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1. Introduction 

The analysis of how a typical macroeconomic time series behaves over the business cycle 

is complicated by the fact that its movements may contain low-frequency trends and high-

frequency noise. Various methods are available to extract “the business cycle component” of a 

given time series variable. These methods differ in their handling of trends and noise, and in their 

assumptions about the time-series properties of a business cycle component.  

Mechanical use of these filters without careful consideration of the characteristics of the 

particular problem or setting may lead to inferior results for at least two reasons. First, the 

objectives of the exercise may vary. For example, in some cases the ideal result will only contain 

variation in certain segments of the frequency spectrum, whereas in other cases the ideal result 

will contain variation across the full spectrum.  

Second, the consequences of applying a given filter may vary substantially, depending on 

the time series properties of the process to which it is applied. The effects of various filters are 

often illustrated by plotting their gains, which essentially amounts to showing the results of 

applying the filters to white noise. Application to other processes may produce results that are 

very different, both qualitatively and quantitatively. 

To address these issues, this paper examines two general approaches to the construction 

of business cycle components. The approaches are based on tools derived as solutions to two 

different statistical problems: frequency extraction and signal extraction. A filter designed for 

one of these purposes may or may not be acceptable when applied to the other. Moreover, the 

analysis shows that the consequences of applying a given filter to processes other than white 

noise may be quite different, with possible unintended effects.  

No one filter emerges as the best solution across the board, but it is possible to derive 

certain guidelines for the selection of filters in various settings. As suggested above, the criteria 

depend on the exact goals of the exercise and on the time series properties of the variables 

involved.  

Sections 2 and 3 describe the frequency and signal extraction problems, respectively, and 

show how various filters are solutions to these problems. Section 4 applies the filters to a range 

of processes to see how they interact. Section 5 discusses the issue of trends in the data. Section 

6 provides some empirical illustrations and Section 7 offers some conclusions and guidelines. 
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2. The frequency extraction problem 

2.1 Objective of frequency extraction 

 Let ty  be a time series, t=1,…,T, such that 

 ( )1 d
t ( ) tL y A L ε− = , (1) 

where d is a non-negative integer, 2
1 2( ) 1A L a L a L= + + +…  is a lag polynomial with 2

1
j

j

a
∞

=

< ∞∑ , 

and tε  is white noise. Thus, ( ) tA L ε  is the moving average Wold representation of a variance-

stationary purely non-deterministic random process. 

The objective in frequency extraction problems is to estimate the component of ty  that 

fluctuates cyclically at frequencies in a range that corresponds to some notion of the business 

cycle. For instance, we may think of the business cycle fluctuations of a given variable as 

containing components with a range of specific frequencies, say from 1 to 8 years per cycle. 

Sargent (1987) proposes that this range consists of the “frequencies at which most aggregates 

have most of their spectral power if they have ‘typical’ spectral shapes.” 

Focusing on variation at individual frequencies or ranges of frequencies is accomplished 

most efficiently by operating in the frequency domain, rather than in the time domain.1 Time 

series variation may be decomposed into orthogonal components corresponding to individual 

frequencies. Since the relevant functions are periodic, we may restrict attention to frequencies 

ranging from π−  to π . Moreover, symmetry permits focusing on frequency values in [0, π ]. 

For simplicity, assume initially that we associate the business cycle with frequencies 

{ }0: 0ω ω ω π< ≤ ≤  and that we take lower frequencies to be associated with trends in ty .2 The 

frequency extraction problem is then to retain only cycles of length 02π ω  or less with 

minimum possible distortion of the variability of the included individual frequency components. 

We consider three alternative approaches: frequency domain, Baxter-King, and Christiano-

Fitzgerald. 

                                                 
1 Useful surveys of frequency domain or spectral analysis techniques are Brillinger (1981), Koopmans (1995) and 
Sargent (1987). 
2 In the literature, the business cycle is most often associated with a range of frequencies that is also bounded above 
by a frequency strictly less than π , in order to censor high frequency noise. See the discussion of band-pass filters 
in Section 2.5. An exception is the “medium-term business cycle” as defined by Comin and Gerter (2006). 
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2.2 Frequency domain filter (FD) 

The FD filter is the ideal solution to the frequency extraction problem and is defined as 

follows. For π ω π− ≤ ≤ , let ( )f ω  be a function such that 

 0

0

0
( )

1
if

f
if
ω ω

ω
ω ω π

⎧ <⎪= ⎨ ≤ ≤⎪⎩
 (2) 

and let  be its inverse Fourier transform. The cyclical component of ( )F L ty  is then defined as 

 ( )tc F L yt= . (3) 

It contains frequency components only in the range 0ω ω π≤ ≤ , with the same weights that 

those components have in ty .  is the time-domain representation of the high-pass 

frequency-domain filter 

( )F L

( )f ω , and its coefficients are given by 

 (0 0

1

sin( )( ) 1 h h

h

h )F L
h

ω ω
π π

∞
−

=

= − − +∑ L L . (4) 

Rather than applying the time domain filter (4), which in principle requires an infinite 

sample, a straightforward way of estimating  is to take the Fourier transform of tc ty , say ( )y ω�  

and to calculate  as the inverse Fourier transform of the product tc ( ) ( )f yω ω� . Note that this 

filter may be applied to integrated processes because it annihilates the spectrum in a 

neighborhood of 0ω = , where the spectrum is singular when . 0d >

 

2.3 Baxter-King filter (BK) 

Baxter and King (1999) propose a time-domain approximation to the frequency domain 

filter ( )f ω . They define an approximation ( )B L  that is optimal in the sense that it minimizes 

the equally-weighted average square modulus of the difference between the frequency domain 

representation of the FD filter, ( )f ω , and the frequency domain representation of the 

approximation, ( )b ω . Specifically, the objective is to minimize 

 
2

( ) ( )f b d
π

π
ω ω ω

−
−∫  (5) 

subject to restrictions that (1) ( )B L  be symmetrical  

 3



 (0
1

( )
K

h h
h

h
)B L b b L L−

=

= + +∑  (6) 

and that (2) its coefficients sum to zero 

 0
1

(1) 2 0
K

h
h

B b b
=

= + ∑ = . (7) 

