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Abstract

Policy analysis with potentially misspecified dynamic stochastic general equilibrium

(DSGE) models faces two challenges: estimation of parameters that are relevant for

policy trade-offs and treatment of estimated deviations from the cross-equation

restrictions. This paper develops and explores policy analysis approaches that are based

on either the generalized shock structure for the DSGE model or the explicit modeling of

deviations from cross-equation restrictions. Using post-1982 U.S. data, we first quantify

the degree of misspecification in a state-of-the art DSGE model and then document the

performance of different interest rate feedback rules. We find that many of the policy

prescriptions derived from the benchmark DSGE model are robust to the various

treatments of misspecifications considered in this paper, but that quantitatively the

cost of deviating from such prescriptions varies substantially.
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1 Introduction

Following the work of Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters

(2003), many central banks are building and estimating dynamic stochastic general equilib-

rium (DSGE) models with nominal rigidities and using them for policy analysis. Despite the

success in improving the empirical performance of DSGE models, misspecification remains

a concern, as documented in Del Negro, Schorfheide, Smets, and Wouters (2007, henceforth

DSSW). Some of the cross-equation restrictions imposed by these models remain at odds

with the data. This paper illustrates the difficulties involved in conducting policy analy-

sis with misspecified models. Two broad issues arise. First, how should the parameters

be estimated in the presence of misspecification? Second, how should one treat empirical

deviations from model-implied cross-equation restrictions when conducting policy analysis?

In the literature and in the practice of central banks, there exist three different ap-

proaches for dealing with misspecification. One approach is to ignore the problem and

derive quantitative policy recommendations as if the DSGE model were correctly specified,

e.g., Laforte (2003) and Levin, Onatski, Williams, and Williams (2006). A second approach

is to manipulate the shock structure of the DSGE model to optimize the fit of the resulting

empirical specification. Smets and Wouters (2003) use more shocks than observables to

obtain a DSGE model with a fit to Euro area data comparable to that of a Bayesian VAR.

Smets and Wouters (2006) generalize the law of motion of some of the exogenous shocks in a

DSGE model for U.S. data in which the number of shocks equals the number of observables.

The tacit assumption underlying the policy analysis is that these shocks are policy invariant,

even if they partially reflect misspecification.

A third approach is to model the deviations from the cross-equation restrictions explic-

itly in the likelihood. For instance, Ireland (2006), following Sargent (1989), assumes that

the observations based on which the DSGE model is estimated are subject to “measure-

ment” errors. While the measurement errors improve the empirical fit, they raise serious

identification problems – how can one distinguish measurement error dynamics from the dy-

namics in the underlying model-based variables - and tie the hands of the researcher in terms

of policy analysis: one has to assume that these measurement errors are policy-invariant.

Alternatively, Del Negro and Schorfheide (2004) propose a method for incorporating devia-

tions from the VAR representation of the DSGE model, called DSGE-VAR. We will argue

in this paper that the DSGE-VAR framework is a versatile tool for policy analysis because

it allows us to make different assumptions on how these deviations are affected by policy
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changes. The framework thereby enables us to assess the robustness of the DSGE model’s

policy predictions in view of its empirical deficiencies.

We study how the aforementioned approaches deal with the issues described above,

inference and treatment of misspecification. Starting point of our analysis is a state-of-the-

art New Keynesian DSGE model in which monetary policy follows an interest-rate feedback

rule. The goal is to assess how changes in the feedback rule affect the volatility of output,

inflation, and interest rates. We generate three types of parameter estimates. First, we

combine the DSGE model likelihood function with a prior distribution for its parameters

and compute a posterior distribution as in Schorfheide (2000). Second, we include in our

analysis the generalization of the shock structure as a possible method of dealing with

misspecification. The final set of estimates is obtained using the DSGE-VAR approach.

That is, we approximate the DSGE model with a fourth-order vector autoregression (VAR)

and specify a prior distribution for the VAR parameters centered at the model-implied

cross-equation restrictions. The resulting estimates of the VAR coefficients are implicitly

projected back onto the cross-equation restrictions to obtain a minimum-distance estimator

of the DSGE model parameters. While the direct estimator forces the DSGE model to

match all the observed fluctuations, the DSGE-VAR estimator (and to some extent the

generalized shocks estimator) lets some of the fluctuations be explained by deviations from

cross-equation restrictions. This can be appealing if misspecification of the DSGE model’s

likelihood function is a concern.

While there is a substantive body of literature on how to estimate parameters of DSGE

models and how to conduct policy analysis under model uncertainty, our framework al-

lows a unified treatment of some the key issues. It also provides new methods to assess

the robustness of policy implications of a benchmark DSGE model in view of evidence of

misspecification. The calibration literature initiated by Kydland and Prescott (1982) has

traditionally emphasized that it is more important to construct careful measurements of

the parameters that determine policy trade-offs using informative data sources, than to ob-

tain a good time series fit of the DSGE model. This sentiment is expressed, for instance,

in Kocherlakota (2006). Bayesian analysis allows us to incorporate additional information

not captured by the likelihood function through prior distributions. It turns out that the

DSGE-VAR analysis has the feature that the greater the evidence for model misspecifica-

tion, the less weight is placed on the likelihood function to construct the estimates of the

DSGE model parameters.

Altig, Christiano, Eichenbaum, and Evans (2002) estimate the parameters of their
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DSGE model by matching DSGE model impulse responses to monetary policy and tech-

nology shocks with those obtained from an identified VAR. While this impulse response

function matching makes parameter estimates more robust to some forms of model mis-

specification, the resulting empirical specification is not able to explain all the variation of

output, inflation, and interest rates that we observe in the data. Hence, policy analysis

with such a model would have to assume that the propagation of other unspecified shocks

is not altered by changes in the policy rule or that the effects would mirror those of, say,

the effects on the technology shock.

Indeed, the second major issue concerns the treatment of misspecification in conducting

the policy exercise. Within the generalized-shocks framework we derive policy implication

under the standard assumption that the parameters of the shock processes are policy in-

variant. Within the DSGE-VAR framework we make different assumptions about the policy

invariance of the estimated deviations from the model-implied cross-equation restrictions.

These assumptions include treating the DSGE-VAR as a backward-looking structural VAR,

thereby ignoring effects of policy changes on expectation formation; treating discrepancies

in terms of moving average representations as policy invariant; evaluating policies under a

priori beliefs about misspecification.1

Empirical evidence can help us discriminating between the different approaches to policy

analysis. We find strong evidence of DSGE model misspecification. This misspecification

affects the estimates of key non-policy parameters – and specifically the persistence of tech-

nology shocks – which differ between the DSGE model, the generalized shocks approach, and

the DSGE-VAR. This difference drives much of the policy results. We also find that misspec-

ification is not at all severe in the dimension that is most important for policy, the responses

to technology shocks. This evidence casts doubt on the polar approaches of ignoring the

cross-equation restriction completely and treating the DSGE-VAR as a backward-looking

model. Two lessons are robust across all modes of policy analysis considered in this paper.

First, deviating from the baseline parameters of the feedback rule is unlikely to provide

substantial improvements over the estimated Volcker-Greenspan policy. Second it appears

undesirable to decrease the response to inflation, or to increase the reaction to deviations

of output from a long-run trend path. Quantitatively, the cost of deviating from these

prescriptions varies substantially across approaches.
1Preliminary empirical results for some of the DSGE-VAR analysis based on a simple three-equation

New Keynesian model without capital and wage rigidity were reported in the 2005 Proceedings Volume of

the Journal of the European Economic Association, Del Negro and Schorfheide (2005).
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There is a long-standing recognition that model uncertainty is an important aspect of

the assessment of monetary policies, e.g., Brainard (1967), Chow (1975), and Craine (1979).

A natural approach in the presence of model uncertainty is to evaluate policy rules within

all the model specifications that are under consideration, either following a Bayesian route

or a minimax strategy. The literature contains numerous applications of these ideas, e.g.,

McCallum (1988), Levin, Wieland, and Williams (1999, 2003), Rudebusch (2001, 2002),

Onatski and Stock (2002), Onatski and Williams (2003), Brock, Durlauf, and West (2004),

Cogley and Sargent (2005), and Hansen and Sargent (2005). All these papers differ with

regard to the type of models included in the model set, and the formulation of the decision

problem that leads to the choice of a preferred policy.

Our model set is purposefully smaller than that considered in recent papers that study

the performance of different interest-rate feedback rules across a variety of econometric

models, including models that are currently used by the Board of Governors and the Euro-

pean Central Bank, e.g., Levin, Wieland, and Williams (1999, 2003), Taylor (1999), Coenen

(2003), Levin and Williams (2003), Brock, Durlauf, and West (2004), and Adalid, Coenen,

McAdam, and Siviero (2005).2 The benchmark DSGE model is at the center of our analy-

sis. We surround this benchmark model with (i) DSGE models with a more general shock

structure, and (ii) structural VARs that allow for deviations from the cross-equation re-

strictions to improve the empirical fit. We view our framework as a diagnostic tool. If our

likelihood-based measure of fit point toward misspecification, we provide tools to parame-

terize the discrepancies between theory and data, and assess the robustness of the DSGE

model’s policy implications under different assumptions about the policy invariance of the

discrepancies.

The paper is organized as follows. Section 2 describes the econometric framework. The

DSGE model is presented in Section 3. This model is based on work by Altig, Christiano,

Eichenbaum, and Linde (2002), Smets and Wouters (2003), and Christiano, Eichenbaum,

and Evans (2005). Compared to the benchmark New Keynesian models discussed, for

instance, in Woodford (2003), our model has been subjected to a number of modifications,

all designed to improve its empirical fit. Section 4 describes the data set and discusses our

empirical findings, and Section 5 concludes. Detailed analytical derivations, a description

of the Markov-Chain-Monte Carlo methods used to implement the Bayesian computations,

and the precise specification of the prior distribution for the DSGE model parameters are
2With the exception of Brock, Durlauf, and West (2004) little or no attention is paid to fit and forecasting

performance when weighting predictions from various models.
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provided in a Technical Appendix that is available from the authors upon request.

2 Setup and Inference

This section describes our analytical framework for monetary policy analysis under potential

misspecification. The goal of the analysis is to study the effects of changing coefficients in

an interest rate feedback rule such as

Rt = ψ1πt + ψ2ỹt + σRε1,t (1)

on the variability of some key macroeconomic variables. Here Rt is the nominal interest

rate, πt is the inflation rate, ỹt are output deviations from a smooth trend, which we refer

to as output gap, and ε1,t is a monetary policy shock with unit variance. We make the

simplifying assumption that the public believes the new policy to be in place indefinitely

after being announced credibly.

Starting point for the analysis is a DSGE model that describes the optimal behavior

of households and firms and determines an equilibrium law of motion for the macroeco-

nomic variables of interest. The following two equations provide a simple version of a New

Keynesian DSGE model

ỹt − gt = IEt[ỹt+1 − gt+1]− (Rt − IEt[πt+1]), (2)

πt = βIEt[πt+1] + κ(ỹt − zt − gt), (3)

which we use in this section for the sake of exposition. Equation (2) is obtained from the

consumption Euler equation, (3) is derived from the optimal price setting of monopolistically

competitive firms and typically referred to as New Keynesian Phillips curve. To complete

the model specification one needs to specify a law of motion for the exogenous processes gt

(government spending) and zt (technology), such as:

gt = ρggt−1 + σgεg,t, zt = ρzzt−1 + σzεz,t, (4)

where the innovations εg,t and εz,t are identically and independently distributed standard

normal random variates.

We proceed by grouping the parameters into two categories: θ(p) = [ψ1, ψ2, σR]′ is

the vector of parameters that describe central bank behavior and the elements of θ(np) =

[β, κ, ρg, ρz, σg, σz]′ characterize preferences and technologies as well as the law of motion of

the exogenous processes. We let θ = [θ′(p), θ
′
(np)]

′, y1,t = Rt, and y2,t = [ỹt, πt]. Equations (1)
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to (4) characterize a linear rational expectations system. Its solution leads to a moving-

average representation for y2,t in terms of the innovations εt = [ε1,t, εg,t, εz,t]′:

y2,t =
∑
j=0

D∗
j (θ(p), θ(np))εt−j . (5)

The matrices D∗
j embody the cross-equation restrictions imposed by the DSGE model.

With (1) and (5) in hand it is straightforward to compute the covariance matrix for in-

terest rates, output, and inflation V∗(θ(p), θ(np)) as well as weighted averages of variances

tr[WV∗(θ(p), θ(np))] that can serve as performance measures for monetary policy. Here tr[·]

denotes the trace operator and W is a symmetric positive definite weight matrix.

In the absence of misspecification policy analysis is straightforward. Suppose we adopt

a Bayesian framework and start from a prior distribution with density p(θ(p), θ(np)) for

the DSGE model parameters. We then combine the prior with the likelihood function

p(Y |θ(p), θ(np)) of the DSGE model to obtain a posterior distribution with density p(θ(p), θ(np)|Y ).

