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Abstract 

 
This paper analyzes the properties of a number of data-rich methods that are widely used in 

macroeconomic forecasting, in particular principal components (PC) and Bayesian regressions, as 

well as a lesser-known alternative, partial least squares (PLS) regression. In the latter method, 

linear, orthogonal combinations of a large number of predictor variables are constructed such that 

the covariance between a target variable and these common components is maximized. Existing 

studies have focused on modelling the target variable as a function of a finite set of unobserved 

common factors that underlies a large set of predictor variables, but here it is assumed that this 

target variable depends directly on the whole set of predictor variables. Given this setup, it is 

shown theoretically that under a variety of different unobserved factor structures, PLS and 

Bayesian regressions provide asymptotically the best fit for the target variable of interest. This 

includes the case of an asymptotically weak factor structure for the predictor variables, for which 

it is known that PC regression becomes inconsistent. Monte Carlo experiments confirm that PLS 

regression is close to Bayesian regression when the data has a factor structure. When the factor 

structure in the data becomes weak, PLS and Bayesian regressions outperform principal 

components. Finally, PLS, principal components, and Bayesian regressions are applied on a large 

panel of monthly U.S. macroeconomic data to forecast key variables across different subperiods, 

and PLS and Bayesian regression usually have the best out-of-sample performances. 
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1 Introduction

It has been a standard assumption in theoretical macroeconomic modeling that agents are pro-

cessing all the available quantities of information when forming their expectations for the future.

Also, policymakers traditionally have looked at a vast array of indicator series in the run-up to

major policy decisions, or in the words of Lars Svensson (Svensson (2005)) about what cen-

tral bankers do in practice: ‘(l)arge amounts of data about the state of the economy and the

rest of the world ... are collected, processed, and analyzed before each major decision.’ How-

ever, generally speaking it is either inefficient or downright impossible to incorporate a large

number of variables in a single forecasting model and estimate it using standard econometric

techniques. This prompted a new strand of research devoted to the theory and practice of

alternative macroeconomic forecasting methods that utilize large data sets.

These alternative methods can be distinguished into two main categories. As, e.g., outlined

in Hendry (1995), the methods of the first category involve inherently two steps: In the first step

some form of variable selection is undertaken, including automated model selection procedures

as in Krolzig and Hendry (2001). The variables that are chosen are then used in a standard

forecasting model. An alternative group of forecasting methods consists of estimation strategies

that allow estimation of a single equation model that utilizes all the information in a large data

set and not just an ‘optimal’ subset of the available predictor series. This is a diverse group

of forecasting methods ranging from factor-based methods to Bayesian regression and forecast

combination. We focus in this paper on the latter group of data-rich forecasting methods.

Within the group of data-rich forecasting techniques, factor methods have gained a prominent

place. Building on Chamberlain and Rothschild (1983), Stock and Watson (2002a) and Bai

(2003) show that under relatively weak assumptions regarding the behavior of the idiosyncratic

components in a factor model, principal components can be used to identify the unobserved

common factors in very large data sets. Stock and Watson (2002b) proved to be the starting

point of a large empirical research output where, with mixed success, a limited number of

principal components extracted from a large data set are used to forecast key macroeconomic

variables.

Boivin and Ng (2006) make it clear, however, that if the forecasting power comes from a

certain factor, this factor can be dominated by other factors in a large data set, as the principal

components solely provide the best fit for the large data set and not for the target variable. This
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could explain why in some empirical applications principal components (PC) factor models are

dominated by Bayesian regression and forecast combinations, as in both cases the information

in a large data set is compressed such that this has explanatory power for the target variable.

Under Bayesian regression one essentially estimates a multivariate regression consisting of all

predictor variables, but with the regression coefficients shrunken to a value close to zero. Starting

with Bates and Granger (1969), forecast combination involves the use of subsets of predictor

variables in distinct forecasting models, which are then averaged to produce a final forecast.

Note, however, that from an econometric perspective forecast combinations are ad hoc in nature.

Although less widely known, an alternative data-rich approach that can be used for macroe-

conomic forecasting using very large data sets is partial least squares (PLS) regression. We will

show that PLS regression can do this irrespective of whether such a data set has a strong factor

structure or not. PLS regression is implemented for large data sets through the construction of

linear, orthogonal combinations of the predictor variables, which have maximize the covariance

between the target forecast variable and predictor variables. Although similar in spirit to PC

regression, the explicit consideration of the target forecast variable addresses a major existing

criticism towards PC regression as a forecasting technique.

The main contribution of the paper rests on analysing the properties of the various data-rich

methods, in particular PC, PLS and Bayesian regression, under a more general setting for the

target variable. In particular, most work to date has focused on modelling the target variable

as a function of a finite set of unobserved factors. We, instead, assume that the target variable

depends on the whole set of available predictor variables. As the number of these variables is

assumed to tend to infinity this is a more difficult problem to handle. While some work (see, e.g.,

Stock and Watson (2012)) allows for such a setup, there are usually strict assumptions associated

with this setup such as, for example, orthogonality of the regressors which both greatly simplifies

the analysis and precludes interesting models such as factor models. We consider in detail the

properties of PLS, PC and Bayesian regression for forecasting using both Monte Carlo analysis

and an empirical application to gauge the potential of each of these data-rich approaches.

In the remainder of this paper we have the following structure: Section 2 discusses the

asymptotic behavior of PC, PLS and Bayesian regression under different factor configurations:

strong factors, strong factors underlying the predictor variables but only a few of these variables

are relevant for the target variable, and weak factors. Section 3 report on an extensive Monte

Carlo study that focuses on the out-of-sample properties of PLS, PC and Bayesian shrinkage
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regression. Section 4 presents an empirical application where PLS and the other data-rich

forecasting methods are used on a large monthly US macroeconomic data set. Finally, Section 5

concludes.

2 Methods for Data-Rich Macroeconomic Forecasting

A useful framework for studying data-rich based modeling methods is provided by the following

general forecasting equation

yt = α′xt + ϵt; t = 1, . . . , T, (1)

where yt is the target of the forecasting exercise, xt = (x1t · · ·xNt)
′ is a vector of dimension

N × 1 and thus α = (α1 · · ·αN )′ is also N × 1. The error term ϵt in (1) is throughout the paper

assumed to be a stationary, finite variance martingale difference sequence. In this paper we will

focus on the case that the number of indicator variables N is too large for α to be determined by

standard methods such as ordinary least squares (OLS). The literature has proposed a number

of ways how one can deal with this issue of large-dimensional data sets, of which we provide a

selective review below.

Before proceeding, however, we need to stress that our assumed framework given by (1) is a

significant deviation from, and, we argue, generalisation of, the existing literature which analyses

the case where yt does not depend on the large, observed dataset, xt, but a small, unobserved

set of variables, referred to as factors.

We review methods that have been shown to be applicable for the data-rich case, starting

with principal components (PC) regression in Section 2.1, partial least squares regression in

Section 2.2 and Bayesian (shrinkage) regression in Section 2.3. In each subsection we present

theoretical results and discussion on the properties of the methods under (1) while recaping the

existing theory that relates to the usual factor setup utilized in the existing literature. Finally,

we provide a short, qualitative comparison for the approaches in Section 2.4.

2.1 Principal Components Regression

The most widely used class of data-rich forecasting methods are factor methods. Factor methods

have been at the forefront of developments in forecasting with large data sets and in fact started

this literature with the influential work of Stock and Watson (2002a). The defining characteristic

of most factor methods is that relatively few summaries of the large data sets are used in
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forecasting equations which thereby becomes a standard forecasting equation as they only involve

a few variables. The assumption is that the co-movements across the indicator variables can be

captured by a r × 1 vector of unobserved factors Ft = (F1t · · ·Frt)
′, i.e.

x̃t = Λ′Ft + et (2)

where x̃t may be equal to xt or may involve other variables such as, e.g., lags and leads of xt

and Λ is a r ×N matrix of parameters describing how the individual indicator variables relate

to each of the r factors, which we denote with the terms ‘loadings’. In (2) et represents a zero-

mean I(0) vector of errors that represent for each indicator variable the fraction of dynamics

unexplained by Ft, the ‘idiosyncratic components’. The number of factors is assumed to be

small, meaning r < min(N, T ). The main difference between different factor methods relate to

how Λ is estimated.

The use of principal components (PC) for the estimation of factor models is, by far, the most

popular factor extraction method. It has been popularised by Stock and Watson (2002a,b), in

the context of large data sets, although the idea had been well established in the traditional mul-

tivariate statistical literature. The method of principal components (PC) is simple. Estimates

of Λ and the factors Ft are obtained by solving:

V (r) = min
Λ,F

1

NT

N∑
i=1

T∑
t=1

(x̃it − λ′
iFt)

2, (3)

where λi is a r×1 vector of loadings that represent the N columns of Λ = (λ1 · · ·λN ). One, non-

unique, solution of (3) can be found by taking the eigenvectors corresponding to the r largest

eigenvalues of the second moment matrix X ′X, which then are assumed to represent the rows

in Λ, and the resulting estimate of Λ provides the forecaster with an estimate of the r factors

F̂t = Λ̂x̃t. To identify the factors up to a rotation, the data are usually normalized to have zero

mean and unit variance prior to the application of principal components; see Stock and Watson

(2002a) and Bai (2003).

The main assumptions that underpin the validity of PC estimation of the unobserved common

factors Ft in (2) can be found in Stock and Watson (2002a,b), Bai and Ng (2002) and Bai (2003),

which can be summarized as follows:

Assumption 1 (a) E∥Ft∥4 ≤ M < ∞ for some positive constant M , and T−1
∑T

t=1 F
′
tFt →

ΣF for some positive definite r × r matrix ΣF .
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(b) ∥λi∥ ≤ λ̄ < ∞ and ∥Λ′Λ/N −ΣN∥ → 0, as N → ∞, for some positive definite r× r matrix

ΣN .

(c) E(ei,t) = 0, E|ei,t|8 ≤ M where et = (e1,t · · · eN,t)
′. The variance-covariance matrix of et

equals Ωe, and Fs and et are independent for all s, t.