The solution to the optimization problem is 

 0 01b ω π θ= − −  (8) 

 0sin( ) ( )hb h hω π θ= − −  (9) 

for h = 1, … , K, where θ  is chosen to satisfy condition (7). The cyclical component of ty  is 

estimated as  

 ˆ ( )tc B L yt= . (10) 

The BK filter is optimal under the stated conditions in the sense that it minimizes the 

mean squared error when the series ty  is white noise. The two restrictions (6) and (7) imply that 

the BK filter may be applied to integrated series up to I(2) and still produce stationary results, a 

feature shared with filters designed for signal extraction, as discussed in Section 3 below. If the 

zero-sum restriction (7) is not imposed, 0θ =  and the coefficients , h = 0, … , K, are the same 

as in the time domain representation of the ideal FD filter . 

hb

( )F L

 

2.4 Christiano-Fitzgerald filter (CF) 

Christiano and Fitzgerald (2003) propose a filter that solves an optimization problem 

similar to the one that leads to the BK filter, with a few notable differences. The objective 

function for the CF filter is also a mean squared error, but it differs from the one used by Baxter 

and King (1999) in that squared deviations between the approximate filter ( )c ω  and the ideal 

filter ( )f ω  are weighted by ( )yys ω , the spectrum of ty : 

 
2

( ) ( ) ( )yyf c s d
π

π
ω ω ω

−
−∫ ω . (11) 

The two criteria are the same if ty  is white noise, which has a constant spectrum. The CF filter, 

however, is derived under the assumption that ty  follows a random walk. As in the BK filter, the 

CF time domain coefficients are constrained to sum to zero, so the filter can deal with the single 
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unit root implicit in the random walk assumption. In contrast to the BK filter, the symmetry 

restriction is not imposed on the coefficients of ty , t=1,…,T, all of which may be nonzero. 

A simple way to think about the calculation of the CF filter is to extend the data sample 

{ ty , t=1,…,T} infinitely in both directions by taking 1ty y=  for 1t <  and t Ty y=  for . 

This extension is motivated by the predictive properties of the random walk assumption. The 

ideal weights 

t T>

(4) are then applied to the extended sample. It follows directly from this 

description of the filter that it is asymptotically ideal in the sense that it approaches the ideal 

filter  as the sample size approaches infinity in both directions. ( )F L

 

2.5 Band-pass filters 

The business cycle is frequently associated in the literature with a range of frequencies 

that is bounded both below and above, in order to censor both low frequency trends and high 

frequency noise.3 The upper and lower bounds may be implemented using band-pass filters. Let 

( )LωΦ  be a high-pass filter (FD, BK or CF), calibrated to retain frequencies ω  and above. Then  

 
0 1
( ) ( )L Lω ωΦ −Φ  (12) 

is a band-pass filter that extracts (retains) frequencies ω  in the range 0 10 ω ω ω π< ≤ < < .  

The bulk of the analysis that follows focuses on high-pass – rather than band-pass – 

versions of filters for two principal reasons. First, comparisons across filters are clearer if we 

focus on the effects of a single application of the high-pass filter rather than the two applications 

implicit in the band-pass. Second, the signal extraction filters of Section 3 below do not have an 

explicit band-pass form. They may be nevertheless interpreted as approximate high-pass filters, 

as is common in the literature. Thus, comparison of both frequency extraction and signal 

extraction filters is better carried out by focusing on high-pass formats. 

 

2.6 Graphical comparisons 

We illustrate the relative effects of the filters discussed so far by presenting the gain of 

each filter, that is, the multiplier that affects the variability of each frequency component in the 

interval [0, π ]. Figure 1 shows the gains of the high-pass FD and BK filters for cycles up to 8 

                                                 
3 See, e.g., Engle (1974) and Sargent (1987). 
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years in length ( 0 2 32ω π= ), assuming for simplicity that the sample is infinite.4 ES and HP 

filters are discussed in Section 3. 

 

Figure 1. Gain of high-pass filters 
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When examined in isolation from the processes to which they are applied, the filters seem 

relatively similar. The BK filter is least accurate in the neighborhood of the step at 0 2 32ω π= , 

but it tends to dampen frequencies below that level and is close to unity for higher frequencies. 

Section 4 will show that looking at the filters in isolation from the process to which they are 

applied may underestimate the potential for inaccuracy. 

Figure 2 shows the gain for the band-pass filters corresponding to the frequency 

extraction problem, with an upper frequency bound of 1 2 4ω π=  or four-quarter cycles. The 

qualitative features are similar to Figure 1, with the caveat that the BK approximation has to deal 

with two steps here instead of one. 

 

                                                 
4 With an infinite sample, the CF filter coincides with the FD, as noted earlier, and is not shown separately in the 
figure. 
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Figure 2. Gain of band-pass filters 
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3. The signal extraction problem 

3.1 General principles 

 Let ty  be a time series, t=1,…,T, such that 

 t t ty g c= +  (13) 

where 

 ( )1 d
t ( ) tL g A L ε− =  (14) 

 ( )tc A L tη=  (15) 

Where tε  and tη  are mutually independent white noise series, 2
1 2( ) 1A L a L a L= + + +…  is a lag 

polynomial with 2

1
j

j

a
∞

=

< ∞∑ , and d is a positive integer. Note that the stationary series on the 

right hand sides of (14) and (15) share the same lag polynomial, though they are driven by 

orthogonal white noise processes.  
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In the frequency extraction problem, ty  was defined as an I(d) process. In the signal 

extraction problem, ty  has an I(d) component  defined in the same way as before, but here tg ty  

has an additional stationary component , which is the object of investigation. tc

