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Abstract

Factor-augmented regressions are often used as a parsimonious way of modeling a

variable using information from a large data set, through a few factors estimated from this

data set. But how does one determine which factors are relevant for such a regression?

Existing work has focused on criteria that can consistently estimate the appropriate

number of factors in a large-dimensional panel of explanatory variables. However, these

are not necessarily all relevant for modeling a specific dependent variable within a factor-

augmented regression. This paper develops a number of theoretical conditions selection

criteria have to fulfill in order to provide a consistent estimate of the factor dimension that

is relevant for such a regression. Our framework takes into account factor estimation

error, and it does not depend on a specific factor estimation methodology. Our conditions

indicate that standard model selection criteria, such as BIC, are not consistent for factor-

augmented regressions, but they can be once we modify these such that the corresponding

penalty function for dimensionality also penalizes factor estimation error. We show

through Monte Carlo and empirical applications that these modified information criteria

are useful in determining appropriate factor-augmented regressions.

Key words: factor models, information criteria, macroeconomic forecasting

Groen: Federal Reserve Bank of New York (e-mail: jan.groen@ny.frb.org). 

Kapetanios: Queen Mary University of London (e-mail: g.kapetanios@qmul.ac.uk). The authors

thank two anonymous referees as well as Anindya Banerjee (the editor) for helpful comments.

They also thank Craig Kennedy for excellent research assistance. The views expressed in this

paper are those of the authors and do not necessarily reflect the position of the Federal Reserve

Bank of New York or the Federal Reserve System.



1 Introduction

When forecasting an economic variable, it is often necessary to incorporate information from a
large set of potential explanatory variables into the forecasting model. Most traditional macroe-
conomic prediction approaches, however, are unable to deal with this, either because it is ineffi-
cient or downright impossible to incorporate a large number of variables in a single forecasting
model and estimate it using standard econometric techniques. As an alternative approach to
this problem factor-augmented regressions have gained a prominent place. A seminal applica-
tion is Stock and Watson (2002b), where a limited number of principal components extracted
from a large data set are added to a standard linear regression model which then is used to
forecast key macroeconomic variables. Stock and Watson (2002a) and Bai (2003) formalized the
underlying asymptotic theory, which allows the use of principal components in very large data
sets to identify the common factors in such a data set.

Dynamic factor research in econometrics has spend substantial effort on developing tests and
selection criteria aimed at determining that number of factors that describes best the dynamics
in a large data set of explanatory variables. A well-known contribution is Bai and Ng (2002),
who derive a range of consistent information criteria that can be used to identify the common
factor space underlying a large panel of predictor series. While the number of factors selected in
such a way provides an upper bound for the number of factors that should enter the forecasting
regression for a particular variable, there is no a priori reason to suppose that all factors should
enter this regression. Therefore, it is of importance that a form of factor selection is carried
out that is tailored at determining a factor-based forecasting model for a specific variable.
This problem has received far less attention in the literature than the aforementioned issue
of determining the number of factors that best explains the dynamics in large data sets of
explanatory variables.

One further important reason for considering this problem has to do with the well known
evidence (see, e.g., Kapetanios (2010)) that determining the number of factors in large datasets
is a difficult undertaking. As a result, the performance of existing methods suffer considerably
under a variety of circumstances. On the other hand, determining the identity and number of
variables in a regression, through information criteria, is a well understood problem. Further,
such information criteria have desirable properties both asymptotically and in finite samples.
Therefore, it seems reasonable to try and use such criteria for the problem at hand, even if all
factors in a large dataset appear in the regression under consideration.

