for all t. Second, a TVP model of the sort used by Cogley and Sargent
(2001) or Koop and Potter (2001) is obtained if d (t; t� 1) = 1 for all t.
Now consider what happens if we let d (t; t� 1) = 1 if t = � and d (t; t� 1) = 0 otherwise.

In this case, �1 = :::���1 and �� = :::��+1and we have a model with a single structural break
at � . By treating � as an unknown parameter, the breakpoint can occur at an unknown point
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in time. A second breakpoint of unknown timing can be obtained by de�ning two breakpoints
as � 1 and � 2 (where � 2 > � 1) and letting d (t; t� 1) = 1 if t = � 1 and d (t; t� 1) = 1 if t = � 2
and d (t; t� 1) = 0 for all other values of t. Models with more than two structural breaks
can be obtained by extending this distance function de�nition in the obvious manner.
As a digression, it is worth noting that, with multiple breaks and a distance function

that only takes on values 0 or 1, we are restricting the shift in coe¢ cients to be of a similar
magnitude each time a break occurs. This arises since �v is assumed to be constant over
time. If this is objectionable, simple extensions are possible. For instance, in the two-break
model, we can let d (t; t� 1) = 1 if t = � 1 and d (t; t� 1) = �2 if t = � 2 (where � 2 > � 1)
and d (t; t� 1) = 0 for all other values of t. Note that the introduction of the parameter �2
allows for the coe¢ cient shift after the �rst break to be of a di¤erent magnitude than the
coe¢ cient shift after the second. Such extensions can be done for any of the multiple regime
models we discuss below.
The structural break framework described in the previous paragraphs involves a �xed

(known) number of structural breaks. That is, we de�ne a distance function for each possi-
ble number of breaks (e.g. one distance function de�nes a one break model, another de�nes
a two break model, etc.). If the number of breaks is unknown, we could simply do Bayesian
model averaging over models with di¤ering numbers of breaks. However, for reasons dis-
cussed in Koop and Potter (2007), it can be desirable to work with a model which does not
impose a �xed number of breakpoints. This can be done by adopting a hierarchical prior for
d (t; t� 1) of a speci�c sort. This brings us into the family of models developed in McCulloch
and Tsay (1993), Gerlach, Carter and Kohn (2000) and Giordani and Kohn (2006). As a
simple example, if we let dt � d (t; t� 1) for t = 1; :::; T be unknown parameters and use a
hierarchical Bernoulli prior distribution for them:

p (dt = 1) = p;

p (dt = 0) = 1� p

where p is an unknown parameter, then we obtain the model of McCulloch and Tsay (1993).
Note that this allows for a break to occur in every period with probability p and, thus, the
number of breaks can be estimated in the data. This model can be extended to allow for p
to change if a break occurs, p to depend on exogenous variables, etc. Furthermore, in more
general models dt can be a vector (e.g. it can have two components, one controlling breaks
in coe¢ cients and the other in error variances). As long as the hierarchical prior for dt has a
Markov structure, the e¢ cient algorithms of Gerlach, Carter and Kohn (2000) and Giordani
and Kohn (2006) can be used. An important example of this would allow for p (dt) to have a
form which restricts the usual matrix of Markov transition probabilities of Hamilton (1989).
In this way, we can obtain the structural break variant of Hamilton�s model developed in
Chib (1998).
So far we have focussed on cases where d (t; t� 1) can take on only a few values (e.g. the

values 0 or 1). However, by choosing other forms for the distance function, we can obtain
intermediate values which allow for smoothing of various sorts. Such a model would be
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�nonparametric in spirit�and, hence, we occasionally use this terminology below (although
we stress that our model is always a parametric one). In our approach, it is possible to
select distance functions which were analogous to kernels used in nonparametric smoothing.
Related to this, it is worth noting that, in the context of state space modeling with irregularly
spaced time series data, Harvey (1989) develops �ltering and smoothing methods and Harvey
and Koopman (2000) discusses their relationship to nonparametric regression methods. With
irregularly space data, the distance between observations matters in Harvey�s derivations and
our distance function plays the same role. This is a point we will develop further in the next
section where we discuss TAR and smooth transition autoregressive (STAR) models.
Traditionally, the structural break literature has focussed on two extremes. One extreme

assumes there a small number of breaks (and changes in coe¢ cients are large and possibly
heterogeneous), the other assumes that breaks occur in every time period (but changes in
coe¢ cients are small and homogeneous). Recently, through work such as Giordani and Kohn
(2006) and Koop and Potter (2007), there is a growing interest in structural break models
lying between these extremes. Another related approach is to assume the innovation in the
state equation has stochastic volatility (see Stock and Watson, 2007). The point we are
making here is that, even without reordering the data, by suitably re-de�ning the distance
function we can cover all of these possibilities in a single modeling framework. Furthermore,
instead of making a single choice of models within this huge set, we can incorporate them
all and let the data tell us which is preferred or do Bayesian model averaging over all the
possibilities.

2.2 The Role of Data Reordering

By allowing for reordering of the data, we can accommodate various nonlinear time series
models. It has long been recognized that many common nonlinear time series models are
equivalent to models with structural breaks if the data is suitably reordered (e.g. Tsay,
1989). To illustrate how this is done, return to the general speci�cation given in (3) and (4)
and suppose yt is real GDP growth and xt = zt = yt�1. Then 
 orders the data based on
last period�s GDP growth. If we de�ne the distance function as d

�
z�s ; z

�
s�1
�
= 1 if z�s�1 < �

and z�s � � , and d
�
z�s ; z

�
s�1
�
= 0 otherwise, then we obtain a two-regime TAR model (e.g.

Potter, 1995):

yt = �1yt�1 + �""t if yt�1 < �
yt = �2yt�1 + �""t if yt�1 � � :

Multiple regime TAR models involve the obvious extension of this distance function de�n-
ition. Standard approaches to TAR modeling assume a �xed number of regimes (e.g. two
or three). However, just as with structural break models, it could be desirable to treat the
number of regimes as unknown and estimate it. This can be done through hierarchical priors
as discussed above. As a simple example, if we let ds � d

�
z�s ; z

�
s�1
�
and use a hierarchical

Bernoulli prior distribution for these parameters:
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p (ds = 1) = p

p (ds = 0) = 1� p

we can obtain a TAR with an unknown number of regimes. Alternatively, various Markov
switching models (see Hamilton, 1989) can be obtained (without re-ordering the data) by
using a hierarchical prior which takes usual Markov transition probability form.
An important issue with threshold models is the choice of the index variable, z. In the

standard implementation of the TAR model, the index variable is a lag of the dependent
variable. However, there is no reason for thinking why other index variables may not be pos-
sible. By de�ning zt to be other functions of lagged dependent variables (or other exogenous
variables), we can get a wide range of TAR models as, e.g., in Koop and Potter (1999).
Another way of gaining useful interpretation for our approach is to relate it to non-

parametric regression methods such as those described in Yatchew (1998). The intuition
underlying such nonparametric approaches for cross-sectional regression is that, when ap-
proximating y = f (x), if two observations have similar values for x then they have similar
values for f (x). If we use the distance functions d