Whittle (1983, Section 5.1) shows that the least-squares estimate of the trend component 

is 

 1

1ˆ
1 (1 ) (1 )t d dg

L Lλ −=
+ − − ty  (16) 

and that the corresponding estimate of the cyclical component is thus 

 
1

1

(1 ) (1 )ˆ
1 (1 ) (1 )

d d

t d d

L Lc
L Lλ

−

−

− −
=

+ − − ty  (17) 

where 2 2
η ελ σ σ= .5 As in the frequency extraction problem, the estimate  minimizes the mean 

squared error, though the characteristics of the benchmark  are different here. 

t̂c

tc

 

3.2 Exponential smoothing filter (ES). 

When , we obtain from 1d = (17) an estimate ˆ ( )tc S L yt=  of the cyclical component by 

applying the filter 

 
1

1

(1 )(1 )( )
1 (1 )(1

L LS L
L Lλ

−

−

− −
=

+ − − )

2 ⎤⎦

t

 (18) 

which corresponds to exponential smoothing (ES). The ES filter may also be obtained by 

minimizing a function of the form  

  (19) 2ˆ ˆ( ) ( )t t ty g gλ⎡ − + Δ⎣∑
which penalizes both deviations of the estimated trend from the observed value and changes in 

the trend. The second term produces smoothness in the trend. See King and Rebelo (1993). 

 

3.3 Hodrick-Prescott filter (HP). 

When , we obtain from 2d = (17) an estimate ˆ ( )tc H L y=  of the cyclical component by 

applying the filter 

                                                 
5 Similar derivations, at various levels of generality, are provided in King and Rebelo (1993), Harvey and Jaeger 
(1993), and Harvey and Trimbur (2003). 
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2 1 2

2 1

(1 ) (1 )( )
1 (1 ) (1 )

L LH L
L Lλ

−

−

− −
=

+ − − 2

2 ⎤⎦

 (20) 

which corresponds to the HP filter of Hodrick and Prescott (1997). The HP filter may also be 

obtained by minimizing a function of the form  

  (21) 2 2ˆ ˆ( ) ( )t t ty g gλ⎡ − + Δ⎣∑
which penalizes both deviations of the estimated trend from the observed value and the second 

difference in the trend. The second term produces more smoothness in the trend than the 

corresponding term for the ES filter. See King and Rebelo (1993), Hodrick and Prescott (1997) 

and Ehlgen (1998). 

Note that the cyclical component  is defined here in a fundamentally different way than 

in the frequency extraction problem, though the language used in connection with both types of 

filter may be similar. The objective of the ES and HP filters is to extract a stationary variable that 

may contain a large amount of low frequency variation. For instance, when , the ideal 

result is white noise, which contains all frequencies with equal weights. Thus, in that case, the 

filter would ideally give the same weight to all frequencies, including low frequencies that would 

be eliminated as trends in the frequency extraction problem. In practice, the ES and HP filters 

dampen low frequencies, but not to the same extent as the ideal high-pass filter. Refer once again 

to Figure 1 for illustrations of the gain of the ES and HP filters. 

tc

( ) 1A L =

 

4. Effects of filtering on specific processes 

4.1 Strategy for comparing filters 

It was noted earlier that comparison of the gains of the individual filters in isolation may 

be misleading because the interaction with the spectral characteristics of some processes may 

play a large role in the final result. In this section, the filters are applied to a range of specific 

processes that vary as to two aspects: the lag polynomial ( )A L  of the Wold representations of 

the stationary components of the series and the degree of integration of the series. 

 

4.1.1 Wold representations 

For the Wold representations, we follow Ehlgen (1998) in selecting the following four 

processes, which contain a reasonable degree of spectral diversity. 
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White noise, WN:  ( ) 1A L =

Moving average, MA(1): ( ) 1 .5A L L= +  

Autoregressive process, AR(1,.5): ( ) 1( ) 1 .5A L L −= −  

Persistent autoregressive process, AR(1,.9): ( ) 1( ) 1 .9A L L −= −  

 

4.1.2 Degree of integration 

By construction, the BK, ES and HP filters are applicable to I(2) processes, so we allow 

the degree of integration to be as high as 2.6 In the context of the frequency extraction problem, 

this calls for I(0), I(1) and I(2) cases. The variance of the innovation is taken to be unity: 2 1εσ =  

in all cases. 

In the context of the signal extraction process, there is also a stationary component, and 

we denote the corresponding processes as I(1)+I(0) and I(2)+I(0). The variance of the innovation 

in the integrated component is taken to be unity: 2 1εσ =  in all cases. The signal extraction setup 

also requires the specification of the parameter λ , which represents the ratio of the variances of 

the two noise processes. For the I(2)+I(0) case, we use 1600λ = , which is the figure proposed 

by Hodrick and Prescott (1997) for quarterly data. For the I(1)+I(0) case, we use 

(( ))3200 1 cos 16λ = − π , which is the ES filter parameter value suggested by King and Rebelo 

(1993) so that the gain at 2 32ω π=  (eight year cycle) is the same as that of the HP filter with 

1600λ = . 

These five cases of degree of integration are combined with each of the four Wold 

processes defined above to produce a total of twenty combinations. The four filters FD, BK, ES 

and HP are then applied to each of the combinations. We first illustrate a few cases graphically 

and then examine all cases numerically to gauge the accuracy of the filters in various conditions.  

 

4.2 Graphical illustrations 

In the graphical illustrations, we focus on the white noise and AR(1,.9) processes, which 

best represent the range of results. The MA(1) and AR(1,.5) specifications are qualitatively 

                                                 
6 The HP filter may be applied to integrated processes up to I(4) as well. 
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similar to the white noise case in terms of their low frequency performance, and all the filters 

tend to perform fairly well at high frequencies. In general, the most interesting test case turns out 

to be the persistent AR(1,.9) process. 

In the illustrations based on the frequency extraction problem, the benchmark of 

performance is the ideal FD filter, which is shown in each figure as a solid line.  

