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Abstract

We study the Green and Lin (2003) model of financial intermediation with two new

features: traders may face a cost of contacting the intermediary, and consumption needs

may be correlated across traders. We show that each feature is capable of generating an

equilibrium in which some (but not all) traders “run” on the intermediary by withdrawing

their funds at the first opportunity regardless of their true consumption needs. Our results

also provide some insight into elements of the economic environment that are necessary

for a run equilibrium to exist in general models of financial intermediation. In particular,

our findings highlight the importance of information frictions that cause the intermediary

and traders to have different beliefs, in equilibrium, about the consumption needs of

traders who have yet to contact the intermediary.
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1 Introduction

Bank runs and �nancial panics are often thought to be self-ful�lling phenomena, in the sense

that individuals withdraw their funds in anticipation of a crisis and, together, these individual ac-

tions generate the crisis that everyone feared. A substantial literature has arisen asking whether or

not, and under what circumstances, a self-ful�lling bank run can be the outcome of an economic

model with optimizing agents and rational expectations. Early contributions to this literature as-

sumed particular institutional arrangements, such as a bank offering a demand-deposit contract. In

an in�uential recent paper, Green and Lin [6] study a model very much in the spirit of the classic

work of Diamond and Dybvig [4] but with no restrictions on contracts other than those imposed

by the physical environment. They derive a striking result: in their environment, the ef�cient

allocation can be uniquely implemented. In other words, a �nancial intermediary can offer a con-

tract that guarantees the ef�cient outcome will obtain in equilibrium, leaving no possibility of a

self-ful�lling run.

The Green-Lin result opens the question of whether there exist any reasonable economic envi-

ronments in which self-ful�lling runs can occur in the absence of arbitrary institutional restrictions.

We identify two such environments, both of which are close variants of that in Green and Lin [6].

In one of our settings, consumption needs are correlated across agents, while in the other it is costly

for agents to contact the �nancial intermediary. Despite their apparent differences, these two fea-

tures have a common effect in equilibrium: they exacerbate the existing information frictions in the

Green-Lin model and, as a result, allow for self-ful�lling runs to be consistent with equilibrium.

It is well known that some information frictions are necessary for the possibility of a bank run

to arise. If agents' consumption needs were observable, for example, the intermediary could guar-

antee the ef�cient outcome by offering a simple insurance contract that makes payments to each

depositor conditional on her realized preferences. In such a setting, agents would not even have

the option to run. For this reason, Diamond and Dybvig [4] assumed that an agent's consumption

needs are private information; implementing the ef�cient allocation then requires that agents be

given a choice of when to withdraw their funds from the intermediary. This element of choice is

clearly necessary for a run to occur.

Private information alone is not enough to generate a bank run in equilibrium, however. If the

intermediary can condition the payments it offers to agents on the total demand for early with-

drawals, it can again guarantee the ef�cient outcome, even though it does not know which or even
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how many agents truly need to consume right away. This is because, in such an environment, the

ef�cient response of the intermediary to high withdrawal demand is to make a smaller payment

to each withdrawing agent. In doing so, the intermediary makes withdrawing early less attractive,

thereby decreasing the incentive for an agent to �panic� and withdraw when she has no immediate

need to consume. The result is that, when the intermediary adjusts payments ef�ciently, each agent

has a dominant strategy to withdraw only when she needs to consume.1 No run can occur, even

though agents have private information.

In order for a self-ful�lling run to be possible, then, some friction must prevent the intermedi-

ary from being able to condition payments to all agents on total withdrawal demand. To capture

this idea, Diamond and Dybvig [4] included a �rst-come, �rst-served (or �sequential service�) con-

straint in their analysis. Wallace [10] formalized this notion by identifying features of the economic

environment that would generate such a constraint.2 In particular, Wallace assumed that agents are

isolated from each other and visit the intermediary sequentially. Each agent must consume upon

arrival at the intermediary and, therefore, the intermediary must make a payment to an agent be-

fore observing the actions of subsequent agents. Notice that, fundamentally, the sequential service

constraint is another type of information friction; in an environment with sequential service, the

intermediary must make payments to agents before observing total withdrawal demand.

Wallace [11] studied an environment with an explicit sequential service constraint and with

aggregate uncertainty, where the number of agents who need to consume early is random. He

showed that in states where many agents need to consume early, those who contact the intermediary

�rst receive higher levels of consumption in the ef�cient allocation than those who contact the

intermediary last. Such an event may be interpreted as a form of banking crisis, but it is clearly

distinct from a self-ful�lling run on the intermediary, which leads to an inef�cient allocation of

resources. It remained an open question whether or not the combination of aggregate uncertainty

and a sequential service constraint might generate self-ful�lling bank run equilibria.

Green and Lin [6] focused on a special case of aggregate uncertainty, where the realization

of consumption needs is independent across agents, and recast the issue as a mechanism design

problem. They departed from the previous literature by assuming that agents have information

about the order in which they will have an opportunity to withdraw their funds. They showed that
1 See Green and Lin [6, Theorem 1] for a formal statement and proof of this result.
2 Such a constraint also makes banking essential, in the sense of being able to achieve outcomes not achievable
through markets. See Jacklin [8] and Wallace [10] on this point.
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the ef�cient allocation in this environment can be implemented using a direct revelation mechanism

(i.e., this allocation is Bayesian incentive compatible). They also showed that, surprisingly, the

direct revelation game always has a unique Bayesian Nash equilibrium allocation. In other words,

in their version of the Diamond-Dybvig model, �nancial intermediaries are not inherently fragile;

the ef�cient allocation can be implemented without raising the possibility of a bank run. This

demonstrates that sequential service does not necessarily imply the possibility of a run. Andolfatto

et al. [2] extended this result to a wider class of preferences. The result led Green and Lin [7]

to ask �What's Missing� in the model. In other words, what feature(s) of the environment would

permit bank runs to occur?

One answer to this question was provided by Peck and Shell [9], who also studied a model

without any institutional or other restrictions on contracts. In the Peck-Shell model (as in the earlier

work of Diamond and Dybvig [4] and others), agents must decide whether or not to withdraw their

funds from the intermediary before knowing the order in which they would sequentially contact the

intermediary. Relative to Green and Lin [6], this is an additional information friction: agents must

act before knowing this payoff-relevant information. Peck and Shell present an example in which a

bank run equilibrium exists. Their example, however, relies on agents having different preferences

than in the previous literature, leaving open the question of what exactly is responsible for their

result. In section 2 we present an example in the spirit of Peck and Shell, but in which preferences

(and other aspects in the model) are exactly as in Green and Lin [6]. Our example demonstrates

that it is the additional information friction, and not the difference in preferences, that accounts for

the difference in results.

We then return to the Green-Lin framework, where agents know the order in which they are

able to contact the intermediary, and investigate what other combinations of frictions can generate

a run equilibrium. We present two variations on the Green-Lin environment. First, we allow for

consumption needs to be correlated across agents. In this case, an agent's private information

about her own type is also (private) information about the types of other agents. We construct

an example where types are negatively correlated. In this example, an agent who withdraws early

when she does not need to consume right away will make the intermediary unduly optimistic about

the consumption needs of the remaining agents. The intermediary will then conserve relatively few

resources for the next period and, as a result, agents who wait to withdraw will end up with low

consumption levels. This fact, in turn, gives some agents an incentive to withdraw early if they
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expect others to do likewise. In this way, the asymmetry between the beliefs of the agent and

the (unduly optimistic) intermediary allows a self-ful�lling run to be consistent with equilibrium.

We also show that a bank run in this setting is necessarily partial, with only some of the agents

participating.

In our second variant, agents face a cost of contacting the intermediary. In Green and Lin [6], all

agents contact the intermediary in the early period regardless of their withdrawal intentions. The

intermediary thus observes not only the decisions of agents who choose to withdraw in the current

period, but also those of agents who decide instead to withdraw at a later date; current-period

payments can then be conditioned on both types of information. We modify the environment

by introducing a utility cost of contacting the intermediary. This cost can be thought of as the

shoe-leather cost of physically visiting the intermediary, but it could also represent more broadly

the cost of monitoring one's transaction needs (or lack thereof) and communicating them to the

intermediary on a regular basis.

Agents have an opportunity to contact the intermediary in the same order as before, but now,

because of the cost involved, they may not do so unless they want to withdraw their funds. If agents

only contact the intermediary when they want to withdraw, the intermediary must act with less

information than in the Green-Lin model.3 We show that the introduction of costly communication

can also generate an equilibrium in which some, but not all, agents run on the intermediary, even

for the case where types are independent. The intuition is broadly similar to that described above

for the case of correlated types. By restricting the �ow of information to the intermediary, the

additional friction can also create a wedge between the equilibrium beliefs of agents and the beliefs

used to design the ef�cient allocation. This wedge can again generate incentives for some agents

to withdraw early if they believe others are doing so.

In the next section, we present the general environment for our analysis and derive the ef�cient

allocation. In Section 3, we discuss how this allocation can be implemented in the presence of

private information. We also present the main result of Green and Lin [6] in the context of our

model and an example in the spirit of Peck and Shell [9]. In Section 4, we discuss the case of

correlated types and present examples of run equilibria for this case, while we do the same for the

case of costly communication in Section 5. We offer some concluding remarks in Section 6.

3 This analysis is, in some ways, closer to the approach taken in Diamond and Dybvig [4], where the intermediary
was assumed to react only to withdrawal requests.
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2 The Model

In this section we present a version of the Green-Lin model with two new features: traders may

face a cost of contacting the intermediary and types may be correlated across traders. We then

derive the ef�cient allocation in this environment under different assumptions about the size of the

cost of contacting the intermediary.

2.1 The environment

There are two time periods, indexed by t 2 f0; 1g, and a �nite number I of traders. Let I =
f1; 2; : : : ; Ig denote the set of traders. There is a single good that can be consumed in each period.
There is also an intermediary that acts as a benevolent planner and attempts to distribute resources

to maximize traders' expected utility, subject to the constraints described below.