�
z�s ; z

�
s�1
�
= 1 for all s we obtain a model

with similar intuition: since �s = �s�1 + �vvs; observations with similar values for z will
have similar values �s. Thus, if GDP growth is the dependent variable and if z is the lag
of GDP growth, we have a model where periods with similar levels of lagged GDP growth
will have similar dynamics. Or, equivalently, the dynamics of GDP growth gradually change
with the business cycle. This example makes clear the usefulness of considering di¤erent
index variables. That is, in addition to having a choice which implies �periods with similar
levels of GDP growth last quarter will have similar AR dynamics�, it could be empirically
important to allow for a choice which implies �periods which have had similar levels of GDP

growth over the past year will have similar AR dynamics�(i.e. zt =
P4
j=1 yt�j
4

) or to allow
for �periods where GDP growth has accelerated rapidly will have similar AR dynamics�(i.e.

zt =
Pp
j=1�yt�j

p
), or z could be the current-depth-of recession variable used in papers such

as Beaudry and Koop (1993), etc. The possible choices for the index variable are endless
and which ones are reasonable will depend on the empirical application at hand. But the
important point to note is that the conventional literature simply selects a single choice for
an index variable (or at most searches over a few choices by allowing for an unknown delay
parameter). Our approach allows us to average over a wide range of possible choices or
make the selection of index variable in a data-based manner without ex ante committing to
a particular functional form.
As discussed in the preceding section, in the nonparametric regression literature, the

distance between observations is also important, but this can easily be accommodated in our
framework (e.g. by replacing d

�
z�s ; z

�
s�1
�
= 1 by d

�
z�s ; z

�
s�1
�
= z�s�z�s�1). In this regard, note

also that the TAR models we have discussed so far all involve d
�
z�s ; z

�
s�1
�
2 f0; 1g indicating

when a regime-change has occurred. Allowing for d
�
z�s ; z

�
s�1
�
to take on any value in the

unit interval yields the sort of gradual transition between regimes which is a characteristic
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of STAR models. The relationship between our model and the STAR model is brought out
empirically in our arti�cial data example below.
These examples give only a �avor of the wide variety of behaviors allowed by this �exible

parametric model. Indeed, if 
 were to be totally unrestricted and d
�
z�s ; z

�
s�1
�
to be treated

nonparametrically, then this class of models would be so �exible as to be virtually equivalent
to a nonparametric model. However, if 
 is left completely unrestricted, then the number of
con�gurations it could take is T ! (i.e. there are T ! ways of reordering the data). For most
macroeconomic data sets, T ! is simply too large to allow for exhaustive consideration of all
possible reorderings of the data.2 Accordingly, in this paper we restrict the set of allowable
con�gurations for 
:
Table 1 provides an incomplete summary of the relationship between our modeling frame-

work and the existing literature. Given our time series focus, we write this table assuming
that the explanatory variables are lags of the dependent variable (i.e. xt contains lags of
the dependent variable). However, we stress that xt could be any exogenous explanatory
variables and, hence, our general framework holds for other regression-type models with
regime-switches or structural breaks.

2The issues raised by having T ! con�gurations of 
 are essentially the same as those raised in a Bayesian
model averaging or selection exercise involving regressions where the number of potential explanatory vari-
ables, K; is large and the number of models is 2K . In such cases, simulation algorithms over model space
(see, e.g., Hoeting, Madigan, Raftery and Volinsky, 1999 or Chipman, George and McCulloch, 2001) can be
used which do not require exhaustive evaluation of every model. In some cases, these might be useful for the
present class of models. However, for values of T greater than approximately 20 the computational demands
of such simulation algorithms are currently high.
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Table 1: Links Between Our Framework and Popular Nonlinear Time Series Models
Model Distance Function Index Variable
AR(p) 0 zt = t
TVP 1 zt = t
Structural Break
1 Break

= 1 at time �
= 0 otherwise

zt = t

Structural Break
K Breaks

= 1 at � 1; ::; �K
= 0 otherwise

zt = t

Structural Break
Unknown # Breaks

= 1 with prob p
= 0 otherwise

zt = t

Chib (1998) Structural
K Breaks Model

= 1 with restricted Markov transition probs.
= 0 otherwise

zt = t

Various nonparametric
TVP models

Smooth function (e.g. kernel) zt = t

Standard TAR
= 1 if z�s�1 < � and z

�
s � �

= 0 otherwise
zt = yt�d

Other TARs
= 1 if z�s�1 < � and z

�
s � �

= 0 otherwise
zt exogenous var.
or functions of lags

Multiple Regime
TARs

= 1 if z�s�1 < � 1 and z
�
s � � 1

= 1 if z�s�1 < � 2 and z
�
s � � 2

etc.

zt exogenous var.
or functions of lags

STAR3 Smooth function zt = yt�d
Multiple Regime STAR Smooth function with multiple modes zt = yt�d

Markov switching model
= 1 with restricted Markov transition probs.
= 0 otherwise

zt = t

Various nonparametric
time series models

Smooth function (e.g. kernel)
zt exogenous var.
or functions of lags

2.3 Specifying the Distance Function

The modeling framework so far holds for any distance function, although we have given a
few speci�c examples that may be of empirical importance. In this section, we propose a
particular implementation which should be �exible enough to let the data speak, but also be
capable of accommodating the types of behaviors commonly observed with macroeconomic
data. A convenient way of choosing the distance function is to think of it as being derived
from a cumulative distribution function (CDF) on z�s . Then we have

d(z�s ; z
�
s�1) / F (z�s)� F (z�s�1); (7)

for some CDF F (�). If F (�) is based on a Uniform distribution (over the interval [z�1 ; z�T ]) then
the distance function reduces to d

�
z�s ; z

�
s�1
�
= z�s�z�s�1. In this paper, we focus on the Normal

distribution (with mean and variance estimated from the observed data using Bayesian

3This relationship is approximate and is illustrated in the arti�cial data section.
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methods). Note that the Normal is quite �exible when used in this context. The Normal can
(by choosing a very large variance) approximate closely the d