 

Figure 3. Frequency extraction problem with I(0) process 
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Since the spectrum of white noise is constant, the top panel of Figure 3 is essentially the 

same as Figure 1, except that the vertical axis is rescaled by a factor of 1 2π . The BK, ES and 

HP filter overestimate the low frequency components below the 32 period frequency and tend to 

underestimate above that frequency. In general, however, the performance for all filters seems 

reasonably good. 

The characteristics of the AR(1,.9) case in the lower panel are similar, but the low 

frequencies play a larger role here and the overestimation of low frequency trends seems to be 

more of a problem in relative terms. 
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Figure 4. Frequency extraction problem with I(1) process 
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The I(1) processes in Figure 4 show the same low frequency problem as the AR case in 

the previous figure. The white noise case, a random walk, is similar to the stationary but 

persistent AR case. The AR case here is even worse than before, particularly for the ES filter. 
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Figure 5. Frequency extraction problem with I(2) process 
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When the process is I(2), Figure 5 shows that all the approximate filters fail dramatically 

at low frequencies, even though the are designed to extract implicitly up to two unit roots. The 

BK and ES filters produce finite but very large values at 0ω = . The HP filter, which can extract 

up to four unit roots, still produces a zero value at 0ω = , but overestimates substantially other 

low frequency values of the spectrum up to the 32-period threshold.7

For cases based on the signal extraction problem, recall that the objective is to produce a 

cyclical component corresponding to the particular ( )A L  or Wold representation, which in 

general contains non-zero low frequency components. This benchmark process appears in the 

Figures 6 and 7 as a solid line. 

 

                                                 
7 Ehlgen (1998) has examined a different but related aspect of the interaction between the HP filter and the various 
time series processes. 
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Figure 6. Signal extraction problem with I(1)+I(0) process 
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With an I(1)+I(0) process, all filters underestimate the low-frequency components of the 

spectrum. In Figure 6, the numerical illustrations use ( )( )3200 1 cos 16λ = − π , as in the ES 

filter. The low-frequency values produced by the BK, ES and HP filters, which were too high in 

the frequency extraction problem are in this case not high enough. The FD filter, which assigns 

no weight to low frequencies, fails dramatically here in that range. We see that the ES filter 

produces the best low-frequency results, as expected from theory. 

Results for the I(2)+I(0) processes are presented in Figure 7, with 1600λ = . The BK and 

ES filters have finite non-zero values at the zero frequency. For low frequencies more generally, 

the BK filter tends to approximate the benchmark, while the ES filter tends to overshoot on the 

positive side. It is not altogether clear from the graphics that the HP filter is best in this case, as 

theory suggests. The one-dimensional representation of the gain fails to capture the ability of the 

HP filter to strike a balance in its effects on the two components of the I(2)+I(0) process. The 

appropriate relationships emerge clearly when exact mean squared errors are calculated 

numerically in the next section. 
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Figure 7. Signal extraction problem with I(2)+I(0) process 

FD
BK
ES
HP
Benchmark

White noise

Cy cles per period
0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FD
BK
ES
HP
Benchmark

AR(1,.9)

Cy cles per period
0.0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

7

 
 

 

4.3 Frequency domain errors (RMSEs) 

Visual representations are helpful, but a quantitative measure of goodness of fit allows 

for more precise comparisons of the accuracy of the estimates produced by the filters. In each 

case, we use the root mean square error of the estimate of the cyclical component, which is 

equivalent to the optimization criteria proposed by Christiano and Fitzgerald (2003) and Whittle 

(1983).  

Let  be the estimation error, where the cyclical component is estimated by 

 and 

ˆt tu c c= − t

)ˆˆ ( )t tc F L y= (ˆ ˆ( ) if F e ωω −= . The frequency domain representation of the RMSE is 

 
1 22

ˆ( ) ( ) ( )u yyf f s d
π

π
σ ω ω ω

−

⎛= −⎜
⎝ ⎠∫ ω ⎞

⎟  (22) 

in the frequency extraction problem and 

 { }
1 22 2ˆ ˆ1 ( ) ( ) ( ) ( )u cc ggf s f s d

π

π
σ ω ω ω ω

−

⎛ ⎞= − +⎜ ⎟
⎝ ⎠∫ ω . (23) 
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in the signal extraction problem. In the tables that follow, RMSEs are scaled by 

( )1 2

( )c ccs d
π

π
σ ω

−
= ∫ ω , the volatility of the benchmark for each problem. Filter rankings for a 

given process are not affected, but the interpretation of results expressed this way is scale-

independent. 

 

Table 1. Frequency extraction problem: Frequency domain root-mean-squared errors 

 

 I(0)    I(1)    I(2)    

 WN MA(1) AR(1,.5) AR(1,.9) WN MA(1) AR(1,.5) AR(1,.9) WN MA(1) AR(1,.5) AR(1,.9) 

FD 0 0 0 0 0 0 0 0 0 0 0 0 

BK 0.088 0.120 0.156 0.332 0.390 0.417 0.466 0.780 1.119 1.131 1.197 2.258 

ES 0.121 0.166 0.216 0.512 0.661 0.707 0.797 1.532 2.801 2.835 3.019 6.379 

HP 0.090 0.124 0.162 0.360 0.415 0.444 0.497 0.801 0.930 0.940 0.987 1.485 

Results for the frequency extraction problem framework, presented in Table 1, exhibit 

some clear general patterns. The benchmark in the frequency domain problem is the ideal FD 

filter and, by definition, it has the best performance in Table 1. However, the table helps 

ascertain whether the other filters provide good approximations and, if so, under what 

circumstances. In particular, what is the second best filter under each of the various conditions?  

Several patterns are manifest in the table. First, the degree of integration plays an 

important role in the accuracy of the approximate filters. The results for I(1) processes are 

markedly worse than in the stationary cases, and the I(2) figures are worse by an order of 

magnitude. Clearly, the fact that the approximate filters annihilate two to four unit roots is no 

comfort as far as the accuracy of results in the frequency extraction problem is concerned. 