(d) For τi,j,t,s ≡ E(ej,sei,t):

• (NT )−1
∑T

s=1

∑T
t=1 |

∑
i+1Nτi,i,t,s| ≤ M

• 1/N
∑N

i=1 |τi,i,s,s| ≤ M for all s

• N−1
∑N

i=1

∑N
j=1 |τi,j,t,s| ≤ M

• (NT )−1
∑T

s=1

∑T
t=1

∑N
i=1

∑N
j=1 |τi,j,t,s| ≤ M

• For every (t, s), E|(N)−1/2
∑N

i=1(ei,sei,t − τi,i,t,s)|4 ≤ M

Assumption 1(a) and 1(b) are necessary conditions for the common factors to dominate the

dynamics of the predictor variables x̃t and Assumption 1(c) and 1(d) means that the idiosyncratic

components et are at the most weakly correlated and heteroskedastic. This implies for the second

moment matrix X ′X, under the aforementioned normalization,

E(X ′X) = Λ′Λ + Σe, (4)

where E(e′e) = Σe, and Assumption 1 states that all eigenvalues of Λ′Λ in (4) are O(N) whereas

those on Σe are bounded as N → ∞. Thus the eigenvalues of X ′X are O(N), which means that

PC will provide consistent estimates of the unobserved common factors Ft in (2).

The setup whereby yt asymptotically depends on Ft solely, rather than directly on the

observed xt, has been dominant in the literature:

yt = ζ ′Ft + ϵt, (5)

with ζ = (ζ1 · · · ζr)′ and r equals the number of unobserved factors that underlie the N predictor

variables xt. To the best of our knowledge, the assumption in (5) that for any potential target

variable yt one cannot find a better set of predictors than Ft has been made in all existing

theoretical econometric work involving forecasting or modelling using large datasets, such as

Bai and Ng (2006), De Mol et al. (2008) and Kelly and Pruitt (2012). However, it is reasonable
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to cast doubt on such a setup from a variety of directions. To see this one needs to realize that

the unobserved factor structure (2) implies for (1)

yt = ζ ′Ft + (α′et + ϵt), (6)

where ζ ′ = α′Λ′ and Ft = Λx̃t, which means that a small, r, number of linear combinations of

x̃t represent the factors and act as the predictors for yt.

To see why making the assumption that the target variable can solely depend on the unob-

served common factors is not warranted even within the confines of (2) where the eigenvalues

of Λ′Λ are O(N), it is instructive to consider allowing yt = xit for some i. Denote by x−it the

subset of xt that does not include xit. Then, one can ask whether x−it may contain information

useful in forecasting xit, that is not contained in Ft. To see that this is indeed the case we

note that the standard assumptions for strong factor models in (2) allows for some correlation

between elements of et (see Assumption 1). If that is the case, then there exist elements of

x−it whose idiosyncratic components are correlated with eit. It then immediately follows that

including these elements of x−it as predictors in a predictive regression for yt can result in a

better specified predictive regression, with a smaller forecasting error, than the one obtained by

simply using Ft as predictors, at least for a finite cross-section dimension N . This casts doubt

on the assumption that the generating model for yt should be one that involves only Ft.

Having provided a justification for the use of (1), we note some of the properties of PC

regression under (1). Via (6) using PC to estimate the unobserved common factors yields for

(1)

yt = ζ̂ ′F̂t +
(
(ζ ′Ft − ζ̂ ′F̂t) + α′et + ϵt

)
, (7)

where F̂t is the PC estimate of the r unobserved factors Ft and ζ̂ is the OLS estimator of ζ in the

regression of yt on F̂t. The resulting forecast error clearly has larger variance than ϵt for finite

N . As N, T → ∞, there are a number of observations one can make regarding the asymptotic

behavior of the PC regression based forecast error. Under forecasting model (1) with (2) and if

Assumption 1 holds, principal components regression can only achieve the asymptotically best

feasible forecast if ∥α∥ = O(N−1/2). To see why this holds it is obvious from Assumption 1 and

Bai (2003, Theorem 2) that for N → ∞, we have in (7), ζ ′Ft − ζ̂ ′F̂t = op(1). However, when

the parameter vector α in (1) is sparse, in the sense that ∥α∥ = Op (1), which implies that there

exists a finite subset of the predictor variables that has a non-negligible effect on yt as N → ∞,
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then in (7) ∥α′et∥ = Op(1). PC regression now can clearly never achieve the asymptotically best

feasible forecast for yt. Conversely, if ∥α∥ = O(N−1/2) then ∥α′et∥ = Op(N
−1/2).

But even when we have a non-sparse α parameter vector in (1), the traditionally utilized

strong factor assumptions might be invalid themselves. Recently, Bailey et al. (2013) have

analyzed extensively weak factor models and propose both a measure of the strength of factor

models and an estimator for this measure. They also find that some datasets which have been

used in the past to illustrate the use of strong factor models may in fact not follow such models.

It is important to stress that this possibility has not been analysed extensively within the context

of forecasting since the dominant assumption is a strong factor one, where all eigenvalues of Λ′Λ

in (4) are O(N).

It is then worth noting that the validity of PC as an estimator of the unobserved factors

rests on assuming that the underlying factor model is relatively strong. To get a more concrete

view on what “relatively strong” means, one can follow the set up entertained in Kapetanios

and Marcellino (2010) where the factor loadings matrix Λ in (2) is replaced by a factor loadings

matrix ΛN that depends on the size of N by means of a local-to-zero structure, i.e.,

ΛN = N−κΛ̃, (8)

where Λ̃ is a r ×N matrix of fixed loadings. Within such a context it is proven in Kapetanios

and Marcellino (2010, Theorem 3) that PC estimation of the unobserved common factors is

inconsistent if in (8) κ ≥ 0.5, as the eigenvalues of Λ′
NΛN are now O(N (1−κ)) for 0 ≤ κ < 1,

which can be shown to result in a covariance matrix of x̃t in (2) that has bounded eigenvalues

for N → ∞ at each t when κ ≥ 0.5. In this case it becomes hard to distinguish common and

idiosyncratic components of the predictor variables in x̃t in (2) and consequently, even when

the N × 1 parameter vector α is non-sparse, as N → ∞, in (7) ζ ′Ft − ζ̂ ′F̂t = Op(1). But even

for 0 < α < 0.5, which is considered by Chudik et al. (2011) as a case of a ‘semi-strong’ factor

model underlying the data, it is not necessarily the case that PC regression would be able to

achieve the asymptotically best feasible forecast for yt in (1), as is witnessed by the following

Theorem:

Theorem 1 Let Assumption 1 hold, except for Assumption 1(b). Let (8) apply to (2) with

0 ≤ κ < 1/4. Then, under forecasting model (1) with (2), ∥α∥ = Op(N
−1/2) and as N, T → ∞

we have for principal components regression∥∥∥ζ̂ ′F̂t − α′xt

∥∥∥ = Op

(
C

−1/2
NT

)
+Op(N

−1/2), (9)

7



where

CNT ≡ min
(
N1/2−3κT 1/2, N1−3κ, N−2κmin(N,T )

)
,

as long as 0 ≤ κ < 1/4 and N = o(T 1/4κ).

Proof: The proof is given in Appendix A.

Thus, only under very minor deviations from the strong factor model Assumption 1, and then

only when the number of predictor variables N is restricted to grow at a much lower rate than

T , PC regression can be guaranteed to provide a consistent forecast for yt. Hence, given the

results in Bailey et al. (2013), PC regression might in practice not be the most useful data-rich

approach to macroeconomic forecasting.

2.2 Partial Least Squares Regression

Partial least squares (PLS) is a relatively new method for estimating regression equations, intro-

duced in order to facilitate the estimation of multiple regressions when there is a large, but finite,

amount of regressors (see, e.g., Wold (1982)). The basic idea is similar to principal component

analysis in that factors or components, which are linear combinations of the original regression

variables, are used, instead of the original variables, as regressors. A major difference between

PC and PLS is that, whereas in PC regressions the factors are constructed taking into account

only the values of the xt predictor variables, in PLS, the relationship between yt and xt is con-

sidered as well in constructing the factors. There is only a limited literature that has considered

PLS regression for data sets with a very large number of series, i.e., when N is assumed in the

limit to converge to infinity, which is an assumption that has motivated the use of PC regression

for macroeconomic forecasting. In this subsection we discuss the asymptotic properties of PLS

regression under similar assumptions that N, T → ∞ for data sets that have a common factor

structure. In addition, we also investigate the asymptotic properties of PLS regression when

large data sets have a weak factor structure that possibly vanishes asymptotically.

There are a variety of definitions for PLS and accompanying specific PLS algorithms that

inevitably have much in common. A conceptually powerful way of defining PLS is to note

that the PLS factors are those linear combinations of xt, denoted by Υxt, that give maximum

covariance between yt and Υxt while being orthogonal to each other. Of course, in analogy to

PC factors, an identification assumption is needed, to construct PLS factors, in the usual form

of a normalization.
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A simple algorithm to construct k PLS factors is discussed among others, in detail, in Helland

(1990). Assuming for simplicity that yt has been demeaned and xt have been normalized to have

zero mean and unit variance, a simplified version of the algorithm is given below

Algorithm 1 1. Set ut = yt and vi,t = xi,t, i = 1, ...N . Set j = 1.

2. Determine the N × 1 vector of indicator variable weights or loadings wj = (w1j · · ·wNj)
′

by computing individual covariances: wij = Cov(ut, vit), i = 1, ..., N . Construct the j-th

PLS factor by taking the linear combination given by w′
jvt and denote this factor by fj,t.

3. Regress ut and vi,t, i = 1, ..., N on fj,t. Denote the residuals of these regressions by ũt and

ṽi,t respectively.

4. If j = k stop, else set ut = ũt, vi,t = ṽi,t i = 1, .., N and j = j + 1 and go to step 2.

This algorithm makes clear that PLS is computationally tractable for very large data sets.

Once PLS factors are constructed yt can be modeled or forecast by regressing yt on fj,t j =

1, ..., k.