The calculations can be implemented with the methods described in An and Schorfheide

(2007). The posterior expected weighted variance differential for two policies θ(1)(p) and θ
(2)
(p)

is given by: ∫ (
tr
[
WV∗

(
θ
(1)
(p), θ(np)

)]
− tr

[
WV∗

(
θ
(2)
(p), θ(np)

)])
p
(
θ(np)|Y

)
dθ(np), (6)

where p(θ(np)|Y ) is the marginal posterior density of the non-policy parameters.

Unfortunately, much of the empirical evidence points towards misspecification of the

restricted moving average terms D∗
j (θ(p), θ(np)) in (5). As an alternative to (5) we consider

an unrestricted moving-average representation for output and inflation of the form

y2,t =
∞∑

j=0

[
D∗

j (θ(p), θ(np)) +D∆
j

]
εt−j . (7)

Using a modified version of the DSGE-VAR framework developed in Del Negro and Schorfheide

(2004) and DSSW we first re-confirm the empirical evidence thatD∆
j is not zero. Once model

misspecification has been detected two challenges arise: (i) How does the presence of mis-

specification affect the estimate of the non-policy parameters θ(np)? This is an important

question because some of these parameters (e.g., the degree of nominal rigidities, or the

persistence of shocks) play a key role in the policy analysis. (ii) How do policy changes of

θ(p) translate into changes in D∆
j ? In turn we will discuss two approaches to address these

challenges.

The first approach is described in Section 2.1 and builds upon the DSGE-VAR frame-

work. We solve the DSGE model, then create a prior distribution for a VAR that concen-
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trates in the neighborhood of the DSGE model implied restrictions yet allows for deviations.3

We construct a joint posterior distribution for VAR and DSGE model parameters. The VAR

likelihood function is penalized by the prior distribution if its parameters strongly deviate

from the DSGE model-implied restrictions. Simultaneously, the DSGE model parameters θ

are essentially estimated by minimizing the deviations D∆
j from the cross-equation restric-

tions D∗
j (θ(p), θ(np)). The DSGE model is treated as a reference model around which the

more loosely parameterized VAR is centered. We will subsequently provide reasons why the

estimates of θ(np) obtained under the DSGE-VAR, rather than those obtained under the

DSGE model, might be preferable for policy analysis.

Once we have obtained estimates of the VAR and the DSGE dynamics we consider four

methods of conducting a policy analysis that differ with respect to the assumptions about the

policy-invariance of private agents’ behavior and the discrepancies D∆
j : (i) One extreme is

to perform the policy exercise under the DSGE model. In this case the DSGE-VAR is only a

tool to provide alternative estimates of θ(np). (ii) The other extreme is to ignore the rational

expectations responses of the private sector behavior. That is, one treats the DSGE-VAR

as a structural (backward looking) VAR and only changes the coefficients of the monetary

policy rule. The third and forth approach lie in between these two polar cases. Under (iii)

we use D∗
j (θ(p), θ(np)) but acknowledge the presence of misspecification. We regard historical

estimates of the discrepancy matrices as largely uninformative about the post-intervention

misspecification. Performance measures are computed from (7) under the prior instead of

posterior distribution of the D∆
j ’s. Finally, method (iv) uses the posterior of the D∆

j ’s and

treats the discrepancies as policy invariant. We discuss under what circumstances each of

these methods can be appealing.

A second approach to cope with model misspecification is discussed in Section 2.2 and

refines a common practice in the empirical work with DSGE models. This practice amounts

to relaxing the restrictions placed on the law of motion of the exogenous shocks in (4) by

introducing additional shocks into the model and/or by generalizing the AR(1) structure.

The modification of the shock structure introduces additional parameters that have to be

estimated along with θ(p) and θ(np). Although macroeconomists understand that these

additional parameters in most cases do not capture micro-founded propagation mechanisms,

they are nonetheless often introduced to ameliorate misspecification problems. Once these
3Unlike in our earlier work which applies this prior to the law of motion of both Rt and y2,t, we use

this prior distribution only for the equations that describe the evolution of y2,t. These equations are then

combined with the monetary policy rule.
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parameters have been estimated, it is common practice to treat them as “structural,” i.e.

policy invariant and to conduct policy analysis by calculating rational expectations solutions

of the DSGE model under the modified shock structure.4

2.1 Relaxing Restrictions on the Reduced Form

We begin by modifying the DSGE-VAR framework to obtain estimates of the extent to which

the DSGE model implied restrictions are violated. Rather than working with infinite-order

moving-average representations along the lines of Equation (7), the DSGE-VAR uses finite-

order VAR representations since they are easier to handle at the model estimation step. We

then explain how θ(np) and D∆
j are identified.

2.1.1 The DSGE-VAR Framework

Let us write Equation (1), which describes the policymaker’s behavior, in more general form

as:

y1,t = x′tβ1(θ) + y′2,tβ2(θ) + ε1,tσR, (8)

where yt = [y1,t, y
′
2,t]

′ and the k × 1 vector xt = [y′t−1, . . . , y
′
t−p, 1]′ is composed of the first

p lags of yt and an intercept. The vector-valued functions β1(θ) and β2(θ) interact with xt

and y2,t to generate the policy rule. In our simple example β1(θ) = 0 and β2(θ) extracts

inflation and output from the vector y2,t and multiplies it by the policy rule coefficients ψ1

and ψ2. Our notation is general enough to cover the more elaborate monetary policy rules

used in the empirical analysis.5

We proceed by approximating the DSGE model-implied moving average representa-

tion (5) of y2,t with a p-th order autoregression, which we write as

y′2,t = x′tΨ
∗(θ) + u′2,t. (9)

Assuming that under the DSGE model the law of motion for y2,t is covariance stationary

for every θ, we define the moment matrices ΓXX(θ) = IED
θ [xtx

′
t] and ΓXY2(θ) = IED

θ [xty
′
2,t].

4A related approach to misspecification amounts to introducing ad-hoc features into the model. Given

that these features are model specific, we do not deal explicitly with them in our framework. One can see

however that this related approach is in many ways germane to relaxing the shock structure.
5Considering forecast-based policy rules in this framework would require significant modifications. How-

ever, according to the findings reported by Levin, Wieland, and Williams (2003) forecast-based rules do not

provide substantial gains in stabilization performance compared with simple outcome-based rules. Hence,

we decided not to pursue these modifications at this point.
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In our notation IED
θ [·] denotes an expectation taken under the probability distribution for

yt and xt generated by the DSGE model conditional on the parameter vector θ. We define

the VAR approximation of y2,t through

Ψ∗(θ) = Γ−1
XX(θ)ΓXY2(θ). (10)

The equation for the policy instrument (8) can be rewritten by replacing y2,t with expres-

sion (9):

y1,t = x′tβ1(θ) + x′tΨ
∗(θ)β2(θ) + u1,t, (11)

Let u′t = [u1,t, u
′
2,t] and define

Σ∗(θ) = ΓY Y (θ)− ΓY X(θ)Γ−1
XX(θ)ΓXY (θ). (12)

If we assume that the ut’s are normally distributed, denoted by ut ∼ N (0,Σ∗(θ)), then

Equations (9) to (12) define a restricted VAR(p) for the vector yt. While the moving-

average representation of yt under the linearized DSGE model does in general not have

an exact VAR representation, the restriction functions Ψ∗(θ) and Σ∗(θ) are defined such

that the covariance matrix of yt, which enters the construction of our policy performance

measure (6), is preserved. Let IEV AR
Ψ,Σ [·] denote expectations under the restricted VAR. It

can be verified that

IEV AR
Ψ∗(θ),Σ∗(θ)[yty

′
t] = IED

θ [yty
′
t]. (13)

This point is important given that the second moments of the endogenous variables are the

objects of interest for this analysis.

To account for potential misspecification we now relax the DSGE model restrictions and

introduce discrepancy matrices Ψ∆ and Σ∆ such that

y1,t = x′tβ1(θ) + x′t
(
Ψ∗(θ) + Ψ∆

)
β2(θ) + u1,t, (14)

y′2,t = x′t
(
Ψ∗(θ) + Ψ∆

)
+ u′2,t,

and ut ∼ N (0,Σ∗(θ) + Σ∆). Our analysis is cast in a Bayesian framework in which initial

beliefs about the DSGE model parameter θ and the model misspecification matrices Ψ∆

and Σ∆ are summarized in a prior distribution. In contrast to Del Negro and Schorfheide

(2004) and DSSW, we assume in (14) that there is no misspecification in the policy rule.

Our prior distribution for Ψ∆ and Σ∆ is chosen such that conditional on a DSGE model

parameter θ

Σ∆|θ ∼ IW
(
T ∗Σ∗(θ), T ∗ − k

)
− Σ∗(θ) (15)

Ψ∆|Σ∆, θ ∼ N

(
0,

1
T ∗

[
(B2(θ)

(
Σ∗(θ) + Σ∆

)−1
B2(θ)′)⊗ ΓXX(θ)

]−1
)
,
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where IW denotes the inverted Wishart distribution, B1(θ) = [β1(θ), 0k×(n−1)], andB2(θ) =

[β2(θ), I(n−1)×(n−1)].

A few remarks on the shape of the prior contours for Ψ∆,Σ∆, and how the prior dis-

tributes mass along these contours are in order. First, the distribution of mass is controlled

by the hyperparameter T ∗, which we will re-parameterize in terms of multiples of the ac-

tual sample size T , that is T ∗ = λT . Large values of λ imply that large discrepancies are

unlikely to occur and the prior concentrates near the restriction functions Ψ∗(θ) and Σ∗(θ).

We consider values of λ on a finite grid Λ and use a data-driven procedure to determine

an appropriate value for this hyperparameter. A natural criterion to select λ in a Bayesian

framework is the marginal data density

pλ(Y ) =
∫
p(Y |Ψ,Σ, θ)pλ(Ψ,Σ, θ)d(Ψ,Σ, θ). (16)

Here pλ(Ψ,Σ, θ) is a joint prior distribution for the VAR coefficient matrices Ψ = Ψ∗(θ)+Ψ∆

and Σ = Σ∗(θ)+Σ∆ and the DSGE model parameters θ. This prior is obtained by combining

the prior in (15) with a prior density for θ, denoted by p(θ):

pλ(Ψ,Σ, θ) = p(θ)pλ(Σ|θ)pλ(Φ|Σ, θ). (17)

We define

λ̂ = argmaxλ∈Λ pλ(Y ). (18)

As discussed in DSSW, λ̂ and the marginal likelihood ratio pλ=λ̂(Y )/pλ=∞(Y ) provide an

overall measure of fit for the DSGE model. If there is a large discrepancy between the

autocovariances implied by the DSGE model and the sample autocovariances, λ̂ will be

small and the marginal likelihood ratio will be large.

Second, the size of the model misspecification is associated with the ease with which it

can be detected via likelihood ratios, in the spirit of Hansen and Sargent’s (2005) robust con-

trol approach, as discussed in detail in DSSW. Third, holding the innovation matrix Σ∗(θ)

constant, ΓXX(θ) tends to be large – hence the prior variance of Ψ∆ small – whenever θ

implies that the endogenous variables are highly persistent. We view this as an attractive

feature of the prior. Since due to the presence of transversality conditions DSGE model so-

lutions are restricted to be stationary, our prior steers us away from VAR parameterizations

that imply non-stationarity and explosiveness. Finally, our prior is also computationally

convenient. We use Markov-Chain-Monte Carlo methods described in the Technical Ap-

pendix to generate draws from the joint posterior distribution of Ψ, Σ, and θ as well as

to evaluate the marginal data density pλ(Y ). We refer to empirical model comprised of
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the likelihood function associated with the restricted VAR in Equation (14) and the prior

distributions pλ(Ψ,Σ|Y ), given in (15), and p(θ) as DSGE-VAR(λ).

2.1.2 Parameter Estimation

This subsection provides some intuition for how the parameters of the DSGE model are

estimated under the DSGE-VAR procedure. To simplify the exposition, we will condition on

the covariance matrix Σ and the hyperparameter λ that controls the magnitude of deviations

from the DSGE model restrictions. Conforming with the partitioning of ut into u1,t and u2,t,

we partition the covariance matrix into the sub-matrices Σ11, Σ12, Σ21, and Σ22. Moreover,

we define Σ11.22 = Σ11 − Σ12Σ−1
22 Σ21. The joint posterior density can be expressed as

p(Ψ, θ(p), θ(np)|Y ) (19)

∝ |Σ22|−T/2etr
[
Σ−1(Y2 −XΨ)′(Y2 −XΨ)

]
×|Σ11.22|−T/2etr

[
Σ−1

11.22

(
Y1 −Xβ1(θ(p))−XΨβ2(θ(p))− (Y2 −XΨ)Σ−1

22 Σ21

)′
×
(
Y1 −Xβ1(θ(p))−XΨβ2(θ(p))− (Y2 −XΨ)Σ−1

22 Σ21

)]
×etr

[
λTB2Σ−1B′2(Ψ−Ψ∗(θ(p), θ(np)))′ΓXX(Ψ−Ψ∗(θ(p), θ(np)))

]
×p(θ(p), θ(np))

where etr[A] = exp{−tr[A]/2}, ∝ denotes proportionality, and the columns of Y and X are

composed of y′t and x′t, respectively.