Among the four Wold specifications, results for the approximate filters in the AR(1,.9) 

case are clearly inferior to the others. Even when the process is I(0), the RMSEs are about four 

times as large as for WN. Since many economic series exhibit substantial autocorrelation, this 

pattern suggests caution when applying approximate filters to economic variables. 

As to the second best filter, the results of the BK and HP filters are very similar for I(0) 

and I(1) processes, but the BK has a slight edge in these cases. In the I(2) cases, the HP filter is 

clearly aided by its ability to deal with up to four unit roots and is better than the other 

approximations. The differences from the ideal filter, however, are still quite large. Barring some 
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powerful reason to avoid frequency domain calculations, the table suggests that the FD filter is to 

be preferred. 

 
Table 2. Signal extraction problem: Frequency domain root-mean-squared errors 

 

 I(1)+I(0)    I(2)+I(0)    

 WN MA(1) AR(1,.5) AR(1,.9) WN MA(1) AR(1,.5) AR(1,.9) 

FD 0.298 0.392 0.485 0.854 0.267 0.358 0.454 0.844 

BK 0.265 0.346 0.426 0.771 0.247 0.331 0.420 0.824 

ES 0.252 0.329 0.405 0.741 0.328 0.439 0.561 1.195 

HP 0.263 0.344 0.423 0.778 0.237 0.317 0.402 0.786 

In the signal extraction problem, the goal is to obtain the stationary series corresponding 

to the given ( )A L  specification. Thus, all four filters are approximations and have positive 

RMSEs. For each process, the most accurate filter is known by construction, since the ES filter is 

derived to be optimal in the I(1)+I(0) cases, whereas the HP filter is optimal in the I(2)+I(0) 

cases.  

In contrast to the frequency extraction problem, Table 2 shows that the FD filter is 

outperformed here by all the others in the I(1)+I(0) case, and by all but ES in the I(2)+I(0) case. 

Another contrast with the previous table is that the results in Table 2 are not very sensitive to the 

degree of integration of the series. Although all the cases examined contain an integrated 

component, they all contain also an I(0) component whose innovation is more variable. This 

stationary component is clearly very influential in the comparative results. As in Table 1, the 

AR(1,.9) results are clearly worse than in the other cases. 

 

4.4 Volatility distortion 

Another measure of the error involved in estimating the cyclical component is a possible 

distortion of the overall cyclical variability of the process. Thus, we can look at the variance ratio 
2 2
ĉ cσ σ  as an indicator of this overall distortion in variability, where  is the benchmark cyclical 

process and  is a particular estimate. Results are shown in Tables 3 and 4 for the frequency and 

signal extraction problems, respectively. 

tc

t̂c

There are essentially two types of situations, not unrelated, in which the overall volatility 

tends to be distorted. One is in the frequency extraction problem when the filters are applied to 
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I(2) processes, as seen in the last four columns of Table 3. The results of applying the ES filter to 

the autoregressive I(1) processes are similar but less pronounced. The other situation is in the 

signal extraction problem when the Wold representation is AR(1,.9). In these cases, the estimates 

fail to capture the large trend-like components of the persistent AR(1,.9) process and, with one 

exception, they underestimate the volatility by more than 30%. 

 

Table 3. Frequency extraction problem: Volatility relative to benchmark 
 I(0)    I(1)    I(2)    

 WN MA(1) AR(1,.5) AR(1,.9) WN MA(1) AR(1,.5) AR(1,.9) WN MA(1) AR(1,.5) AR(1,.9) 

FD 1 1 1 1 1 1 1 1 1 1 1 1 

BK 0.996 0.993 0.987 0.968 0.979 0.976 0.974 1.086 1.341 1.349 1.396 2.347 

ES 0.982 0.973 0.968 1.022 1.098 1.114 1.158 1.723 2.908 2.940 3.116 6.422 

HP 0.996 0.993 0.989 1.001 1.016 1.019 1.029 1.169 1.257 1.262 1.293 1.687 

 

Table 4. Signal extraction problem: Volatility relative to benchmark 

 

 I(1)+I(0)    I(2)+I(0)    

 WN MA(1) AR(1,.5) AR(1,.9) WN MA(1) AR(1,.5) AR(1,.9) 

FD 1 1 1 1 1 1 1 1 

BK 0.996 0.993 0.987 0.968 0.979 0.976 0.974 1.086 

ES 0.982 0.973 0.968 1.022 1.098 1.114 1.158 1.723 

HP 0.996 0.993 0.989 1.001 1.016 1.019 1.029 1.169 

 

5. Differencing, over-differencing, and deterministic trends 

5.1 Pre-differencing integrated processes 

 As before, let ty  be a time series, t=1,…,T, such that 

 ( )1 d
t ( ) tL y A L ε− =  (24) 

Frequency extraction approaches generally work best when the observable series is stationary. In 

principle, the FD filter annihilates the spectrum for frequencies in a neighborhood of zero. 

Similarly, the CF filter may be applied to I(1) processes, the BK and ES filters may be used with 

I(2) processes, and the HP filter may even be applied to I(4) processes. However, the damping 

effects of these filters for low frequencies may be limited in practical applications, and the 

retained low frequency components may contain substantial trend-like properties. Thus, a 
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standard first step, particularly if the filter is applied in the frequency domain, is to extract all 

unit roots from ty  and to focus on the stationary variable  

 ( )1 d
tL y−  (25) 

whose spectrum is finite as 0ω → .  

The difference operator  

  (26) ( ) (1 )d L LΔ = − d

has the frequency domain representation  

 ( )( ) 1
di

d e ωδ ω −= −  (27) 

and its gain is given by 

 [ ] 2( ) 2(1 cos ) d
dδ ω ω= −  (28) 

This gain is plotted in Figure 8 for d = 1 and 2.  

 

Figure 8. Effects of first and second differencing (gain) 

Cycles per period
0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

First

Second

 
 

 19



Note that the gain implies that the filter dampens variation in frequencies 0 3ω π≤ < , 

particularly frequencies close to zero, and that it amplifies variation for 3π ω π< ≤ . The 

frequency 3π  corresponds to 6 periods per cycle. With quarterly data, 6 quarters per cycle is 

often taken as the high frequency bound of the business cycle spectrum (see, eg, Baxter and King 

(1999), Stock and Watson (1999)). With monthly data, 6 months is well outside the normal range 

of business cycle frequencies.  