�
z�s ; z

�
s�1
�
= z�s � z�s�1 distance

function. But it also can (by setting the mean to � and choosing a very small variance)
approximate closely the TAR distance function. Choosing the mean of the Normal in this
case is, thus, analogous to estimating the threshold parameter in a TARmodel.4 Intermediate
values of the variance of the Normal would allow for a smooth change in dynamics around
a threshold determined by the mean of the Normal (e.g. this would share some similarities
with a smooth transition autoregressive or STAR model). The advantage of our approach
is that the precise shape of the distance function would be estimated from the data and not
imposed at the outset by choosing to estimate, e.g., a TAR or STAR model.
Now consider, for a �xed distance function, the �exibility that comes from the stochastic

interpretation of the parameters. In the standard 2-regime TAR model the AR coe¢ cients
are constant within a regime. In the STAR model they evolve in a �xed way given by the
parametric form of the transition function. Further, in both cases the posterior uncertainty
about the nonlinear conditional expectation function is dependent on the parametric form. In
our case we are not restricting the shape of the conditional expectation function. In addition,
the posterior uncertainty about the nonlinear conditional expectation function responds to
how dense the index observations are around the point. For example, consider a one step
ahead prediction at a point z in the interval

�
z�s ; z

�
s�1
�
which depends crucially on �g(z). It can

be shown that the mean of �g(z) interpolates between the two neighboring values of � with
weights inversely related to the distance between neighboring points and z. The variance
shares similar properties and can be large if the �distance�between observations is large. In
general, arguments such as this show how our approach is almost nonparametric in spirit,
providing much more �exible and robust predictions than standard parametric approaches.
Another advantage of our modeling framework is that it is simple, being based on the

standard state space model. Thus, textbook methods for estimation, model comparison
and prediction are available. In this paper, we apply Bayesian methods using a Markov
Chain Monte Carlo (MCMC) algorithm for posterior simulation. Conditional on a particular
ordering of the data (i.e. conditional on 
) and a particular distance function, posterior
simulation is easy, involving commonly-known Bayesian simulation methods for state space
models (e.g. Durbin and Koopman, 2002 or DeJong and Shephard, 1995) and simulation
methods for stochastic volatility (e.g. Kim, Shephard and Chib, 1998). Thus, we only require
a method for drawing from the posterior for 
 and the parameters of the distance function
(conditional on the other parameters in the model). This method is supplied in the following
section.
This completes our discussion of the basic intuition behind our model framework and the

general ideas underlying our posterior simulator. To summarize: we take a standard state
space model and then argue that, by allowing for di¤erent orderings of the data and allowing
for variances in the state equation that depend upon the distance between observations, we

4Multiple regime models can be handled through mixtures of Normals. For example, an M regime TAR
would require a mixture of M+1 Normals with the mixture weights also being estimated parameters. In this
paper, we do not investigate this extension although it is conceptually and computationally straightforward.
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have created an extremely �exible model which nests a huge variety of popular nonlinear
time series and structural break speci�cations (as well as many other time series models).
Methods for Bayesian inference are very simple, involving only minor additions to standard
Bayesian methods for state space models.
In the next section, we provide formal details to make rigorous the informal intuition

provided in this introduction. The model considered is a generalization of the one discussed
so far, freeing up the assumption that xt is a scalar. Furthermore, we allow for the condi-
tional variance of the measurement equation to depend on 
, thus extending the concept of
stochastic volatility to allow for more general nonlinear patterns in the conditional variance.
Many recent empirical macroeconomic studies (e.g. Cogley and Sargent, 2005 and Sims and
Zha, 2006) have emphasized the statistical importance (and relevance for macroeconomic
policy) of allowing for stochastic volatility or nonlinearities in the conditional variance. We
develop methods for drawing from 
 and the parameters of the distance function (condi-
tional on the other parameters of the model) and discuss various ways of restricting the set
of con�gurations 
 can take on. We apply our methods to arti�cial data and in a study of
the dynamics of real GDP growth.

3 Bayesian Inference

Consider the TVP model of the form:

yt = X
0
t�t + "t; (8)

where yt is a scalar and Xt is a row vector with k elements (e.g. in our univariate application
to real GDP growth, Xt includes a constant plus p lags of yt). The model�s coe¢ cients evolve
according to:

�t = �t�1 + vt (9)

where vt � N (0; Q). The error in the measurement equation is assumed to exhibit stochastic
volatility. That is,

"t = �t exp

�
1

2
�t

�
(10)

where �t � N (0; 1),

�t = �t�1 + �t (11)

and �t � N
�
0; �2�

�
. The errors, �t; vt and �t, are independent at all leads and lags and are

independent of one another. Bayesian inference in this state space model can be done in a
straightforward fashion using standard results. In our empirical work, we use the methods
of Durbin and Koopman (2002) to draw from the posterior of � = (�00; ::; �

0
T )
0 (conditional
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on � = (�0; ::; �T )
0and Q).5 The method of Kim, Shephard and Chib (1998) is used to

draw from the posterior of � (conditional on � and �2�). To be precise, we use what they
call their mixture sampler (see Section 3.3 of their paper). Kim, Shephard and Chib (1998)
provide convincing evidence that this algorithm, since it draws directly from the posterior
conditional for �, is much more e¢ cient than single move samplers.
Note that, conditional on � and �, the state equations reduce to simpli�ed variants of

linear regression models. Thus, conditional on draws of �, the posterior for Q�1 takes the
usual Wishart form (see, e.g., Koop, 2003, pages 140-141) and conditional on � the posterior
of ��2� takes the usual Gamma form (see, e.g., Koop, 2003, pages 61-62).
In summary, standard methods can be used to set up an MCMC algorithm which se-

quentially draws from p
�
�jData; �;Q; �2�

�
, p
�
�jData; �;Q; �2�

�
, p
�
Q�1jData; �; �; �2�

�
and

p
�
��2� jData; �; �;Q

�
.6 The results of Fernandez, Ley and Steel (1997) imply that proper

priors for either of the error variances or the initial conditions in state equations are required
in order to obtain proper posteriors.7 In our empirical work, we use weakly informative
priors.
The previous discussion described an MCMC algorithm for a TVP model with stochastic

volatility. However, we want to extend this model to allow for di¤erent orderings and distance
functions. Thus, analogously to (3) and (4), we de�ne a variant of (8) and (9) which allows
for reorderings of the data according to an index variable, zt; and allows for the error variance
in the transition equation to depend on the distance between observations (ordered according
to the index variable). That is, our model is

yt = X
0
t�g(zt) + "t; (12)

where

�s = �s�1 + vs (13)

and vs � N
h
0;
q
d
�
z�s ; z

�
s�1
�
Q
i
. The error in the measurement equation has the form,

"t = �t exp

�
1

2
�g(zt)

�
(14)

where

�s = �s�1 + �s (15)

5Note that we use the algorithm on Durbin and Koopman (2002) to supply draws of �1; ::; �T . The initial
condition, �0, can be treated as a regression e¤ect and drawn (conditional on �1; ::; �T ) using standard results
for the Normal linear regression model.

6Here (and throughout this paper) we have written these out as the full posterior conditionals. However,
some of them do not depend on all the conditioning arguments. For instance, p

�
Q�1jData; �; �; �2�

�
does

not depend on �2� and we could have written this conditional posterior as p
�
Q�1jData; �; �

�
.