We can draw several conclusions from the form of the posterior density. First, the

policy parameters are essentially identified via exclusion restrictions. The functions β1(·)

and β2(·) only depend on the policy parameters, the only DSGE model parameters that

enter the monetary policy rule. Conditional on Ψ most of the information about the policy

parameters stems from the contribution of Y1 to the likelihood function (lines 2 and 3 in (19))

as well as the prior p(θ(p), θ(np)). The term (Y2 −XΨ)Σ−1
22 Σ12 corrects for the endogeneity

of the contemporaneous regressors in the policy rule. Identification is achieved through

an exclusion restriction embodied in β2(·). In the above example no lagged endogenous

variables enter the policy rule (1). In the empirical application we assume that only lagged

interest rates enter the policy rule in addition to contemporaneous measures of inflation

and output. These exclusion restrictions are consistent with the specification of the DSGE

model and identify the monetary policy shock ε1,t in the DSGE-VAR.
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Second, we discuss the estimation of the non-policy parameters. The value of λ –

the extent to which we admit the presence of misspecification – plays an important role

here. Conditional on Ψ, the shape of the posterior of θ(np) is determined by p(Ψ|θ(p), θ(np))

(line 4 in (19)) and the prior p(θ(p), θ(np)). If the hyperparameter λ is small, the latter will

dominate. For large values of λ the estimate of θ(np) has the flavor of a minimum distance

estimate and is identified provided that different values of θ(np) imply different values for

Ψ∗(·) (see Smith 1993). The posterior density is high for values of θ(np) that imply a

small discrepancy between Ψ and the restriction function Ψ∗(θ(p), θ(np)). In summary, if

we assume there is no misspecification (λ = ∞), we force the θ(np) to generate all the

dynamics observed in the data. As we lower λ, we relax this constraint and let our prior

density p(θ(p), θ(np)) play a more important role in the formation of the posterior. Given

that current macroeconomic practice puts emphasis on the prior information obtained from

– say – microeconomic evidence (for example, on the degree of price stickiness), this reliance

on the prior can be appealing.

Third, conditional on θ(p) and θ(np), the shape of the posterior for Ψ is mostly determined

by the contribution of Y2 to the likelihood function (line 1 in (19)). The prior density

p(Ψ|θ(p), θ(s)) serves as a penalty function, that penalizes values of Ψ that deviate strongly

from the restriction function Ψ∗(θ(p), θ(np)). In fact, we show in a slightly different setup

in Del Negro and Schorfheide (2004) that the VAR is estimated subject to the restriction

Ψ = Ψ∗(θ(p), θ(np)), if λ = ∞.

2.1.3 Policy Analysis

The challenge in the evaluation of monetary policy rules is to predict the private sector’s

behavioral responses to policy regime changes, which are captured by the coefficient matrix

Ψ and the elements of Σ that are unrelated to the monetary policy shock. We will describe

four types of analysis that differ according to the assumptions that are being made about

the policy-invariance of private agents’ behavior and model misspecification.

Forward-looking Analysis: One can decide to use the DSGE-VAR framework only to

obtain estimates of θ(np) that in the presence of misspecification do not force the DSGE

model to capture all the dynamics in the data. Conditional on these parameter estimates,

the policy analysis is conducted directly with the DSGE model.

Backward-looking Analysis: At the other extreme, one can choose to conduct the exer-

cise using DSGE-VAR as a structural VAR, as for instance in Sims (1999). This amounts
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to assuming that the decision rules of firms and households are unaffected by the policy

change. The DSGE-VAR developed previously can be interpreted as a structural VAR in

which the monetary policy rule is identified through exclusion restrictions:

y1,t = x′tβ1(θ(p)) + [x′tΨ + u′2,t]β2(θ(p)) + ε1,tσR

y′2,t = x′tΨ + u′2,t.

According to the underlying DSGE model, u2,t is a function of the monetary policy shock

ε1,t and other structural shocks ε2,t. We assume that the shocks ε2,t have unit variance and

are uncorrelated with each other and the monetary policy shock. We express u2,t as

u′2,t = ε1,tA1 + ε′2,tA2. (20)

Straightforward matrix algebra leads to the following formulas for the effect of the structural

shocks on u′2,t:

A1 =
[
Σ11 − β′2Σ22β2 − 2(Σ12 − β′2Σ22)β2

]−1

(Σ12 − β′2Σ22) (21)

A′2A2 = Σ22 −A′1

[
Σ11 − β′2Σ22β2 − 2(Σ12 − β′2Σ22)β2

]
A1. (22)

While this decomposition of the forecast error covariance matrix identifies A1, it does not

uniquely determine the matrix A2. Let A2,tr be a Cholesky factor of A′2A2 and ũ2,t be

a vector of innovations with mean zero and unit variance, that is uncorrelated with the

monetary policy shock ε1,t. Following Sims (1986), we express the private sector equations

as follows:

y′2,t(I + β2A1)− y1,tA1 = x′t(Ψ− β1A1) + ũ′2,tA2,tr. (23)

In the backward-looking analysis we use posterior draws of (θ,Ψ,Σ) to determine β1, β2, A1,

and A2,tr and assume that the coefficients in (23) are policy-invariant. The counterfactual

law of motion of yt under a new policy θ̃(p) is obtained from

y1,t − y′2,tβ2(θ̃(p)) = x′tβ1(θ̃(p)) + ε1,tσR (24)

y′2,t(I + β2A1)− y1,tA1 = x′t(Ψ− β1A1) + ũ′2,tA2,tr.

The first equation represents the new monetary policy rule, whereas the second equation

captures the (unchanged) law of motion for the private-sector variables.

Acknowledge Misspecification We use the historical sample to estimate the non-policy

parameters θ(np) and the overall degree of misspecification measured by λ̂. Starting from

the forward-looking analysis we do acknowledge misspecification and hence introduce the
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matrices Ψ∆ and Σ∆ into the policy analysis step. The DSGE-VAR framework is used to

predict policy outcomes:

y1,t = x′tβ1(θ̃(p)) + x′t
(
Ψ∗(θ̃(p), θ(np)) + Ψ∆

)
β2(θ̃(p)) + u1,t (25)

y′2,t = x′t
(
Ψ∗(θ̃(p), θ(np)) + Ψ∆

)
+ u′2,t,

where the covariance matrix of ut is given by Σ∗(θ̃(p), θ(np)) + Σ∆. In the absence of a

firm theory that explains how the discrepancy matrices respond to policy changes, we use

the prior distribution (15) to characterize beliefs about post-intervention model misspeci-

fication. This analysis reflects the belief that the sample, and hence the posterior of Ψ∆

and Σ∆ provides no information misspecification after a new policy has been implemented.

This scepticism about the relevance of sample information is shared by the robust control

approaches of Giannoni (2002), Onatski and Stock (2002), Onatski and Williams (2003),

and Hansen and Sargent (2005). However, instead of using a minimax calculation we rely

on a prior probability distribution p(Ψ∆,Σ∆|θ, λ) to cope with misspecification uncertainty.

Policy-Invariant Misspecification To characterize the degree of misspecification in an es-

timated DSGE model, DSSW compare impulse response functions from the DSGE-VAR(λ̂)

to those from a DSGE-VAR(∞). If the DSGE model is well specified, λ̂ is likely to be

large and the discrepancy among the impulse response functions is small. If on the other

hand, the misspecification is substantial and λ̂ is small, then the discrepancy between the

impulse response functions can be used to diagnose in which dimension the DSGE model

is misspecified. We will now assume that the estimated discrepancy, in terms of impulse

response functions, is policy invariant.

For the impulse response functions to be interpretable, it is useful to apply an identi-

fication scheme that links them to the structural shocks in the underlying DSGE model.

Recall that the monetary policy shock has been identified through an exclusion restriction.

However, we still have to identify the matrix A2 in (20). We follow the approach taken

in Del Negro and Schorfheide (2004). Let A′2,trA2,tr = A′2A2 be the Cholesky decomposi-

tion of A′2A2. The relationship between A2,tr and A2 is given by A′2 = A′2,trΩ, where Ω is

an orthonormal matrix that is not identifiable based on the estimates of β(θ), Ψ, and Σ.

However, we are able to calculate an initial effect of ε2,t on y2,t based on the DSGE model,

denoted by AD
2 (θ). This matrix can be uniquely decomposed into a lower triangular matrix

and an orthonormal matrix:

AD′

2 (θ) = AD′

2,tr(θ)Ω
∗(θ). (26)
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To identify A2 above, we combine A′2,tr with Ω∗(θ).6 Loosely speaking, the rotation matrix

is constructed such that in the absence of misspecification the DSGE model’s and the DSGE-

VAR’s impulse responses to ε2,t coincide. To the extent that misspecification is mainly in the

dynamics as opposed to the covariance matrix of innovations, the identification procedure

can be interpreted as matching, at least qualitatively, the short-run responses of the VAR

with those from the DSGE model.

In order to implement the policy analysis, we use posterior draws of (θ,Ψ,Σ) to create

two moving average representations for y2,t:
∞∑

j=0

D̃∗
j (θ)u2,t−j =

∞∑
j=0

D̃∗
j (θ)

(
A∗1(θ)

′ε1,t−j +A∗2(θ)
′ε2,t−j

)
∞∑

j=0

D̃j(Ψ)u2,t−j =
∞∑

j=0

D̃j

(
A1(θ,Σ)′ε1,t−j +A2(θ,Σ)′ε2,t−j

)
.

The first representation is calculated from the VAR approximation of the DSGE model

Ψ∗(θ) and Σ∗(θ). The second representation is obtained from the estimated DSGE-VAR

specification. The impulse response function discrepancies (DSGE-VAR(λ̂) versus DSGE-

VAR(∞)) are given by

IRF∆
j = D̃j(Ψ)

[
A1(θ,Σ)′, A2(θ,Σ)′

]
− D̃∗

j (θ)
[
A∗1(θ)

′, A∗2(θ)
′].

We consider the following post-intervention law of motion for y2,t:

y2,t =
∞∑

j=0

[
D̃∗

j (θ̃(p), θ(np))
[
A∗1(θ̃(p), θ(np))′, A∗2(θ̃(p), θ(np))′

]
+ IRF∆

j

] ε1,t−j

ε2,t−j

 . (27)

If we were endowed with with a credible model of how Ψ∆ and Σ∆ vary with policy, we

should of course use such model, and the DSGE-VAR analysis would lose its appeal. In the

absence of such a model our forward-looking analysis, the backward-looking analysis, and the

policy-invariant misspecification analysis take different attitudes toward the Lucas critique

in that they assume that certain coefficients in the empirical model are policy invariant.

The acknowledge-misspecification analysis is more agnostic in that it places a probability

distribution over the post-intervention misspecification matrices.

2.2 Relaxing Restrictions on the Exogenous Shocks

Equation (4) in our example restricts the exogenous shocks to follow AR(1) processes that

are uncorrelated with each other at all leads and lags. While this assumption is common
6The calculation is easily implementable in a MCMC analysis. For every draw of (θ, Ψ∆, Σ∆) from their

joint posterior distribution we compute Ω∗(θ) and A2.
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in the literature on estimated DSGE models, it is also arbitrary. For instance, there is

no theory that implies that technology shocks have to follow AR(1) processes. In general,

the literature strives to build models in which persistence and co-movements are generate

endogenously, through some economic mechanism, rather than exogenously. This pursuit

favors specification in which shocks are indeed uncorrelated with each other and have fairly

simple dynamics. However, once taken to the data, these specifications often miss important

aspects, which has lead researchers to consider more general shock processes.

The generalization of the exogenous shocks takes in most cases the form of additional

AR(1) processes. For instance, Smets and Wouters (2003) fit a model with 10 exogenous

shocks to seven macroeconomic variables. Several of these shocks have been added in the

model building process to overcome specification problems. More recently, a number of

authors including Chari, Kehoe, and McGrattan (2007) and Primiceri, Schaumburg, and

Tambalotti (2006) have studied the extent to which intra- and intertemporal optimality

conditions implied by DSGE models are consistent with the data. If they are not, the

resulting “wedges” are represented by stochastic shocks, underlining that the proliferation

of exogenous shocks in empirical DSGE models can be thought of as an attempt to overcome

specification problems. Alternatively, Smets and Wouters (2006) are using ARMA(1,1)

processes to describe the law of motion of price and wage mark-up shocks in their DSGE

model. We show that this approach is simply another ways of allowing for deviations

D∆
j from the cross-equation restrictions D∗

j (θ(p), θ(np)) in (7). Unlike in the DSGE-VAR

framework, these deviations are introduced in the structural form rather than the reduced

form. But when it comes to policy analysis, this approach shares the same conceptual

difficulties as the DSGE-VAR: One needs to assume that the D∆
j ’s are policy invariant.