Hence, the operator  tends to amplify only frequencies that are generally 

considered to correspond to short-term noise and that are often censored in frequency domain 

analyses of business cycle fluctuations.  

( )d LΔ

Clearly, appropriate application of the differencing filter to variables with unit roots (e.g., 

application of  to the process ( )d LΔ ty  in (24)) produces stationary variables amenable to the 

application of frequency extraction techniques. Overdifferencing (the application of  

with  to 

( )d j L+Δ

0j > ty  in (24)) in general produces stationary series, but may lead to undesirable 

results. It may excessively dampen low frequencies and amplify high frequencies if the latter are 

retained. 

 

5.2 Testing for overdifferencing 

Granger and Hatanaka (1964) and Granger (1966) identify a “typical spectral shape” for 

economic variables. They refer to the fact that the spectrum of an economic series tends to be 

decreasing as a function of the frequency from 0 to π . The typical spectral shape is consistent 

with the presence in many series of autoregressive features, with real roots greater than 1 and 

possibly unit or near-unit roots. For example, for the AR(1) series tx  defined by 

 (1 ) tL x tρ ε− =  (29) 

with 0 1ρ< <  and tε  white noise, the spectrum is given by  

 2( ) (1 2 cos )xxs ε
2ω σ ρ ω= − + ρ  (30) 

In this case, ( ) 0xxs ω′ <  for ω  from 0 to π .  

 However, if the first difference operator txΔ  is applied to this series, the slope of the 

spectrum is reversed. The spectrum is then 
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 2( ) 2 (1 cos ) (1 2 cos )x xs ε
2ω σ ω ρ ωΔ Δ = − − + ρ  (31) 

and ( ) 0x xs ωΔ Δ′ >  for ω  from 0 to π .  

Note that a decreasing spectrum is not a feature of every possible ARIMA specification. 

For instance, the spectrum of tx  in (29) is increasing in ω  if 1 0ρ− < < . However, many 

standard empirical specifications share the “typical shape.” Another example is an MA(1) 

process 

 (1 )t tx aL ε= +  (32) 

with , which also has a monotonically decreasing spectrum. This case is a bit different from 

the AR(1) case in that the spectrum of 

0a >

txΔ  is not monotonically increasing. Recall, however, that 

the effect of  switches from dampening to amplifying at Δ 3ω π= . For the first-differenced 

MA(1) series, the spectrum is increasing on average, in the sense that the average spectrum for 

3ω π<  is less than the average spectrum for 3ω π> . More precisely, 

 ( ) ( )
31 1

0 3
3 ( ) 2 3 (x x x xs d s d

π π

π
)π ω ω π ω ω− −

Δ Δ Δ Δ<∫ ∫  (33) 

Figure 9 illustrates the spectra of the level and first difference of the AR(1) and MA(1) processes 

with .5aρ = = . 
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Figure 9. Spectrum of AR(1) and MA(1) processes and their first differences 
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The foregoing patterns suggest a strategy for testing for overdifferencing of economic 

series. If the series tx  has a bounded spectrum that is higher on average for 0 3ω π≤ <  than for 

3π ω π< ≤ , but the relative magnitudes are reversed for txΔ , the shape of the resulting 

spectrum is dominated by the difference operator rather than the original series, a sign of 

overdifferencing. 

This hypothesis may be tested empirically using spectral methods. Operating in the 

frequency domain, we take advantage of statistical sampling results available for spectral 

functions. Suppose the spectrum of tx , t=1,…,T, is estimated using the periodogram 

 
2

1

1( )
2

j
T

i t
xx j t

t
I

T
λλ

π
−

=

= ∑ x e , (34) 

where 2j j Tλ π= , j=1,…,T. Brillinger (1981, Section 5.2) shows that asymptotically (as 

) T →∞

 ( ) ( )xx j xx jE I sλ λ=  (35) 
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 2( ) ( )xx j xx jVar I sλ λ=  (36) 

 { }( ), ( ) 0xx j xx kCov I Iλ λ =  for j k≠ . (37) 

Moreover, Brillinger (1981, Theorem 5.6.3) implies that 

 
0

0

11 ( )
j n

xx j
j j

I
n

λ
+ −

=
∑  (38) 

is asymptotically normal when  as T .  n →∞ →∞

Let  be the integer such that 1n
1

3nλ π≤  and 
1 1 3nλ π+ > . Then 

 
1

1
11

1 ( )
n

xx j
j

S I
n

λ
=

= ∑  and 
1

2
11

1 ( )
T

xx j
j n

S
T n

I λ
= +

=
− ∑  (39) 

are asymptotically normal and independent with 

 ( )
31

1 0
3 ( )xxE S s d

π
π ω ω−= ∫  and ( ) 1

2 3
2 3 ( )xxE S s

π

π
dπ ω ω−= ∫  (40) 

By (35)-(37), we have also 

 ( )
( )

1

11

2
2 1 22

1 11

1 1( ) ( )
n T

xx j xx j
j j n

Var S S s s
n T n

2λ λ
= =

− = +
−

∑ ∑
+

 (41) 

Hence, the hypothesis 

 ( ) ( )
31 1

0 0 3
: 3 ( ) 2 3 ( )xx xxH f d f d

π π

π
π ω ω π ω ω− −<∫ ∫  (42) 

is rejected with confidence level 1 α−  if  

 
( )

2 1
1 2

2 1

S Sz z
Var S S

α
−

=
−⎡ ⎤⎣ ⎦

>  (43) 

where z is asymptotically standard normal and ( )N z zα α> =  (N is the standard normal cdf). 

 

5.3 Deterministic trends 

So far we have assumed that there are no constant terms in the equations for the 

observable non-observable variables, but such constants are likely to appear in most empirical 

applications. For instance, consider a simple form of equation (1) in which  and 1d = ( ) 1A L = . 