Next, we undertake a theoretical analysis of PLS when T, N → ∞. We consider two

mutually exclusive frameworks. In the first, a (dominant) factor structure exists for X. In the

second there is only a weak factor structure as N → ∞. We start by analysing the (dominant)

factor case. Here, work by Kelly and Pruitt (2012) has shown that, under (5) and Assumption 1,

PLS behaves equivalently to PC. However, we consider (1) and it is important to discuss what

happens then. Given the representation (6) it can be easily seen using the results of Kelly and

Pruitt (2012) that under the forecasting model (1) with (2) and if Assumption 1 holds, that if

the number of PLS factors k = r, partial least squares regression is asymptotically equivalent to

principal components regression and it can achieve the asymptotically best feasible forecast for

yt as long as ∥α∥ = O(N−1/2).

The following example makes the relevance of the above discussion clear. Assume that the

number of PLS factors k is equal to the number of factors r in the strong factor model, which

we set equal to 1. The model is

yt = x1t + ϵt (10)

with

xt = ft + et (11)
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where xt = (x′1t, x
′
2t)

′. The vector x′1t is of finite dimension q and α = (α1, ..., αq)
′. Partition et

conformably so that et = (e′1t, e
′
2t)

′, resulting in

yt = ft + ι′qe1t + ϵt

where ιq is a q dimensional vector of ones. Let Eft = 0, Ef2
t = 1, Eeit = 0, Eeitejt = 0, Eeitft =

0, Eϵtft = 0, Ee21t = 1. Eϵt = 0, Eϵ2t = 1. Then, Exit = 0, Ex2it = 2 and Eyt = 0, Ey2t = q+2,

Denote by f
(PLS)
t the unfeasible PLS factor assuming that (10) and (11) were fully known and a

single PLS factor was used. We assume that f
(PLS)
t is normalised to have variance 1. Note that

use of the standard Bai and Ng (2002) information criteria on xt would suggest to use a single

factor. In addition it is assumed that cov(yt, xit) = 2, i = 1, ..., q and cov(yt, xit) = 1, i = q +

1, ..., N . So f
(PLS)
t =

(
(N + q) ft + 2ι′qe1t + ι′N−qe2t

)
/
√

(N + q)2 + 2q +N − q. As N → ∞,

((N + q) ft) /
√

(N + q)2 + 2q +N − q → ft and
(
2ι′qe1t + ι′N−qe2t

)
/
√

(N + q)2 + 2q +N − q =

Op

(
N−1/2

)
and so f

(PLS)
t − ft = Op

(
N−1/2

)
. Therefore, PLS is as efficient a forecasting model

as PC, but PC regression is not efficient here, in the sense that ∥α∥ = O (1). However, it is

important to note that the above result depends crucially on the number of PLS factors used.

We conjecture that if more PLS factors are used then PLS can do better than PC. The intuition

for this is that, once the true factors have been extracted, PLS will construct a new ‘pseudo’

factor that attempts to approximate ι′qe1t.

This counterexample illustrates that the strategy of Kelly and Pruitt (2012), who suggest

the use of standard information criteria, such as those proposed by Bai and Ng (2002), may

be suboptimal. It is possible that information criteria such as those proposed by Groen and

Kapetanios (2013) may be of use instead as they focus on the forecasting equation rather than

on the number of factors in (2). Another suggestion that may be of use is to adapt the strategy

of Giraitis et al. (2013) who use cross-validation to determine from the data various aspects of a

given forecasting strategy. In particular, in our case we may consider the forecasting performance

of models with various numbers of PLS factors and choose the one that minimise the sum of the

pseudo out-of-sample squared forecasting errors using observed data. We explore this possibility

in the Monte Carlo section.

Next, we consider some theoretical properties of PLS when there exist weaker correlation

structures than implied by a strong factor model for xt when Assumption 1 holds. Such weaker

correlation structures can arise from weak factor models discussed, e.g., in Bailey et al. (2013) but

we choose to express them through more primitive assumptions relating to the actual covariance
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of xt. We make explicit the dependence of the coefficient and variable vector on N , in the

forecasting regression, and write the model in (1) as

yt = α′
NxN,t + ϵt (12)

where xN,t = (x1,N,t, ..., xN,N,t)
′. We make the following assumptions

Assumption 2 Part I: Let Σ = ΣN = [σij ] denote the N × N second moment matrix of X.

Then,

∥Σ− I∥1 = o(N),

where ∥.∥1 denotes the Minkowski 1-norm.

Part II: Further, we have

0 < lim
N→∞

sup
i,j

αN,i

αN,j
< ∞.

Assumption 3 Uniformly over j = 1, ..., N

1

T

T∑
t=1

xj,tyt − σXy,j = Op

(
T−1/2

)
where σXy,j = E (xj,tyt). Further, assume that maxi,t xit < ∞.

Assumptions 2 and 3 deserve a number of comments.

Remark 1 (a) Part I of Assumption 2 states that the covariance matrix of X becomes relatively

close in a particular sense to the identity matrix as N → ∞, suggesting a covariance

matrix where non-diagonal elements are non-zero but tending to zero as the dimension

of the matrix increases. Such a covariance matrix is obtained when in factor model (2)

for the predictor variables xt the factor loadings are local-to-zero in N as in (8), which

implies for the representative element of Σ, denoted by σij, σij = 1
N2κ . Then, Part I of

Assumption 2 holds when κ > 0.5, for which all eigenvalues of X ′X are bounded and it

will be hard to distinguish in that case between common and idiosyncratic components for

the predictor variables xt (see Kapetanios and Marcellino (2010, Theorem 3)).

(b) Part I of Assumption 2 also allows for structures such as

Σ =

(
B 0
0 I

)
(13)
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where B is a N1 ×N1 symmetric positive definite matrix (N1 < N) that can have a factor

structure, N1 → ∞ and N2
1 /N → 0. In such a set-up relatively more variables are added

to X, as N grows, that are unrelated to the factor structure implied by B, which therefore

gets more and more diluted. Note that this covariance matrix structure can be nested in

that of Remark 1(a), along the lines of Kapetanios and Marcellino (2010, Section 2.3).

(c) Part II of Assumption 2 states that no variable in xN,t has a dominant effect in the forecast-

ing regression. This assumption can certainly be relaxed to allow, e.g., for a small subset of

variables to be redundant. Further extensions are also possible but we choose to have this

assumption so as to provide a relatively simple theoretical analysis while illustrating the

desirable properties of PLS in a lower collinearity setting than assumed under a standard

factor structure.

(d) Assumption 3 is a mild uniformity assumption.

Based on such a weak factor structure we now can formulate the following theorem:

Theorem 2 Let σ2 denote the variance of ϵt in the regression framework (1) (and thus (12)) and

σ̂2 its estimate from a one factor PLS regression, using the N predictor variables that correspond

with (1). Under Assumptions 2-3, and as N,T → ∞ with N/T 1/2 = o (1), σ̂2 − σ2 = op(1).

Proof: The proof is given in Appendix B.

Theorem 2 suggests that under a weak factor (or ‘near factor’) structure PLS regression is still

able to estimate a model that has asymptotically the best fit, as the theorem implies that the

PLS regression R2 will converge to the population R2 of the general regression (1). Hence,

PLS regression should continue to do well in modeling a target variable even if the collinearity

amongst the predictor variables is not as strong as it is assumed to be for conventional factor

models. Finally, note the relative rate condition N/T 1/2 = o (1) which is reminiscent, but

stronger, to that of Theorem 1 of Chun and Keleş (2010), which is a result for strong factor

models.

2.3 Bayesian (Shrinkage) Regression

Bayesian regression is a standard tool for providing inference for α in (1) and there exist a large

variety of approaches for implementing Bayesian regression. We will provide a brief exposition
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of this method. A starting point is the specification of a prior distribution for α. Once this is

in place standard Bayesian analysis proceeds by incorporating the likelihood from the observed

data to obtain a posterior distribution for α which can then be used for a variety of inferential

purposes, including, of course, forecasting.

A popular and simple implementation of Bayesian regression results in a shrinkage estimator

for α in (1) given by

α̂BRR = (X ′X + vI)−1X ′y (14)

where X = (x1, ..., xT )
′, y = (y1, .., yT )

′ and v is a shrinkage scalar parameter. The shrinkage

estimator (14) shrinks the OLS estimator, given by (X ′X)−1X ′y, towards zero, thus enabling

a reduction in the variance of the resulting estimator. This is a major feature of Bayesian

regression that makes it useful in forecasting when large data sets are available. This particular

implementation of Bayesian regression implies that elements of α are small but different from

zero ensuring that all variables in xt are used for forecasting. In this sense, Bayesian regression

can be linked to other data-rich approaches. When a certain factor structure is assumed in the

data, Bayesian regression through (14) will forecast yt by projecting it on a weighted sum of

all N principal components of X, with decaying weights, instead of projecting it on a limited

number of r principal components with equal weights as in PC regression; see De Mol et al.

(2008). De Mol et al. (2008) produce a consistency result forecasts produced using the above

implementation of Bayesian regression. However, they assume (5) rather than (1). The Theorem

below extends their result to our setting

Theorem 3 Under the forecasting model (1) with (2), Assumption 3 and as N,T → ∞, we

have

||α̂′
BRRxt − α′xt|| = Op

(
N1/2v ∥α∥
µmin (ΛΛ′)

)
+Op

(
N

vT 1/2

[
1 +N1/2 ∥α∥

])
. (15)

where µmin (ΛΛ
′) is the minimum eigenvalue of ΛΛ′.

Proof: The proof is given in Appendix C.

It is important to comment on this result.

Remark 2 (a) Under a strong factor model, µmin (ΛΛ
′) = O (N). Then Theorem 3 implies

||α̂′
BRRxt − α′xt|| = Op

(
N−1/2v ∥α∥

)
+Op

(
N

vT 1/2

[
1 +N1/2 ∥α∥

])
.