Technology. Traders are isolated from each other, but have an opportunity to contact the interme-

diary in each period in order to receive goods. Let cti 2 R+ denote the consumption of trader i in
period t and let dti 2 f0; 1g be a binary variable that represents whether or not the trader contacts
the intermediary in a given period. Speci�cally, let dti = 1 if trader i contacts the intermediary in

period t and dti = 0 if she does not. Feasibility then requires that, for each trader i,�
1� dti

�
cti = 0; for t = 0; 1: (1)

In other words, if trader i does not contact the intermediary in period t; she cannot consume in that

period. Goods are nonstorable and must be consumed immediately after contacting the intermedi-

ary in order to give utility.4

The intermediary has an aggregate endowment of I units of the good at date 0: Each unit of the

good that is not consumed in the early period is transformed into R units of the good in period 1:

Let ai denote the individual allocation of trader i; that is, the speci�cation of whether or not she

contacts the intermediary and how much she consumes in each period,

ai =
�
c0i ; c

1
i ; d

0
i ; d

1
i

�
:

Let a = (a1; : : : ; aI) denote the complete vector of individual allocations. An (ex post) allocation

4 This assumption implies that markets in which agents could trade after contacting the intermediary are infeasible.
See Wallace [10].
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in this environment is an assignment of an individual allocation ai to each trader. We denote the

set of feasible (ex post) allocations by

A =

(
a : I! R2+ � f0; 1g

2 :
X
i2I

�
c0i +

c1i
R

�
� I and (1) holds

)
:

A state-contingent allocation is a mapping from states to (ex post) allocations; we denote such a

mapping by a. The set of feasible state-contingent allocations is then

F =
�
a : 
I ! A

	
:

We use the bold-faced variables c and d to denote the consumption and contact components, re-

spectively, of a state-contingent allocation a:

Preferences. A trader's consumption preferences depend on her type !i 2 f0; 1g : If !i = 0;

the trader is impatient and only cares about consumption in period 0. If !i = 1; the trader is

patient and cares about the sum of her consumption in the two periods. A trader's type is private

information. Let ! = (!1; : : : ; !I) denote the vector of types for all traders. As discussed below,

types will be revealed sequentially; we therefore refer to ! as the history of types. Let 
 denote

the set f0; 1g, so that we have !i 2 
 and ! 2 
I :
As described above, in order to consume in a particular period, a trader must contact the inter-

mediary in that period. Contacting the intermediary may be costly. Speci�cally, we assume each

trader loses �1 � 0 units of utility if she contacts the intermediary once in the two periods and

�2 � �1 units if she contacts the intermediary in both periods. Trader i's utility level is given by

v (ai;!i) =
1

1� 


�
c0i + !ic

1
i

�1�
 � �d0i+d1i ; (2)

where 
 > 1 is assumed to hold.5

Note that the cost of making a single trip to the intermediary, �1, does not depend on whether

this trip occurs in period 0 or in period 1: Of course, the intermediary is only useful to a trader

if she visits it at least once. The cost �1 thus represents a kind of �xed cost of intermediation

and, without any loss of generality, we can set �1 = 0.6 The important cost in this model is �2;
5 The assumption of a speci�c functional form for the utility function is not necessary here; Green and Lin [6]
assume only that the coef�cient of relative risk aversion in consumption is everywhere greater than unity. However,
since this speci�c form simpli�es the derivation of the ef�cient allocation substantially and is also used in our examples
below, we make the assumption from the outset (as in Green and Lin [7]).
6 Having �1 > 0 would not change any of the analysis in this paper. It would, however, affect the attractiveness
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which measures the cost to a trader of contacting the intermediary in both periods. As we will see

below, the ef�cient allocation has each trader consuming in only one period (period 0 for impatient

traders and period 1 for patient ones). If a trader contacts the intermediary twice, therefore, in one

of the visits she will not receive any consumption. The purpose of this visit would be solely to

communicate her type, which gives the intermediary useful information about the history !: The

cost �2; therefore, represents a form of information friction: how costly is it for the intermediary

to learn the type of a trader even when that trader has no immediate need to consume? When

�2 = �1 = 0; these preferences reduce to those used in Green and Lin [6] and elsewhere.

Uncertainty. Let P denote the probability measure on the set of all subsets of 
I . We assume that
P treats all traders equally in the sense that each trader has the same ex ante probability of being
patient. Speci�cally, we require that there exist a non-negative function p with

IX
�=0

p (�) = 1

such that

P (!) = p (� (!))

C (I; � (!))
for all !; (3)

where C is the standard combinatorial function

C (I; �) =
I!

�! (I � �)!

and � (!) is the number of patient traders in the state !:

This approach is the same as that taken in Wallace [10] and can be thought of in the following

way: nature �rst chooses � according to the density function p, and then � traders are chosen at

random (with each trader equally likely to be chosen) and assigned !i = 1: The remaining traders

are assigned !i = 0: The assumption of independent types used by Green and Lin [6] is a special

case where the density p is given by the binomial distribution

p (�) = C (I; �) (1� �)� �I��;

with � � 0 being the probability with which each individual trader is impatient.

of intermediation relative to an outside option (such as autarky). To simplify the analysis, we abstract from such outside
options here and, hence, there is no loss in normalizing �1 to zero.

7



Isolation and Sequential Service. Traders are isolated from each other and from the intermediary.

They do not observe each others' actions. The only way information can be communicated in this

environment is by traders contacting the intermediary. Each trader has an opportunity to contact

the intermediary in each period. This opportunity arrives sequentially in a �xed order given by the

index i, beginning with trader 1 and ending with trader I .7

This physical structure of the environment places two important restrictions on the allocation

a. First, whether or not trader i contacts the intermediary in period 0 can depend on her own type

!i; but cannot depend on the type of any other trader since there is no way she could observe this

information before her opportunity to contact the intermediary arrives. We can write this isolation

constraint as

d0i (!) = E
�
d0i (!) j !i

�
: (4)

In other words, trader i's action can only depend on information that she has at the time the action

is taken, and the only information she can possibly have before contacting the intermediary is her

own type.

The second restriction is the sequential service constraint, which follows Wallace [10] and oth-

ers. This constraint states that the period-0 consumption of trader i cannot depend on information

the intermediary could not possibly have received from either trader i or the previous traders in the

order. What information the intermediary could have received from these traders depends, in turn,

on which of them have contacted the intermediary in the early period. In other words, the interme-

diary can only potentially receive information from trader j in period 0 if d0j = 1: Let �i (!) � I
denote, for a given allocation, the set of traders up to trader i who contact the intermediary in

period 0; that is,

�i (!) =
�
j 2 I : j � i and d0j (!) = 1

	
:

Then sequential service requires that the consumption of trader i depend only on information ob-

tained from traders in the set �i: This constraint can be written as

c0i (!) = E
h
c0i (!) j f!jgj2�i(!)

i
: (5)

7 We follow Green and Lin [7] and Andolfatto et al. [2] in assuming that traders contact the intermediary in
a �xed order, rather than in a random order as in Green and Lin [6]. The two approaches lead to similar results,
and adopting the �xed-order approach simpli�es the notation considerably.
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In other words, trader i must consume the same amount in any two states that the intermediary

cannot possibly distinguish between given the information it could have potentially received so far.

We denote the set of feasible state-contingent allocations that satisfy the isolation and sequential

service constraints by

F0 = fa 2 F : (4) and (5) holdg :

The simplicity of the expression in (5) belies the subtle complexities of sequential service in

our environment. In particular, calculating the expectation on the right-hand side requires taking

into account the circumstances under which each trader will and will not contact the intermediary

in period 0: In other words, the expectation operator is itself a function of the allocation a through

the contact component d: In what follows, we simplify the analysis by focusing on two special

cases. First we consider the case studied by Green and Lin [6], where �2 = 0 holds and it is

clearly ef�cient for all traders to contact the intermediary in period 0: In this case, the period-0

consumption of trader i can, in principle, depend on the entire partial history !i. In other words,

in this case ef�ciency requires d0i = 1 for all i and, given this fact, the sequential service constraint

becomes

c0i (!) = c
0
i (b!) for all !; b! such that !i = b!i; for all i: (6)

The second case we study is where �2 is large enough that, in the ef�cient allocation, each trader

contacts the intermediary only once. In this case, impatient traders will contact the intermediary in

period 0 and patient traders will contact the intermediary only in period 1. As a result, sequential

service implies that the period-0 consumption of trader i can only depend on the number of impa-

tient traders before her in the order; the intermediary has no information in period 0 about patient

traders who might be before i in the order. In other words, when the �rst impatient trader arrives,

the intermediary only knows that !i = 0 for at least one trader i: This trader's arrival does not

change the relative probabilities the intermediary assigns to any two states in which at least one

trader is impatient. The consumption of the �rst impatient trader in the order must, therefore, be

the same in all states.

More generally, let �i (!i) denote the number of patient traders in the partial history !i: Then

ef�ciency when �2 is large requires d0i = (1� !i) for all i and, given this fact, the sequential
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service constraint becomes

c0i (!) = c
0
j (b!) for all !; b! with !i = b!j and �i �!i� = �j

�b!j� (7)

for all combinations of i and j: Note that the set of consumption allocations c satisfying (7) is a

strict subset of those satisfying (6). In other words, sequential service is a stronger constraint when

only impatient traders contact the intermediary in period 0 because it leads the intermediary to act

with strictly less information.

Expected Utility. Once a trader learns her type, she seeks to maximize the expected value of the

utility function v conditional on this type. We can write the information set of trader i as

Ei =
�
?;
I ; f!j!i = 0g ; f!j!i = 1g

	
:

Given a state-contingent allocation a and a (true) state of nature !�; de�ne

Ui (a; !
�) = E [v (ai (!) ; !) j Ei (!�)] :

Notice that the value taken by Ui depends only on the element ai of the allocation a; payments

made to other traders do not directly affect trader i's utility. In addition, the function Ui is Ei-
measurable, implying that for a given allocation a it takes on at most two values, one for !i = 0

and another for !i = 1:

2.2 The ef�cient allocation when �2 = 0

We now derive the ef�cient, symmetric state-contingent allocation, that is, the allocation the inter-

mediary would assign if traders' types were observable.8 We begin with the case where all traders

contact the intermediary in period 0: While this solution has been partly characterized before for

the case of independent types (see, for example, Green and Lin [7]), ours is the �rst complete so-

lution of the ef�cient allocation in the Green-Lin model for an arbitrary number of traders, as well

as the �rst to allow for correlation in types.