Suppose we generalize (4) in our example as follows

 gt

zt

 =
∞∑

j=0


 ρj

gσg 0

0 ρj
zσz


︸ ︷︷ ︸

C∗j (θ∗(x))

+C∆
j


ε2,t−j . (28)

and partition the vector of non-policy parameters θ(np) = [θ′(s), θ
∗′
(x), θ

∆′

(x)]
′, where θ(s) =

[β, κ]′, θ∗(x) = [ρg, ρz, σg, σz]′, and θ∆x is composed of the non-redundant elements of the lag

polynomial
∑∞

j=0 C
∆
j L

j . It follows from Sims (2002) that the law of motion of y2,t can then

be expressed as

y2,t =
∞∑

j=0

[
D∗

j (θ(p), θ(s), θ
∗
(x)) +D∆

j (θ(p), θ(s), θ
∆
(x))
]
εt−j . (29)



17

Hence, this approach generates a representation for the discrepancy matrices D∆
j in (7), and

links them to the policy parameters θ(p) under the assumption that θ∆(x) is policy invariant.

2.2.1 Implementation

As in Section 2.1 it is more convenient to work with vector autoregressive representations

when implementing the analysis in practice. In the context of our example we stack the

exogenous processes in the vector z̃t = [gt, zt]′ and consider a general representation of the

form

z̃t = Φ1z̃t−1 + . . .+ Φpz̃t−1 + ε̃t. (30)

The innovations ε̃t are not normalized and have a covariance matrix Σε. Let x′t = [z̃t−1, . . . , z̃t−p]′,

Φ′ = [Φ′1, . . . ,Φ
′
p], and write

z̃′t = x′tΦ + ε̃′t. (31)

Notice that (31) mirrors (9). From the restricted moving-average representation z̃t =∑∞
j=0 C

∗
j (θ∗(x))εt−j we can derive the moment matrices ΓZZ(θ∗(x)), ΓXX(θ∗(x)), and ΓXZ(θ∗(x)).

Following the steps in Section 2.1, we can define the restriction functions Φ∗(θ∗(x)) and

Σ∗ε (θ
∗
(x)). Then let Φ = Φ∗(θ∗(x)) + Φ∆, and Σε = Σ∗ε (θ

∗
(x)) + Σ∆

ε . Finally, we can use a prior

of the form

Σ∆
ε |θ∗(x) ∼ IW

(
T ∗Σ∗ε (θ

∗
(x)), T

∗ −m

)
− Σ∗ε (θ

∗
(x)) (32)

Φ∆|Σ∆
ε , θ

∗
(x) ∼ N

(
0,

1
T ∗

[(
Σ∗ε (θ

∗
(x)) + Σ∆

ε

)−1 ⊗ ΓXX(θ∗(x))
]−1

)
.

The intuition for this prior is very simple. Suppose we are generating a prior for an AR(2)

model from an AR(1). Given the parameters of the AR(1) (θ∗(x)) we can generate artificial

observations from an AR(1) model. The expected moments of these observations are summa-

rized in the matrices ΓZZ(θ∗(x)), ΓXX(θ∗(x)), and ΓXZ(θ∗(x)) and serve as sufficient statistics

for the estimation of the parameters of the AR(2) model. The posterior distribution from

this (fictional) estimation is given by (32).

Under the generalized shocks, the DSGE model in our example would consist of Equa-

tions (1) to (3) and (30). The parameter vector is composed of θ(p), θ(s), Φ, and Σε.

Equation (32) generates a prior distribution for Φ and Σε conditional on θ∗(x), which can be

combined with a prior on the hyperparameters θ∗(x) as in (17). Thus, the joint distribution

of data and parameters has the following factorization

p(Y |θ(p), θ(s),Φ,Σε)p(θ(p))p(θ(s))pT∗(Φ,Σε|θ∗(x))p(θ
∗
(x)).
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2.2.2 Parameter Estimation

Under the generalized shock structure the law of motion for the exogenous processes is

parameterized in terms of Φ and Σε instead of just θ∗(x). Nevertheless, we can estimate the

DSGE model with standard Bayesian methods. However, the less restrictive the specification

for the exogenous shock processes, the more difficult it becomes to disentangle the taste-and-

technology parameters θ(s) from the parameters that determine the evolution of z̃t. From

an econometric perspective, the likelihood function may flatten as we generalize the shock

structure. It is well known that in a Bayesian framework, prior distributions will not be

updated along directions in the parameter space in which the likelihood function is flat (see

Poirier, 1998).

2.2.3 Policy Analysis

If one is willing to assume that the generalized shocks are structural, in the sense that they

are invariant to changes in economic policies, analyzing the effect of changing θ(p) remains

straightforward:

D∆
j (θ(1)(p), θ(s), θ

∆
(x))−D∆

j (θ(2)(p), θ(s), θ
∆
(x))

can be calculated by solving the DSGE model under the generalized shock structure for

policy parameter settings θ(1)(p) and θ
(2)
(p). However, to the extent that the lag polynomial∑∞

j=0 C
∆
j L

j has essentially been added to compensate for model misspecification, its policy

invariance is not self-evident.

3 Model

For the empirical analysis we will use a model that is more sophisticated than the one used

in Section 2. In addition to responding to inflation and output, the central bank also engages

in interest rate smoothing:

Rt = ρRRt−1 + (1− ρR)(ψ1πt + ψ2ỹt) + σRε1,t. (33)

As before, Rt and πt are the nominal interest rate and the inflation rate, respectively.

The output gap ỹt represents output deviations from a smooth trend path. This notion

is broadly consistent with the measure of potential output calculated by the Congressional

Budget Office (CBO) and used historically in monetary policy making. While much of the

theoretical literature defines potential output as the level of output that would prevail in
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the absence of nominal rigidities, we want (33) to closely resemble the specifications in the

empirical literature on interest rate feedback rules (e.g. Taylor, 1993).

The remainder of the model is based on work by Smets and Wouters (2003) and Chris-

tiano, Eichenbaum, and Evans (2003) and is identical to the specification in DSSW with

one exception. Since ỹt captures deviation from a long-run trend path we model technology

shocks as a stationary process rather than a unit-root process. For brevity we only present

the log-linearized equilibrium conditions and refer the reader to the above referenced papers

for the derivation of these conditions from assumptions on preferences and technologies. All

variables that appear subsequently are expressed as log-deviations from the steady state.

The economy is populated by a continuum of firms that combine capital and labor

to produce differentiated intermediate goods. These firms have access to the same Cobb-

Douglas production function with capital elasticity α and total factor productivity zt. The

intermediate goods producers hire labor and rent capital in competitive markets and hence

face identical real wages, wt, and rental rates for capital, rk
t . Cost minimization implies that

all firms produce with the same capital-labor ratio

kt − Lt = wt − rk
t (34)

and have marginal costs

mct = (1− α)wt + αrk
t − (1− α)zt. (35)

The intermediate goods producers sell their output to perfectly competitive final good

producers, which aggregate the inputs according to a CES function. Profit maximization of

the final good producers implies that

ỹt(j)− ỹt = −
(

1 +
1

λfeλ̃f,t

)
(pt(j)− pt). (36)

Here ỹt(j)− ỹt and pt(j)−pt are quantity and price for good j relative to quantity and price

of the final good. The price pt of the final good is determined from a zero-profit condition

for the final good producers.

We assume that the price elasticity of the intermediate goods is time-varying. Since

this price elasticity affects the mark-up that intermediate goods producers can charge over

marginal costs, we refer to λf,t as mark-up shock. Following Calvo (1983), we assume that in

every period a fraction of the intermediate goods producers ζp is unable to re-optimize their

prices. These firms adjust their prices mechanically according to the steady state inflation
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π∗.7 All other firms choose prices to maximize the expected discounted sum of future

profits, which leads to the following equilibrium relationship, known as New Keynesian

Phillips curve:

πt = βIEt[πt+1] +
(1− ζpβ)(1− ζp)

ζp
mct +

1
ζp
λf,t (37)

where β is the discount rate.8 Our assumption on the behavior of firms that are unable

to re-optimize their prices implies the absence of price dispersion in the steady state. As a

consequence, we obtain a log-linearized aggregate production function of the form

ỹt = (1− α)Lt + αkt + (1− α)zt. (38)

Equations (35), (34), and (38) imply that the labor share lsht equals marginal costs in terms

of log-deviations: lsht = mct.

There is a continuum of households with identical preferences, which are separable in

consumption, leisure, and real money balances. Households’ preferences display (internal)

habit formation in consumption, that is, period t utility is a function of ln(Ct − hCt−1).

Households supply monopolistically differentiated labor services. These services are ag-

gregated according to a CES function that leads to a demand elasticity 1 + 1/λw (see

Equation (36)). The composite labor services are then supplied to the intermediate goods

producers at real wage wt. To introduce nominal wage rigidity, we assume that in each

period a fraction ζw of households is unable to re-optimize their wages. These households

adjust their t− 1 nominal wage by π∗eγ , where γ represents the average growth rate of the

economy. All other households re-optimize their wages. First-order conditions imply that(
1 + νl

1 + λw

λw

)
w̃t +

(
1 + ζwβνl

1 + λw

λw

)
wt

= ζwβ

(
1 + νl

1 + λw

λw

)
IEt

[
w̃t+1 + wt+1 + πt+1

]
(39)

+(1− ζwβ)
(
νlLt − ξt +

eγ(eγ − h)
(e2γ + βh2)

bt +
1

1− ζwβ
φt

)
,

where w̃t is the optimal real wage relative to the real wage for aggregate labor services,

wt, and νl would be the inverse Frisch labor supply elasticity in a model without wage
7An alternative assumption is what Eichenbaum and Fisher (2003) refer to as “dynamic indexation,”

where these firms’ prices grow at the previous period’s inflation. In Del Negro and Schorfheide (2006), we

discuss the extent to which a model with dynamic indexation is roughly observationally equivalent to one

with autocorrelated mark-up shock, using a similar framework and the same set of observables. Of the two

alternatives, here we use the one with autocorrelated mark-up shocks. It is beyond the scope of this paper

to investigate the implications of this choice for policy questions.
8We used the following re-parameterization: λf,t = (1− ζpβ)(1− ζp)λf /(1 + λf )λ̃f,t.
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rigidity (ζw = 0) and differentiated labor. Moreover, φt is a preference shock that affects

the intratemporal substitution between consumption and leisure and bt is a discount rate

shock that shifts the intertemporal substitution. The real wage paid by intermediate goods

producers evolves according to

wt = wt−1 − πt +
1− ζw
ζw

w̃t. (40)

Households are able to insure the idiosyncratic wage adjustment shocks with state con-

tingent claims. As a consequence they all share the same marginal utility of consumption

ξt, which is given by the expression:

(eγ − hβ)(eγ − h)ξt = −(e2γ + βh2)ct + βheγIEt[ct+1] + heγct−1 (41)

+(e2γ + βh2)bt − βhe−γ(e2γ + βh2)IEt[bt+1],

where ct is consumption. In addition to state-contingent claims households accumulate

three types of assets: one-period nominal bonds that yield the return Rt, capital k̄t, and

real money balances. Since preferences for real money balances are assumed to be additively

separable and monetary policy is conducted through a nominal interest rate feedback rule,

money is block exogenous and we will not use the households’ money demand equation in

our empirical analysis.

The first order condition with respect to bond holdings delivers the standard Euler

equation:

ξt = IEt[ξt+1] +Rt − IEt[πt+1]. (42)

Capital accumulates according to the following law of motion:

k̄t = (2− eγ − δ)k̄t−1 + (eγ + δ − 1)
[
it + S′′e2γ(1 + β)µt

]
, (43)

where it is investment, δ is the depreciation rate of capital, and µt is a stochastic disturbance

to the price of installed capital relative to consumption. Investment in our model is subject

to adjustment costs, and S′′ denotes the second derivative of the investment adjustment cost

function at steady state. Optimal investment satisfies the following first-order condition:

it =
1

1 + β
it−1 +

β

1 + β
IEt[it+1] +

1
(1 + β)S′′e2γ

(ξk
t − ξt) + µt, (44)

where ξk
t is the value of installed capital and evolves according to:

ξk
t − ξt = βe−γ(1− δ)IEt

[
ξk
t+1 − ξt+1

]
+ IEt

[
(1− (1− δ)βe−γ)rk

t+1 − (Rt − πt+1)
]
. (45)
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Capital utilization ut in our model is variable and rk
t in the previous equation represents

the rental rate of effective capital kt, which is given by

kt = ut + k̄t−1. (46)

The optimal degree of utilization is determined by

ut =
rk
∗
a′
rk
t . (47)

Here a′ is the derivative of the per-unit-of-capital cost function a(ut) evaluated at the steady

state utilization rate.

The aggregate resource constraint is given by:

ỹt = (1 + g∗)
[
c∗
y∗
ct +

i∗
y∗

(
it +

rk
∗

eγ − 1 + δ
ut

)]
+ gt. (48)

Here c∗/y∗ and i∗/y∗ are the steady state consumption-output and investment-output ratios,

respectively, and g∗/(1+ g∗) corresponds to the government share of aggregate output. The

process gt can be interpreted as exogenous government spending shock. It is assumed that

fiscal policy is passive in the sense that the government uses lump-sum taxes to satisfy its

period budget constraint. In addition to the monetary policy shock ε1,t the DSGE model has

six exogenous shocks zt, gt, φt, λf,t, bt, and µt. In the benchmark specification we assume

that bt and µt are equal to zero and that the other four shocks follow AR(1) processes. We

use the method in Sims (2002) to solve the DSGE model.9 We collect all the DSGE model

parameters in the vector θ and stack the normalized innovations of the structural shocks in

the vector εt.