7The non-Bayesian equivalent of this need for prior information is the necessity of initializing the Kalman
�lter.
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and �s � N
h
0;
q
d
�
z�s ; z

�
s�1
�
�2�

i
. Additional assumptions about the errors are as described

above (see equations 8 through 11 and surrounding discussion). Other de�nitions are as
after (4). Brie�y s indexes a reordering of time according to g (zt) which is the rank of the
index variable, zt, when z1; ::zT are placed in ascending order. The reordered values of zt are
denoted as z�t (for t = 1; :::T ) and, by de�nition, we have z

�
1 � z�2 � :: � z�T . We introduce a

parameter vector 
 to denote how the index variable orders the data, the tth element of 
 is

t = g (zt) for t = 1; :::; T . d

�
z�s ; z

�
s�1
�
is a (non-negative) distance function measuring the

distance between z�s and z
�
s�1.

In some applications, it may be desirable to use a di¤erent ordering and distance function
for the conditional mean coe¢ cients than the conditional variances. This is conceptually
straightforward and is implemented in our second empirical example below. Note that, if we
consider a large number of orderings for both the conditional mean and conditional variance,
the computational demands would increase greatly. As we shall explain in the empirical
section, in most cases one could focus on the case where the conditional variance is only
based on the natural time ordering.
We use a distance function based on Normal CDFs (see equation 7). If we let � (z�s ;�; �

2
d)

be the CDF of the N (�; �2d) evaluated at the point z
�
s , then we write the distance function

as:
d(z�s ; z

�
s�1) / �(z�s ;�; �2d)� �(z�s�1;�; �2d): (16)

Our MCMC algorithm involves sequentially drawing from p
�
�jData; �;Q; �2�; �; �2d; 


�
,

p
�
�jData; �;Q; �2�; �; �2d; 


�
, p
�
Q�1jData; �; �; �2�; �; �2d; 


�
, p
�
��2� jData; �; �; �2�; �; �2d; 


�
,

p
�
�jData; �; �;Q; �2�; �2d; 


�
, p
�
�2djData; �; �;Q; �2�; �; 


�
and p

�

jData; �; �;Q; �2�; �; �2d

�
.

The �rst four of these posterior conditional distributions are standard (see the discussion
surrounding the model de�ned by equations 8 through 11). Although note that some minor
modi�cations of the algorithm of Kim, Shephard and Chib (1998) are required to draw from
� due to the distance function entering the distribution of �s. But these modi�cations are

trivial since, by dividing (15) by
q
d
�
z�s ; z

�
s�1
�
we obtain a state equation for volatilities that

is in the same format as Kim, Shephard and Chib (1998). The �nal three of these posterior
conditionals we discuss here.
For p (�jData; �; �;Q; �2d; 
)and p (�2djData; �; �;Q; �; 
) we use Random Walk Chain

Metropolis-Hastings algorithms (see, e.g., Chib and Greenberg, 1995). To be precise, if
p (�) is the prior, Bayes theorem implies

p
�
�jData; �; �;Q; �2d; �2�; 


�
/ p

�
Data; �; �j�; �2�; Q; �2d; 


�
p (�) (17)

/ p
�
Dataj�; �; �; �2�; Q; �2d; 


�
p
�
�; �j�; �; �2�; Q; �2d; 


�
p (�)

/ p
�
�; �j�; �2�; Q; �2d; 


�
p (�) ;

where the last line arises since, conditional on � and �, the data provides no additional
information about �. Thus, to evaluate (17) at a point we need only evaluate p (�; �j�; 
),
which by (13) and (15) is Normal, and the prior, p (�). In our empirical work, we use a
Normal prior and thus � � N

�
�; V �

�
.
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The Random Walk Chain Metropolis-Hastings algorithm generates candidate draws, ��,
according to:

�� = �(s�1) + �; (18)

where (s� 1) superscripts (such as �(s�1)) denote the (s� 1)th draw from the algorithm and
� is the increment random variable. We let � � N (0; c) and choose c to yield an average
acceptance probability of roughly 0:50. Candidate draws are accepted with probability:

A
�
�(s�1); ��

�
= min

24 p
�
��j�(s�1); �(s�1); Q(s�1); �2(s�1)d ; �

2(s�1)
� ; 
(s�1)

�
p
�
�(s�1)j�(s�1); �(s�1); Q(s�1); �2(s�1)d ; �

2(s�1)
� ; 
(s�1)

� ; 1
35 ; (19)

which can be evaluated using (17).
The next block in the MCMC algorithm involves a Random Walk Chain Metropolis-

Hastings algorithm for �2d. This is of the same form as the algorithm for � except that
(17), (18) and (19) are replaced with formula involving �2d instead of �. To be precise, using
similar steps as in (17) we have:

p
�
�2djData; �; �;Q; �; �2�; 


�
/ p

�
�; �j�; �2�; Q; �2d; 


�
p
�
�2d
�
; (20)

where we take the prior, p
�
��2d

�
, to beG

�
�
d
; �d

�
where this denotes the Gamma distribution

with mean �
d
and degrees of freedom �d. The Random Walk Chain Metropolis-Hastings

algorithm proceeds analogously to (18) and (19), the only di¤erence is that we replace (18)
by:

log
�
�2�d
�
= log

�
�
2(s�1)
d

�
+ �.

Finally, 
 can be treated in several ways. 
 can be interpreted as a model indicator
and, thus, any of the standard approaches for calculating posterior model probabilities (or
averaging across models) can be employed. If the number of con�gurations 
 can take is fairly
small, then the marginal likelihood can be calculated for each model using standard methods
based on MCMC algorithms (e.g. Chib and Jeliazkov, 2001 or Gelfand and Dey, 1994). In
terms of the notation of this paper, such an approach can be used to directly evaluate
p (
jData) (as opposed to drawing from p

�

jData; �; �;Q; �2�; �; �2d

�
). Alternatively, if the

computational cost of these methods of marginal likelihood calculation is high, then the
researcher can use various approximations for the marginal likelihood (e.g. the Bayesian
information criterion or the LaPlace approximation of Tierney and Kadane, 1986). Yet
another alternative is to use an algorithm which draws from model and parameter space
jointly (i.e. in our context, this means drawing directly from p

�

jData; �; �;Q; �2�; �; �2d

�
).

Examples of such algorithms include Carlin and Chib (1995) and Green (1995). Carlin and
Louis (2000) chapter 6 o¤ers a useful overview of such algorithms. In this paper, we use the
approach of Gelfand and Dey (1994).
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In our empirical work with a TVP extension of an AR(p) model, we restrict the possible
con�gurations of 
:

� 
 = (1; 2; 3; ::; T )0, the real time ordering (i.e. zt = t)

� data ordered according to the jth lag of the dependent variable or covariates (i.e. zt =
yt�j) for j = 1; ::; p.