8 Note that the ef�cient allocation here will typically be different from the full-information �rst-best allocation
under no aggregate uncertainty as studied by Diamond and Dybvig [4]. When there is no aggregate uncertainty, the
sequential service constraint is nonbinding and the �rst-best allocation is the same as in an environment without
sequential service. In the presence of aggregate uncertainty, on the other hand, the sequential service constraint
always binds in the ef�cient allocation.
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The ef�cient allocation is the solution to

max
a2F0

X
i2I

E [Ui (a; !)] : (8)

Let a� denote this solution. We have argued above that when �2 = 0; the ef�cient allocation has

d0i = 1 for all i and that the sequential service constraint reduces to (6). It is straightforward to

show that, under the preferences in (2), ef�ciency requires that impatient traders only consume at

date 0 and patient traders only consume at date 1: In other words, the ef�cient (state-contingent)

allocation a� must have

c0i (!) = 0 if !i = 1 and c1i (!) = 0 if !i = 0: (9)

In addition, it is easy to see that the resources remaining at date 1 will be divided evenly among

the patient traders in this allocation, that is,

c1i (!) =
R
�
I �

PI
i=1 c

0
i (!)

�
�I

: (10)

All that remains, then, is to determine the payment that would be given to each trader i at date 0 if

she is impatient, as a function of the partial history !i: In other words, we need to determine c0i (!)

for histories with !i = 0. These payments can be found by using the results above to reformulate

(8) as a dynamic programming problem.

Our formulation of the problem makes use of some important implications of condition (3),

which governs the correlation structure of types. First, the condition implies that any two histo-

ries ! and b! with � (!) = � (b!) are assigned the same probability by P .9 Second, consider the
probability of some continuation history !I�i = (!i+1; : : : ; !I) conditional on the partial history

!i = (!1; : : : :!i) : Condition (3) implies that this probability depends only on the number of pa-

tient traders in the partial history, denoted �i (!i), and not on their positions within the history.

Abusing notation slightly, let P (!i) denote the probability of the partial history !i; that is, the
probability of the set

�e! 2 
I : e!i = !i
	
: Then the following lemma establishes these two claims

and, thus, shows how �i is a useful summary statistic for !i. A proof of this lemma is given in

Appendix A.

9 This fact is easily seen in (3), where the expression on the right-hand side depends on � (!) but not directly on !:
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Lemma 1 Under (3), �i (!i) = �i
�b!i� implies both

P
�
!i
�
= P

�b!i�
and

P
�
!i; !I�i

�
= P

�b!i; !I�i� for all !I�i:

Now consider the problem faced by the intermediary when it encounters trader i: Let yi�1 denote

the amount of resources it has remaining after the �rst i� 1 encounters. If trader i is impatient, the
intermediary must decide how much of yi�1 should be given to her and how much should be saved

for future payments, including those to patient traders at date 1: The ef�cient payment to trader

i will depend on both the types of all traders encountered so far and the probability distribution

over types of the remaining traders. However, from Lemma 1 we know that the number of patient

traders encountered so far, �i�1; is suf�cient to determine this probability distribution. We can,

therefore, determine this payment as a function of yi�1 and �i�1 alone; let c0i denote the payment.10

The proposition below presents the ef�cient payments c0i : The proof in the appendix consists

of converting (8) into a dynamic programming problem and solving it backward. Presenting the

solution requires one additional piece of notation: let �i (�) denote the probability of !i = 0

conditional on � of the �rst i� 1 traders being patient.11 We then have the following result.

Proposition 1 The ef�cient allocation when all traders contact the intermediary in period 0 sets

c0i =
yi�1

 i (�i�1)
1

 + 1

for i = 1; : : : ; I;

where yi�1 = I �
P

j<i c
0
j and the functions  i are de�ned recursively by  I (x) =

�
xR

1�




�

and

 i (x) = �i+1 (x)
�
 i+1 (x)

1

 + 1

�

+ (1� �i+1 (x)) i+1 (x+ 1) (11)

for i = 1; : : : ; I � 1.

A proof of the proposition is given in Appendix A. Note that equation (11) depends only on

the conditional probabilities �i and the parameters R and 
. This equation can, therefore, be used

10 A comment on notation: The variable c0i here denotes the payment given to depositor i at date 0 if she is impatient
conditional on yi�1 and �i�1: Once we solve the full dynamic programming problem, we will be able to use this
variable to calculate the payment as a function only of the partial history, denoted above by c0i

�
!i
�
:

11 That the probability �i depends only on � follows from Lemma 1.
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recursively to determine  i (�i�1) for any values of i and �i�1: The functions  i then determine

the payment c0i to an impatient depositor following any partial history !i:

Example. Figure 1 depicts the ef�cient allocation for an example with 5 traders. Types are inde-

pendent, with each trader having probability 1=2 of being impatient; the other parameter values are

given by R = 1:1 and 
 = 6. The �gure shows the possible period 0 consumption levels of each

trader. The black dots correspond to partial histories in which trader 1 is impatient, while the red

diamonds correspond to histories in which trader 1 is patient.

The level of consumption trader 1 receives if she is impatient is given by the �rst black dot in

the �gure. For trader 2, the consumption she receives in period 0 if she is impatient depends on

the type of trader 1. If trader 1 was impatient, then the payment to trader 2 will be smaller (the

black dot), while if trader 1 was patient the payment to trader 2 will be larger (the red diamond).

For trader 3, there are four different possible consumption levels if she is impatient, depending on

the types of the �rst two traders. The �gure shows that trader 3's consumption is slightly higher

following the partial history !2 = (0; 1) than following !2 = (1; 0). In general, trader i faces

2i�1 possible consumption levels, each corresponding to a particular realization of the types of the

previous traders.
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Figure 1: Ef�cient allocation when �2 = 0

13



2.3 The ef�cient allocation when �2 is large

We now investigate how the ef�cient allocation changes when contacting the intermediary in both

periods is costly. The ef�cient allocation is still the solution to the maximization problem in (8).

However, as discussed above, a positive value of �2 may change the ef�cient pattern of traders

contacting the intermediary. We assume �2 is large enough that it is inef�cient for any trader to

contact the intermediary twice.12 It then follows immediately that each trader should contact the

intermediary in period 0 if and only if she is impatient. As a result, the sequential service constraint

reduces to (7).

As a �rst step in solving this problem, note that (7) implies that the ef�cient allocation can be

summarized in a particularly simple way. First, we know that the ef�cient allocation will again

satisfy (9) and (10), which state that only impatient traders consume in period 0 and that the

resources remaining in period 1 will be divided evenly among the patient traders. Therefore,

we only need to determine the ef�cient payment for each impatient trader to receive in period

0. Second, condition (7) implies that the �rst impatient trader must receive the same level of

consumption regardless of her position i in the order; let x1 denote this amount. Similarly, let xn
denote the amount of consumption received by the nth impatient trader, which again must be the

same regardless of her position in the order and, thus, the number of patient traders before her.13

Then the period-0 payment to an impatient trader is

c0i (!) = xi��i(!i) if !i = 0

and, thus, the sequence of numbers xn completely summarizes the allocation a:

To solve for this ef�cient schedule x; we formulate a dynamic programming problem similar to

12 It is straightforward to show that such a level of �2 exists. It would also be interesting to study positive but small
values of �2; in which case the ef�cient pattern of traders contacting the intermediary is potentially more complex.
We leave this issue for future research.
13 Notice that we assume the intermediary has no information about the number of patient traders who may have
preceded the nth impatient trader in the order. Adding some information along these lines would be an interesting
extension. Suppose, for example, that the intermediary observes the �time� within period 0 at which each impatient
trader arrives. If traders' decision opportunities were arranged deterministically in time (say, one trader per minute),
then the intermediary could perfectly infer how many patient traders have passed their contact opportunity at any point
in time; the analysis would then be isomorphic to the case of �2 = 0. If, however, decision opportunities occur
randomly in time, this inference would be imperfect and the type of informational friction we study here would
arise. The present approach simpli�es the analysis considerably and can be regarded as a useful benchmark for
understanding more general information structures.
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the one in Section 2.2. De�ne the following conditional probabilities:

qn = Prob [I � � (!) � n j I � � (!) � n� 1] :

After the intermediary has encountered n � 1 impatient traders in period 0; qn is the probability
that it will meet at least one more. These conditional probabilities are easily computed for any dis-

tribution of types in the population using (3). The proposition below derives the ef�cient payment

schedule xn as a function of these probabilities.

Proposition 2 The ef�cient payment schedule when only impatient traders contact the intermedi-
ary in period 0 sets

xn =
zn�1

(�n)
1

 + 1

for n = 1; : : : ; I;

where zn�1 = I �
P

j<n xj and the constants �n are de�ned recursively by �I = 0 and

�n = qn+1

�
�n+1

1

 + 1

�

+ (1� qn+1) (I � n)
 R1�


for n = 1; : : : ; I � 1.

The variable zn�1 measures the amount of resources remaining when the intermediary encounters

the nth impatient depositor. The proposition shows that the fraction of the remaining resources this

depositor will receive depends on the remaining conditional probabilities qn+1; qn+2; etc., as well

as on the parameters R and 
: A proof of the proposition is given in Appendix A.

Example. Figure 2 plots the ef�cient payment schedule x when there are 20 traders and the

parameter values are given by R = 1:1 and 
 = 6; and types are independent with the probability

of being impatient set to � = 0:5 for each trader. The lower curve in the �gure presents, for

each value of n, the consumption that the nth impatient trader will receive in period 0: While

this curve is strictly decreasing, it is initially close to being �at. In other words, the period 0

payment schedule resembles a demand deposit contract in which, initially, agents withdrawing

funds from the intermediary receive (approximately) the same amount. Once the total number of

early withdrawals exceeds a threshold, however, the intermediary starts to decrease the payment.

This latter part of the curve resembles a �partial suspension of convertibility� (see Wallace [11]).

The upper curve in the �gure represents the level of consumption that all patient traders will
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Figure 2: Ef�cient allocation under costly communication

receive in period 1 if there is a total of n � 1 impatient traders. The fact that this latter curve lies
everywhere above the former has the following interpretation. Consider the last trader in the order,

trader I: Let the number of impatient traders before her be given by n � 1: If she is impatient
she will receive the consumption allocated for the nth impatient trader, from the lower curve in

the �gure, while if she is patient she will receive the consumption allocated for patient traders

when there are a total of n � 1 impatient traders, which is the corresponding point on the upper
curve. Thus the �gure shows that the last trader always consumes more when she is patient than

when she is impatient, regardless of the types of the other traders. Notice that this feature does not

necessarily hold for other traders. Trader 1; for example, consumes more if she is patient when

the total number of patient traders turns out to be small enough (fewer than 14 in the example).

However, if suf�ciently many of the other traders are impatient, trader 1 will end up consuming

less if she is patient than if she is impatient.