4 Empirical Results

The goal of our empirical analysis is to study the effects of changes in the coefficients of

the monetary policy rule, θ(p), on the dynamics of the output gap, inflation, and nominal

interest rates. In addition to these three key macroeconomic variables we include the labor

share and hours worked in our estimation sample because these series can provide additional

information about the degree of price and wage rigidity. Our interest and inflation rates are

measured as annualized percentages. Within the model, ỹt denotes the percentage deviation

of output from its trend path γ(t)y∗. We interpret the potential output series published

9The simplified model in Section 2 is obtained by setting α = 0, h = 0, νl = 0, ζw = 0, ρR = 0, 1/a′ = 0,

S′′ = 0, γ = 0, kt = 0, bt = 0, µt = 0, φt = 0, λf,t = 0.
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by the Congressional Budget Office (CBO) as a measure of γ(t)y∗. Hence, the output gap,

computed as log difference of real and potential GDP provides us with a measure of ỹt.

We scale the output gap, labor share, and log hours worked by a factor of 100 to obtain

percentages. Further details about the data are provided in the Appendix. The empirical

results reported subsequently are based on a quarterly sample from 1982:Q4 to 2005:Q4.

Following Clarida, Gali, and Gertler (2000) the beginning of the sample is chosen to exclude

the high inflation episode of the 1970s as well as Volcker’s disinflation.

The relationships between the deviations from steady state that appear in the model

description of Section 3 and the observables yt are given by the following measurement

equation:

y1,t = ra
∗ + 400γ + πa

∗ + 4Rt, y2,t =


πa
∗ + 4πt

ỹt

100 ln(1− α)/(1 + λf ) + lsht

Lt

 . (49)

Here, we have partitioned yt such that y1,t corresponds to the policymaker’s instrument

(the interest rate), and y2,t is a vector that includes the remaining four observables. The

steady state (net) real interest rate in our model is given by ra
∗ + 400γ. The parameter ra

∗

is related to the discount rate β according to β = 1/(1 + ra
∗/400), and πa

∗ = 400π∗ denotes

steady state annualized inflation.

The remainder of this section is organized as follows. As a benchmark we use the DSGE

model of Section 3 with four exogenous shocks that follow independent AR(1) processes

(technology zt, government spending gt, labor supply φt, mark-up λf,t) and the serially

uncorrelated monetary policy shock ε1,t. First, we will present evidence of misspecification

in the benchmark DSGE model by comparing its fit to the fit of a DSGE-VAR that relaxes

the DSGE model implied restrictions. Discrepancies in the dynamics of DSGE model and

DSGE-VAR are used to motivate generalizations of the shock structure in the theoretical

model. Overall, we will consider three alternative empirical models that are meant to

capture some of the misspecification present in the benchmark DSGE model. These are:

(i) a DSGE-VAR with four lags that relaxes the cross-equation restrictions implied by the

rational expectations solution of the DSGE model; and two versions of the DSGE model in

which we generalize the exogenous shock structure prior to solving the model, namely, (ii)

a version in which the AR(1) government spending shock is replaced by an AR(2) process

(AR(2)-in-gt); (iii) a version that contains two additional AR(1) shocks: an investment-

specific technology shock µt and a shock to the discount factor bt (7-shocks).
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Second, we document how the treatment of misspecification will affect the estimation

of preference and technology parameters in the underlying DSGE model. In particular,

we compare the estimates obtained from the four empirical specifications and study how

differences in parameter estimates translate into differences in policy predictions with the un-

derlying DSGE model. Finally, we conduct the policy analysis using the benchmark DSGE

model, the AR(2)-in-gt and the 7-shocks DSGE models, and the DSGE-VAR (backward-

looking analysis, policy-invariant misspecification, and acknowledge misspecification). We

show that the policy implications of the DSGE model are by and large robust to the treat-

ment of misspecification.

4.1 Assessing Misspecification

The first step in our empirical analysis is the specification of a prior distribution for the

parameters of the DSGE model. Columns 2 and 3 of Table 1 contain prior means and stan-

dard deviations. The prior distribution for the policy parameters ψ1 and ψ2 is approximately

centered at Taylor’s (1993) values, whereas the smoothing parameter lies in the range from

0.18 to 0.83. The prior for the Calvo parameters ζp and ζw, which characterize the nominal

rigidities in prices and wages, respectively, are centered at 0.6 with a standard deviation of

0.15. This is a fairly diffuse distribution that encompasses findings in micro-level studies of

price adjustments such as Bils and Klenow (2004).10 The priors for the autocorrelation and

standard deviation of the shocks processes are chosen with two criteria in mind. First, we

want to be close to previous studies in the literature, such as Smets and Wouters (2003),

DSSW, and Levin, Onatski, Williams, and Williams (2005). Second, we want to make sure

that the second moments (especially volatility and autocorrelation) of the endogenous vari-

ables are roughly in line with the evidence from the pre-sample (1955:Q3 and 1982:Q3).

Further details about the prior are provided in the Technical Appendix.

We proceed by computing log marginal likelihood values for our four empirical model

specifications. The marginal likelihoods provide an overall measure of relative fit that trades-

off in-sample fit with model complexity. Log marginal likelihoods and posterior odds relative

to the DSGE-VAR (assuming that all four specifications receive equal prior probability)

10We have also estimated the same model under a prior for the Calvo parameters centered at the higher

value of 0.75, with standard deviation of 0.1. Interestingly, the fit of the model under the two priors, one

largely agnostic and one that assumes a high degree of nominal rigidities, is roughly comparable. In the

interest of space we show only the results from the agnostic prior, which achieves slightly better fit. But

most of the results are robust under the alternative prior view of the world.
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are reported in Table 2. The fit of the DSGE-VAR crucially depends on the choice of

hyperparameter λ. For λ = ∞ we are dogmatically imposing all the restrictions of a

VAR(4) approximation of the DSGE model, whereas for λ = 0 these restrictions are ignored.

We have estimated the DSGE-VAR model for the grid of λ values {0.5, 0.75, 1, 1.5, 1, 2, 5}.

Consistent with the results in DSSW we find that the marginal likelihood of the DSGE-VAR

as a function of λ has an inverted U-shape with a peak reached for λ = 0.75. The marginal

likelihood of the DSGE-VAR reported in Table 2 as well as all DSGE-VAR results presented

subsequently are therefore based on λ = 0.75.11 The log marginal likelihood differential

between the DSGE benchmark model and the DSGE-VAR is 109. We conclude that allowing

for deviations from the restricted moving average representation associated with the DSGE

benchmark DSGE model – we generically denoted these deviations by D∆
j in Equation (7)

– leads to a substantial improvement in the marginal likelihood. A generalization of the

shock structure also leads to better fit: the marginal likelihood differentials relative to the

DSGE-VAR shrink to 79 (AR(2)-in-gt) and 64 (7-shocks), respectively.

To gain insights into the misspecification of the DSGE model restrictions we examine

the moving-average representation generated by the DSGE-VAR. More specifically, we use

Equations (24) and (26) to compute DSGE-VAR impulse responses to technology, govern-

ment spending, mark-up, labor supply, and monetary policy shock innovations. For expo-

sition purposes we focus on those variables that are most important for the policy exercise:

the interest rate, inflation, and the output gap. The following impulse-response functions

are in principle of interest: the benchmark DSGE model, the VAR approximation of the

DSGE model, that is, DSGE-VAR(λ = ∞), and the DSGE-VAR(λ = 0.75), which provides

the best fit. A comparison of DSGE and DSGE-VAR(λ = ∞) documents the approximation

error induced by potential lack of invertibility and truncation of VAR lags (see Fernandez-

Villaverde, Rubio-Ramirez, Sargent, and Watson (2007)). We find that for our model and

identification procedure the VAR approximation error is not a concern.12 Hence, we will fo-

cus on a comparison of impulse-responses obtained from the DSGE-VAR(λ = 0.75) and the

DSGE-VAR(λ = ∞) using the posterior draws of the DSGE model parameters θ associated

with the estimated DSGE-VAR(λ = 0.75). Figure 1 displays the posterior mean impulse

responses and illustrates the effect of the misspecification matrices Ψ∆ and Σ∆ in (14).
11Instead of conditioning on the value of λ that maximizes the marginal likelihood function, we could

average all of our results with respect to the posterior probabilities of λ, which are proportional to the

marginal likelihood values. However, since the marginal likelihood function is sharply peaked and the model

predictions of interest tend to be smooth functions of λ, we believe that our simplification does not distort

the empirical results.
12A Figure with the relevant impulse response function comparison is provided in the Technical Appendix.
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Consistent with results reported in DSSW we find that the misspecification of the propaga-

tion mechanism for the technology shock is fairly small. The propagation of mark-up and

labor supply shocks is also by and large not affected by the discrepancy matrices. Most of

the misspecification is concentrated in the response to government spending/demand shocks

(gt). The DSGE-VAR(λ = 0.75) responses are hump-shaped and much more persistent than

the DSGE-VAR(λ = ∞)’s.

The DSGE-VAR analysis provides some justification for the generalizations of the ex-

ogenous shock structure in the benchmark DSGE model that we are considering. Since it

is the response to a government spending shock that appears to be most severely misspeci-

fied, we replace the AR(1) process for gt with an AR(2) process using the hierarchical prior

described in Section 4.4:

gt = ρ̃g,1(1− ρ̃g,2)gt−1 + ρ̃g,2gt−1 + σ̃gεt.

The parameterization of the AR(2) process in terms of partial autocorrelations ρ̃g,1 and ρ̃g,2

guarantees that the process is stationary for ρ̃j ∈ (−1, 1) (see Barndorff-Nielson and Schou

(1973)). We shrink the coefficients of this AR(2) process toward an AR(1) representation

with autocorrelation ξg and innovation variance ωg (see Table 1). Overall, our prior takes

the form p(ρ̃g,1, ρ̃g,2, σ̃g|ξg, ωg)p(ξg, ωg), where p(ρ̃g,1, ρ̃g,2, σ̃g|ξg, ωg) is given in (32) and we

set T ∗ = 70.13 Figure 2 overlays the impulse responses for the AR(2)-in-gt DSGE model

(black lines) with those from the benchmark specification (gray lines). A comparison with

Figure 1 indicates that the responses to a demand shock in the AR(2)-in-gt model are indeed

much closer to those of the DSGE-VAR than in the baseline specification. The responses

of interest rates and the output gap are hump-shaped, whereas the response of inflation is

more persistent under than under the baseline specification. The responses to the other

shocks, on the other hand, appear essentially unaffected and closely resemble those of the

benchmark DSGE model.

As an alternative to the DSGE model with AR(2) government spending shock we con-

sider a version of the model with investment-specific technology shocks and shocks to the

stochastic discount factor. Fisher (2006) documents that investment-specific technology

shocks are an important source of business cycle fluctuations and Justiano and Primiceri

(2006) argue that a reduction in the volatility of this shock can account for much of the

great moderation observed since the mid 1980s. Numerous studies document that the asset

pricing implications of models as the one used in this paper are at odds with the data.
13We chose this value of T ∗ as it implies roughly the same prior weight as in the DSGE-VAR.
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The shock bt exogenously modifies the model implied stochastic discount factor and hence

can be viewed as a device that corrects misspecification in the consumption Euler equation.

Figure 3 compares the impulse responses for this 7-shocks model (black lines) with those

from the baseline specification (gray lines). The impulse responses to the two additional

shocks are quite persistent, as confirmed by the estimates for the corresponding autocorrela-

tion parameters ρb and ρµ in Table 1. The additional shocks capture some of the dynamics

previously captured by demand shocks. In particular, the responses of interest rates and the

output gap to an investment-specific technology shock are hump-shaped, and the response

to inflation is quite persistent. These impulse responses very much resemble the DSGE-VAR

responses to a demand shock, much more so than the demand shock impulse responses in

the baseline model (at least in terms of the variables considered here). In other words, in-

troducing additional shocks captures some of the misspecification present in the benchmark

specification of the DSGE model.

4.2 Misspecification and Parameter Estimates

We will now examine to what extent the estimates of the DSGE model parameters differ

across the four empirical models. Posterior means and standard deviations are reported in

Table 1. We begin with the coefficients of the monetary policy rule. The posterior means

of ψ1, the central bank’s reaction to inflation deviations from steady state range from 2.49

(AR(2)-in-gt DSGE) to 3.06 (7-shocks DSGE). Since the posterior standard deviations are

about 0.35, there is considerable overlap of the credible intervals associated with these

estimates. Posterior means of ψ2 range from 0.07 to 0.12 with standard deviations of

approximately 0.05, indicating a modest response of the Federal Reserve to output gap

movements. Finally, we find a fairly high degree of interest rate smoothing, with posterior

mean estimates of ρR between 0.81 and 0.85. By and large, our policy rule estimates are in

line with the numbers reported in DSSW, who find ψ̂1 = 2.21, ψ̂2 = 0.07, and ρ̂R = 0.82.