Intuitively, since the aim is to specify a regression model for a single variable, standard
information criteria may be considered useful in selecting the optimal number of factors for a
particular forecasting regression. However, factor variables are not observed and as a result this
estimation error may matter and make standard information criteria invalid. Stock and Watson
(1998) make this point and propose a selection criterion that takes into account this estimation
error. However, their criteria do not take into account the sharper asymptotic analysis of Bai
and Ng (2006) and, therefore, the form of the penalty term they propose and the conditions
under which it is valid, can be improved upon. Building on Bai and Ng (2006), Bai and Ng
(2009) propose a final prediction error (FPE) criterion in which an extra penalty term is added to
proxy for the effect of factor estimation error on the forecasting regression. Optimizing this FPE
will yield the number of factors that asymptotically minimizes the prediction error, but it does
not necessarily provide an asymptotically consistent estimate of the number of factors present
in the regression of interest. Also, the finite sample performance of this FPE criterion depends
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on the choice of a consistent estimator of the factor estimation error variance. Alternatively, one
can follow Bai and Ng (2008) and select a subgroup of predictors from the overall macro panel
with the best fit for the target variable, based on some threshold rule, and subsequently apply
principal components on these ‘targeted predictors’ in order to get the most relevant factors
for forecasting. In this paper, we rather focus, like Stock and Watson (1998) and Bai and Ng
(2009), on the construction of appropriate selection criteria that can provide the econometrician
with the optimal factor-augmented regression.

We propose a number of novel insights with respect to this issue of determining the relevant
factors for a specific factor-augmented regression. Firstly, we show that standard information
criteria are inconsistent estimators of the true dimension of the relevant factor space, in particular
when the time series dimension of the underlying panel of predictor variables grows slower than
its cross-section dimension. Next, we suggest alternative criteria that are consistent estimators in
all cases - essentially we build on existing consistent information criteria for time series analysis
and modify them to take into account the effects of factor estimation error. Further, we generalize
our analysis to factor estimation methods other than principal components. Both Monte Carlo
and empirical exercises show the relevance and added value of our proposed framework.

The paper is structured as follows. In Section 2, we present our setup and theoretical results.
Section 3 reports on a detailed Monte Carlo study of our new selection criteria in comparison with
existing ones. Section 4 presents an empirical forecasting application and Section 5 concludes.

2 Theory

We focus on a single variable yt that we wish to model using an N -dimensional set of variables
xt and the latter is assumed to have a factor structure. In particular, we posit the following
model for xt:

xt = Λft + ut, t = 1, . . . , T (1)

where ft = (f1t, ..., frt)
′ is an r × 1 vector of factor variables such that r << N and ut is an

N × 1 vector of zero-mean errors. The factors ft are not observed and need to be estimated
from the N × 1 data vector, xt. Let the forecasting equation for yt, be specified as

yt = f0
′
t β + et (2)

where f0t is an r0 × 1 vector of factor variables that is possibly a subset of ft, i.e., 1 ≤ r0 ≤ r.
Finally, et is an error term with finite variance σ2. The aim of our work is to provide information
criteria for selecting the appropriate set of factors that should be entered in (2). There has been
a considerable amount of work on determining r, which is the true number of factors needed to
explain xt (see, e.g., Bai and Ng (2002)). Our focus is different in the sense that not all factors
underlying xt may be relevant for modeling yt. It is clear that standard information criteria
may be of use in specifying (2), but care needs to be taken given that ft are not observed and
must be estimated from xt.

Now let us consider the class of information criteria (IC) given by

IC =
T

2
ln{σ̂2ê}+ CT,N (3)

where σ̂2ê denotes the estimated residual variance from the regression

yt = f̂
′
tβ + êt (4)
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and f̂t denotes some subset of the estimated factor set obtained by applying principal components
(PC) to (1). We further specify that CT,N = iC̃T,N where i denotes the dimension of the
candidate set of factors to be entered in (2) and C̃T,N denotes a penalty term that depends
solely on T and N . This class includes all popular IC such as the Akaike (1974) IC (AIC),
the Bayesian IC (BIC - see Schwarz (1978)) and the IC proposed by Hannan and Quinn (1979)
(HQIC). It is important to realise that our search is not just over the number of factors to include
in the forecasting regression, but most importantly over the identity of factors. To clarify this
we discuss the search space in more detail. Let