Comparing Figures 1 and 2 shows that the ef�cient allocation can be expressed more simply

when �2 is large. In this case, the intermediary collects less information in period 0 because

receiving information from traders with no immediate need to consume is costly. As a result, the

payments made to impatient traders are conditional on less information, leading the allocation to

take a simpler form.
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3 Implementation

Propositions 1 and 2 derive the ef�cient way to allocate resources as a function of traders'

types. We now turn to the study of mechanisms designed to implement this ef�cient allocation

in the presence of private information. We study direct revelation mechanisms, where traders are

asked to report their own types. We ask whether the resulting game has an equilibrium where

traders �run� on the intermediary by mis-reporting their types, and we review the answers to this

question given by Green and Lin [6] and Peck and Shell [9] in the context of our model. In the

following two sections, 4 and 5, we present our own answers to this question based on the effects

of correlated types and costly communication, respectively.

3.1 Mechanisms and equilibrium

We study mechanisms in which each trader is asked to submit a message mi from some set

M . Let m = (m1; : : : ;mI) denote a pro�le of messages. Trader i's communication strategy

is an Ei-measurable function �i : 
I ! M . A pro�le of communication strategies is � (!) =

(�1 (!) ; : : : ; �I (!)) :We use ��i to denote the pro�le of strategies for all traders except i.

An allocation rule is a function � that assigns a feasible (ex post) allocation to any pro�le of

messagesm.14 Let � denote the set of such rules, i.e.,

� =
�
� :M I ! A

	
:

Given any allocation rule � and any pro�le of communication strategies �, we can generate a

state-contingent allocation by a = � � �; or, for each state !;

a (!) = � (� (!)) :

In other words, an allocation rule and a pro�le of communication strategies together create a map-

ping from states to feasible (ex post) allocations. We say that the allocation rule � respects the

isolation and sequential service constraints if the corresponding state-contingent allocation a sat-

is�es (4) and (5) for every pro�le of communication strategies �: Let �0 denote the set of feasible

allocation rules that respect isolation and sequential service.

In general, an allocation mechanism speci�es both a message space and an allocation rule

14 Green and Lin [6] allow � to depend on the true state ! as well as the message pro�le m: However, since the
planner observes nothing about ! directly, there is no loss of generality in having � depend only onm:
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(M;�) : Following the literature, we consider direct mechanisms in which each trader is asked

only to report her type, so thatM = 
 = f0; 1g : We can then refer to the allocation mechanism
as simply being the rule �:We require � 2 �0.
After a mechanism � is chosen, traders play the resulting direct revelation game. A Bayesian

Nash Equilibrium of this game is a communication-strategy pro�le �� such that, for all i and for

all �i, we have15

Ui
�
� �

�
���i; �i

�
; !
�
� Ui

�
� �

�
���i; �

�
i

�
; !
�
for all !.

We say that an allocation is implementable if it is the outcome of a Bayesian Nash equilibrium of

this game under some mechanism. In other words, a is implementable if there exists a mechanism

� and an equilibrium strategy pro�le �� of the direct revelation game generated by � such that

a (!) = � (�� (!)) for all !: (12)

An allocation is truthfully implementable, or (Bayesian) incentive compatible, if it can be imple-

mented in an equilibrium where all traders report truthfully, that is, where ��i = !i for all i. The

Revelation Principle tell us that an allocation is implementable if and only if it is incentive com-

patible.

Green and Lin [6] showed that when �2 = 0 and types are independent, the ef�cient allocation

is always incentive compatible. The same is true in our examples in the sections that follow. In

other words, in all of these cases, the ef�cient allocation can be implemented by following a simple

rule: treat all messages as truthful and assign allocations according to the general solution to (8)

derived above. In what follows, we focus exclusively on this allocation rule, which we denote ��:

Before moving on, we point out that some strategies in the direct revelation game generated by

�� are strictly dominated and, hence, cannot be part of any equilibrium. In particular, condition

(9) states that any trader reporting to be patient will be given zero consumption at date 0: Further-

more, it is straightforward to show that all traders reporting to be impatient will receive positive

consumption at date 0: Since impatient traders only care about consumption at date 0; lying when

a trader is impatient is a strictly dominated strategy. For the analysis of equilibrium, therefore, we

15 A comment on notation: The requirement �for all !� in this expression might seem strange, since a depositor
does not know !:Recall, however, that the functionUi takes on only two values, one for !i = 0 and another for !i = 1:
Our notation follows Green and Lin [6].
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only need to examine the action of a trader in the event that she is patient.

3.2 A unique implementation result (Green-Lin)

While incentive compatibility of the ef�cient allocation guarantees that it is an equilibrium of the

direct revelation game under ��, it may not be the only equilibrium. Our primary interest is in

the possibility that there also exist �run� equilibria in which some traders mis-report their types in

some states. The nature of the exercise we perform in this paper is the same as that in Diamond

and Dybvig [4] and others. Suppose the intermediary tries to implement the ef�cient allocation

using the rule ��: Is there a run equilibrium of the resulting game?

When there are no reporting costs (i.e., �2 = 0) and types are independent, our model reduces

to exactly that studied by Green and Lin [6]. They showed that, under the ef�cient allocation rule

��; the direct revelation game has a unique equilibrium. In that equilibrium, all traders truthfully

report their types; no one runs on the intermediary.

Proposition 3 (Green and Lin [6]) If �2 = 0 and types are independent, the direct revelation
game associated with �� has a unique Bayesian Nash equilibrium and the ef�cient allocation a�
obtains in that equilibrium.

This remarkable result demonstrates that the basic elements of the Diamond-Dybvig framework

� isolation, private information, and sequential service � do not necessarily open the door to a run

equilibrium. In a particular environment that contains all of these features, an intermediary can,

through the proper choice of contract, ensure that the ef�cient allocation obtains. The results of

Diamond and Dybvig [4], and the sizable literature that has followed, thus depend crucially on

some unmodelled restriction(s) that prevent an intermediary from following the ef�cient payment

rule characterized in Proposition 1. Recent work by Andolfatto et al. [2] has extended Green and

Lin's result to a broader class of preferences and has helped clarify the logic behind the arguments,

particularly regarding the importance of the assumption that traders' types are independent.

Green and Lin conclude their study by asking �what's missing� from the model that prevents it

from being able to generate self-ful�lling bank runs (see also Green and Lin [7]). In the remainder

of this paper, we provide three possible answers to this question. The �rst of these answers, which

follows Peck and Shell [9], is presented in the next subsection. In Sections 4 and 5 we present

answers based on correlation in types and costly communication, respectively.
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3.3 Run equilibria based on early decisions (Peck-Shell)

One way to modify the Green-Lin environment is to assume that traders must choose an action

prior to learning the order in which they will contact the intermediary. Places in this order are then

assigned at random, with each trader equally likely to occupy each place. This is the approach

implicitly taken in the original work of Diamond and Dybvig [4] and in much of the subsequent

literature. In this case, a trader's expected utility when choosing a strategy is an average of the

utilities associated with each of the I places in the ordering16

1

I

X
i2I

E [Ui (a; !)] : (13)

Note that this expression is equivalent to (8), the objective function of the intermediary.

We now show that a run equilibrium can exist in this modi�ed environment. Our examples are

very much in the spirit of Peck and Shell [9], who �rst showed that a run equilibrium can exist

when no restrictions other than sequential service are placed on the intermediary's allocation rule.

However, the preferences used in Peck and Shell [9] are not of the form in (2); rather, in their setting

the marginal utility of consumption is higher for impatient traders than for patient traders. This

approach simpli�es the computations in their model by ensuring that an incentive compatibility

constraint binds at the ef�cient allocation. Our example shows that differing marginal utilities

are not necessary for this result to obtain. Everything in our examples below is exactly as in the

Green-Lin model except the information that traders have when choosing an action. In particular,

Proposition 1 still characterizes the ef�cient allocation in this setting.

The following proposition summarizes our results for this �rst modi�cation of the Green-Lin

model.

Proposition 4 Suppose types are independent and �2 = 0: When traders must choose a strategy
before knowing their position in the order, (i) the ef�cient allocation a� is incentive compatible,
but (ii) for some parameter values the direct revelation game also has a run equilibrium.

The proof of the �rst part of the proposition follows from Green and Lin [6], who showed that the

16 A proper formulation of this case would introduce new notation to distinguish between a trader's index (or �name�)
and his eventual place in the ordering. (See Green and Lin [6] for such a formulation.) Doing so, however, complicates
the presentation considerably. Since this issue only arises in the present subsection, we take the notational shortcut
of having traders act before any �names� are assigned. This shortcut is purely a matter of notation; it does not
change the underlying analysis in any way.

20



ef�cient allocation is incentive compatible when traders know their position in the order. In other

words, once traders are assigned positions in the order, each of them will prefer to report truthfully

if all others are doing so. It follows immediately that a trader who does not yet know her position

in the order would make the same choice, since it will be a best response whatever position she is

assigned. The proof of the second part of the proposition is by example.

Example. There are 15 traders. Types are independent, with each trader having probability 0:1 of

being impatient; the other parameter values are given by R = 1:1 and 
 = 6. We �rst calculate the

ef�cient allocation a� using Proposition 1. We then ask the following question. Suppose a trader

believes that all others will run, that is, claim to be impatient regardless of their true types. Would

this trader prefer to run as well or, if patient, would she prefer to wait and consume in period 1?
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Figure 3: Expected utility if all other traders run

Figure 3 plots the utility associated with each of these actions for each possible position in the

order, conditional on the trader in question being patient. The solid black line represents the utility

from running, which is strictly decreasing in the trader's position in the order. The solid red line

represents the utility of reporting truthfully and waiting until period 1 to consume. The �gure

shows that if the trader knew she would be among the �rst 12 traders to contact the intermediary,

then, given the belief that all other traders will run, she would strictly prefer to run. However, if she

knew she would be among the last three traders in the order, she would prefer to report truthfully
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and consume in period 1 if patient.

The dashed lines in the �gure represent the expected value of each of the actions, given that a

trader is equally likely to end up in each of the two positions. The �gure demonstrates that, for

this example, the trader strictly prefers to run. Therefore, an equilibrium exists in which all traders

claim to be impatient and consume early; this outcome resembles a classic run on the intermediary.