An empirical model would include a constant α  such that 

 ( )1 tL y tα ε− = +  (44) 
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Summing from  we obtain 0t =

 0
1

t

t
j

y y t jα ε
=

= + +∑  (45) 

which clearly contains a deterministic trend. Since the assumption in frequency domain methods 

is that the series is purely non-deterministic, this trend must be extracted before applying spectral 

methods. 

If analysis of an empirical time series as in equation (44) suggests that a first difference 

filter should be applied, detrending is accomplished simply by subtracting the sample mean of 

. In this case, preliminary extraction of the mean is helpful in obtaining good empirical 

estimates of the frequency domain properties of time series, particularly at low frequencies. This 

is particularly clear when the spectrum is estimated using the periodogram, as described earlier. 

For a stationary variable with mean 

( )1 tL y−

x , the estimate of the periodogram at 0ω =  is ( ) 22T xπ  so 

that this point contains information about the first moment of the series, rather than the second. 

If it is important to work with the I(1) process ty  directly, detrending may be 

accomplished by removing a linear trend from the series, that is, by regressing ty  on a constant 

and t, and using the residuals as an estimate of 
1

t

j
j
ε

=
∑ . This procedure is necessary for the 

application of the FD and ES filters to series that exhibit significant linear trends. The BK and 

HP filters are constructed in ways that incorporate the extraction of linear trends directly into the 

filter, so preliminary detrending is not necessary. 

 

6. Empirical illustrations 

6.1 Application of various filters to GDP and GDP deflator  

A few practical issues arise when applying the time series filters to actual data. First, it is 

normally convenient to extract the mean from the raw series. The mean has a direct effect on the 

zero frequency component of the periodogram, and also on other low frequencies, particularly if 

smoothing windows are used.  

Second, for series that contain a linear trend, or a component that looks in practice like a 

deterministic linear trend, that component should be extracted as well. This step is less important 

with the BK and HP filters, which incorporate at least two levels of differencing and implicitly 
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extract linear terms. It is much more important when using the FD and ES filters, which do not 

automatically pre-difference the data. 

Third, should the data be pre-differenced? This issue may be addressed by the 

computation of the z statistic defined in Section 5.2 or by application of unit root tests in the time 

domain, such as those of Dickey and Fuller (1979) or Phillips and Perron (1988). 

The first row of Table 5 shows the results of applying the z statistic test to log levels of 

GDP and the GDP deflator. The negative results indicate that the spectrum is generally 

decreasing, as in the typical spectral shape, with significance at the 10% level for both variables. 

The second row applies the same test to first differences and shows very similar results, 

suggesting that this degree of differencing is appropriate.8 Application of a second difference in 

the last row leads to large positive values, suggesting that the difference operator dominates the 

results and that this step may constitute over-differencing.9

 

Table 5. GDP and GDP deflator: z tests for over-differencing 

Quarterly data, 1959Q1 to 2006Q2 

 

 GDP  GDP deflator  

 z statistic p value z statistic p value 

Log level -1.62 .053 -1.34 .090 

First difference -1.98 .024 -1.51 .065 

Second difference 4.41 1.000 3.58 1.000 

The foregoing results indicate that we should apply the filters to either log levels or first 

differences of the variables. Figure 10 presents the application of the filters to log levels of GDP. 

In the case of the FD and ES filters, a simple linear trend is extracted for reasons given earlier. 

The figure shows the inverse Fourier transform after the application of each filter in the 

frequency domain. Results are fairly consistent across filters, though the lack of differencing in 

                                                 
8 Using alternative methods, also in the frequency-domain, Müller and Watson (2006) similarly conclude that a unit 
root model is often consistent with the observed low-frequency variability of twenty U.S. macroeconomic and 
financial time series. 
9 Standard unit root tests lead to similar conclusions. Using a t-test for log levels with constant and trend, a unit root 
cannot be rejected in either variable. Dickey-Fuller (1979) p values (0 lags) are .392 for GDP and 1.000 for the 
deflator, whereas and Phillips-Perron (1988) p values (4 lags) are .218 and .998, respectively. A test for first 
differences with a constant term rejects a second unit root with p values of .000 and .016 (Dickey-Fuller) and .000 
and .052 (Phillips-Perron). Computation of p values is as in MacKinnon (1996). 
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the FD and ES filters produces some visible discrepancies, particularly toward the ends of the 

sample. 

 

Figure 10. High-pass filters applied to GDP in log levels 
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The same approach is applied to first (log) differences of GDP in Figure 11. No prior 

detrending is necessary in this case for the FD and ES filters. The homogeneity of the results 

suggests that all the filters produce very reasonable approximations to the theoretical FD filter if 

the appropriate level of differencing is first applied. 
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Figure 11. High-pass filters applied to GDP in first differences 
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With the GDP deflator, the results are qualitatively similar, though the stronger trends in 

this variable lead to greater deviations across filters. Because of the persistence of the series, 

results for FD and ES in Figure 12 are quite clearly outliers in the absence of any differencing. 

Once again, however, the application to first differences leads to fairly homogeneous results. 

 

Figure 12. High-pass filters applied to GDP deflator in log levels 
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Figure 13. High-pass filters applied to GDP deflator in first differences 
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The series in the foregoing figures are substantially smoother than the raw data, but 

greater smoothness consistent with some notions of the business cycle may be achieved by 

censoring high-frequency movements in a band-pass filter. As noted, band-pass filters are 

straightforward extensions of the FD and BK high-pass filters. Figure 14 compares the FD 

versions of the band-pass and high-pass filters, both applied to the first difference of GDP. 
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Figure 14. Band-pass filter compared with high-pass filter: 

FD filter (1 to 8 years and less than 8 years) applied to GDP in first differences 
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Quantitative measures of the features of the foregoing graphical illustrations may be 

obtained by calculating RMSEs of the resulting series, using the FD filter as a benchmark as in 

Section 3. Table 6 confirms that differences across filters are much larger for levels than for first 

differenced series, though given the visual results of Figures 10 and 12, the use of the FD filter as 

a benchmark must be taken with a grain of salt.  