The estimates in DSSW are based on a slightly larger sample, starting in 1974:Q2, a broader

set of observables that includes consumption and investment, and a different measure of

output, namely real GDP growth rates. Finally, our estimates are also broadly consistent

with numbers reported in Smets and Wouters (2006) for the 1984:Q1 to 2004:Q4 sample,

who find a somewhat smaller response to inflation: ψ̂1 = 1.77. We conclude that the policy

rule estimates are fairly insensitive to the adjustments that were made to the benchmark

DSGE model to account for misspecification. Based on our estimates we use the values

ψ1 = 2.75, ψ2 = 0.062, and ρR = 0.8 as historical reference points in the evaluation of
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monetary policy rules.

Important for the effects of monetary policy and the propagation of monetary policy

shocks are the parameters ζp and ζw, which determine the degree of nominal rigidity in

the DSGE model. For price stickiness the estimates range from 0.67 (7-shocks DSGE) to

0.76 (AR(2)-in-gt DSGE) with standard deviations of about 0.05 and considerable overlap

in the posterior densities. Interestingly, there is more divergence in the estimated wage

stickiness with posterior mean estimates between 0.34 (AR(2)-in-gt DSGE) and 0.77 (7-

shocks DSGE). As a reference point, we also provide estimates from DSSW: ζ̂p = 0.83 and

ζ̂w = 0.89; Smets and Wouters (2006, post 1983 sample): ζ̂p = 0.73 and ζ̂w = 0.74; Levin,

Onatski, Williams, and Williams (2006): ζ̂p = 0.82 and ζ̂w = 0.80. In general, the analysis

differs with respect to sample period and specification of the Phillips curve. Nevertheless,

the dispersion suggests that the estimates are quite sensitive to auxiliary assumptions.

As was apparent from the impulse response functions discussed in the previous subsec-

tion, the estimated exogenous processes are highly serially correlated. Technology shocks

are particularly persistent, with ρz tightly estimated around 0.97 in the three versions of

the DSGE model. To provide a comparison, Smets and Wouters (2006) estimate ρz to be

0.97 for the 1966:Q1 to 1979:Q2 sample, 0.94 for the post 1983 sample, and 0.95 for the

combined sample. Demand shocks appear to be strongly autocorrelated in the benchmark

DSGE model (ρ̂g = 0.91) and in the AR(2)-in-gt model, for which the estimated first-order

partial autocorrelation of gt is 0.97. Labor supply and mark-up shocks are less persistent

with estimates ranging from 0.66 to 0.8 and 0.3 to 0.75, respectively.

Interestingly, the persistence of technology shocks under the DSGE-VAR is only about

0.89 and the standard deviation of the innovation is 0.42 as opposed to 0.72 in the bench-

mark DSGE model. Under DSGE-VAR model misspecification is partly captured by the

deviations Ψ∆ and Σ∆ from the cross-equation restrictions. This leads to smaller forecast

errors and ultimately to smaller shock volatility estimates. If the DSGE model restrictions

are not relaxed, then the misspecification has to be absorbed by some of the structural

shocks, which may result in highly persistent and fairly volatile processes. For instance,

while in the 7-shock DSGE model the estimated autocorrelations for the government spend-

ing, the labor supply, and the mark-up shock are not as high as in the benchmark DSGE

model, the additional investment-specific technology shock and the discount factor shock

appear to be highly serially correlated: ρ̂µ = 0.91 and ρ̂b = 0.94.

In general, the posterior estimates for the non-policy parameters θ(np) obtained from

the DSGE-VAR lie between the prior and the benchmark DSGE posterior. This finding
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is consistent with Equation (19) and the theory presented in Section 2.1.2. For moderate

values of λ, indicating the presence of misspecification, less weight is placed on the likelihood

function and more weight on the prior distribution when determining the posterior.

4.3 Policy Implications of Estimates

With the parameter estimates in hand, we will now explore how the volatility of the output

gap, inflation, and interest rates is affected by changes in the coefficients ψ1, ψ2, and ρR of

the monetary policy rule (33). In this subsection we will compute unconditional variances

with the benchmark DSGE model using (i) the estimates of the non-policy parameters θ(np)

obtained when fitting the state-space representation of the benchmark DSGE models to the

data (columns 4 and 5 of Table 1), and (ii) the estimates of θ(np) obtained from the DSGE-

VAR analysis conditional on λ = 0.75 (columns 6 and 7 of Table 1). For brevity we will

refer to (i) as the direct DSGE model estimates and to (ii) as the DSGE-VAR estimates.

We consider a two-dimensional grid for the policy rule coefficients: ψ1 takes nine values

ranging from 1.001 to 3 in intervals of 0.25; ψ2 takes six different values, computed taking

the Taylor’s (1993) value ψT
2 = 0.125 as a reference, namely 0, 1

2ψ
T
2 = 0.062, ψT

2 = 0.125,
3
2ψ

T
2 = 0.188, 2ψT

2 = 0.250, 3ψT
2 = 0.375. We set the interest rate smoothing coefficient

ρR = 0.8. We will report variance differentials relative to the baseline policy rule ψ1 = 2.75,

ψ2 = 0.062, ρR = 0.8. These values are chosen based on the parameter estimates reported

in Section 4.2 and roughly correspond to the historical Volcker-Greenspan policy rule.

As in Section 2, we use V(θ(p), θs,Ψ∆,Σ∆) to generically denote the covariance matrix

of the output gap, inflation, and interest rates associate with an empirical model. Mainly

for expositional convenience we summarize the covariance matrix V(·) through the (loss)

function

min {tr[WV(θ(p), θs,Ψ∆,Σ∆)],B},

where the upper bound B ensures that the posterior expected value of the variance is well

defined when averaging over θs, Ψ∆, and Σ∆, regardless of the shape of the posterior distri-

bution. The upper bound B is set to 100. This value is substantially larger than the sample

variances of the output gap, inflation, and interest rates, which are approximately 4.1, 1, and

6.5, respectively, in our estimation sample. The weighting matrix for this summary measure

is diagonal with entries 1/4 (annualized interest rates), 1 (annualized inflation rates), and

1/4 (output gap, percentage deviations from potential output). Since misspecification is a

serious concern in our subsequent analysis, we decided not to use the expected utility of



30

the representative household in the underlying DSGE model as a measure of policy perfor-

mance. While not welfare-based, our performance measure is of interest to many central

bankers, who are generally concerned with the stabilization of output and inflation fluctua-

tions. Moreover, it is widely used for the comparison of policy rules across broad classes of

models (see for instance Taylor’s (1999) volume).

To understand how changes in the policy rule affect the volatility of the output gap,

inflation, and interest rates it is instructive to explore how the propagation of the structural

shocks is altered. Using the benchmark DSGE model and its direct parameter estimates for

the non-policy parameters θ(np) we compute impulse response functions for three different

values of the response to inflation in the policy rule, ψ1: 2.75, 2, and 1.25, while fixing

ψ2 = 0.0625. Posterior mean responses are plotted in Figure 4. The lines’ darkness is

proportional to the magnitude of the response. Since the estimated ψ1 is approximately 2.75,

the dark impulse responses in Figure 4 are essentially identical to the posterior estimates

of the impulse responses for the DSGE model. The propagation of the technology shock is

most sensitive to changes in the central bank’s reaction to inflation. Since the estimated

autocorrelation of the technology shock is near unity, a decrease in ψ1 from 2.75 to 1.25

results in a large and prolonged response of inflation and the interest rate.

Figure 5 shows two surfaces summarizing the posterior expected differentials of the

weighted variances as a function of the responses to inflation (ψ1) and the output gap (ψ2).

The black surface is based on the direct estimates of the parameters θ(np) whereas the gray

surface is based on the DSGE-VAR estimates. For both surfaces the variance differentials

are computed from the state space representation of the benchmark DSGE model. The

loss differential shown by the black surface reflect the impulse responses in Figure 4: As ψ1

decreases from its historical value the variance of inflation and the interest rate increase. The

increase is first gradual, but then quite dramatic as ψ1 approaches 1. Under the DSGE-VAR

posterior distribution (gray) the loss differential also rises as ψ1 declines, but the increase

is not nearly as stark.

The difference in the surfaces is due to one element of the θ(np) vector: the persistence

of the technology shock ρz. Recall from Section 4.2 that the direct estimate of ρz is 0.97,

whereas the DSGE-VAR estimate is 0.89. Indeed, if we recompute the loss surface for the

DSGE-VAR estimates subject to the restriction that ρz = 0.97 and σz = 0.72 the two loss

surfaces are almost identical. Hence, the differences in the remaining non-policy parameters

matter very little in explaining the different shape of the loss differentials in Figure 5.

To understand how ρz affects the volatility of output and inflation, it is instructive to
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consider the simplified version of the DSGE model introduced in Section 2. If we restrict

ψ1 = 1/β, it becomes straightforward to calculate impulse response functions for output

and inflation analytically based on Equations (1) to (4):

∂ỹt+h

∂εz,t
=

κ/β

κ/β + ψ2 + 1− ρz
ρh

zσz,
∂πt+h

∂εz,t
= − ψ2 + 1− ρz

(1/β + (ψ2 + 1− ρz)/κ)(1− βρz)
ρh

zσz.

(50)

In the simple model, for ψ2 > 0 real marginal costs fall below steady state in response to a

positive technology shock:

∂mct+h

∂εz,t
= − ψ2 + 1− ρz

κ/β + 1− ρz
ρh

zσz.

The autocorrelation of the technology shock has two effects. Since the impulse responses

decay at the rate ρh
z , the more persistent the technology shock, the longer it takes for

marginal costs, output, and inflation to revert back to their steady state levels. Second, ρz

affects the magnitude of the fall in real marginal costs. For values of ψ2 > κ/β an increase

in ρz raises the initial response of real marginal costs to a technology shock. Since inflation

is given by the sum of discounted future marginal costs, its response is amplified. We see

this mechanism at work in Figure 5. For a fixed value of ψ1 the loss increases much more

rapidly as a function of ψ2 under the benchmark DSGE model estimates (high ρ̂z) than

under the DSGE-VAR parameter estimates (moderate ρ̂z).

As the central bank increases its reaction to output gap movements, the response of ỹt+h

is dampened. Since marginal costs in this simple model are given by the difference between

output and the technology shock, the volatility of marginal costs and inflation increases. For

many reasonable weight functions, the rise in inflation fluctuations outweighs the reduction

in output volatility and the overall loss increases as a function of ψ2, which explains the

shape of loss surface in Figure 5. In short, a strong response to output is undesirable under

the DSGE model – more so if the technology shock is highly persistent.

The theoretical literature (e.g., Woodford (2003)) emphasizes that the central bank

should not respond to output but rather to deviations of output from the level that would

prevail in the absence of nominal rigidities. In the simple model of Section 2, this flexible

price output is given by ỹ
(fp)
t = zt + gt and the flexible price output gap equals marginal

costs. If we change the monetary policy rule (1) to

Rt = ψ1πt + ψ2mct + σRε1,t,

we can show that in the simple model an increase in ψ2 leads to more stable marginal

costs and inflation. In our estimated DSGE model marginal costs correspond to the labor
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share, which we include as observable variable in the estimation. However, the flexible price

output gap is not simply given by marginal costs. Moreover, once misspecification of the

DSGE model is a concern, the concept of flexible price output is not well defined anymore.

We recomputed the loss surfaces depicted in Figure 5 under a policy rule in which the

central bank responds to the labor share instead of our measure of output. Since inflation

in the larger DSGE model is also the expected sum of discounted future marginal costs, a

stabilization of marginal costs leads to a reduction of inflation volatility. Thus, according

to the estimated DSGE model, a response to the labor share instead of output does neither

lead to a performance deterioration, nor does it generate any improvements over a policy

that strongly responds to inflation. This conclusion holds for both the DSGE model and

the DSGE-VAR based parameter estimates, as well as for the case where misspecification

is taken into account.

4.4 Relaxing the Restrictions on the Exogenous Shocks

The policy analysis in Section 4.3 was based on the benchmark DSGE model and ignored

the model misspecification documented in Section 4.2. Subsequently, we will incorporate

concern about model misspecification into the policy analysis. We begin by studying the

policy implications for the two versions of the DSGE model with a generalized exogenous

shock structure.

It is common in the literature on policy analysis with DSGE models to assume that

the exogenous shocks are policy invariant. This assumption is plausible in so far the shocks

truly capture fundamental shifts in preferences and technologies. If, on the other hands,

the shocks partly capture model misspecification, their policy-invariance is not self-evident.

In computing the subsequent results, we assume that the (generalized) shocks are indeed

policy invariant.