The parameter values used in the above example are in no way special. It is easy to �nd other

combinations that also generate a run equilibrium. This fact is demonstrated in Figure 4, which

plots the gain in expected utility from following the run strategy (relative to reporting truthfully)

for a trader who believes that all other traders will run. The run equilibrium exists if and only if

this number is positive. The parameter values from the above example are represented by the solid

red line. As the �gure shows, the run equilibrium exists for these values whenever the number of

traders is at least six. If the probability of impatience is increased to 0:5, the run equilibrium no

longer exists when there are six traders. However, the dashed black line in the �gure shows that it

will exist if there are at least nine traders. These calculations demonstrate both that there is nothing

special about the parameter values used for the example above and that increasing the number of

traders makes it more likely that a run equilibrium will exist in this setting.
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Figure 4: Incentive to run as I varies

Going back to Figure 3, notice an interesting feature in this graph: the last three traders to

contact the intermediary in period 0would actually be better off waiting until period 1; even though
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all other traders are claiming to be impatient. One can show that this re�ects a general feature of

the ef�cient allocation: once positions in the order are realized, traders I and I � 1 are always
made strictly better off by reporting truthfully.17 Suppose, then, that a trader were somehow able

to re-evaluate her decision once she arrives at the intermediary and discovers her position in the

order. A patient trader who �nds she is the last to arrive would prefer to report truthfully and wait

until period 1 to consume.18 Other traders should recognize this fact and adjust their forecasts of

others' behavior accordingly.

It was precisely to capture these types of effects that Green and Lin [6] introduced the possibility

that a trader's action could also depend on her position in the order. We focus on this case for the

remainder of the paper. An immediate implication of the approach is that there cannot be an

equilibrium in which all traders claim to be impatient. Any run on the intermediary would have to

be partial, with only some traders participating. In the next two sections, we present modi�cations

to the Green-Lin environment that generate such partial-run equilibria.

4 Correlated Types

In this section, we study the case where the realization of types is correlated across traders. All

other features of the environment are exactly as in Green and Lin [6]; in particular, there are no

costs of contacting the intermediary (i.e., �2 = 0) and traders always know the order in which

this contact will occur. We show that a run equilibrium can exist in this setting; speci�cally, we

establish the following result.

Proposition 5 Suppose �2 = 0: When types are correlated, for some parameter values it is the
case that (i) the ef�cient allocation a� is incentive compatible and (ii) the direct revelation game
also has a run equilibrium.

The proof is by example. We begin by presenting the simplest example in which a run equilibrium

can arise. We describe the intuition behind this example in some detail; this discussion will also be

useful for understanding the case of costly communication presented in Section 5. We then show

that the result does not depend on the particular features of the simple example by constructing a

richer example where a run equilibrium exists and is driven by the same underlying intuition.
17 This result is stated as Lemma 2 in Appendix A and a proof is offered there.
18 Recall that in this section �2 is assumed to be zero, so that there is no cost to the trader of contacting the in-
termediary again in period 1:
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4.1 A basic example

To keep the presentation as simple as possible, we use the minimal number of traders needed

to generate a run equilibrium. As mentioned above (in subsection 3.3), truth-telling is a dominant

strategy for the last two traders in the order. Hence, a run equilibrium clearly cannot exist when I =

2. It is fairly easy to see that one cannot exist when I = 3; either, as long as the ef�cient allocation

is strictly incentive compatible; the �rst trader knows that the last two will report truthfully and,

therefore, incentive compatibility implies that she will prefer to do the same. Hence, the minimum

number of traders needed to construct a run equilibrium is four, and we use I = 4 in our example.

Parameter Values. The number of patient traders is very likely to take on one particular value in

this example; in this sense, there is little aggregate uncertainty. Speci�cally, we set

p (2) = 1� "; and (14)

p (�) =
"

4
for n = 0; 1; 3; 4;

where p (�) is, as de�ned in (3), the probability of the set of states in which exactly � traders are

patient. We choose " to be small (we use " = 0:4%). We set the other parameter values to R = 2

and 
 = 6:

The Ef�cient Allocation. The ef�cient allocation is calculated using Proposition 1 and is depicted

in Figure 5. While the allocation has the same general structure as in the case of independent types

(see Figure 1), the nature of the correlation in this example simpli�es the pattern of payments and

makes developing intuition fairly easy. Suppose for a moment that " were zero, so that there is no

aggregate uncertainty; two traders would be impatient and two patient with certainty. The ef�cient

allocation would then be as in the textbook version of the Diamond-Dybvig model: a common

payment c0 > 1 will be given to the impatient traders and a larger payment c1 to the patient traders,

regardless of their order of arrival at the intermediary.

When " is positive, the ef�cient allocation is more complex than the simple Diamond-Dybvig

allocation, but as long as " is small the allocations will, in broad terms, be similar. In particular,

Figure 5 shows that the intermediary will give relatively large payments (greater than 1) to the �rst

two impatient traders it encounters. If there are exactly two impatient traders, both will receive

consumption very close to the Diamond-Dybvig level of c0 (around 1:3 in the �gure). If the in-
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Figure 5: Ef�cient allocation with correlated types

termediary encounters a third impatient trader, however, it realizes that one of the low-probability

states has occurred and will adjust payments accordingly. In such cases, the payment to the third

impatient trader � and the fourth, if there is one � will be much lower, as will the payment to any

patient trader. This decrease in payment size re�ects the fact that the �rst two payments made

(both close to c0) were based on a belief about the state ! that turned out to be very �optimistic�

relative to the realization. Wallace [11] refers to this pattern where impatient traders who contact

the intermediary late in the order receive less than those who arrived earlier as a partial suspension

of convertibility.19

Incentive Compatibility. Now suppose the intermediary attempts to implement this ef�cient al-

location using a direct revelation mechanism. We �rst check whether this can be done; in other

words, is the ef�cient allocation incentive compatible? We know that a trader always strictly

prefers to report truthfully when impatient. Therefore, we only need to compare the expected util-

ity of reporting truthfully with that of following the run strategy, which sets �i = 0 regardless of

the trader's true type. The comparison is presented in Figure 6. The dashed black line in the �gure

depicts the gain in expected utility from choosing the run strategy (relative to reporting truthfully)

for each trader under the assumption that all others are reporting truthfully. The fact that the line is

negative everywhere indicates that all traders derive higher utility from reporting truthfully; hence,

there exists a truth-telling equilibrium that implements the ef�cient allocation in this example.

19 If the �rst three traders are patient, the intermediary will again realize that a low-probability state has occurred.
In this case, if trader 4 is impatient she will receive a higher-than-usual level of consumption (about 1:5 in the �gure).
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Figure 6: Individual incentive to run with correlated types

A Run Equilibrium. Next, we construct another equilibrium of the direct revelation game. In this

equilibrium, the �rst two traders follow the run strategy while the last two traders report truthfully.

The equilibrium communication strategies are, therefore, given by

�i (!) =

�
0
!i

for i = 1; 2
i = 3; 4

�
: (15)

Lemma 2 (in Appendix A) tells us that the strategies in (15) are optimal for traders 3 and 4. To

verify that this strategy pro�le is indeed an equilibrium, therefore, we only need to show that,

taking the strategies of others as given, both traders 1 and 2 will prefer to mis-report when they are

patient.

Consider �rst the decision of trader 2: If she is patient, she knows it is very likely that exactly

two of the other traders are impatient. The important question, from her point of view, is whether

or not trader 1 is one of them. It is possible that trader 1 was indeed impatient, so that his report of

m1 = 0 was actually truthful. In this case, only one of the remaining traders (3 and 4) is likely to

be impatient. If trader 2 reports truthfully, there are likely to be only two payments made at date 0

and, therefore, her payment at date 1will be relatively large (close to the c1 of the Diamond-Dybvig

model).20 Reporting truthfully would then be the best choice.

If, on the other hand, trader 1 is patient (and, hence, his report was untruthful), then it is very
20 Of course, it is possible that more than two traders will be impatient, but this risk is of order " and thus is relatively
unimportant in this example.
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likely that both traders 3 and 4will be impatient. In this case, if trader 2 reports truthfully, there will

likely be three payments made at date 0 and the amount left for her at date 1 will be substantially

smaller. If she lies, on the other hand, her report of impatient will be only the second one received

by the intermediary and she will receive a larger payment at date 0 (similar to the c0 of Diamond-

Dybvig). In this case, lying would be the best response.

Given her beliefs about the likelihood of each of these two cases (which are based on the prob-

ability distribution P updated to include her own private information), trader 2 must decide how
to report. The solid red line in Figure 6 presents the gain in expected utility from choosing the run

strategy under the assumption that other traders are following the strategy pro�le in (15). The fact

that this line is positive at trader 2 shows that, in this example, behaving in accordance with (15) �

mis-reporting her type when patient � is the optimal choice for trader 2.

The decision problem faced by trader 1 is similar. From (15) he knows that trader 2 will report

impatient, but he does not know whether or not this report will be truthful. If trader 2 is actually

patient, then it is likely that both traders 3 and 4 are impatient. In this case, if he reports truthfully

there would likely be three payments made at date 0 and, therefore, a relatively small amount

left for him at date 1. If trader 2 is actually impatient, however, trader 1 would be better off by

reporting truthfully, as we would likely receive a large payment at date 1 (similar to the c1 of

Diamond-Dybvig). The fact that the solid red line in Figure 6 is positive at trader 1 shows that he

will also strictly prefer to follow (15) if all other traders are doing so.

Finally, note that the solid red line is negative for traders 3 and 4, which con�rms that they

prefer to report truthfully even when traders 1 and 2 follow the run strategy. The �gure thus shows

that the strategy pro�le in (15) is indeed an equilibrium for the chosen parameter values. This

demonstrates that a run equilibrium can exist in the Green-Lin model when types are correlated

across traders.21

4.2 Intuition

It is interesting to examine the behavior of trader 2 in this example. She chooses to run even

though she believes that both of the traders after her will, following the strategy pro�le in (15),

21 Of course, if the intermediary anticipates that traders will follow the strategy pro�le in (15), it might not want to use
the allocation rule ��: Peck and Shell [9] show, in a related model, how the existence of a run equilibrium in the
direct revelation game (as shown here) implies the existence of a run equilibrium in an �overall" game where the
intermediary anticipates traders' actions. It would be straightforward to apply the same approach here. See also
Ennis and Keister [5].
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report truthfully. This behavior is somewhat surprising in light of the results in Green and Lin [6,

Lemma 5], which showed that it cannot arise in the model with independent types. In particular,

Green and Lin demonstrated that, in their model, when a trader believes everyone after her will

report truthfully, she strictly prefers to report truthfully regardless of the actions of the traders who

contacted the intermediary before her. The behavior of trader 2 in this example is, therefore, critical

to understanding why the Green-Lin unique implementation result does not extend to the case of

correlated types. The key to understanding this behavior, in turn, is to compare the equilibrium

beliefs of trader 2 with the beliefs used to calculate the payoffs for the direct revelation game.