F̂ =

{{
f̂
(1)
t

}T
t=1

,
{
f̂
(2)
t

}T
t=1

. . . ,
{
f̂
(r)
t

}T
t=1

}
denote the set of estimated factor variables over which the information criterion search is carried

over, where F̂ (i) =
(
f̂
(i)
1 , f̂

(i)
2 , ..., f̂

(i)
T

)′
and f̂

(i)
t denotes the i-th candidate vector of estimated

factors at time t. s ≤ 2r, since there are 2r distinct forecasting models that can be constructed
from the set of r estimated factors. It is possible that either all 2r combinations are considered
or if the number of combinations is too large a subset of them is considered.1 The cardinality
of the subset is denoted by s. Further, let

F =
{{

f
(1)
t

}∞
t=1

,
{
f
(2)
t

}∞
t=1

. . . ,
{
f
(s)
t

}∞
t=1

}
where f

(i)
t denotes the probability limit of f̂

(i)
t as N,T → ∞ for all i = 1, ..., s and t = 1, ..., t.

Also, denote the vector of true factors entering (2) at time t, by f0t . Finally, denote the informa-

tion criterion associated with the candidate set of factors
{
f̂
(i)
t

}T
t=1

by ÎC
(i)

and the dimension

of the factor vector f̂
(i)
t by r(i). Then, we have the following theorem concerning the consistency

of factor selection using IC of the above form.

Theorem 1 Let Assumptions A-E of Bai and Ng (2006) hold. Let C̃T,N = o (T ) and
limN,T→∞ T

−1 min(N,T )C̃T,N = ∞. Then, for all i, j = 1, ..., s, we have: (i) If there exists a

matrix A such that f0t = Af
(i)
t , ∀t, but no such matrix exists for f

(j)
t , then

lim
N,T→∞

Pr

(
ÎC

(i)
< ÎC

(j)
)

= 1. (5)

(ii) If there exist matrices A(i) and A(j) such that f0t = A(i)f
(i)
t , and f0t = A(j)f

(j)
t , ∀t, and

r(i) < r(j) then (5) holds.

Proof: See Appendix A for details on the proof of this theorem.

Remark 1 Theorem 1 is a factor selection consistency result. The Theorem gives two results.
The first is that any set of estimated factors whose probability limits span the true factors entering

1Usually, empirical researchers extract a small number of factors from large datasets allowing the consideration
of all possible combinations. If r is large, say above 20, the calculation of information criterion values for
all combinations becomes impractical. Then, one may wish to use non-standard search methods that minimise
information criteria without considering all combinations. A discussion of such methods is provided in Kapetanios
(2007).
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(2), will be chosen over any set of estimated factors that do not span the true factors as long
as the penalty term is o (T ). The second and nonstandard result is that if two sets of estimated
factors both span the set of true factors the one with the smaller dimension will be chosen,
as long as the penalty term is of higher order than T−1 min(N,T ). Note that f0t may contain
all factors that explain the whole data set xt but this is by no means the only possible case,
implying that the problem of determining the factors entering (2) is distinct from the problem
of determining the factors entering (1). As such this problem is worthy of consideration on its
own merit. Further, it is worth noting that many authors have tried to provide some further
identification of the factors. For example, data sets comprising of domestic or international data
have been used to construct separate national and international factors such as in Monacelli and
Sala (2009). Deciding which factors, from such different sets of factors, can be included in a
factor-augmented regression cannot be done using criteria that operate on the large data sets.
Our proposed criteria are the only means of solving such problems.

Theorem 1 relates explicitly to factor estimates obtained by static PC and although this is
the most widely used method for estimating factors, there exist a variety of other estimation
methods. For example, we have dynamic principal components as suggested in, e.g., Forni
et al. (2000), there are methods based on estimation of state space factor models (Doz et al.
(2006) and Kapetanios and Marcellino (2009)) or one can follow Groen and Kapetanios (2008)
and use partial least squares to directly estimate the factors relevant for a specific dependent
variable. These methods may have different consistency rates both for the factor estimates and
the coefficients entering (2). It is therefore useful to generalize our consistency result to cover
cases where factors are estimated by some other method. As we wish our result to be general
we make the following high level assumption where σ̂2e denotes the residual variance from (2):

Assumption 1 σ̂2e − σ̂2ê = Op(q
−1
NT ) where qNT → 0.