13



We note the crucial role played by ∥α∥. Assuming that ||α′xt|| = O (1), there are two

distinct extreme scenarios with different implications. Firstly, if every element of α is non

zero then ∥α∥ = O
(
N−1/2

)
. On the other hand, if a finite number of elements of α are

non zero then ∥α∥ = O (1). In the first case, ||α̂′
BRRxt−αxt|| = Op

(
N−1v

)
+Op

(
N

vT 1/2

)
,

meaning shrinkage is consistent and yields the asymptotically best feasible forecast for yt.

For the second case ||α̂′
BRRxt − αxt|| = Op

(
N−1/2v

)
+ Op

(
N3/2

vT 1/2

)
and this is clearly the

more problematic than the first case, which is intuitive as the shrinkage method shrinks

all coefficients uniformly and this is less appropriate when there are a finite number of

important variables in the forecasting regression. In this case, shrinkage is consistent if

N = o
(
T 1/2

)
.

(b) The theorem does not depend on assuming that the dynamics of the N predictor variables

xt are driven by a strong factor model: Under a factor model where the factor loadings

depend on the number of predictor variables N as in (8), we have for the second mo-

ment matrix X ′X that µmin (ΛNΛ′
N ) = O

(
N (1−κ)

)
for 0 ≤ κ < 1. Then, as long as

∥α∥ = O
(
N−1/2

)
Theorem 3 implies that shrinkage remains consistent and that Bayesian

regression continues to yield the asymptotically best feasible forecast for yt.

2.4 A Comparison of the Methods

Regarding PLS regression, we note that Garthwaite (1994) provides a rationale to cast (ad hoc)

forecast combinations in terms of the above described PLS framework. Essentially what Garth-

waite (1994) shows is that a general PLS algorithm like Algorithm 1 can be expressed in terms of

sequences of univariate regressions, where we regress ut on vi,t, i = 1, ..., N and denote the OLS

estimate of the coefficient of each regression by βi. The j-th PLS factor then equals weighted

average of βivit: fj,t = w̃′
jvt with w̃j = ((β1w1j) · · · (βNwNj))

′ where (w1j · · ·wNj) are given.

Therefore, if one sets (w1j · · ·wNj) = (V ar(v1t) · · ·V ar(vNt)) Algorithm 1 follows, but if one

assumes (w1j · · ·wNj) = ( 1
N · · · 1

N ) than in the one-factor case the Capistrán and Timmermann

(2008) projection on equal-weighted mean (PEW) forecast combination approach follows. Thus,

forecast combinations can be interpreted as restricted approximations to a one-factor PLS re-

gression, with alternative specifications for (w1j · · ·wNj) and often with zero intercept and slope

coefficients in the final forecast regression. Timmermann (2006) provides a comprehensive survey

of the forecast combination literature.

By interpreting forecast combinations as a form of PLS regression, we obtain the underpin-

14



ning for the relatively good performance of forecast combinations vis-à-vis PC regression within

different data environments; see, for example, Faust and Wright (2009). Note, though, that PLS

is much more general and it allows for several factors to be included in the forecast regression.

In addition, De Mol et al. (2008) prove the existence of a form of asymptotic equivalence be-

tween PC regression and Bayesian regression when the underlying data comply with a dominant

factor structure in (5). Therefore, given such a dominant factor structure, Bayesian regression

should be asymptotically equivalent to PLS regression and, under the one-factor assumption,

forecast combinations. Thus, the PLS regression framework provide a means to asymptotically

tie together different existing data-rich forecasting methods when a dominant factor structure

is assumed to be present in the data.

However, when we have a much weaker factor assumption, these asymptotic links no longer

seem to hold, except for the link between PLS and forecast combinations, but in this case

PLS regression nonetheless retains its desirable properties. PC regression, however, is only

guaranteed to produce a consistent forecasting model when deviations from the strong factor

model assumption underlying the predictor variables are very minor in nature (Theorem 1).

In contrast, Theorems 2 and 3 make clear that both PLS and Bayesian regression preserve

their attractive forecasting features under much less stringent factor model assumptions for the

predictor variables and much less strict rate conditions on the number of predictor variables.

3 Monte Carlo Analysis

In this section, we explore through Monte Carlo experiments the finite sample performance of

PLS regression, PC regression and Bayesian regression. Here, as well as in the Appendix, we

consider several variations on a data set that is driven by common factors.

3.1 Monte Carlo Set-up

For our Monte Carlo experiments we consider the following data generating processes (DGPs):

yt = α′(x1,t · · ·xN,t)
′ + ϵt = α′xt + ϵt, t = 1, ..., T,

xt = Λ′ft + c2ut,

ft = (f1,t · · · fr,t)′ ∼ iidN(0, Ir), r << N,

ϵt =
√
cNεt,

(16)
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with the N × 1 vector of regression parameters α = (α1 · · ·αN )′, ϵt is a zero-mean disturbance

term that we discuss in more detail later, and Λ = (λ1 · · ·λN ) is a r×N matrix of factor loadings

that corresponds with the r × 1 vector of factors ft with λi = (λi,1 · · ·λi,r)
′. The DGP for xt

in (16) uses a N × 1 vector of zero-mean disturbances ut = (u1,t · · ·uN,t)
′. The disturbances for

the N explanatory variables are determined in a similar manner: ui,t ∼ iid N(0, 1).

Here, we consider a number of cases for the factor model:

Case I: λi,j ∼ iidN(0, 1) for i = 1, . . . , N & j = 1, . . . , r, c2 = 1. αi ∼ iid N(0, 1).

Case II: λi,j ∼ iidN(0, 1) for i = 1, . . . , N & j = 1, . . . , r, c2 = 1. αi ∼ iid N(0, 1), for i = 1, ..., 5;

αi = 0, for i = 6, ..., N .

Case III: λi,j =
λ̃i,j

Nκ2 and λ̃i,j ∼iid N(0, 1) for i = 1, . . . , N , j = 1, . . . , r & κ2 = 0.25, 0.75,

c2 = 1, αi ∼ iid N(0, 1).

Note that apart from Case II above, the individual regression coefficients in (16) are determined

as αi ∼ iid N(0, 1).

Clearly, Case I represents a standard, dominant factor model where the predictor variables

are driven by r common factors. Case II is a strong factor model where α is sparse. In contrast,

Case III implies much weaker factor structures in xt than assumed under Cases I and II, and

these become progressively weaker as the cross-section dimension N increases. It assumes that

the representative non-diagonal element of the covariance matrix of xt is given by 1
N2κ2

. We

obtain this by using factor loadings that tend to zero as N → ∞. As such Case III represents a

case where we have a ‘near-factor model’ in xt in which κ2 determines how close this structure

is to a dominant factor model, where an increase in κ2 signifies a move away from such a factor

model.

An important parameter for the Monte Carlo study is the population R2 of the yt regression

equation in (16). We control this by controlling the variance of the yt disturbance term ϵt in

(16) through c = (1 + r)c̃, where εt ∼ iidN(0, 1). Setting c̃ = 1, 4, 9 gives a population R2

equal to 0.5, 0.2 and 0.1 in case of the standard factor model and the no factor model (Cases I

and V). For the case of weak factors (Case III) we assume that r = 0 for the purposes of setting

c. Therefore, in this case, the calibrated population R2 is slightly lower than for the standard

factor case but this is a minor deviation since the factor loadings under Case III are small. These

values for R2 provide, in our view, reasonable representations of empirically relevant situations.
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When we assume a standard factor structure, we generate data through (16) for r = 1, 3

and we set that the assumed number of PC factors, k2, is equal to the true number of factors,

r, when carrying out PC regression. In the case of PLS and Bayesian regression, we are not

aware of the availability of a theoretically justified approach to select either the optimal number

of PLS factors r or the optimal shrinkage parameter v for a given data set. For the case of PLS

regression we can argue, based on Section 2.2, that the number of PLS factors under strong

factors and non-sparse α’s, k1 is at the most equal and very likely smaller than the number of

PC factors, as not all factors have to be relevant for the target variable. For PLS regression we

therefore could suffice by setting the number of factors k1 to correspond to the respective k2 PC

factors. De Mol et al. (2008) suggest that an appropriate Bayesian regression for a large data

set under a factor structure should be based on a shrinkage parameter that is proportional to

the cross-section dimension of the data set: v = qN with q ranging from 0.5 to 10. The latter

range is based on the best in-sample fit De Mol et al. (2008) found in their empirical applications

using BR models. In the Monte Carlo experiments we will consider q = 5, 10.

For the weak factor case, we generate data based on r = 1 and assume in case of PLS and

PC regressions k1 = k2 = 1 and focus on how a decreasing amount of collinearity within xt

affects the relative performance of these methods.

We evaluate the competing methods using the relative out-of-sample mean squared prediction

error (MSE) compared to PC regression. To construct these relative MSEs, we generate T +100

data points according to (16) and estimate all models over the first T observations. We then use

the implied regression weights to do one-step ahead forecasting and get forecast errors for T +

1, . . . , T+100. The results across all variants are computed for N, T = 20, 30, 50, 100, 200, 400

and are each based on 1000 Monte Carlo replications.

Finally, as an alternative to the above for selecting the k1 factors for PLS regression and the

q shrinkage parameter in Bayesian regression, we follow the suggestion made in Section 2.2 and

also use the following out-of-sample cross-validation algorithm:

Algorithm 2 1. We produce one-step-ahead forecasts over the last 20 (10 if the sample size is

20) observations of the estimation period T for a grid of possible values for k1 (k1 = 1, .., 8)

as well as q (q = 0.5, 1, 2, 5, 10) for, respectively, PLS and Bayesian regression.

2. Then we use the values of k1 and q that minimise the MSE for the forecast errors of the

first step, and use these to produce PLS and Bayesian regression based forecasts for the
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evaluation period T + 1, . . . , T + 100.

The resulting performances are denoted by PLS(A) and BR(A) in the next subsection.

3.2 Monte Carlo Results

Starting with the standard factor case in Tables 1-2, one notes that the performance of PLS

regression for a fixed number of factors is better than that of PC for finite samples, especially

for N < T , but becomes comparable for both large N and T in case of r = 1 as we would

expect from our theoretical analysis. However, for the r = 3 case in Table 2 PLS regression

with fixed factors outperforms PC regression also in large samples, as the random drawings of

coefficients make different subset combinations of the factors relevant for predicting yt across

the simulations. The other noteworthy feature for the strong factor case is the confirmation of

the very good predictive performance of Bayesian regression in a large number of cases.