The direct revelation game is designed to implement the ef�cient allocation a� if all traders

report truthfully. When the �rst two traders both report to be impatient, the payment offered to

trader 2 is based on the belief, derived from the probabilities in (14), that traders 3 and 4 are very

likely to both be patient. As a result of this belief, trader 2 is offered a relatively large payment

� close to the c0 of the Diamond-Dybvig model. In a sense, when both traders 1 and 2 report to

be impatient, the intermediary is �optimistic� that the early withdrawals will end there, and the

payment offered to trader 2 re�ects this optimism.

In the run equilibrium, trader 2's belief about the types of traders 3 and 4 is signi�cantly different

from that described above. Suppose trader 2 is patient. She recognizes that trader 1 will report to

be impatient regardless of his true type. She thus recognizes that, following a withdrawal by trader

1, there is a signi�cant chance that both traders 3 and 4will be impatient. Relative to the belief used

to design the allocation mechanism, trader 2 is more �pessimistic� about the number of additional

early withdrawals.

This pessimistic belief makes waiting until period 1 less attractive for trader 2. She knows that,

if she reports truthfully and waits to consume, there will almost certainly be at least one more

early withdrawal. Moreover, she believes there is a signi�cant chance that traders 3 and 4 will

both be impatient, in which case the intermediary will face a third early withdrawal. Because the

intermediary considered three early withdrawals to be unlikely ex ante, this event is associated

with a substantial decrease in the payments to all traders who have yet to consume. Trader 2's

pessimistic belief about the number of early withdrawals thus makes her less willing to report

truthfully and, hence, makes running � and claiming the period 0 payment based on optimistic

belief � more attractive. Trader 1 faces similar incentives when he believes that trader 2 will run.

Notice that when types are independent, this disparity in beliefs cannot arise. In that case, trader
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2's knowledge of her own type and the equilibrium strategy of Trader 1 do not provide her with

any additional information about the likely types of traders 3 and 4. Her belief about these types

remains identical to the belief used to design the ef�cient payment schedule � each of these traders

has an independent probability � of being impatient. The payments offered by the intermediary

are, therefore, �appropriate� given trader 2's belief and, as shown by Green and Lin [6], lead trader

2 to strictly prefer truthful reporting.22

4.3 Another example

The example presented above is, in some ways, rather special: there are only four traders and

there is almost no aggregate uncertainty about the number of impatient traders. While these fea-

tures were useful for generating intuition about why a run equilibrium can exist when types are

correlated, they are by no means necessary for the result to obtain. We demonstrate this fact by

presenting an example in which the same results obtain with 10 traders and a signi�cant amount of

aggregate uncertainty. Many other examples with similar features are possible, of course.

Parameter Values. For this example, we use I = 10: The parameter values R = 2 and 
 = 6

are unchanged from the simple example above. We set the density function p for the number of

patient traders as follows

p (�) =
1� "

5
for � = 3; : : : 7; and (16)

p (�) =
"

6
for � = 0; 1; 2; 8; 9; 10:

We again choose " to be very small (we set " = 0:006% for this example). In other words, this

example is designed so that the number of patient traders is very likely to fall somewhere between

3 and 7 out of the 10 total traders. We have made each of these possibilities equally likely just for

simplicity. The important feature of the speci�cation here is that it is very unlikely that almost all

of the traders will be impatient; in particular, such events are substantially less likely than in the

case of independent types.

Incentive Compatibility. The ef�cient allocation is again calculated as in Proposition 1. With

the larger number of traders in this example, the structure of the ef�cient allocation is much more

complex than before; however, using the proposition its calculation remains straightforward. We

22 See also the discussion in Andolfatto et al. [2] regarding the importance of the independence assumption in
deriving Green and Lin's main result.
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�rst ask if this allocation is incentive compatible. To do so, we again compare the gain in expected

utility from choosing the run strategy for each trader (relative to reporting truthfully) under the

assumption that all other traders report truthfully. This gain is plotted as the dashed black line in

Figure 7. The fact that the line is negative for all traders indicates that the ef�cient allocation is

indeed incentive compatible in this example.
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Figure 7: Incentive to run in the richer example

A Run Equilibrium. Next, we construct a partial run equilibrium for this example. The basic

form of this equilibrium is the same as in the simple example above: traders who are early in

the order choose to run, while those who are later in the order report truthfully. Speci�cally, we

propose the following strategy pro�le as a potential equilibrium

�i (!) =

�
0
!i

for i = 1; : : : ; 7
i = 8; 9; 10

�
: (17)

The solid red line in Figure 7 plots the expected gain from following the run strategy (relative to

reporting truthfully) when all other traders are expected to follow the strategies in (17). The �gure

shows that this gain is positive for the �rst seven traders and negative for the last three. In other

words, if each trader believes that all others will follow the strategies in (17), she strictly prefers to

do so as well. As a result, the strategy pro�le (17) is an equilibrium of the direct revelation game.
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Intuition. As before, the key to understanding why a run equilibrium exists is to look at the

behavior of the last trader to follow the run strategy. In the present example, trader 7 plays this

critical role. Why does she run even though she anticipates that all traders after her will report

truthfully?

The intuition behind trader 7's behavior in this example is the same as that described above for

trader 2 in the basic example. When the �rst 7 traders report to be impatient, the payment given to

the 7th trader is based on the belief that the remaining three traders are very likely to all be patient.

This belief is generated by the probabilities in (16), which state that the number of impatient traders

is very unlikely to be greater than 7: As a result, the payment offered to trader 7 in this situation is

relatively large, re�ecting the �optimistic� belief that additional early withdrawals are unlikely.

In the run equilibrium, however, trader 7 has a very different belief about the types of the re-

maining traders. She recognizes that the �rst six traders have reported to be impatient regardless of

their true types and, therefore, she believes it is quite likely that two or even all three of the remain-

ing traders will be impatient. In such a case, the intermediary would face an unexpectedly high

level of early withdrawals and traders who have reported to be patient would receive relatively low

levels of consumption. Under this �pessimistic� belief, therefore, reporting truthfully and waiting

until period 1 to consume is substantially less attractive for trader 7: Running � and claiming the

period 0 payments based on a more optimistic belief � is more attractive. In the example, her belief

leads her to follow the run strategy.

This reasoning demonstrates that the lack of aggregate uncertainty in our simple example with

4 traders is not important for the result; rather, the important feature is that a very high number

of impatient traders is very unlikely to be realized. In such a situation, the ef�cient allocation has

the property that an unexpectedly high level of early withdrawal demand will lead to a �crisis� in

which any remaining impatient traders, as well as all patient traders, receive relatively low levels

of consumption. The possibility of such an event gives a trader who is pessimistic about the types

of the traders after her in the order an incentive to withdraw early. Together, our examples above

show not only that introducing correlation in traders' types can generate a wedge between the

equilibrium beliefs of the traders and the beliefs used to design the ef�cient allocation, but also

that this wedge can generate a run equilibrium in the direct revelation game.

31



5 Costly Communication

We now return to the case where types are independent across traders and study the effects of

costly communication between traders and the intermediary. In particular, we now assume that �2
is large, so that traders face a signi�cant cost of contacting the intermediary in both periods and

the ef�cient allocation is as given in Proposition 2. While the details of this case are very different

from the correlated types case studied in the previous section, the equilibrium effects are strikingly

similar. In particular, we show that by slowing down the �ow of information to the intermediary,

costly communication can also drive a wedge between the equilibrium beliefs of traders and those

used to derive the ef�cient allocation. This wedge can then generate an equilibrium in which some

traders run on the intermediary in much the same way it did in the examples above. We should

emphasize that, in this section, all aspects of the environment other than �2 are exactly as in Green

and Lin [6]. Our results for this case are summarized in the following proposition.

Proposition 6 When �2 > 0; for some parameter values it is the case that (i) the ef�cient alloca-
tion a� is incentive compatible and (ii) the direct revelation game also has a run equilibrium. This
is true even when types are independent across traders.

The proof is again by example. We begin the analysis by discussing strategy pro�les and the

conditions under which a run equilibrium exists. As in the previous section, a run equilibrium will

necessarily be partial, with only some traders participating. We then present an example in which

such an equilibrium arises. The intuition behind this result is remarkably similar to that for the

result in Section 4 above, despite the apparent differences in the form of the ef�cient allocation

and the nature of uncertainty in the two sections. In particular, the costly-communication friction

here allows the equilibrium beliefs of traders about the number of additional early withdrawals to

deviate from the beliefs used to design the allocation rule. As in the previous section, this disparity

in beliefs plays a crucial role in generating an incentive for some traders to run on the intermediary.

We discuss this intuition in detail at the end of this section.

5.1 Partial-run equilibria

The ef�cient allocation for the case where �2 is large was presented in Proposition 2. It is straight-

forward to show that reporting truthfully is a strictly dominant strategy for trader I under the

ef�cient allocation rule, for the same reasons as in Green and Lin [6] and in Section 4 above. If a
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run equilibrium exists, therefore, it must once again be partial, with only some traders participating

in the run. Suppose we look for an equilibrium of the form used in the previous section, where

traders who are early in the order choose to run while traders late in the order report truthfully.

More precisely, suppose all traders up to some �critical� trader i� run, while all traders after i�

report truthfully. De�ne the strategy pro�le b� (i�) by
b�i (i�) = � 0

!i

�
for

�
i � i�

i > i�

�
for some 0 < i� < I: (18)

To see if such a pro�le is consistent with equilibrium for some value of i�;we de�ne an auxiliary

function z: This function measures the expected utility for a patient trader of reporting truthfully

if she believes that all traders before her will run, but all traders after her will report truthfully.