� data ordered to average of the lagged dependent variable or covariates over the last p
periods (i.e. zt =

Pp
j=1 yt�j
p

)

Thus, the number of possible con�gurations in a standard univariate time series model is
2p. Of course, in another empirical exercise other sets of con�gurations are possible (and if
the number of observations is small, the researcher may even wish to leave 
 unrestricted).

4 Empirical Work

4.1 The Prior

In our work with arti�cial and real data a prior is required. Most of the parameters in our
model are familiar ones (e.g. AR coe¢ cients, error variances) and we will just use standard
weakly informative priors for these. Of course, in more substantive empirical exercises,
the researcher may wish to use noninformative priors, carry out a prior sensitivity analysis
and/or adopt an objective prior approach (e.g. the training sample approach of O�Hagan,
1995). However, our distance function is new and so it is worthwhile to talk about its prior.
This also allows us to understand the properties of the distance function.
Our distance function is given in (16) which depends on the parameters � and ��2d . Any

prior is possible for these parameters and, particularly as we are using a Metropolis-Hastings
algorithm, the researcher is unrestricted in prior choice. Here we assume the prior for � to
be N

�
�; V �

�
and the prior for ��2d to be G

�
�
d
; �d

�
. Intuitively, by shifting � around we can

accommodate larger coe¢ cient shifts in the region near �. Small values of �2d are consistent
with rapid changes in coe¢ cients in the region near �, whereas larger values of �2d are
consistent with gradual evolution of coe¢ cients (i.e. approaching a standard TVP model).
In most cases, it will be desirable to have a prior which allows for all these possibilities. In
all our empirical work below, we set � = 0; V � = 0:5; �d = 5 and �d = 5. In the remainder
of this subsection, we will discuss the implications of these choices. Remember that �

d
is

the mean of the precision, ��2d , not the variance and, hence, this prior is allocating a great
deal of weight to values of �2d less than one.
The distance function depends not only on � and ��2d , but also on z

�
s and z

�
s�1. In

this subsection, we take zt = z�t = t for t = 1; :::; T . To aid in interpretation, we always
standardize our variables so that they have mean zero and standard deviation one. This
means, in particular, that our index variable will typically have almost all of its observations
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in the interval [�2; 2]. Furthermore, our distance function is standardized so as to have mean
1.8 Hence, we have:

d(z�s ; z
�
s�1) =

�(z�s ;�; �
2
d)� �(z�s�1;�; �2d):

1
T

PT
i=1

�
�(z�i ;�; �

2
d)� �(z�i�1;�; �2d)

�
:

(21)

The upper left-hand panel of Figure 1 presents the prior mean of the distance function
for every value of z�t . This can be seen to have an inverted-U shape but be relatively �at
(i.e. distance between observations in the middle of the sample is less than four times as
big as distance function at the very beginning or end of sample). However, this prior mean
averages over many values for the parameters. The prior standard deviations accompanying
these prior mean are roughly one, suggesting that wide deviations from the prior mean are
possible.
The remaining three panels of Figure 1 plot three particular distance functions arising

from speci�c values of � and �2d. In particular, we have constructed the distance function
for: i) � = �0:5 and �2d = 0:01, ii) � = 1:6 and �2d = 0:5 and iii) � = 0 and �2d = 2.
Note that all of these parameter con�gurations are in areas of appreciable prior probability
using our prior. The upper right-hand panel of Figure 1 shows how our parametric form
for the distance function can accommodate an abrupt break in the �rst half of the sample.
Note that, away from the mode, the distance function falls away to virtually zero (indicating
constancy of coe¢ cients) very quickly. The lower right-hand panel of Figure 1 indicates that
quite �at distance functions can be accommodated (consistent with a TVP model). The
lower left-hand panel serves to illustrate that yet other types of behavior are consistent with
our prior. In this case, we have a mode at the end of the sample, indicating increasing
volatility in coe¢ cients over time.
In sum, our functional form for the distance function and the prior we have chosen are

extremely �exible, able to accompany a wide range of properties, including abrupt or gradual
breaks in coe¢ cients (at any point in the sample) or more gradual evolution of coe¢ cients
consistent with a TVP model.

4.2 Arti�cial Data

Before proceeding to empirical work with real data, we begin by illustrating some of the
aspects of our approach using arti�cial data. All the arti�cial data sets are generated from:

yt = [1� F (zt)] �1yt�1 + F (zt) �2yt�1 + �""t; (22)

for t = 1; ::; 200 where "t is i.i.d. N (0; 1). The coe¢ cients evolve according to:

8We �nd that some form of standardization produces more e¢ ciency in our MCMC algorithm. Equation
21 presents one simple standardization with the advantage it pins down the average value of the distance
function. In some cases researchers might want to use a standardization that is not dependent on the
particular sample. This can be done simply by choosing a normalization term based a minimum value of
z� = �3;a maximum value of z� = +3 and for example a divisor of 2T:
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F (zt) =
1

1 + exp (�azt)
: (23)

For zt = yt�1 we have the familiar STAR model. In general, depending on a, we have a data
generating process (DGP) where the AR(1) coe¢ cient shifts either gradually or abruptly
from one value to another. We set a = 10, �1 = 0,�2 = 0:5 and �" = :01. However (as with
all our variables in our empirical work), we then standardize the data to have mean zero and
variance one.
We begin by focussing on the bene�ts brought by the addition of the distance function

and, thus, do not consider reordering the data at this stage. Thus our �rst data set involves
the choices above plus zt = t for t = 1; :::; 200. Furthermore, we focus on evolution of the AR
coe¢ cient and, thus, assume homoskedasticity (i.e. we do not allow for stochastic volatility
as given in equations 14 and 15). Thus, our model depends on the parameters �; �2d; �

2
"; Q

and � where � is the vector of AR coe¢ cients. As described above, we separate out �0
and treat this as a regression e¤ect. We use a weakly informative prior, �0 � N (0; 0:72)
which re�ects a (weak) prior belief in the stationarity. We assume ��2" is G

�
1
s2
; 2
�
where

s2 is the OLS estimate of �2 in an AR(1) model. Thus we have a proper, but relatively
di¤use prior centered around the comparable OLS quantity. Following standard practice
we elicit our prior in terms of error precision matrices and assume Q�1 � W