When we allow the number of PLS factors and shrinkage parameter to be chosen in a data-

dependent way it is clear that both methods perform even better relative to PC regression in

Tables 1-2. The advantage is much more pronounced for PLS again in accordance with our

theoretical results. It is clear that a data-dependent method for determining tuning parameters,

that relates explicitly to the forecasting regression, is crucial for both methods but especially for

PLS, casting doubt on the standard factor number selection methods. The above conclusions

are confirmed if we also consider a strong factor case with a higher variance for the idiosyncratic

components of the xt variables; see Table D.1 in Section D of the Appendix.

For Case II where there is a strong factor structure but a sparse α, we note in Table 3 that

PLS is equivalent to PC when the number of PLS factors is set equal to those used by PC

regression, but PLS regression outperforms PC regression when out-of-sample cross-validation

is employed to determine the number of PLS factors. In this case, although certainly worse in

absolute terms, PC regression does relatively well compared to PLS and Bayesian regression,

which is to be expected as the PC factors are good proxies for the few xt variables that are

included in the true model.

For the intermediate cases of weak factor models a dichotomy in performance emerges be-

tween PC regression on one side and both PLS and Bayesian regression on the other. Already

with moderate degrees of factor weakness under case III, see Table 4, it becomes clear that PC

regression performs poorly when the dimensions of the underlying panel of predictor variables

become large, as it is almost always outperformed by the two other methods. This breakdown
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of the performance of PC regression relates to the inability of this method to uncover sensible

factor estimates when one has a weak factor structure, and this is also confirmed both theoret-

ically and through Monte Carlo experiments elsewhere in the literature; see Uhlig (2009) and

Onatski (2009). PLS regression, on the other hand, performs in a large number of cases as well

as Bayesian regression. Table 5 report simulation results under Case III for the factor loadings,

but now with much more severe factor weakness than in Table 4. What becomes clear from

Table 5 is that the relative performance of PLS regression improves substantially to a point that

it now performs better in many cases than Bayesian regression. In Appendix D we also consider

cases with a different weak factor structure than discussed here, based on (13), and one where

we completely turn off the factor structure; see Tables D.2-D.3 and Table D.4, respectively.

These results point to a qualitatively similar result as in Tables 4-5. In all the above cases the

methods based on the data-dependent tuning parameter perform extremely well suggesting that

they should be considered very carefully in future work.

To conclude we see that our Monte Carlo study suggests a great advantage for PLS and

Bayesian regression compared to PC regression, in terms of forecasting performance, when (1)

holds. This is especially the case where the data do not have a standard parsimonious represen-

tation such as the standard common factor structure suggested by Assumption 1. The Monte

Carlo simulation results therefore confirm the theoretical results from Section 2, which suggested

that, in contrast to PC regression, PLS and Bayesian regression retain desirable properties when

modeling a target variable yt irrespective of the assumed strength of a common factor structure

or multi-collinearity within a large dataset of predictor variables.

4 Empirical Applications

In this section we further analyze the properties of PLS, PC and Bayesian regressions within an

empirical context. We describe in Section 4.1 how we implement the different methods on the

data. In Section 4.2 we provide details on the utilized large data set and on how we construct

our predictor and explanatory variables. Finally, the results of the different forecast exercises

are reported in Section 4.3.

4.1 Implementation of the Data-Rich Methods and the Forecast Comparison

Our data-rich forecasts of h period-ahead changes in yt are generated using a model that either

combines the information extracted from the N explanatory variables in the N × 1 vector
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Xt = (x1,t · · ·xN,t) with or without lagged changes in yt, i.e.,

∆yt+h,t = αh + βh′
z(Xt) +

p∑
i=1

ρi∆yt−i+1,t−i + ϵt+h,t, (17)

where βh is r×1. In (17) z(Xt) represents a r×1 function of Xt that compresses the information

in the N indicator variables, i.e., through principal components (PC), partial least squares (PLS)

or by estimating the βh’s through Bayesian regression (BR, where r = N).

We operationalize the construction of z(Xt) on our data sets as follows:

Principal Components Regression

Following Stock and Watson (2002b) we take our T × N matrix of N indicator variables X =

(X ′
1 · · ·X ′

T )
′ and normalize this such that the variables are in zero-mean and unity variance

space, which results in the T ×N matrix X̃. We then compute the r eigenvectors of the N ×N

matrix X̃ ′X̃ that correspond to the first r largest eigenvalues of that matrix, which we assemble

in the N × r matrix Λr. These eigenvectors are then used to approximate the common factors

F that determine the series in X, i.e., F = X̃Λr, which gives us z(Xt) in (17).

In case of the principal components-based models updating based on an expanding window

of historical data evolves as follows:

1. First forecast for all h is generated on t0.

2. Extract r principal components Ft from the N indicator variables over the sample t =

1, . . . , t0 − h.

3. Estimate (17) with z(Xt) = Ft over the sample t = 1, . . . , t0 − h for each h.

4. Extract r principal components Ft from the N indicator variables N over the sample

t = 1, . . . , t0.

5. Generate for h the forecast ∆ŷt+h,t using the parameter estimates from step 3 and Ft from

step 4.

6. Repeat for t0 + 1, . . . , T − h for each h.
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Bayesian Regression

When Bayesian regression is used to compress the forecast information in the N indicator

variables, z(Xt) in (17) simply equals Xt, whereas β
h is estimated with the shrinkage estimator

(14). As in the case of principal components-based regressions we use a normalized version of the

T ×N matrix of explanatory variables X = (X ′
1 · · ·X ′

T )
′, indicated with X̃, and we also demean

∆yt+h,t first before we estimate βh
BRR. By doing this we follow De Mol et al. (2008), as the

regression can then be interpreted as a Bayesian regression with a Gaussian prior. If we include

lagged ∆yt’s in (17) we first regress both the demeaned ∆yt+h,t and the X̃ on ∆yt−i+1,t−i for

i = 1, . . . , p, and use the resulting residuals in (14) to estimate βh. Estimates for the intercept

term and the ρi’s in (17) can then be trivially recovered.

The Bayesian regression forecasts are updated using an expanding window of data like this:

1. First forecast for all h is generated on t0.

2. Estimate (17) with (14) for βh using X̃ over the sample t = 1, . . . , t0 − h for each h.

3. Generate for h the forecast ∆ŷt+h,t using the parameter estimates from step 2.

4. Repeat for t0 + 1, . . . , T − h for each h.

Partial Least Squares Regression

With partial least squares (PLS) regression, z(Xt) in (17) is constructed by computing r orthog-

onal combinations from the N indicator variables, where the weights of the individual indicator

variables in the respective combinations are chosen such that the covariance with ∆yt+h,t is max-

imized. The general PLS algorithm from Section 2.2 can be implemented for macroeconomic

forecasting as follows:

Algorithm 3 Suppose we do not include lagged ∆Yt’s in (17). Then:

1. Denote, as before, the T ×N matrix of indicator variables, each normalized to have a zero

mean and unit variance, as X̃ and demean the predictor variable, i.e.

∆Ẏh =
(
IT − ι(ι′−1ι′

) ∆yh+1,1
...

∆yT,T−h

 .
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2. The r PLS factors FPLS
1,t , . . . , FPLS

r,t and their loadings w1, . . . , wr are iteratively build up

through projections on lower order PLS factors followed by computing the covariances

between the resulting residuals of the columns from X̃ and those of ∆Ẏh:

FPLS
l = X̃l|l−1wl; wl =

1

T − 1
X̃ ′

l|l−1∆Ẏh,l|l−1 for l = 1, . . . , r (18)

where for l = 1 (the first PLS factor)

X̃1|0 = X̃, ∆Ẏh,1|0 = ∆Ẏh,

and for l > 1

X̃l|l−1 =
(
IT − FPLS

l−1 (FPLS′
l−1 FPLS

l−1 )−1FPLS′
l−1

)
X̃l−1|l−2 and

∆Ẏh,l|l−1 =
(
IT − FPLS

l−1 (FPLS′
l−1 FPLS

l−1 )−1FPLS′
l−1

)
∆Ẏh,l−1|l−2.

3. Finally, we simply plug in the r PLS factors FPLS
t = (FPLS

1,t · · ·FPLS
r,t )′ from (18) in the

predictive regression (17) without lagged ∆yt’s, which we estimate in the standard way:

∆yt+h,t = αh + βh′
FPLS
t + ϵt+h,t. (19)

When lagged predictor variables are included in the predictive regression (17), one needs

to control for the effect of ∆yt,t−1, . . . ,∆yt−p+1,t−p on the covariances between ∆yt+h,t and

x1,t, . . . , xN,t. Like in the BR case we do that by projecting the demeaned ∆yt+h,t as well as the

columns of X̃ on ∆yt,t−1, . . . ,∆yt−p+1,t−p, and then using the resulting residuals in Algorithm 3

in order to be able to construct a model like

∆yt+h,t = αh + βh′
FPLS
t +

p∑
i=1

ρi∆yt−i+1,t−i + ϵt+h,t. (20)

Finally, forecasts from (19) and (20) are generated as follows, again using an expanding

window of historical data:

1. First forecast for all h is generated on t0.

2. Extract r PLS factors FPLS
t from the N indicator variables over the sample t = 1, . . . , t0−h

for each h based on Algorithm 3.

3. Estimate either (19) or (20) over the sample t = 1, . . . , t0 − h for each h.
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4. Extract r PLS factors FPLS
t from the N indicator variables over the sample t = 1, . . . , t0

for each h using the corresponding loadings wr from step 2 based on Algorithm 3.

5. Generate for h the forecast ∆ŷt+h,t using the parameter estimates from step 3 and FPLS
t

from step 4.