Figure 6 depicts the loss surfaces associated with the AR(2)-in-gt model (black) and the

7-shocks model (gray). To compute the policy performance measure we use the posterior

parameter distributions associated with the two models, summarized in columns (7,8) and

(9,10) of Table 1. Both loss functions have roughly the same shape as under the bench-

mark specification: the loss increases quite rapidly as ψ1 decreases or ψ2 increases. Thus,

addressing the misspecification in the benchmark model by relaxing the restrictions on the

process for the exogenous shocks results in empirical specifications that fit the data better

but have qualitatively similar policy implications.
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The main reason for the similarity of the loss surfaces is that neither for the AR(2)-in-

gt nor for the 7-shocks specification, the generalization of the shock structure significantly

affects the estimated persistence ρz of the technology shock. Under the benchmark DSGE

model ρ̂z = 0.97, whereas for the two alternative specifications ρ̂z = 0.96. As we argued in

Section 4.3, it is the persistence of the technology shock that drives the policy implications

of the DSGE model. One can interpret this finding as stating that the ‘true’ technology

process is indeed highly persistent or, alternatively, that this persistence is a symptom of

model misspecification. In the latter case one should interpret the policy recommendations

from all three DSGE models (benchmark, AR(2)-in-gt, and 7-shocks) with caution.

4.5 Relaxing Restrictions on the VAR Representation

We now proceed by directly relaxing the restrictions that the benchmark DSGE model

imposes on the (approximate) vector autoregressive representation (9) for our observables.

To account for model misspecification, the DSGE-VAR approach introduces discrepancy

matrices Ψ∆ and Σ∆ into the law of motion (14). We established in Section 4.2 that a

deviation from the restriction functions Ψ∗(θ) and Σ∗(θ) improves the log marginal likelihood

by 109 points. To conduct policy analysis with the DSGE-VAR we have to make assumptions

about the post-intervention values of the discrepancy matrices and will in turn implement

the approaches discussed in Section 2.1.3.

Sims (1999) uses a structural VAR framework to study whether a modern interest-

rate feedback rule could have prevented the great depression. He estimates the VAR on

pre World War II data and replaces the actual policy rule by a hypothetical one. Similarly,

Rudebusch and Svenson (1999) fit a small scale backward looking model to output, inflation,

and interest rate data and assess the performance of different, hypothetical interest rate

feedback rules in the context of the estimated model. In the context of the DSGE-VAR

framework this backward-looking analysis amounts to treating the estimated empirical model

as a structural VAR and conducting policy analysis by changing the interest-rate feedback

rule under the assumption that the decision rules of the private sector remain unchanged

(see Equation (24)).

Again, the simple model of Section 2 can be used to shed light on the analysis. Suppose

that gt = 0, ε1,t = 0, and all fluctuations are due to the technology shock. Moreover, past

policy is given by ψ∗1 = 1/β and ψ∗2 = 0. According to (50), the conditional expectations

IEt[ỹt+1] and IEt[πt+1] under the historical policy are given by ρz ỹt and ρzπt, respectively.
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If we plug the conditional expectations into (2) and (3) and quasi-difference (3) we obtain

the following backward-looking system

Rt − ψ1πt − ψ2ỹt = 0 (51)

(1− ρz)ỹt − ρzπt +Rt = 0

−κỹt + (1− βρz)πt = −ρzκỹt−1 + ρz(1− βρz)πt−1 − κσzεz,t,

which is a special case of our general representation (24). It is straightforward to show that

inflation and output evolve according to

πt = ρzπt−1 − κ
1− ρz + ψ2

(1− βρz)(1− ρz + ψ2) + (ψ1β − ρzβ)κ/β
σzεz,t (52)

ỹt = − ψ1 − ρz

1− ρz + ψ2
πt.

If we keep ψ1 at the historical value 1/β, then (52) is identical to the rational expectations

solution for a wide range of values of ψ2 because the conditional expectations of output

and inflation are independent of ψ2. For other values of ψ1, we deduce from (52) that

the backward-looking system inherits a key feature of the rational expectations system: a

stronger response to inflation tends to reduce the volatility of inflation.

Our empirical analysis is of course more complex. The vector autoregressive law of

motion of the endogenous variables is altered by Ψ∆ and Σ∆ (see Equation (24)). The

backward-looking analysis is essentially based on two assumptions: (i) private agents’ ex-

pectations of future variables as functions of current and past observables are not affected by

changes in the monetary policy rule; and (ii) the discrepancy matrices are policy invariant.

The expected loss differentials as a function of ψ1 and ψ2 based on the backward-looking

analysis are shown in Figure 7 (dark surface). We also plot the loss-differential obtained un-

der the benchmark DSGE model (gray surface), using the posterior parameter estimates of

the DSGE-VAR(λ = 0.75).14 In line with the implications of the simplified model (51), the

outcomes under the backward-looking analysis resemble the forward-looking analysis with

the benchmark DSGE model, at least qualitatively. Small values of ψ1 tend to generate

more volatility and strong responses to output tend to destabilize the economy. Quantita-

tively, the loss differentials are much larger for high values of ψ2. This is because the system

becomes explosive in that region, which is a common issue with backward looking analysis.

The backward-looking approach is appealing if the degree of DSGE model misspecifi-

cation (captured by Ψ∆ and Σ∆) is so large that the DSGE model structure (captured by

14The gray surfaces in Figure 7 is identical to the gray surface in Figure 5.
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Ψ∗(θ(p), θ(np)) and Σ∗(θ(p), θ(np))) is unable to explain the dynamics in the data. In this

case, one might call into question information coming from the DSGE model, that is, how

the Ψ∗(θ(p), θ(np)) and Σ∗(θ(p), θ(np)) matrices change with policy, and decide to completely

ignore it in carrying out the policy analysis. Is the backward-looking approach justified in

the context of the estimated DSGE-VAR? Arguably, the answer is no. According to Fig-

ure 1 the DSGE model captures the dynamic responses to a technology shock quite well.

We have also shown that much of the shape of the loss surface is due to the contribution of

the technology shock to our weighted average of variances. Hence the rationale for ignoring

the impact of the policy parameters on Ψ∗(θ(p), θ(np)) and Σ∗(θ(p), θ(np)) is not very strong,

at least in those dimensions where the model fits well. For this reason we consider two

alternative approaches for dealing with model misspecifications.

The first approach – policy-invariant misspecification – amounts to assuming that the

misspecification matrices are invariant to the policy parameters. As described in (27), we

compute impulse response functions from the DSGE-VAR for λ = 0.75 and λ = ∞. These

impulse responses deliver us discrepancies IRF∆
j that capture deviations of the estimated

from the restricted moving average representation. The IRF∆
j ’s are displayed in Figure 1

as the discrepancies between the DSGE-VAR impulse responses for λ = 0.75 and λ = ∞. In

terms of the notation developed in Section 2.1 we will essentially let D̃∗
j (θ(p), θ(np)) vary with

the policy parameters θ(p) and assume that the discrepancies IRF∆
j are policy invariant.

Hence, if according to the DSGE-VAR analysis the response to a particular shock, for

instance the technology shock, is well captured by the underlying DSGE model, then we

recover the policy prediction of the DSGE model. If the DSGE-VAR analysis implies that

the propagation of a particular shock is poorly captured by the DSGE model, e.g., the

demand shock, then our policy predictions are potentially different from those of the DSGE

model.

The gray surface in Figure 8 shows the expected loss differential under the assumption

that moving-average discrepancies are policy invariant. One can readily see that these loss

differentials are almost identical to the DSGE model’s loss differentials, shown in Figure 7.

According to (27) we can write

IE[y2,ty
′
2,t] =

∞∑
j=0

[
D̃∗

j D̃
∗′
j + D̃∗

j IRF
∆′

j + IRF∆
j D̃

∗′
j + IRF∆

j IRF
∆′

j

]
.

While the last term affects the overall variance, it does not alter variance differentials across

policies. Large values of IRF∆
j only matter if they interact with model-implied moving

average coefficient matrices D̃∗
j that are sensitive to changes in monetary policy. We deduce
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from Figures 1 and 4 that the discrepancies IRF∆
j are large for the demand shock, but

the response to the demand shock is according to the DSGE model not very sensitive to

changes in ψ1 and ψ2. Hence, overall the presence of misspecification does not change the

policy implications under the assumption that the moving-average discrepancies IRF∆
j are

policy-invariant.

The second approach – acknowledge misspecification – is closer to the robust control

literature in that the policy-maker refuses to estimate the misspecification matrices using

past data. The data are only used to assess the overall magnitude of the discrepancies,

as our analysis is conditional on the value of λ that maximizes the marginal likelihood

function associated with the DSGE-VAR. The smaller the estimated λ, the more diffuse

the prior covariance matrix for Ψ∆ and Σ∆. We generate draws draws from the DSGE-

VAR based posterior distribution of θ(np) and the prior distribution of Ψ∆,Σ∆ conditional

on θ(np) and the counterfactual policy parameter θ̃(p) to compute expected values for our

performance measure. The dark surface in Figure 8 shows the expected loss differential. A

comparison with Figure 5 (gray surface) indicates that the shape of the loss surface under the

acknowledge-misspecification analysis closely resembles the loss surface associated with the

benchmark DSGE model. The reason for this similarity is that under the prior distribution

the discrepancy matrices have essentially mean zero. However, the uncertainty surrounding

the outcomes is quite different in the two cases, as we now proceed to show.

A robust control analysis can typically be represented as a Nash equilibrium between

a policy maker and an evil adversary who chooses model misspecifications to harm the

policy maker. Bayesian analysis, on the other hand emphasizes the calculation of expected

losses and place less weight on extreme forms of model misspecification. So far, we have

essentially conducted policy analysis under the assumption of risk-neutrality. That is, we

focused on expected variance differentials, ignoring the uncertainty associated with these

differentials. Figure 9 presents pointwise 90% credible intervals (dotted) for the weighted

variance differentials as a function of ψ1. The solid gray and black lines correspond to the

expected values that have been depicted in Figure 8. While the mean differentials obtained

from the acknowledge misspecification analysis are similar to those from the analysis that

ignores model misspecification, the uncertainty is much larger in the former case. Hence, a

risk-averse policy maker has an additional rationale for avoiding a weak response to inflation.

She also has a much smaller incentive to increase the inflation response beyond the baseline

value of 2.75 because the expected gains in performance are outweighed by the uncertainty

once potential misspecification is taken into account.
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5 Conclusion

The presence of misspecification in DSGE models raises two challenges for policymakers.

The first challenge is recovering the structural (non-policy) parameters. Direct estimation

of the DSGE model is generally conducted under the assumption that the DSGE is the

data generating process, e.g. that there are no serious misspecification issues. When this

assumption is violated, the parameter estimates can be misleading. In the case considered

here, a key non-policy parameter is the persistence of technology shocks ρz. DSGE model

estimation delivers an estimate of ρz close to one. If we believe that technology shocks are in

reality extremely persistent, direct estimation of the DSGE model is fine and we can proceed

with the policy analysis. If on the other hand we suspect that this estimate of ρz results

from misspecification, we may be suspicious of the policy implications. These implications

are that if the reaction to inflation in the policy rule drops below 1.5, and at the same time

the reaction to the output gap rises much above the historical value, the outcomes in terms

of the volatility of inflation and the interest rate are simply disastrous.

DSGE-VAR provides the policymakers with an alternative set of estimates. Under

DSGE-VAR, the DSGE is treated as a reference model around which the more loosely pa-

rameterized VAR is centered. While the non-policy parameters are still estimated as to

minimize deviations from the cross-equation restrictions, the penalty attached to these de-

viations (λ) is not infinity. As a consequence, the DSGE-VAR parameter estimates are

more influenced by the prior distribution than in the case of direct DSGE model estima-

tion. This is an advantage of the DSGE-VAR procedure to the extent that the underlying

prior distribution for the DSGE model parameters has been specified in a careful man-

ner, drawing information about key structural parameters from a larger set of observations

that are excluded from the likelihood function. Thus, in the presence of misspecification

the determination of the structural parameters in the DSGE model to some extent resem-

bles parameterization strategies favored by the calibration literature, which emphasizes the

careful use of data sources that provide prima facie evidence on the model parameters.

A popular approach to DSGE model estimation in presence of misspecification is to

relax the cross-equation restrictions by adding free parameters to the model. This can be

done by adding more shocks, or by enriching the dynamics of the existing shocks. We

pursue both approaches and find that they indeed improve fit. They do not however affect

the estimates of ρz, that remain very close to 1. This could be seen as indirect evidence

that neither approach fully addresses the misspecification issue. In any case, this estimate
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of ρz implies that the policy prescriptions remain very close to those of the DSGE model.

The second challenge is to address misspecification in the policy analysis. If we are con-

fident that the DSGE model at hand, in spite of being misspecified, captures the relevant

policy trade-offs (see for instance the example in Kocherlakota (2006)), then misspecifi-

cation might not be a concern. If one option is to ignore misspecification completely, an

alternative option is to ignore the cross-equation restrictions, and conduct policy analysis

with a backward-looking model. Our empirical analysis with the DSGE-VAR framework

casts some doubts on both extremes. On the one hand, we document that misspecification

is present and likely affects the key policy trade-offs. On the other hand, we find that in

dimensions that are important for policy analysis, such as the propagation of technology

shocks, the misspecification does not seem to be a concern.