Theorem 2 spells out the generalization of the consistency result in Theorem 1.

Theorem 2 Let Assumption 1 and Assumption A of Bai and Ng (2006) hold. Further, assume
that et in (2) has finite variance and satisfies a law of large numbers. Let C̃T,N = o (T ) and
limN,T→∞ T

−1qNT C̃T,N =∞. Then, Theorem 1 holds.

Proof: The proof of Theorem 2 is straightforward and given in Appendix A.

Note that Remark 1 holds for Theorem 2 as well.
It is easy to see that within the context of regression (2) modified versions of the BIC and

HQIC given by

BICM =
T

2
ln{σ̂2ê}+ i ln(T )

(
1 +

T

N

)
,

HQICM =
T

2
ln{σ̂2ê}+ 2i ln ln(T )

(
1 +

T

N

)
,

(6)

with 1 ≤ i ≤ r, fulfill the conditions of Theorem 1. Unlike the case where criteria are used
to determine the number of factors in a large dataset where both N and T are large, the
context here is that of a forecasting regression where N and T have very different functions.
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This is a forecasting regression with a few regressors which happen to be unobserved factors,
and it is because of this that the observed N is relevant and therefore our criteria in (6) are
asymmetric in T and N . Suitably defined penalty terms, that are expressed in terms of qNT ,
can be straightforwardly specified to produce information criteria that satisfy the conditions of
Theorem 2. We do not report these as our main focus, in the rest of the paper, is criteria that
relate to Theorem 1.

Of course, other variables can enter the regression and one can also envisage other types of
selection. The most obvious one is lag selection where lags of yt or possibly other variables enter
the regression and

the number of lags needs to be selected. Given that the conditions of the Theorems 1 and
2 imply that the relevant IC will be consistent also for lag selection, it is clear that such joint
searches are feasible. Therefore, we can modify regression (2) such that

yt = z′tγ + f0
′
t β + et (7)

with zt is a k×1 vector of non-generated regressors and γ is the corresponding parameter vector;
zt can contain an intercept, lags of yt and so on. The following versions of the modified criteria
in (6) are valid for regression (7) under the framework spelled out in Theorems 1 and 2:

BICM =
T

2
ln{σ̂2ê}+ k ln(T ) + i ln(T )

(
1 +

T

N

)
,

HQICM =
T

2
ln{σ̂2ê}+ 2k ln ln(T ) + 2i ln ln(T )

(
1 +

T

N

)
.

(8)

Hence, searching for the optimal values of the modified ICs in (8) will provide the econometrician
with a consistent, simultaneous, estimate of the optimal values of k and i in regression (7).

3 Monte Carlo Analysis

In this section we carry out a Monte Carlo study of the new selection criteria for factor-
augmented regressions suggested in Section 2. The set-up of the Monte Carlo experiments are
spelled out in Section 3.1. In the experiments we compare our suggested criteria with existing
ones and the results of this comparison are reported in Section 3.2.

3.1 Set-Up

Our Monte Carlo experiments are based on the following data generating processes (DGPs):

yt = α′xt + εt, t = 1, ..., T, (9)

xt = crΛ
′ft + ut, cr =

1√
r
, (10)

εt =
√
cNεt. (11)

In (9)-(11), xt = (x1,t · · ·xN,t)′ is the N × 1 vector of explanatory variables with corresponding
N × 1 vector of regression parameters α = (α1 · · ·αN )′. The term εt is a zero-mean disturbance
term, which we discuss in more detail below. The explanatory variables xt in (10) are generated
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by r factors with a N × 1 vector of zero-mean disturbances ut = (u1,t · · ·uN,t)′ and a r × N
matrix of factor loadings Λ = (λ1 · · ·λN ) that corresponds with the r × 1 vector of factors
ft = (f1,t · · · fr,t)′ with λi = (λi,1 · · ·λi,r)′.