6. Repeat for t0 + 1, . . . , T − h for each h.

This leaves us with one more issue: either the appropriate number of factors r for PC or PLS

regression, or in case of Bayesian regression the appropriate value for the shrinkage parameter v

in (14). For PC regression, we assumed in the Monte Carlo exercises that the number of common

factors underlying our panel of predictor variables was known and we used this to inform how

many PCs to include in the corresponding predictive regression. Obviously, in reality one cannot

know for certain the true number of unobserved common factors. However, Bai and Ng (2002)

proposed information criteria to determine the number of principal components that consistently

estimates the unobserved common factor space underlying a panel of N predictor variables, and

this has been the dominant approach in macroeconomic forecasting for selecting the appropriate

number of PCs for predictive regressions. We will therefore also utilize this approach in our

empirical exercise, in particular by selecting the number of dominant PCs that minimizes Bai

and Ng (2002)’s IC2 metric:

IC2 = ln(σ2
ϵ ) + r

(
(N + T ) ln(min(T,N))

NT

)
, (21)

where σ2
ϵ is the average idiosyncratic error variance in the panel of N predictor variables. In

(17), conditional on the number of selected principal components by means of minimizing (21),

we then select the optimal lag order by minimizing BIC across p = 0, 1, . . . , pmax. As a final

note, we reiterate here the point made in Groen and Kapetanios (2013) that the principal

components selected in the aforementioned described manner does not necessarily result in the

best performing predictive model.

In the Monte Carlo section we found that out-of-sample cross-validation, following Giraitis

et al. (2013) who have shown that such an approach can consistently uncover from the data vari-

ous characteristics of a forecasting model, could work well for both PLS and Bayesian regression

under a variety of specifications of the underlying unobserved factor model. We therefore adopt

Algorithm 2 used in the Monte Carlo experiments to our data and use it to select both the
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optimal lag order p and either the optimal number of factors or optimal degree of shrinkage for

(17):

Algorithm 4 1. The first forecast for all horizons h is generated at t = t0.

2. For each of t0 − 35, t0 − 34, . . . , t0 − h we re-estimate for:

• Bayesian regression: we consider up to 21 different values for the shrinkage parameter

v = qN (see (14)) with q = 0.5, 1, 1.5, . . . , 10 in (17), where we re-estimate for each

of t0 − 35, t0 − 34, . . . , t0 − h (pmax +1)× 21 versions of (17) using at each lag order

p = 0, . . . , pmax one of v = 0.5N,N, 1.5N, . . . , 10N in (14).

• PLS regression: we consider up to 6 PLS factors in (17), where we re-estimate for

each of t0 − 35, t0 − 34, . . . , t0 − h (pmax + 1)× 6 versions of (20) using at each lag

order p = 0, . . . , pmax one of r = 1, . . . , 6 PLS factors extracted from Xt.

3. From the previous step we have for both Bayesian and PLS regression a set of 36 − h

h-period ahead forecast errors across the corresponding range of potential specifications

of (17). These are used to compute h-period ahead MSE measures, and the specification

of (17) that has the minimum MSE for horizon h is chosen as the optimal specification

for the data-rich method of interest at this horizon in t0, where we estimate this optimal

specification for t = 1, . . . , t0 − h and generate a h-period ahead forecast with it at t0.

4. Repeat for t0 + 1, . . . , T − h for each h.

We follow the set up of the Monte Carlo experiments in the previous section and use PC

regression as the benchmark for our alternative data-rich based forecasts. In addition, we assess

the forecasting performance of naive times series relative to this benchmark, as it is common

practice to evaluate in the macroeconomic forecasting literature new approaches relative to hard-

to-beat models like the random walk and autoregressive models. As additional naive time series

models we use an autoregressive (AR) model

∆yt+h,t = αh +

p∑
i=1

ρi∆yt−i+1,t−i + ϵt+h,t, t = 1, . . . , T (22)

as well as the unconditional mean,

∆yt+h,t = αh + ϵt+h,t, (23)
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with ∆yt+h,t = yt+h − yt for h > 0 and ∆yt−i+1,t−i = yt−i+1 − yt−i for i = 1, . . . , p. The number

of lagged first differences p in (22) is determined by sequentially applying the standard Schwarz

(1978)’s BIC starting with a maximum lag order of p = pmax down to p = 1. Unconditional

mean forecast (23) implies a random walk (RW) forecast for the level of the forecast variable yt.

As mentioned earlier, all models in the forecast evaluation exercise are updated recursively for

each forecast based on an expanding window of historical data.

Our assessment of the forecasting performance of the data-rich methods relative to pure AR-

based and random walk-based forecasts is based on the square root of the mean of the squared

forecast errors (RMSE). In Section 4.3 we will report ratios of the RMSE of the Bayesian and PLS

regression approaches as well as (22) and (23) relative to the RMSE of PC regression. Superior

out-of-sample performance of a method relative to PC regression is, obviously, indicated by a

RMSE ratio smaller than one. While these RMSE ratios would give the reader an initial sense

of the relative performance of the different data-rich based methods in terms of our benchmark

models, it is not clear whether we find statistically significant differences for the different RMSEs.

The usual approach to relative forecast performance inference is to construct a t-statistic for the

null hypothesis that the MSE of the alternative model equals that of the benchmark model, as

in, e.g., Diebold and Mariano (1995). However, the possibility of our models being nested in the

PC regression model combined with an expanding data window for parameter updating affects

the limiting distribution of such a t-statistic under the null; see Clark and McCracken (2013)

for an overview of these effects.

To deal with these issues, we build on Monte Carlo results in Clark and McCracken (2013)

who find that in case of RMSE-based evaluation comparing the Harvey et al. (1997) small

sample variance correction of the Diebold and Mariano (1995) t-statistic (HLN-DM statistic

hereafter) to standard normal critical values results in a good sized test of the null hypothesis

of equal finite sample forecast MSE precision for both nested and non-nested models, including

cases with expanded window-based model updating. It is not clear whether the assumptions

underlying the Clark and McCracken (2013) results continue to hold when utilizing data-rich

forecasting methods, but investigating this is beyond the scope of this paper. We, like Faust and

Wright (2012) and Groen et al. (2013), make a judgement call that from a practitioner’s point of

view the Clark and McCracken (2013) approach provides a useful forecast assessment tool when

data-rich methods are part of the set of models being evaluated, as the final predictive regression

very often is still estimated by means of OLS. Thus, we follow a similar procedure, where we
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compare the value of the HLN-DM statistic to one-sided critical values from the standard normal

distribution, and thus we test the null of equal finite sample MSE forecast accuracy versus the

alternative that a model outperformed PC regression. As in Clark and McCracken (2013),

this statistic is based on a rectangular heteroscedasticity and autocorrelation robust variance

estimator with a h− 1 truncation lag.

4.2 The Data Set and Variable Construction

Stock and Watson (2007) reorganize the large panel of macroeconomic, financial and survey-

based predictor variables for the United States from Stock and Watson (2002b) and update the

span of the data to the end of 2006. Both our forecast variables and our panel of indicator

variables are extracted from Stock and Watson (2007) and we focus on the 109 monthly series

from this U.S. data set, which before transformation span a sample starting in January 1959 and

ending in December 2006. We do not use any later data as our aim is to evaluate the relative

performance of the methods we consider, within a stationary framework. This aim would be

adversely affected by the presence of potential nonstationarities due to the 2007-2008 financial

crisis.

The panel of predictor variables consist of 105 series spanning real variables, labor market

data, data on price indices (and subcomponents) and wages, money and credit series, asset

prices and surveys. The predictor variables are transformed such that they are I(0), which in

general means that the real variables are expressed in log first differences and we use simply first

differences of series expressed in rates, such as interest rates; see Appendix E for more details.

With respect to nominal series we transform these into first differences of annual growth rates

in order to guarantee that the dynamic properties of these transformed series are comparable

to those of the rest of the panel, as for example motivated in D’Agostino and Giannone (2006,

Appendix B). Hence, after transforming the indicator variables we end up with an effective span

of the data that starts in February 1960 (i.e. 1960.2) and ends in December 2006 (i.e. 2006.12).

This predictor variables panel will be used to forecast appropriate transformations of CPI

inflation, industrial production, the unemployment rate and the federal funds rate. These fore-

cast variables are not part of the panel of predictors and are transformed such to guarantee

stationarity:
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Yt ∆yt,t−1 ∆yt+h,t

CPI index ∆ lnYt,t−12 −∆ lnYt−1,t−13 ∆lnYt+h,t+h−12 −∆lnYt,t−12

Industrial Production index ∆ lnYt,t−1 ∆lnYt+h,t

Unemployment rate ∆Yt,t−1 ∆Yt+h,t

Federal Funds rate ∆Yt,t−1 ∆Yt+h,t

As described in the previous subsection, the forecasting models are updated based on an

expanding window of data and all forecasts are direct forecasts for 3 horizons (in months):

h = 1, h = 3 and h = 12, which are horizons commonly analyzed in the literature. The

forecast evaluation spans two samples: January 1972 - December 2006 and January 1985 -

December 2006. The latter sample commences around the start of the ‘Great Moderation’,

as, e.g., McConnell and Perez-Quiros (2000) and Sensier and van Dijk (2004) find evidence

for a downward, exogenous, shift in the volatility of a large number of U.S. macroeconomic

time series around 1985. This sample split is of particular importance for forecasting U.S.

economic time series, as it has been shown that it is difficult for a lot of data-rich, approaches

(including Greenbook projections from the Federal Reserve Board) to beat simple, non-structural

benchmarks like RW and AR models after the occurrence of the ‘Great Moderation’; see, e.g.,

D’Agostino et al. (2006).

4.3 Forecasting Results

As discussed in Section 4.1, we will assess the forecasting performance of the Bayesian and PLS

regression approaches as well as the two simple time series models (respectively (22) and (23))

relative to forecasts from PC regression. The evaluation results for our four variables can be

found in Table 6.

The first panel of Table 6 relates to forecasting changes in annual CPI inflation. Across the

two evaluation samples, the full 1972-2006 evaluation sample and the Great Moderation sub-

sample, both PLS and Bayesian regression dominate over PC regression. This is not only the case

when PC regression performs as well as or better than the RW and AR models, but also when

it performs worse than those naive time series models. Between PLS and Bayesian regression,

the latter seems to perform slightly better but the PLS approach still provides a close second

best, in particular for one-year ahead forecasts. Of course, the overall forecasting performance

of the data-rich approaches is less over the post-Great Moderation period, especially vis-à-vis
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the RW benchmark beyond the one-month ahead horizon, which is consistent with findings for

inflation prediction elsewhere in the literature.