�
2; 10

2

�
where

W (�;H) denotes the Wishart distribution with mean elements �H and degrees of freedom
�. This is a quite dispersed prior. In terms of Q (the variance in the state equation) it is
centered approximately over 0:1 and, thus, we are allowing for everything from very small
to moderately large shifts in the AR coe¢ cients in each period (remember that the distance
function has mean one as described in equation 21). The priors for � and �2d were described
in the previous sub-section.
Using the methods of posterior simulation described above, with Xt = yt�1 and index

de�nition variable simply being the natural ordering (i.e. 1; 2; ::; T ), we can obtain posterior
properties of any of the model parameters (or functions thereof). Figures 2 and 3 graph
some aspects of particular interest. Figure 2 plots the true value of the AR coe¢ cient used
to generate the data. It also plots the OLS estimate of the AR(1) model (without intercept)
using this data. Finally, it plots the posterior mean of � estimated using our model. It can
be seen that, even with a relatively small number of observations and small break in the AR
coe¢ cient, our model tracks the true value fairly well (except at the very beginning of the
sample). The fairly abrupt break in the AR coe¢ cient in the DGP is matched reasonably
well by our model. Presumably the distance function gets much larger near where the break
is in order to accommodate it. Figure 3 con�rms the contention of the preceding sentence.
It plots the posterior mean of the distance function. It can be seen that the value of the
distance function becomes larger near where the break is (to allow larger changes in the AR
coe¢ cient in this region).
To illustrate the bene�ts of reordering, Data Set 2 is generated from (22) and (23) from a

STAR speci�cation where the data switches between a �recessionary�regime with transitory
dynamics to an �expansionary�regime with more persistent dynamics. In particular, we set
zt = yt�1, a = 1000, �1 = 0,�2 = 0:75 and �" = 0:01. We then standardize the data to have
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mean zero and variance one. We consider the set of orderings of the data described at the
end of Section 3. Thus, since p = 1, we order the data in normal time ordering and according
to yt�1. All other aspects of the data generating process and prior are the same as used for
Data Set 1.
The model we propose is particularly useful in nonparametric contexts: where the re-

searcher is unsure of the form of the nonlinear time series model used to generate the data.
Our model, with Data Set 2, is designed to re�ect the (common) case where the researcher
thinks there might be structural breaks or TAR-type regime-switching (or both), but is not
sure which. With this data set, our model does well in picking out the correct form of
regime-switching. In particular, we �nd that there is a 94:3% probability that the (correct)
model with data ordered by yt�1 is the correct one and only a 5:7% probability that the
normal time ordering is appropriate. These weights are used when we average over the two
orderings when calculating the following results.
Figure 4 plots the true value of the AR coe¢ cient used to generate the data along with

its posterior mean calculated using our model (averaged over both de�nitions for the index
variable). And, although it does have some trouble picking up all the many regime-switches
in the DGP and sometimes wanders into the nonstationary region (something which could
be avoided through use of a more informative prior), it does do moderately well at matching
many of the regime-switches. As a benchmark for comparison, we also estimate a standard
TVP model. This is a special case of our model with no reordering of the data and the
distance function de�ned to always be one. We use the same prior for the TVP parameters
as for the parameters of our model. Figure 5 is comparable to Figure 4. Clearly it can be
seen that the TVP model is not picking up the regime-switches nearly as well as our model.
We note also that the BIC�s for our model (with data ordered according to yt�1), our model
(with data in natural time ordering) and the TVP model are: �48:627, �51:435 and�51:404.
Of course, a correct parametric model would beat our model. But in the common case where
it is not clear which parametric model to use, and the researcher wishes to use a �exible
approach (e.g. the TVP model), our approach does seem to be promising. As yet another
metric of the performance of our approach, we calculated the correlation between the actual
data and: i) the �tted OLS line, ii) the �tted values provided by the TVP model (evaluated
at posterior means) and iii) the �tted values provided by our model (evaluated at posterior
means), we obtain values of 0:666, 0:718 and 0:739, suggestive of moderate improvements in
�t of using our approach.
Finally, we present the posterior mean of the distance function. Note that when we are

considering the data reordered by zt, we estimate the distance function using this ordering.
Since our approach involves multiple choices for zt, Figure 6 transforms back to the natural
time ordering. This accounts for the irregular shape of Figure 6. Note that large values of
the distance function tend to be associated with times where regime-switches occur, whereas
smaller values tend to be associated with times where the AR coe¢ cient is unchanging.

4.3 Empirical Illustrations Using Real GDP Growth

4.3.1 Univariate properties of GDP growth
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There are many applications which investigate nonlinearities or structural breaks in real GDP
growth. For instance, Beaudry and Koop (1993) and Potter (1995) are early papers which
investigate nonlinearities in the conditional mean, using models where AR dynamics change
over the business cycle. More recently, there has been interest in the volatility of US real
activity and the question of whether it has decreased over time. This �nding is sometimes
referred to as the Great Moderation of the business cycle. For instance, Kim, Nelson and
Piger (2003) investigate breaks in the volatility of various measures of aggregate activity.
For most of the measures they consider, they �nd strong evidence of an abrupt break in
the early 1980s. Stock and Watson (2002) �nd similar evidence for a change in volatility,
but �nd the decline to have been more gradual, a thesis also put forward by Blanchard and
Simon (2001). Thus, using measures of real output, a wide variety of regime-switching and
structural break models for the conditional mean and conditional variance have been used.
Some allow for gradual change between regimes, others are more abrupt. Our model will
nest all these possibilities.
The best �tting linear model is the AR(2) and, hence, we consider extensions of this

model and let Xt contain an intercept plus 2 lags of yt. For Q;�; �2d we use the same
weakly informative prior as in the arti�cial data section. To incorporate a noninformative
prior for the intercept, we extend the weakly informative prior used previously to �0 �

N

0@03;
24 1010 0 0
0 0:72 0
0 0 0:72

351A which still re�ects a (weak) prior belief in the stationarity.

For the stochastic volatility component we assume ��2� to be G (10; 50).
With our model we �nd strong evidence in favour of a decrease in the volatility of GDP

growth. Indeed this evidence is so strong, that it swamps any evidence for the regime-
switching behavior in the AR coe¢ cients found, e.g., by Beaudry and Koop (1993) and Potter
(1995). Note �rst that the results discussed below are averaged over all of our di¤erent choices
for zt but, in practice, the probability that zt = 1 is over 99% and, accordingly, results are
very similar to those found if we had selected a single model and worked with observations in
the natural time ordering. Figure 7 plots the posterior mean of the error variance and it can
be seen that there is a big drop in volatility around 1983. Our �ndings relating to volatility
of GDP growth are not surprising given previous results starting with McConnell and Perez
(2000) (see also the similar �gure in Koop and Potter, 2007). There is some evidence that
volatility started to decline in the 1950s but this decline was reversed starting around 1970.
A single break model (by construction) could not show this kind of pattern.
Remember that, in our model, the breaks in the error variances and AR coe¢ cients are

assumed to occur at the same time. This accounts for the fact that we are not �nding
strong evidence of breaks or regime-switching behavior in the AR coe¢ cients. The break in
volatility is so strong that it receives overwhelming support relative to other models. It is
straightforward to extend our model to allow for di¤erent orderings and distance functions
to hold for the AR coe¢ cients and the error variances and we do so in the context of our
next empirical illustration.
Our model clearly outperforms a benchmark AR(2) and, hence, we will not present results

for an AR(2). A preferable benchmark, which a researcher might use when agnostically
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approaching a data set which is suspected to have structural change, would be the TVP
model with stochastic volatility given in (8) through (11) or, equivalently, our model with