If we decide to explicitly model misspecification, either in the structural (adding free

parameters) or in the vector autoregressive (DSGE-VAR) form, the key question is how mis-

specification interacts with policy. The structural approach treats the additional free param-

eters as policy invariant. Our DSGE-VAR approach treats misspecification matrices either

as policy invariant (policy-invariant misspecification analysis) or uses a prior distribution

for the post-intervention misspecification matrices that is centered at zero (acknowledge-

misspecification analysis). The approaches considered in this paper capture different atti-

tudes toward the Lucas critique. The structural approach makes sense only if the exogenous

dynamics are truly exogenous. The DSGE-VAR/policy-invariant misspecification analysis

is appealing only if one believes that the discrepancy matrices capture adjustments to the

dynamics that are insensitive to policy interventions. The DSGE-VAR/acknowledge mis-

specification approach is more agnostic, as it refuses to learn from past data about the

misspecification matrices, but shares the view that these matrices are not something we can

model explicitly. To some extent, this view can be justified by the following argument: If we

knew how to change the model to address misspecification, we should have done it already.

We have documented the challenges of performing policy analysis with a state-of-the-

art, albeit misspecified DSGE model and developed a framework that allows researchers and

policy makers to explore the sensitivity of policy predictions under a variety of assumptions

about the policy invariance of discrepancies between theory and data. Two lessons are

robust across all modes of policy analysis considered in this paper. First, deviating from

the baseline parameters of the feedback rule is unlikely to provide substantial improvements

over the estimated Volcker-Greenspan policy. Second, it appears undesirable to decrease

the response to inflation, or increasing the reaction to deviations of output from a long-run
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trend path.
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A Appendix

We obtain all other series from Haver Analytics (Haver mnemonics are in italics). The

nominal rate corresponds to the annualized effective federal funds rate (FED), in percent.

Inflation is computed using quarter-to-quarter log-differences of the chained-price GDP de-

flator (JGDP), scaled by 400 to obtain annualized percentages. The output gap is defined

as the log difference of real GDP (nominal GDP divided by the chained-price deflator) and

the CBO’s real potential output (GDPPOTH). The log differences are scaled by 100 to con-

vert them to percentages. Our measure of hours worked is computed by taking total hours

worked reported in the National Income and Product Accounts (NIPA), which is at annual

frequency, and interpolating it using growth rates computed from hours of all persons in

the non-farm business sector (LXNFH). We divide hours worked by LN16N to convert them

into per capita terms. We then take the log of the series multiplied by 100 so that all figures

can be interpreted as percentage changes in hours worked. The labor share is computed by

dividing total compensation of employees (YCOMP) obtained from the NIPA by nominal

GDP. We then take the log of the labor share multiplied by 100.
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Table 1: Prior and Posterior Moments

Name Prior DSGE DSGE-VAR Generalized Shocks

Benchmark λ = 0.75 AR(2)-in-gt 7-Shocks

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Policy Rule Parameters

ψ1 1.56 ( 0.36) 2.71 ( 0.35) 2.75 ( 0.37) 2.49 ( 0.44) 3.06 ( 0.35)

ψ2 0.20 ( 0.10) 0.09 ( 0.04) 0.13 ( 0.05) 0.12 ( 0.07) 0.07 ( 0.03)

ρr 0.50 ( 0.20) 0.81 ( 0.02) 0.85 ( 0.02) 0.84 ( 0.02) 0.85 ( 0.02)

Nominal Rigidities

ζp 0.60 ( 0.15) 0.76 ( 0.04) 0.71 ( 0.05) 0.77 ( 0.05) 0.67 ( 0.04)

ζw 0.60 ( 0.15) 0.40 ( 0.14) 0.45 ( 0.09) 0.77 ( 0.08) 0.34 ( 0.08)

Preference Parameters

h 0.70 ( 0.05) 0.80 ( 0.04) 0.72 ( 0.05) 0.66 ( 0.06) 0.62 ( 0.05)

νl 2.00 ( 0.75) 1.29 ( 0.48) 1.82 ( 0.61) 2.05 ( 0.72) 1.37 ( 0.37)

Technology Parameters

α 0.35 ( 0.05) 0.34 ( 0.00) 0.34 ( 0.01) 0.34 ( 0.00) 0.34 ( 0.00)

S′′ 4.00 ( 1.50) 11.19 ( 2.23) 5.04 ( 1.59) 7.31 ( 2.11) 2.69 ( 0.83)

a′ 0.30 ( 0.08) 0.28 ( 0.08) 0.30 ( 0.07) 0.30 ( 0.07) 0.30 ( 0.08)

Steady State Parameters

ra
∗ 1.00 ( 0.40) 1.23 ( 0.28) 0.99 ( 0.35) 1.16 ( 0.32) 0.85 ( 0.30)

πa
∗ 4.01 ( 2.00) 2.63 ( 0.18) 2.51 ( 0.27) 2.58 ( 0.27) 2.43 ( 0.25)

g∗ 0.25 ( 0.10) 0.19 ( 0.08) 0.22 ( 0.09) 0.19 ( 0.08) 0.28 ( 0.11)
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Table 1: Prior and Posterior Moments (continued)

Name Prior DSGE DSGE-VAR Generalized Shocks

Benchmark λ = 0.75 gt-in-AR(2) 7-Shocks

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Shock Autocorrelations

ρz 0.75 ( 0.10) 0.97 ( 0.02) 0.89 ( 0.05) 0.96 ( 0.03) 0.96 ( 0.02)

ρg 0.75 ( 0.10) 0.91 ( 0.02) 0.88 ( 0.05) 0.84 ( 0.08)

ρ̃g,1 (implicit) 0.97 ( 0.01)

ρ̃g,2 (implicit) -0.62 ( 0.06)

ρλf
0.75 ( 0.10) 0.72 ( 0.07) 0.66 ( 0.11) 0.78 ( 0.07) 0.80 ( 0.06)

ρφ 0.75 ( 0.10) 0.75 ( 0.10) 0.58 ( 0.10) 0.30 ( 0.14) 0.53 ( 0.16)

ρµ 0.75 ( 0.10) 0.91 ( 0.03)

ρb 0.75 ( 0.10) 0.94 ( 0.04)

Shock Standard Deviations

σR 0.25 ( 0.13) 0.16 ( 0.01) 0.12 ( 0.01) 0.15 ( 0.01) 0.16 ( 0.01)

σz 0.38 ( 0.20) 0.72 ( 0.05) 0.42 ( 0.05) 0.75 ( 0.06) 0.79 ( 0.06)

σg 0.63 ( 0.32) 0.65 ( 0.06) 0.32 ( 0.04) 0.29 ( 0.04)

σ̃g (implicit) 0.77 ( 0.11)

σλf
0.19 ( 0.10) 0.09 ( 0.01) 0.09 ( 0.01) 0.08 ( 0.01) 0.10 ( 0.01)

σφ 3.76 ( 1.97) 3.11 ( 1.72) 3.16 ( 1.14) 19.90 ( 7.66) 2.45 ( 0.58)

σµ 0.95 ( 0.57) 0.53 ( 0.11)

σb 0.95 ( 0.57) 0.56 ( 0.11)

Hyperparameters for AR(2) Shocks

ξg 0.75 ( 0.10) 0.90 ( 0.04)

ωg 0.63 ( 0.32) 0.63 ( 0.09)

Notes: We report means and standard deviations (in parentheses). The parameters ρb,

ρµ, σb, and σµ only enter the DSGE model with 7-shocks. The DSGE model with AR(2)

government spending shocks is parameterized as gt = ρ̃g,1(1 − ρ̃g,2)gt−1 + ρ̃g,2gt−1 + σ̃gεt

and we use a hierarchical prior of the form: p(ρ̃g,1, ρ̃g,2, σ̃g|ξg, ωg)p(ξg, ωg). In the table we

report p(ξg, ωg). The following parameters were fixed: δ = 0.025, γ = 1.5/400, λf = 0.15,

and λw = 0.3.
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Table 2: Log Marginal Data Densities and Posterior Odds

Specification ln p(Y ) Post Odds

DSGE Model, Benchmark Specification -525.22 4.6E-48

DSGE-VAR (λ = λ̂ = 0.75) -416.23 1.00

DSGE Model, Generalized Shocks: AR(2)-in-gt -495.66 3.2E-35

DSGE Model, Generalized Shocks: 7-shocks -479.92 2.2E-28

Notes: The difference of log marginal data densities can be interpreted as log posterior

odds under the assumption of that the two specifications have equal prior probabilities. We

report odds relative to the DSGE-VAR in the third column of the table.
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Figure 1: Impulse Responses: DSGE-VAR(λ = 0.75) versus DSGE-VAR(∞)
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Notes: The figure depicts impulse responses from the DSGE-VAR(λ = 0.75) (black) and the

DSGE-VAR(∞) (gray) based on the DSGE-VAR(λ = 0.75) posterior estimates summarized

in columns (5,6) of Table 1.
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Figure 2: Impulse Responses: Benchmark DSGE versus AR(2)-in-gt Model
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Notes: The figure depicts impulse responses from the benchmark DSGE model (gray)

and the AR(2)-in-gt model (black) using the respective posterior estimates summarized

in columns (3,4) and (7,8) of Table 1.
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Figure 3: Impulse Responses: Benchmark DSGE versus 7-Shocks Model
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Notes: The figure depicts impulse responses from the benchmark DSGE model (gray) and

the 7-shocks model (black) using the respective posterior estimates summarized in columns

(3,4) and (7,8) of Table 1.
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Figure 4: Benchmark DSGE Model Impulse Responses as Function of ψ1
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Notes: The figure plots the posterior mean of the DSGE model impulse responses computed

for three different values of the response to inflation in the policy rule, ψ1: 2.75 (black), 2

(dark gray), and 1.25 (light gray). The remaining policy parameters ψ2 and ρR are kept

at the baseline values of 0.0625 and 0.8, respectively. For all impulse responses we use

the posterior estimates of the non-policy parameters θ(np), summarized in columns (3,4) of

Table 1.
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Figure 5: Comparative Performance of Policy Rules: Benchmark DSGE versus

DSGE-VAR(λ = 0.75) Parameter Estimates
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Notes: Posterior expected variance differentials as a function of ψ1 and ψ2 relative to baseline

policy rule ψ1 = 2.75, ψ2 = 0.0625. The remaining policy parameter ρR is kept at the

baseline value of 0.8. Negative differentials signify a variance reduction relative to baseline

rule. Differentials are computed using DSGE-VAR posterior (gray) and DSGE model (black)

posterior estimates of the non-policy parameters θ(np), summarized in columns (3,4) and

(5,6) of Table 1.
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Figure 6: Comparative Performance of Policy Rules: AR(2)-in-gt versus 7-

Shocks DSGE Model
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Notes: Posterior expected variance differentials as a function of ψ1 and ψ2 relative to baseline

policy rule ψ1 = 2.75, ψ2 = 0.0625. The remaining policy parameter ρR is kept at the

baseline value of 0.8. Negative differentials signify a variance reduction relative to baseline

rule. Differentials are computed for the AR(2)-in-gt (black) and 7-shocks (gray) model using

the respective posterior estimates, summarized in columns (7,8) and (9,10) of Table 1.
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Figure 7: Comparative Performance of Policy Rules: Benchmark DSGE versus

DSGE-VAR/Backward-Looking Analysis
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Notes: Posterior expected variance differentials as a function of ψ1 and ψ2 relative to baseline

policy rule ψ1 = 2.75, ψ2 = 0.0625. The remaining policy parameter ρR is kept at the

historical values of 0.8. Negative differentials signify a variance reduction relative to baseline

rule. Differentials are computed under the DSGE-VAR/Backward-Looking analysis (black)

and the DSGE model (gray). For the latter we use the DSGE-VAR posterior estimates of

the non-policy parameters θ(np), summarized in columns (5,6) of Table 1.
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Figure 8: Comparative Performance of Policy Rules: DSGE-

VAR/Acknowledge Misspecification and DSGE-VAR/Policy-Invariant

Misspecification Analysis
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Notes: Posterior expected variance differentials as a function of ψ1 and ψ2 relative to base-

line policy rule ψ1 = 2.75, ψ2 = 0.0625. The remaining policy parameter ρR is kept at the

historical values of 0.8. Negative differentials signify a variance reduction relative to base-

line rule. Differentials are computed under the DSGE-VAR/Acknowledge Misspecification

(black) and DSGE-VAR/Policy-Invariant Misspecification (gray) analysis.
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Figure 9: Performance Uncertainty: Benchmark DSGE versus DSGE-

VAR/Acknowledge Misspecification Analysis
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Notes: Posterior expected variance differentials as a function of ψ1 relative to baseline policy

rule ψ1 = 2.75. The remaining policy parameters ψ2 and ρR are kept at their historical val-

ues of .0625 and .8, respectively. Negative differentials signify a variance reduction relative

to baseline rule. Differentials are computed under the DSGE-VAR/Acknowledge Misspecifi-

cation approach (black) and the DSGE model (gray). For the latter we use the DSGE-VAR

posterior estimates of the non-policy parameters θnp. Dash-and-dotted lines represent 90%

posterior bands.