Speci�cally, de�ne

z (i) = Ui (�
� � b� (i) ; 1) : (19)

In other words, z (i) captures the expected utility of the critical trader i� in (18) if she is patient

and she deviates from that strategy pro�le by reporting truthfully. It is straightforward to show that

z is a strictly decreasing function; higher values of i correspond to larger (partial) runs and, hence,

they also correspond to lower consumption levels in period 1:

To check if the strategy pro�le (18) is an equilibrium, we must check if each trader is choosing

a best response to the actions of others. Start with the critical trader i�: she believes that all traders

before her will report impatient, so that if she does the same she will receive the payment xi� in

period 0: As described above, z (i�) measures her expected utility from reporting truthfully if she

is patient. she will, therefore, choose to follow (18) and run if

v (xi�) > z (i�) : (20)

This condition is also suf�cient to guarantee that all traders before i� will strictly prefer to run;

this result follow from the fact that xn is a decreasing sequence and that all traders reporting to be

patient receive the same consumption in period 1:

Next, consider trader i�+1: The pro�le in (18) calls for her to report truthfully, which requires

v (xi�+1) < z (i� + 1) : (21)

The left-hand side of this expression is the utility this trader would get if she runs. In this case, her
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report of impatient would follow those of the �rst i� traders in the order. If, instead, she reports

truthfully, she will receive the expected value of waiting when i� traders participate in the run; by

de�nition this value is given by z (i� + 1) : Condition (21) thus says that trader i� + 1 prefers to

report truthfully if she is patient. Again using the monotonicity of xn and the fact that all traders

reporting to be patient receive the same consumption, the condition is also suf�cient to guarantee

that all traders after i� + 1 will also prefer to report truthfully. Therefore, the strategy pro�le in

(18) is an equilibrium of the direct revelation game under costly reporting if both (20) and (21)

hold for some i�. These concise conditions simplify the process of �nding run equilibria, as we

demonstrate in the example below.

5.2 An example

Our example is based on the same parameter values that were used to illustrate the ef�cient allo-

cation in Section 2.3: I = 20, R = 1:1; 
 = 6; and independent types with � = 0:5: Recall that

the ef�cient allocation for this example was presented graphically in Figure 2. Figure 8 plots three

curves, two of which are simply the expected utility associated with the consumption levels from

the earlier �gure. The third curve is the function z de�ned in (19).

2 4 6 8 10 12 14 16 18 20
­0.4

­0.3

­0.2

­0.1

n

Ex
pe

ct
ed

 U
til

ity

v(xn;1)

z(n)

E[v(c 1(n­1);1)]

Figure 8: A partial-run equilibrium under costly communication

To understand these curves, �rst consider whether or not (18) could be an equilibrium strategy

pro�le with i� = 1: For this to be the case, condition (20) would require that the utility from
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consuming x1 be less than the expected value of waiting z (1). The �gures shows that this is not

the case and, hence, that the proposed strategy pro�le is not an equilibrium. If trader 1 believes

that all traders after her will report truthfully, she strictly prefers to report truthfully as well. The

�gures shows that the same is true of traders 2 through 6; so that none of these could be the critical

trader i� in an equilibrium strategy pro�le.

Next, consider trader 7; the �rst trader for whom the z curve lies below the utility value of

reporting to be impatient and consuming xn: Given that the �rst 6 traders are running, trader 7

would also choose to run. However, the strategy pro�le in (18) with i� = 7 is not an equilibrium

because, as the �gure shows, trader 8 would also choose to run given that the �rst 7 are running.

The unique equilibrium of the form given in (18), therefore, occurs where the z curve crosses

v (xn; 1) from below, with i� = 16: Given that the �rst 15 traders are running, trader 16 will

choose to do so as well. Given that the �rst 16 traders are running, however, trader 17 will choose

to report truthfully. Hence, the strategy pro�le (18) with i� = 16 comprises an equilibrium of the

direct revelation game. It is worth emphasizing that there is nothing special about the parameter

values used in this example; it is easy to constrict similar examples using a wide range of parameter

values.
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Figure 9: Individual incentive to run under costly communication

Figure 9 con�rms that this strategy pro�le is an equilibrium by plotting the gain in expected

utility from following the run strategy (relative to reporting truthfully) for each trader, under the
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assumption that all other traders follow the strategy pro�le (18) with i� = 16: The solid red line

shows that, given these beliefs, the �rst 16 traders will indeed prefer to follow the run strategy

while the last four will prefer to report truthfully. The �gure also veri�es that the ef�cient allo-

cation is incentive compatible in this example. The dashed black line plots the gain in expected

utility from following the run strategy for each trader under the assumption that all other traders

report truthfully. The fact that this line is negative everywhere demonstrates that truthful report-

ing is also an equilibrium of the direct revelation game and, hence, the ef�cient allocation can be

implemented.

5.3 Intuition

To gain intuition for why the partial-run strategy pro�le in (18) is an equilibrium, it is useful to

examine the behavior of the �critical� trader in that pro�le, i�. This trader follows the run strategy

even though she believes everyone after her will report truthfully. As discussed above, this type

of behavior is inconsistent with equilibrium in the model of Green and Lin [6]. How does the

introduction of costly communication allow this behavior to arise?

The key to understanding the behavior of the critical trader is again to compare this trader's

equilibrium belief about the number of early withdrawals with the beliefs used to design the ef�-

cient allocation rule. In the example with 20 traders given above, the ef�cient payment to the 16th

impatient trader depends on the probability that the intermediary will encounter a 17th impatient

trader (and an 18th, and so on). Given that types are independent and the probability of being

impatient is set to one-half, all of these conditional probabilities are close to zero. In other words,

the consumption of the 16th impatient trader in the ef�cient allocation is based on the belief that

she is very likely to be the last impatient trader and that the four traders who have not contacted the

intermediary are very likely all patient. In this sense, when a 16th impatient trader arrives in period

0; the intermediary is �optimistic� that this will be the last early withdrawal, and the payment given

to the trader is based on this optimism.

In the partial run equilibrium, however, trader 16 recognizes that the number of early with-

drawals will likely be much larger than the number of impatient traders. Importantly, she knows

that when she contacts the intermediary in period 0, four traders have not yet had the opportunity

to contact the intermediary. She expects that, on average, two of these traders will be impatient. In

other words, trader 16 realizes that the early withdrawals are unlikely to end with her. Any addi-
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tional withdrawals will further deplete the intermediary's resources, lowering the consumption she

would receive if she were to wait and contact the intermediary in period 1: Her more �pessimistic�

belief about the number of additional early withdrawals thus makes running � and accepting the

payment based on the more optimistic belief � an attractive strategy.23

Notice how the friction of costly communication makes this divergence in beliefs possible.

When trader 16 arrives, the intermediary does not know that she is 16th in the order. In fact, the

ef�cient payments are based, implicitly, on the belief that if a 16th impatient trader arrives, she is

likely to be the last trader in the order. This �misunderstanding� arises because the intermediary

does not observe the reports of patient depositors in period 0: In the Green-Lin model, the inter-

mediary would always know that this trader is 16th in the order because it can simply count up

all of the reports (both `patient' and `impatient') that it has received so far. Both the intermedi-

ary and trader 16 thus know that there are four traders who still have an opportunity to contact

the intermediary in period 0: Because types are independent, if these traders report truthfully then

the intermediary and trader 16 must have the same belief about the number of additional early

withdrawals, regardless of what strategies the earlier traders have followed.

Because of this agreement in beliefs, the payment offered to trader 16 in the Green-Lin model

will always appear �appropriate� given her beliefs and, as a result, she will choose to report truth-

fully. This reasoning is central to the unique implementation result in Green and Lin [6]. Under

costly communication, in contrast, the divergence in beliefs discussed above arises naturally when-

ever one or more traders follows a non-truthful strategy. The example presented here shows how

this divergence in beliefs can be strong enough to generate a run equilibrium in the direct revelation

game.

Notice that the intuition given here is remarkably similar to that discussed in Section 4.2 above.

In both cases, there is a critical trader who chooses to run even though she expects everyone after

her to report truthfully. The payment this trader receives was designed, in both cases, under the

belief that her withdrawal would likely be the last one in period 0 and, as a result, this payment is

relatively generous. In the partial-run equilibrium, however, the trader is more pessimistic about

23 It is easy to see that, given the strategy pro�le in (18), the incentive for all traders before trader 16 to join in the run
are even stronger. The payment trader 1 receives if he withdraws early, for example, is based on the belief that
the number of early withdrawals will be, on average, around 10: In equilibrium, however, he anticipates that there
will be at least 16 and on average 18 early withdrawals. This large gap in beliefs makes running very attractive
from trader 1's point of view. The incentive for traders 2 through 15 to participate in the run lie somewhere in
between those of the �rst and the 16th trader.
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the number of additional early withdrawals. In Section 4 this pessimism was generated by the

correlation structure in types, while in the present section it resulted from the fact that the interme-

diary does not observe whether or not some traders early in the order have reported `patient'. In

both cases, however, the result is the same: the disparity in beliefs gives the trader an incentive to

mis-report her type and take the early payment based on the more optimistic belief.

6 Conclusion

Green and Lin [6] derived a surprising result regarding the ability of a �nancial intermediary

to generate an ef�cient allocation of resources without introducing the type of �nancial fragility

that appeared in the earlier literature. This result led them to ask "what's missing" from the model

that prevents it from being able to explain observed instances of bank runs and related �nancial

crises (see also Green and Lin [7]).24 We have examined this question systematically and shown

how stronger information frictions are needed in order for a run to be possible. We presented two

environments, both small deviations from that in Green and Lin [6], in which runs can occur. In one

environment agents' types are correlated, while in the other communicating with the intermediary

is costly.

Our results show that, in each of these two cases, the direct revelation game associated with

the ef�cient allocation rule has an equilibrium in which some traders run on the intermediary. A

natural next step in the analysis would be to make the intermediary a player in the game and ask

how it would react to the possibility that traders might run. The intermediary might, for example,

prefer to use another allocation rule under which there is a unique equilibrium. Fortunately this

issue has been addressed in related models in the existing literature and the results of such an

exercise are now well known: if the probability the intermediary assigns to a run is small enough,

it will choose to follow a rule close to the ef�cient allocation rule and, as a result, a run can occur

with positive probability in an equilibrium of this extended game. (See, for example, Cooper and

Ross [3], Peck and Shell [9], and Ennis and Keister [5].)