 = (1; :::; T )0 and d(z�s ; z

�
s�1) = 1 for all observations. Given the fact that our model yields

strong evidence in favour of 
 = (1; :::; T )0, it is not surprising that we �nd results to be
similar between our approach and the TVP model. Figure 8 plots the posterior mean of the
distance function using our model. It can be seen to be inverted-U shape, thus smoothing
observations at the beginning and end of the sample more than observations at the middle.
This accounts for the di¤erences between our model and the TVP model that can be seen
if one compares Figures 7 and 9 (note the di¤erence in scaling of the y-axis). In this data
set (and for macroeconomic policy), the patterns in the error variance seem to be the most
crucial. Note that, relative to a researcher using a TVP model, we are �nding the same
general pattern of volatility, but lower and less erratic volatility in the 1950s and a smoother
pattern after the 1983 break in volatility. Furthermore, our model does �t a bit better. As
a rough metric we calculated the correlation between the expected value of the dependent
variable and the observed dependent variable. This is 0:787 for our model, but 0:681 for the
TVP model (and only 0:342 for the AR(2)) .

4.4 The Oil Price and GDP growth

There is a large literature on the e¤ects of oil price changes on GDP growth. Hamilton
(2003) is an important contribution to this literature and his list of references cites much
previous work. Hamilton provides a compelling argument that functional form issues are
important when seeking to understand the relationship between oil prices and GDP. If yt
is GDP growth and pt the percentage change in the oil price, then Hamilton begins with a
linear speci�cation with four lags of both variables:

yt = �0 + �1yt�1 + ::+ �4yt�4 + �5pt�1 + ::+ �8pt�4 + �""t;

before presenting convincing evidence of departures using a �exible approach to nonlinear
inference developed in Hamilton (2001). Note that this approach focusses on nonlinearities
in the conditional mean (with the conditional variance being of less interest). We can view
this equation as one of an unmodeled larger VAR system (possibly with restrictions). Thus,
we label the conditional mean estimates other than the intercept, VAR coe¢ cients.
In this section, inspired by Hamilton (2003), we illustrate our methods using an updated

data set where the real GDP and oil price series used to construct growth rates run from
1947Q1 through 2006Q4.9 Our set of explanatory variables (i.e. Xt in equation 8), is an
intercept, four lags of GDP growth and four lags of oil price growth (i.e. log di¤erences of
the original GDP and oil price series).
In our previous empirical example, we showed how the Great Moderation of the business

cycle (i.e. the reduction in the volatility of GDP growth) dominates any possible e¤ects in
the conditional mean. The same thing happens here. That is, if we use the same setup as
in the univariate GDP growth example (extended to allow for four lags of oil price growth),

9Following Hamilton (2003), we use the nominal crude oil producer price index.
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we �nd overwhelming evidence in favor of 
 = (1; :::; T )0. In light of this (and in order to
illustrate an empirically useful extension), in this section we present results where di¤erent
orderings and distance functions exist for the conditional mean (i.e. the VAR coe¢ cients)
and the conditional variance (i.e. the state equations 13 and 15 can be based on di¤erent
orderings). That is, we now have a 
1 (which controls ordering relating to the conditional
mean) and 
2 (for the conditional variance). For 
1, we use the same choices as before
(de�ned at the end of Section 3) and add lagged oil price changes and long averages of
them. For 
2 we could use the same set of choices, but since the Great Moderation implies

2 = (1; :::; T )

0 is so predominant, the results below just use this choice. For our modi�ed
state space model de�ned in (12) through (15), we now have two distance functions so that

vs � N
h
0;
q
d1
�
z�s ; z

�
s�1
�
Q
i
and �s � N

h
0;
q
d2
�
z�s ; z

�
s�1
�
�2�

i
.

For the parameters in common with the model used in the previous section, we use the
same prior as speci�ed there. With regards to the new parameters, the coe¢ cients on the
lagged oil price in�ation variables have the same prior as those on the lagged GDP growth
variables. For each of the two distance functions we use the same prior as we used for the
single distance function in the previous example.
Table 2 presents some empirical results for each of our index variables controlling the

ordering for the conditional mean (i.e. di¤erent choices for 
1). In contrast to our univariate
results, there is now a certain degree of uncertainty over data orderings (where we use the
marginal likelihood for each ordering to obtain a probability for the ordering). Roughly 5%
of the probability is associated with the choice which implies the VAR coe¢ cients evolve
according to a conventional TVP model. However, most of the probability is attached to
models which order observations according to past oil price in�ation. The most probable

ordering is based on the index variable zt =
P4
j=1 yt�j
4

. Thus, we are �nding most support
for a model which is similar to a STAR model where the di¤erent regimes are triggered by
the average increase in oil prices over the past year. For the non-Bayesian, Table 2 also
presents the log-likelihoods evaluated at the maximum likelihood estimate (MLE) obtained
using each index variable. These show a similar pattern to the Bayesian probabilities. If we
were to treat each choice for 
2 as de�ning a model, then any conventional non-Bayesian
hypothesis testing/model selection procedure would choose the model based on the index

variable zt =
P4
j=1 yt�j
4

.
To provide a broader comparison with conventional models, note that the log-likelihoods

(evaluated at the MLE) for the AR(2) and TVP (with stochastic volatility) models are
�97:25 and �50:80, respectively. Clearly, our model is performing massively better than
the AR(2). Furthermore, since the highest log-likelihood in Table 2 is �43:73, we are also
obtaining substantial improvements relative to a standard TVP (with stochastic volatility)
model . As a further illustration of this, if we had included the TVP model in our set of
models given in Table 2, its marginal likelihood (using the same prior as for our model for
the parameters they share in common) implies that it would have received only 2:3% of the
probability.
We remind the reader that, with regards to the measurement equation error variance, we

are assuming a stochastic volatility speci�cation and simply setting 
2 = (1; :::; T )
0 (although
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the addition of our distance function means we are not exactly in a conventional stochastic
volatility framework). As in our univariate GDP growth example, we �nd strong evidence
in favor of this choice. However, since results in this regard are very similar to those in
the univariate example (e.g. a plot of the posterior mean of stochastic volatility looks very
similar to Figure 7), we will not discuss them further.
Table 2 also reports the posterior means and standard deviations of the parameters

characterizing the distance functions. The most important pattern in these is the fact that
the posterior means for the variances in the two distance functions (i.e. the �2ds) both are
quite large. Remember that small values of this parameter will imply abrupt regime switches
(e.g. characteristic of TAR or standard structural break models) whereas large values of this
parameter imply gradual evolution between regimes (characteristic of STAR or TVPmodels).
We are �nding support for the latter case.
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Table 2: Probability of Each Ordering and Posterior Properties of Key Parameters
(numbers in parentheses are posterior standard deviations)
Index for
Cond. Mean