For our two real activity measures, the unemployment rate and industrial production (see the

second and third panels of Table 6, respectively), there is no significant difference in forecasting

performance across PC, PLS and Bayesian regressions at the one-month ahead horizon. Beyond

that horizon, PLS and Bayesian regressions generally perform better than PC regression (often

significantly so), which upholds even when PC regression itself predicts worse than one of the

naive time series models. When we compare PLS and Bayesian regression, the former clearly

performs best at the three-month ahead horizon as well as the full sample one-year ahead horizon.

The Great Moderation has an impact in so far forecasts from an AR model become pretty much

impossible to beat by any of the data-rich approaches at the one-year ahead horizon.

Finally, the bottom panel in Table 6 summarizes the forecast evaluation results for the federal

funds rate. As the federal funds rate is determined by the Federal Reserve Board, which sets

the target for the federal funds rate by taking into account both nominal and real developments,

data-rich methods, which feed off of both nominal and real series, are expected to perform

well in predicting fed funds rate changes. Although less dominating than in case of industrial

production growth and unemployment changes, Bayesian regression and PLS regression perform

well especially well at the one-month ahead horizon throughout the different evaluation samples,

with PLS regression dominating at the three-month horizon for the full evaluation sample and

Bayesian regression dominating at that horizon for the Great Moderation sample. One-year

ahead there is no difference in forecasting performance across the data-rich approaches across

both evaluation samples, nor relative to the naive time series models in the Great Moderation

sample.

The empirical forecast evaluations in this subsection lead to a number of general observations.

First, it is clear that the PLS-based forecast models are, generally speaking, amongst the best

performing models. And even in the cases that they are outperformed by Bayesian regression

approaches, the results in Table 6 indicate that they are close competitors. Note also that in

Table 6 the performance of methods that use PLS factors and Bayesian regression are generally

better than those based on PC regression, particularly at longer horizons.
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5 Conclusions

In this paper we have revisited a number of approaches for prediction with many predictors

that are widely used in macroeconomic forecasting and we compare these with a less widely

known alternative approach: partial least squares (PLS) regression. Under PLS regression, one

constructs a number of linear combinations of the predictor variables such that the covariances

between the target variable and each of these linear combinations are maximized.

Based on the work of Kelly and Pruitt (2012), principal components (PC) regression and PLS

regression are asymptotically similar when the underlying data has a dominant common factor

structure. When the factor structure in a large data set is weak as N → ∞, we prove that both

PLS and Bayesian regression will continue to provide a model with the best asymptotic fit for a

target variable. In contrast, PC regression is only guaranteed to provide the best asymptotic fit

for the target variable under very minor deviations of a strong factor structure in a large panel

of predictor variables with very stringent rate conditions. Hence, whether or not a large panel

of predictors has a clear factor structure, we would expect PLS and Bayesian regression to do

well in macroeconomic forecasting, in contrast to PC regression.

An extensive Monte Carlo analysis, which compares PLS and Bayesian regressions with PC

regression, yields a number of interesting insights. Firstly, when we assume that the predictors

relate to the target variable through a standard, dominant, common factor structure, PLS

regression is shown to have an out-of-sample performance that is at least comparable to, and

often better than PC regression. PLS regression also compares well to Bayesian regression under

this data specification. When the relation between the predictors and the target variable has

a weak factor structure, PLS and Bayesian regression clearly have the edge in terms of out-of-

sample forecasting performance relative to PC regression. Also, in this setting PLS regression

is at least performing as well as Bayesian regression, and actually outperforms it the weaker the

factor structure becomes.

Finally, we apply PC, PLS and Bayesian regression on a panel of 105 U.S. monthly macroe-

conomic and financial variables to forecast CPI inflation, industrial production, unemployment

and the federal funds rate, where these forecasts are evaluated across several sub-samples. PLS

and Bayesian regression turn out to be generally the best performing methods, . Hence, if a fore-

caster is unsure how strong the commonality is amongst a large dataset of predictor variables,

he or she is therefore best off modeling a target variable through PLS or Bayesian regression,
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as our paper shows that these approaches will retain their desirable properties under different

factor structure assumptions.
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Table 6: Forecast evaluation results

h RW AR PLS BR RW AR PLS BR

January 1972 - December 2006 January 1985 - December 2006

CPI Inflation
1 1.083 1.010 0.973 0.949∗∗∗ 1.030 1.026 0.986 0.951∗

(2.455) (0.452) (−1.101) (−2.020) (0.774) (1.052) (−0.555) (−1.553)
3 1.063 1.062 0.993 0.961∗ 0.937∗ 1.036 0.977 0.938∗∗∗

(1.349) (1.625) (−0.251) (−1.377) (−1.647) (1.101) (−1.171) (−2.148)
12 1.008 1.037 0.965∗ 0.942∗∗ 0.849∗∗∗ 0.981 0.954∗ 0.924∗∗∗

(0.147) (0.680) (−1.380) (−1.850) (−2.436) (−0.313) (−1.287) (−2.032)

Unemployment
1 1.148 1.102 1.002 1.012 1.059 1.047 1.003 1.015

(3.479) (3.413) (0.112) (0.580) (1.807) (1.608) (0.200) (0.765)
3 1.219 1.105 0.953∗ 0.965 1.142 1.085 0.953∗∗ 1.001

(2.425) (2.518) (−1.496) (−1.027) (2.364) (2.118) (−1.763) (0.041)
12 1.006 0.991 0.885∗∗ 0.915 1.024 0.985 0.960 0.951

(0.082) (−0.136) (−1.641) (−1.226) (0.517) (−0.356) (−0.766) (−1.137)

Industrial Production
1 1.172 1.077 1.012 0.984 1.006 1.001 0.976 0.939∗∗∗

(3.402) (2.702) (0.571) (−0.787) (0.183) (0.051) (−1.127) (−2.597)
3 1.200 1.073 0.930∗∗ 0.963 1.130 1.007 0.998 0.966

(2.553) (1.131) (−1.920) (−0.879) (1.836) (0.135) (−0.066) (−1.133)
12 0.982 0.902∗ 0.798∗∗∗ 0.847∗∗∗ 1.171 0.890∗∗∗ 0.972 0.933∗∗

(−0.208) (−1.603) (−2.759) (−2.354) (1.427) (−2.748) (−0.671) (−1.957)

Federal Funds Rate
1 1.060 1.068 0.925∗ 0.871∗∗ 0.792∗∗ 0.719∗∗∗ 0.960 0.710∗∗∗

(0.862) (0.677) (−1.503) (−2.014) (−2.013) (−2.728) (−0.482) (−2.996)
3 0.984 1.044 0.897∗ 0.901 0.937 0.942 0.964 0.849∗∗∗

(−0.219) (0.485) (−1.549) (−1.216) (−0.863) (−0.854) (−0.712) (−3.391)
12 1.073 1.157 1.004 1.031 1.045 1.077 1.030 0.955

(1.485) (2.158) (0.110) (0.728) (0.639) (1.032) (0.476) (−0.863)

Notes: The table reports the ratio of the RMSE of the random walk (RW) model (23), the
autoregressive (AR) model (22) and versions of (17) based on PLS and Bayesian regression (BR)
vis-à-vis the RMSE of (17) based on principal components (PC) regression; see Section 4.1. The
optimal number of PLS factors or shrinkage parameter (BR) as well as the optimal lag order p are
for each forecast determined by means of out-of-sample cross-validation using Algorithm 4 with
pmax = 12. In case of PC regression, we use for each forecast the Bai and Ng (2002) information
criterion IC2 (21) based on a upper bound of 6 principal components, where conditional on the
selected number of principal components that minimizes (21) we use BIC with pmax = 12 to select
the optimal lag order. In parentheses we report the Diebold and Mariano (1995) statistic with
the Harvey et al. (1997) variance estimation correction utilizing a rectangular HAC estimator
with lag truncation h−1 for the null hypothesis of equal finite sample prediction accuracy versus
the alternative hypothesis that a model outperforms PC regression, where ∗, ∗∗ and ∗∗∗ indicates
rejection of this null at the 10%, 5% and 1% level, respectively, based on one-sided standard
normal critical values.
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Outline

This Appendix provides proofs of our theoretical analysis, some additional simulation results

and details on data used in the article. In Section A we provide the proof underlying Theorem 1,

whereas in Sections B and C we do that for Theorems 2 and 3, respectively. Section D reports

the results for a number of Monte Carlo experiments that complement those in Section 3 of the

main article. Finally, in Section E describes the data and the necessary data transformations as

used in Section 4 of the main article. Note that when we refer in this Appendix numerically to

equations, tables, sections and so on, these pertain to the ones in the main article.

A Proof of Theorem 1

The local nature of the factor loadings in (8) we need to use a different normalization than

Λ′Λ/N = I, which is implied by Assumption 1(b), and instead we us Λ′1−2κ = I. This results

in F̂ = N−1+2κX̃Λ̃ and Λ̃ = T−1X̃ ′F̃ , where F̃ is the solution to the optimization problem of

maximizing tr(F ′(X̃ ′X̃)F ) subject to F ′F/T = I. Let H =
(
(F̃ ′F/T )(Λ′

NΛN/N1−2κ)
)′
. Then,

(7) becomes

(ζ̂ ′F̂t − α′xt) =
(
ζ ′HFt − ζ̂F̂t

)
+ α′et. (A.1)

Rearranging (A.1) using the definition of ζ in (6) and assuming that for forecasting model (1)

we have ∥α∥ = O(N−1/2), the result directly follows from Corollary 1 of Bai and Ng (2006) and

Lemma 1 of Kapetanios and Marcellino (2010).