24 Andolfatto and Nosal [1] introduce moral hazard on the part of the intermediary into the Green-Lin framework, but
conclude it is not a potential source of run equilibria.
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Appendix A. Proofs

Lemma 1: Under (3), �i (!i) = �i
�b!i� implies both

P
�
!i
�
= P

�b!i�
and

P
�
!i; !I�i

�
= P

�b!i; !I�i� for all !I�i:

Proof. We begin with the second part. Let �I�i denote the number of patient traders in the contin-

uation history !I�1: Then, using (3), we can write

P
�
!i; !I�i

�
=

p
�
�i (!

i) + �I�i
�
!I�i

��
C (I; �i (!i) + �I�i (!I�i))

=
p
�
�i
�b!i�+ �I�i

�
!I�i

��
C
�
I; �i

�b!i�+ �I�i (!I�i)
�

= P
�b!i; !I�i� ;

where the second equality follows from the hypothesis of the lemma and the �nal equality from

(3). This result allows us to establish the �rst as follows:

P
�
!i
�
=

X
e!I�12
I�i

P
�
!i; e!I�i�

=
X

e!I�12
I�i
P
�b!i; e!I�i�

= P
�b!i� :

�

Proposition 1: The ef�cient allocation when all traders contact the intermediary in period 0 sets

c0i =
yi�1

 i (�i�1)
1

 + 1

for i = 1; : : : ; I;

where yi�1 = I �
P

j<i c
0
j and the functions  i are de�ned recursively by  I (x) =

�
xR

1�




�

and

 i (x) = �i+1 (x)
�
 i+1 (x)

1

 + 1

�

+ (1� �i+1 (x)) i+1 (x+ 1)
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for i = 1; : : : ; I � 1.

Proof. Let V 0
i denote the sum of the expected utilities of all traders who have not yet consumed

when the intermediary encounters trader i; conditional on trader i being impatient and the interme-

diary dividing the available resources yi�1 ef�ciently among these traders. Speci�cally, this sum

includes the utility levels of trader i, all traders after i in the sequence, and all traders before i

who are patient and thus will consume at date 1: Let V 1
i denote this same sum of expected utilities

conditional instead on trader i being patient. These two value functions must satisfy the following

recursive equations:

V 0
i (yi�1; �i�1) = maxfc0ig

8><>:
(c0i )

1�


1�
 + �i+1 (�i�1)V
0
i+1 (yi�1 � c0i ; �i�1)+

(1� �i+1 (�i�1))V
1
i+1 (yi�1 � c0i ; �i�1)

9>=>; (22)

and

V 1
i (yi�1; �i�1) =

8<: �i+1 (�i�1 + 1)V
0
i+1 (yi�1; �i�1 + 1)+

(1� �i+1 (�i�1 + 1))V
1
i+1 (yi�1; �i�1 + 1)

9=; (23)

for i = 1; : : : I: The function �i (�) in these equations represents the probability that !i = 0

conditional on � of the �rst i� 1 traders being patient.
After the intermediary has encountered all I traders at date 0 and given consumption to the

impatient ones, it will divide the remaining resources yI ; augmented by the returnR; evenly among

the �I patient traders at date 1:We therefore have the following terminal condition

V 0
I+1 (yI ; �I) = V 1

I+1 (yI ; �I) =
�I
1� 


�
RyI
�I

�1�

:

The combination of this equation, the initial conditions y0 = I and �0 = 0; and equations (22) and

(23) constitutes the dynamic programming problem whose solution gives the ef�cient payment

schedule.

As is common in �nite-horizon dynamic programming problems, we start by solving the last

decision problem the intermediary faces. Suppose trader I is impatient. Then, given �I�1 and yI�1;

the maximization problem in (22) reduces to

max
fc0Ig

(c0I)
1�


1� 

+

�I�1
1� 


�
R (yI�1 � c0I)

�I�1

�1�

:
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The solution to this problem sets

c0I (yI�1; �I�1) =
yI�1

 I (�I�1)
1

 + 1

;

where

 I (x) �
�
xR

1�




�

: (24)

Substituting the solution back into the objective function and doing some straightforward algebra

yields the value function

V 0
I (yI�1; �I�1) =

(yI�1)
1�


1� 


�
 I (�I�1)

1

 + 1

�

:

If, on the other hand, trader I is patient, all of yI�1 is carried into date 1 and the value function is

given by

V 1
I (yI�1; �I�1) = (�I�1 + 1)

1

1� 


�
RyI�1
�I�1 + 1

�1�

;

which can also be written as

V 1
I (yI�1; �I�1) =

(yI�1)
1�


1� 

 I (�I�1 + 1) :

It is straightforward to use this same procedure to show that, for any trader i < I; the solution

to the maximization problem in (22) sets

c0i =
yI�1

 i (�i�1)
1

 + 1

;

where

 i (x) = �i+1 (x)
�
 I+1 (x)

1

 + 1

�

+ (1� �i+1 (x)) I+1 (x+ 1) :

Note that, together with the �terminal� value  I in (24), equation (11) can be used recursively to

determine  i (�i�1) for any values of i and �i�1: The associated value functions are

V 0
i (yi�1; �i�1) =

(yi�1)
1�


1� 


�
 i (�i�1)

1

 + 1

�

and

V 1
i (yi�1; �i�1) =

(yi�1)
1�


1� 

 i (�i�1 + 1) : �
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Lemma 2 Under the mechanism ��; reporting truthfully (that is, the strategy �i = !i) is a strictly
dominant strategy for traders I and I � 1.

Proof. We already know that reporting truthfully is strictly preferred if a trader is impatient, so we

only need to consider the case where each trader is patient. Consider �rst trader I . For any level of

remaining resources yI�1, the ef�cient allocation gives her the following payments depending on

her report:
lie: yI�1

 I(�I�1)
1

 +1

where  I (�I�1) =
�
�I�1R

1�




�

truth: RyI�1

�I�1+1

:

Truth-telling is strictly preferred if

R

�I�1 + 1
>

1

�I�1R
1�


 + 1

=
R

�I�1R
1

 +R

or if

�I�1R
1

 +R > �I�1 + 1:

Since R > 1 and 
 > 0; this condition holds for all �I�1 � 0: In other words, trader I strictly

prefers to report truthfully regardless of the reports of other traders.

Next, consider the decision problem of trader I � 1 in the event that he is patient. Let � denote
the probability he places on trader I reporting impatient. Then for a given level yI�2 of remaining

resources, the expected utility of trader I � 1 under �� is

lie: 1
1�


�
c0I�1 (yI�2; �I�2)

�1�

truth: � 1

1�


�
R(yI�2�c0I(yI�2;�I�2+1))

�I�2+1

�1�

+ (1� �) 1

1�


�
RyI�2
�I�2+2

�1�

where c0I�1 and c0I are as derived in Section 2.2. It is straightforward to show that

RyI�2
�I�2 + 2

>
R (yI�2 � c0I (yI�2; �I�2 + 1))

�I�2 + 1

holds for all yI�2 and all �I�2 (substitute in for c0I and simplify). In other words, if trader I � 1
reports patient, her consumption will be higher if trader I also reports patient than if the latter
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reports impatient. The claim will be proven, therefore, for any value of � if we can show

R (yI�2 � c0I (yI�2; �I�2 + 1))

�I�2 + 1
> c0I�1 (yI�2; �I�2) ;

which can be reduced to

R
1



(�I�2 + 1)R
1�


 + 1

>
1�

pI (�I�2)
�
�I�2R

1�


 + 1

�

+ (1� pI (�I�2))

�
(�I�2 + 1)R

1�




�
� 1



+ 1

Since 
 > 0 and R > 1; we have

�I�2R
1�


 + 1 > (�I�2 + 1)R

1�




which implies that the denominator on the right-hand side is larger than that on the left-hand side.

Since R
1

 > 1; the numerator on the left-hand side is larger, and hence the condition must hold.

These calculations show that the consumption trader I � 1 receives at date 1 if he reports patient is
greater than the consumption he receives at date 0 if he reports impatient, even if trader I is certain

to report impatient and independent of the reports of all previous traders. Therefore, reporting

truthfully is also a strictly dominant strategy for trader I � 1: �

Proposition 2: The ef�cient payment schedule when only impatient traders contact the intermedi-

ary in period 0 sets

xn =
zn�1

(�n)
1

 + 1

for n = 1; : : : ; I;

where zn�1 = I �
P

j<n xj and the constants �n are de�ned recursively by �I = 0 and

�n = qn+1

�
�n+1

1

 + 1

�

+ (1� qn+1) (I � n)
 R1�


for n = 1; : : : ; I � 1.

Proof. Let Vn denote the sum of the expected utilities of all traders who have not yet consumed

when the intermediary encounters the nth impatient trader, conditional on the intermediary divid-

ing the available resources zn�1 ef�ciently among these traders. These values must satisfy the
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following recursive equation:

Vn (zn�1) = max
fxng

8>><>>:
(xn)

1�


1�
 + qn+1Vn+1 (zn�1 � xn)+

(1� qn+1) (I � n) 1
1�


�
R(zn�1�xn)

I�n

�1�

9>>=>>; ; (25)

for n = 1; : : : I:

If all I traders are impatient, the intermediary will give all of the remaining resources to the last

trader when she reports. We therefore have the following terminal condition

VI (zI�1) =
1

1� 

(zI�1)

1�
 :

The combination of this equation, the initial condition z0 = I; and equation (25) constitutes the

dynamic programming problem whose solution gives the ef�cient payment schedule.

Consider the decision problem faced by the intermediary if it faces an (I � 1)th impatient trader.
Given zI�2; the maximization problem in (25) reduces to

max
fxI�1g

(xI�1)
1�


1� 

+ qI

(zI�2 � xI�1)
1�


1� 

+ (1� qI)

(R (zI�2 � xI�1))

1� 


1�

:

The solution to this problem sets

xI�1 =
zI�2�

�I�1
� 1

 + 1

;

where

�I�1 � qI + (1� qI)R
1�
: (26)

Substituting the solution back into the objective function and doing some straightforward algebra

yields the value function

VI�1 (zI�2) =
(zI�2)

1�


1� 


��
�I�1

� 1

 + 1

�

:

The function VI�1 captures the utility of the last two traders to report to the intermediary in the

event that at least I�1 traders are impatient. In this case, the (I � 1)th trader to report is necessarily
impatient. The I th may also be impatient, reporting in period 0; or patient, in which case she will

report in period 1: The probabilities of these events (given by qI) are contained in the constant

�I�1:
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It is straightforward to use this same procedure to show that, for any n < I; the solution to the

maximization problem in (25) sets

xn =
zn�1

(�n)
1

 + 1

;

where

�n = qn+1

�
�n+1

1

 + 1

�

+ (1� qn+1) (I � n)
 R1�
: (27)

Note that condition (26) emerges naturally from (27) using the �terminal� value �I = 0. �
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