The results for first differences are more easily interpreted. We see that all the RMSEs 

are relatively small. The HP filter provides the best approximation for GDP but the BK filter 

does slightly better for the GDP deflator. These differential results are indicative of the 

interactions between the filters and the process to which they are applied. 

 

Table 6. RMSE relative to FD filter: GDP and the GDP deflator 

Quarterly data, 1959Q1 to 2006Q2 

* Sample for BK is 1962Q1 to 2003Q2, since K observations must be dropped at either end.  

 GDP  GDP deflator  

 Level First difference Level First difference 

FD 0 0 0 0 

BK* 2.61 .44 5.07 .31 

ES 4.19 .54 9.63 .43 

HP 3.30 .39 11.15 .33 
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6.2 Correspondence of filtered GDP to NBER recessions 

One possible benchmark for the business cycle components derived from the various 

filters is how well they match the dating of recessions from the NBER. Figure 15 illustrates how 

different filters have different qualitative characteristics in relation to NBER recessions. 

Consider the application of band-pass FD and BK filters to GDP. The FD filter is applied to first 

differences to avoid distortions from the trend, whereas the BK filter is applied to log levels, 

since Baxter and King (1999) show that it can annihilate up to two degrees of integration.  

The results are visually quite different. The BK filter, implicit differencing 

notwithstanding, produces a series that has the flavor of a level, as far as recessions are 

concerned. Note that this series tends to peak before the start of each shaded recession and fall 

sharply to a trough after the end of each recession, suggesting the presence of a substantial 

residual low-frequency component (Cf., BK results in Figure 4). In contrast, the FD filtered 

series tends to be negative during the course of each recession.10 In addition, volatility seems 

overstated, which Table 3 suggests is a feature of BK with highly-persistent processes. 

 

Figure 15. BK levels versus FD first differences for GDP 
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10 Murray (2003) provides evidence that the BK filter allows the first difference of a stochastic trend to pass through 
with U.S. real GDP. In the terminology of the present paper, the BK filter applied to the log level is a suboptimal 
solution to the signal extraction problem. 
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Which representation is more accurate? One test is to include each filtered series in a 

probit equation in which the binary dependent variable is the recession indicator. Table 7 

provides the pseudo- 2R  for each such experiment,11 using the high-pass versions of the four 

filters, as well as band-pass versions of the FD and BK filters. The filters are applied to both 

levels and first differences, and the unfiltered series are included as well. In the unfiltered, FD 

and ES cases, a simple linear trend is extracted from the levels.  

If the filters are applied to log levels of GDP, the HP filter produces the best relative fit, 

and the unfiltered series is a distant last. However, the results in general suggest that first-

differencing is entirely appropriate, given the much more significant results obtained. With first 

differences, all the high-pass filters are inferior to the unfiltered series. However, the band-pass 

versions of both FD and BK are somewhat better than the unfiltered series. The BK band-pass 

filter produces the best results, though note that the sample period is shorter by six years because 

of the need to drop observations at both ends. 

 

 

                                                 
11 Estrella (1998) shows that this pseudo- 2R , in addition to a measure of fit, is a monotonic transformation of the 
likelihood ratio test statistic for exclusion of the single explanatory variable. If the sample period is held constant, 
the pseudo- 2R  and the likelihood ratio test produce the same rankings of models. 
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Table 7. Probit equations for NBER recession indicator: pseudo- 2R  for filtered GDP 

Quarterly data, 1959Q1 to 2006Q2 

* Detrended level.  

 Level First difference 

Unfiltered* .023 .378 

FD* .134 .302 

BK** .148 .332 

ES* .148 .325 

HP .166 .328 

FD band* .130 .402 

BK band** .139 .429 

** Sample for BK is 1962Q1 to 2003Q2, since K observations must be dropped at either end.  

 

7. Conclusions 

This paper shows that the features of individual time-series filters designed to extract 

business cycle fluctuations interact systematically with the characteristics of the processes to 

which they are applied. The exact nature of this interaction may not always be straightforward 

and its implications may differ dramatically from illustrations based on application to white 

noise. 

In frequency extraction problems, the ideal solution involves the application of the FD 

filter to stationary data. If the data are in fact stationary, the BK, HP and ES filters also produce 

good results, though they are somewhat less accurate.  

If the data process is integrated, all filters benefit from preliminary extraction of unit 

roots, even if the filters produce finite spectra without differencing. The implicit differencing 

incorporated in the BK and HP filters helps dampen low frequency components, but the effects 

of these components are not altogether eliminated and tend to distort results when applied to 

highly persistent processes. Preliminary application of the appropriate level of differencing to 

integrated processes, without over-differencing, leads to fairly similar results across filters. The 

FD filter emerges as somewhat preferable, however, particularly on theoretical grounds. 

The FD and BK filters have the additional advantage that band-pass versions are easily 

computed, though the latter has the drawback that observations are lost at either end of the 

sample in either high- or band-pass versions. 
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In signal extraction problems, the ideal solution differs systematically from that of 

frequency extraction problems in that it may include large low-frequency components. In 

contrast to the frequency extraction problem, the cyclical component is always estimated with 

error, even asymptotically.  

The ES and HP filters are the best performers in the cases in which they are theoretically 

optimal. In the signal extraction problem with either I(1)+I(0) or I(2)+I(0) data, the appropriate 

choice of these two filters is the best course of action. If it is unclear whether the trend 

component is I(1) or I(2), the HP is the safer choice. Errors with the HP filter in the I(1)+I(0) 

case are relatively moderate, whereas errors with ES in the I(2)+I(0) case are the largest of any 

filter, even those not expressly designed for signal extraction. 

In general, important differences between the frequency and signal extraction problems 

and the diverse interactions between filters and processes suggest that filters must be carefully 

selected for any particular application. No single method can accommodate all circumstances 

well. 
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