B Proof of Theorem 2

We wish to show that

E
(
y2T |xT

)
− E

(
ŷ2T |xT

)
= σ2

ϵ ,

E
(
y2T |xT

)
−E

(
ŷ2T |xT

)
= E

(
αxTx

′
Tα|xT

)
−E

(
α′
NxTx

′
TαN |xT

)
+E

(
α′
NxTx

′
TαN |xT

)
−E

(
α̂′
NxTx

′
T α̂N |xT

)
=
∥∥x′Tα− x′TαN + x′TαN − x′T α̂N

∥∥ ≤
∥∥x′Tα− x′TαN

∥∥+ ∥∥x′TαN − x′T α̂N

∥∥ ,
and

∥∥E (αxTx′Tα|xT )− E
(
α′
NxTx

′
TαN |xT

)∥∥ ≤ C
(
E
(
αxTx

′
Tα
)
− E

(
α′
NxTx

′
TαN

))
,

where αN = cov(yt, xt) = E (ytxt) = Σα.
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We can write

E
(
αxTx

′
Tα
)
− E

(
α′
NxTx

′
TαN

)
≤
∥∥α′ (Σ− I)α

∥∥
and

E
(
α′
NxTx

′
TαN |xT

)
− E

(
α̂′
NxTx

′
T α̂N |xT

)
≤ C

∥∥E (α̂N − αN )′ (α̂N − αN )
∥∥ ≤ N∑

j=1

E

( 1

T

T∑
t=1

xj,tyt − σXy,j

)2
+

N∑
j=1

N∑
i=1

E

((
1

T

T∑
t=1

xj,tyt − σXy,j

)(
1

T

T∑
t=1

xi,tyt − σXy,i

))1/2

.

But

E

( 1

T

T∑
t=1

xj,tyt − σXy,j

)2
 = O

(
T−1

)
, uniformly over i,

and

E

((
1

T

T∑
t=1

xj,tyt − σXy,j

)(
1

T

T∑
t=1

xi,tyt − σXy,i

))
= O

(
T−1

)
, uniformly over i, j.

Therefore, N∑
j=1

E

( 1

T

T∑
t=1

xj,tyt − σXy,j

)2
+

N∑
j=1

N∑
i=1

E

((
1

T

T∑
t=1

xj,tyt − σXy,j

)(
1

T

T∑
t=1

xi,tyt − σXy,i

))1/2

= O
(
T−1/2N

)
.

C Proof of Theorem 3

Let αBRR denote the population counterpart of α̂BRR, which via (4) equals

αBRR =
(
Λ′Λ + Σe + vI

)−1 (
Λ′Λ + Σe

)
α,

where Σe = E(ete
′
t). Given Lemma 4 of De Mol et al. (2008), we only need to show that

∥α− αBRR∥ = O

(
v ∥α∥

µmin (ΛΛ′)

)
, (C.1)

where µmin (ΛΛ
′) is the minimum eigenvalue of ΛΛ′, and

∥αBRR − α̂BRR∥ = Op

(
N1/2

vT 1/2

[
1 +N1/2 ∥α∥

])
. (C.2)

Then the result follows. For (C.1), we have that

α− αBRR =
[(
Λ′Λ + Σe + vI

)−1 −
(
Λ′Λ + Σe

)−1
] (

Λ′Λ + Σe

)
α =
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(
Λ′Λ + Σe

)−1
v
(
Λ′Λ + Σe + vI

)−1 (
Λ′Λ + Σe

)
α

So,

∥α− αBRR∥ ≤
∥∥∥(Λ′Λ + Σe

)−1
v
(
Λ′Λ + Σe + vI

)−1 (
Λ′Λ + Σe

)
α
∥∥∥ ≤ v

∥∥∥(Λ′Λ + Σe

)−1
α
∥∥∥ ≤ v ∥α∥

µmin (ΛΛ′)
.

For (C.2), we simply note that ∥αBRR∥ ≤ ∥α∥ and the result follows by Lemma 2 and the proof

of Lemma 3 of De Mol et al. (2008).

D Additional Monte Carlo Experiments

In this section we report the simulation results for a number of additional variations of the

Monte Carlo DGP (16) in 3:

Case IV: λi,j ∼ iidN(0, 1) for i = 1, . . . , N & j = 1, . . . , r, c2 = 2. αi ∼ iid N(0, 1)

Case V: λi,j

 = λ̃i,j ∼ iidN(0, 1) for i = 1, . . . , N1, N1 = Nκ1 (κ1 = 0.25, 0.75) & j = 1, . . . , r.

= 0 for i = N1 + 1, . . . , N & j = 1, . . . , r.

 ,

, c2 = 1.

Case VI: λi,j = 0, c2 = 1. αi ∼ iid N(0, 1)

Case IV (Table D.1) is one where while the factor is pervasive the idiosyncratic noise term

is more dominant implying that PLS and Baeysian regression should have a larger advantage

over PC. Under Case V (Tables D.2-D.3) we assume a structure of the form (13) where we set

N1 = Nκ1 and κ1 = 0.25, 0.75. This is operationalized by using a factor model where the

factors are not pervasive but affect a subset N1 of the variables in xt. The subset of predictor

variables (N1 −N) are non-informative for the factors and this subset will dominate the panel

of N predictor variables as N → ∞, where κ1 determines the speed with which this occurs.

Finally, Case VI (Table D.4) is a case where there are no common factors driving the dynamics

of the xt predictor variables.
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Table E.1: Transformation of the predictor variables

Transformation code Transformation Xt of raw series Yt

1 Xt = Yt
2 Xt = ∆Yt,t−1

3 Xt = ∆Yt,t−12 −∆Yt−1,t−13

4 Xt = lnYt
5 Xt = ∆ lnYt,t−1

6 Xt = ∆ lnYt,t−12 −∆lnYt−1,t−13

E Data Set

The data set used for forecasting are the monthly series from the panel of U.S. predictor series as

employed in Stock and Watson (2007), but excluding our four forecast variables: CPI inflation,

(aggregate) industrial production, (aggregate) unemployment rate and the (effective) federal

funds rate. In order to have I(0) predictor variables, the underlying raw series need to be

appropriately transformed; generally we employ the same transformation as Stock and Watson

(2007), except for the nominal series where we follow, e.g., D’Agostino and Giannone (2006) and

use first differences of twelve-month transformations of the raw series. Table E.1 summarizes

our potential transformations for the raw series.

Hence, we are using as predictor variables the following 105 series, which span before trans-

formation the sample January 1959 - December 2006 and we refer to Stock and Watson (2007)

for more details regarding data construction and sources:

Series Yt Transformation:
(See Table E.1)

INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS 5
INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT 5
INDUSTRIAL PRODUCTION INDEX - MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 5
INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES 5
INDUSTRIAL PRODUCTION INDEX - FUELS 5
NAPM PRODUCTION INDEX (PERCENT) 1
CAPACITY UTILIZATION - MANUFACTURING (SIC) 1
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 6
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 6
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 6
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 5
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REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 5
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 5
EMPLOYEES, NONFARM - TOTAL PRIVATE 5
EMPLOYEES, NONFARM - GOODS-PRODUCING 5
EMPLOYEES, NONFARM - MINING EMPLOYEES, NONFARM - CONSTRUCTION 5
EMPLOYEES, NONFARM - MFG 5
EMPLOYEES, NONFARM - DURABLE GOODS 5
EMPLOYEES, NONFARM - NONDURABLE GOODS 5
EMPLOYEES, NONFARM - SERVICE-PROVIDING 5
EMPLOYEES, NONFARM - TRADE, TRANSPORT, UTILITIES 5
EMPLOYEES, NONFARM - WHOLESALE TRADE 5
EMPLOYEES, NONFARM - RETAIL TRADE 5
EMPLOYEES, NONFARM - FINANCIAL ACTIVITIES 5
EMPLOYEES, NONFARM - GOVERNMENT 5
INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) 2
EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF 2
CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 5
CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) 5
AVG WKLY HOURS, PROD WRKRS, NONFARM - GOODS-PRODUCING 1
AVG WKLY OVERTIME HOURS, PROD WRKRS, NONFARM - MFG 2
HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 4
HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,U)SA 4
HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 4
HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 4
HOUSING STARTS:SOUTH (THOUS.U.)S.A. 4
HOUSING STARTS:WEST (THOUS.U.)S.A. 4
INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 2
BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM) 2
BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM) 2
INTEREST RATE SPREAD: 6-MO. TREASURY BILLS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: 1-YR. TREASURY BONDS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: 10-YR. TREASURY BONDS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: AAA CORPORATE MINUS 10-YR. TREASURY BONDS 1
INTEREST RATE SPREAD: BAA CORPORATE MINUS 10-YR. TREASURY BONDS 1
MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA) 6
MZM (SA) FRB St. Louis 6
MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP)(BIL$,SA) 6
MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 6
DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 6
DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 6
Commercial and Industrial Loans at All Commercial Banks (FRED) Billions $ (SA) 6
CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) 6
Personal Consumption Expenditures, Price Index (2000=100) , SAAR 6
Personal Consumption Expenditures - Durable Goods, Price Index (2000=100), SAAR 6
Personal Consumption Expenditures - Nondurable Goods, Price Index (2000=100), SAAR 6
Personal Consumption Expenditures - Services, Price Index (2000=100) , SAAR 6
PCE Price Index Less Food and Energy (SA) Fred 6
PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 6
PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 6
PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 6
PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 6
Real PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 5
SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 6
Real SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 5
PRODUCER PRICE INDEX: CRUDE PETROLEUM (82=100,NSA) 6
PPI Crude (Relative to Core PCE) 5
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NAPM COMMODITY PRICES INDEX (PERCENT) 1
UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) 5
FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5
FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5
FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5
FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5
S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5
S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5
S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 2
COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE 5
S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2
PURCHASING MANAGERS’ INDEX (SA) 1
NAPM NEW ORDERS INDEX (PERCENT) 1
NAPM VENDOR DELIVERIES INDEX (PERCENT) 1
NAPM INVENTORIES INDEX (PERCENT) 1
NEW ORDERS (NET) - CONSUMER GOODS & MATERIALS, 1996 DOLLARS (BCI) 5
NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 DOLLARS (BCI) 5
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