Dist. Function
Cond. Mean

Dist. Function
Cond. Variance

Prob. Log Like E (�) E (�2d) E (�) E (�2d)

t 0:052 �47:69 �0:417
(0:503)

5:874
(7:222)

�0:299
(0:624)

4:637
(4:795)

yt�1 0:000 �54:67 �0:278
(0:510)

10:721
(24:048)

�0:471
(0:601)

3:858
(4:447)

yt�2 0:000 �54:25 �0:160
(0:598)

3:162
(2:478)

�0:366
(0:427)

3:984
(3:411)

yt�3 0:000 �53:27 0:102
(0:433)

1:804
(0:880)

�0:313
(0:542)

5:987
(5:319)

yt�4 0:000 �51:14 0:161
(0:555)

1:902
(0:901)

�0:448
(0:484)

4:287
(4:710)P2

j=1 yt�j
2

0:000 �54:46 0:031
(0:573)

3:557
(2:408)

�0:319
(0:446)

3:415
(3:985)P3

j=1 yt�j
3

0:021 �49:46 0:180
(0:424)

1:227
(0:487)

0:277
(0:586)

5:458
(4:266)P4

j=1 yt�j
4

0:005 �48:13 0:074
(0:493)

5:193
(5:304)

�0:424
(0:828)

3:487
(1:798)

pt�1 0:000 �54:20 0:624
(0:383)

0:866
(0:177)

�0:111
(0:765)

2:610
(2:677)

pt�2 0:000 �53:40 0:644
(0:345)

1:392
(0:692)

�0:759
(0:658)

6:058
(8:863)

pt�3 0:001 �49:43 0:656
(0:663)

13:479
(13:971)

�0:217
(0:410)

2:761
(2:328)

pt�4 0:000 �55:59 0:676
(0:359)

1:323
(0:490)

�0:247
(0:477)

3:678
(5:680)P2

j=1 pt�j
2

0:000 �54:40 0:493
(0:427)

2:520
(0:879)

�0:304
(0:518)

7:410
(9:347)P3

j=1 pt�j
3

0:097 �45:26 0:857
(0:409)

2:406
(1:312)

�0:081
(0:571)

4:470
(4:720)P4

j=1 pt�j
4

0:821 �43:73 0:914
(0:561)

2:177
(0:857)

�0:282
(0:638)

4:268
(4:667)

Thus, far we have said little of the economic implications of our �ndings. Figure 10
illustrates how this can be done. In the original linear model, a rough measure of the e¤ect
of changes in the oil price on GDP growth is the sum of the coe¢ cients on the lags of the oil
in�ation variables (i.e. �5 + :: + �8). In our preferred speci�cation (i.e. the one where the
index variable is the average change in oil prices over the last year), this measure will depend
on the index variable. Figure 10 plots the posterior mean of this measure against the index
variable. Remember that the index variable has been normalized so that a value of 0 implies
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the mean value of oil price changes over the past year, 1 implies oil price changes over the
past year one standard deviation above the mean, etc.10 A general pattern in this �gure is
that drops in the oil price have a smaller marginal e¤ect on output than rises (as has been
found by Hamilton). But the pattern is quite erratic (and a large exception to it occurs
around 1:0). Although it is true that very large positive oil price shocks (e.g. where the
index is about 2) have the largest negative e¤ects on GDP growth, the relationship between
the index variable and this measure of the e¤ect of an oil shock is highly non-monotonic.
Hamilton (2003), using a shorter data set, has shown that certain nonlinear transfor-

mations of oil prices have predictive power for US GDP growth. Models estimated on the
earlier data predict larger e¤ects from the recent price increases than what has recently been
observed. In terms of the index variable used to produce Figure 10, 6 of the extra 21 obser-
vations we have added relative to Hamilton are between 0:8 and 1:2 (i.e. in the region where
the marginal e¤ect of oil prices on GDP growth is near zero). Since these changes had little
e¤ect on GDP growth, this probably explains why models estimated on the shorter data sets
imply somewhat larger e¤ects of moderate oil price rises on GDP growth.
To illustrate this point more clearly, Figure 11 is the same as Figure 10, but is produced

using data through the end of 1997. We choose this date since it roughly corresponds with
the trough in oil prices. Since then (with some exceptions) the oil price has been rising.
Note that Figure 11 is more consistent with Hamilton�s story that positive oil shocks have
larger marginal e¤ects on output than do negative oil shocks.

5 Conclusion

For researchers working with macroeconomic and �nancial data, there is great interest in
investigating whether structural breaks and/or regime-switching behavior occurs (in the
conditional mean and/or the conditional variance). In this paper, we have developed an
extremely �exible parametric model which can accommodate each of these choices. We feel
our model is an attractive one due to its simplicity. That is, it adds two simple concepts to a
standard state space framework. These ideas are ordering and distance. By ordering the data
in various ways, we can accommodate a wide variety of nonlinear time series models, including
regime-switching and structural breaks. By allowing the state equation variances to depend
on the distance between observations, we can accommodate a much wider variety of ways that
our parameters can involve, including everything from abrupt change models (e.g. threshold
autoregressive models or structural break models such as that of Bai and Perron, 1998) to
those which allow gradual evolution of parameters (e.g. smooth transition autoregressive
models or TVP models such as that of Primiceri, 2005). In short, our model will nest
virtually every popular model in the regime-switching and structural break literatures.
Moreover, because we retain the state space framework, Bayesian econometric methods

and, especially, posterior simulation, are relatively straightforward, drawing on the existing

10Note that there are very few observations of the index at values greater than 2 in absolute value and the
distance between them is sometimes large. This accounts for the �at regions near the boundaries of Figure
10.
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literature. Our work with arti�cial and real data show the advantages of our approach.
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Figure 1: Prior Properties of Distance Function
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Figure 2: The AR Coe¢ cient for Data Set 1
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Figure 3: The Distance Function for Data Set 1
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Figure 4: The AR Coe¢ cient for Data Set 2 (Our Model)
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Figure 5: The AR Coe¢ cient for Data Set 2 (TVP Model)

31



Figure 6: The Distance Function for Data Set 2
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Figure 7: Stochastic Volatility (univariate example)
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Figure 8: Distance Function (univariate example)
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Figure 9: Stochastic Volatility for TVP Model (univariate example)
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Figure 10: A Measure of the E¤ect of an Oil Shock for the Preferred Ordering
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Figure 11: A Measure of the E¤ect of an Oil Shock for the Preferred Ordering Using Data
Through 1997
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