The individual regression coefficients in (10) are drawn from a normal distribution: αi ∼
iidN(1, 1), whereas the disturbances for theN explanatory variables ut in (11) are generated from
a multivariate normal distribution that allows for some degree of cross-sectional dependence. To

achieve this, spatial dependence is incorporated by setting ut = Rϑt, where ϑt =
√
σ2ϑηt; ηt ∼

IIDN(0, I), σ2ϑ = N/tr(RR′), and R = (I−dS)−1. We set d = 0.2 and define the N ×N matrix

S =


0 1 0 0

1/2 0 1/2
...

. . .
. . .

. . .

1/2
0 0 1 0

 . (12)

The S matrix (12) implies that the elements of ut have unit variance but are weakly cross-
sectionally dependent.

The individual factor loadings in Λ in (11) are determined as λi,j ∼ iid
√

12U(0, 1) and the
r factors are each generated as fj,t ∼ iidN(0, 1). Note that the above implies that λi,j has unit
variance. Within this context it is important to ensure that the factor loadings have non zero
mean as a zero mean compounded by random loadings implies a much weaker factor structure
than otherwise would be the case. For example, a factor model with zero mean random loadings
implies zero average correlations across xi,t. Next, cr is given by 1√

r
, and is chosen so to ensure

that the R2 of the yt equation is constant as r increases. Finally, concerning the choice of r in
our simulation experiments, we consider r = 1, 2, 4, 6.

The regression model for yt in (9) has the alternative representation given by

yt = crα
′Λ′ft +

(
α′ut + εt

)
, t = 1, ..., T (13)

which warrants a factor-augmented type of regression model to explain the dynamics in yt in
a parsimonious manner. In each artificial sample generated from (9)-(11), we therefore select
the optimal number of factors in a regression of yt on factors that are estimated by applying
PC on xt. We do this for different selection criteria, both the ones we considered in Section 2,
in particular (6) given the set-up in (9)-(11), as well as standard information criteria and the
FPE criterion suggested in Bai and Ng (2009). Crucial for the Monte Carlo study is controlling
the fit of the yt regression equation. This is done by calibrating the variance of the disturbance
term εt through c, where εt ∼ iidN(0, 1). The calculation of this fit requires care for a variety
of reasons. Firstly, we note that the relevant fit is not the one pertaining to (9) but to (13)
since our regressors are the estimated factors and not xt. Secondly, the fact the we use random
loadings complicates matters. Our measure of fit, that resembles the usual R2, is given by

1− E (αi)
2E (ui,t)

2 + cE (εt)
2

E (αi)
2E (ui,t)

2 + cE (εt)
2 + E (αi)

2E (λi,j)
2E (fj,t)

2 (14)

where the term E (αi)
2E (λi,j)

2E (fj,t)
2 proxies the explained sum of squares, whereas E (αi)

2E (ui,t)
2+

cE (εt)
2 proxies the residual sum of squares. The measure in (14) varies from 0 to 1, and setting

c = 0.545, 1, 3.5 and 11 gives fit measures equal to 0.66, 0.50, 0.40 and 0.20, respectively.

6



We generate data through (9) for N, T = 20, 30, 50, 100, 200, 400. The Monte Carlo
experiments are based on 1000 replications and in each replication we set for each selection
criterion the estimate of r equal to the number that minimizes the criterion across potential
numbers of factors that range from 0 up to 8, inclusive. We report for each selection criterion
under consideration the average number of factors selected across the replications, where the best
performing criterion should on average select a number of factors that is close to the assumed
factor order r in a particular Monte Carlo experiment. Note that unlike much previous work, we
allow for the possibility that no factors should enter the regression and so we potentially allow
for the value of r = 0 in the selection criterion search.

An important question relates to the space over which we search. Our theory focuses on the
general question of which factors to use in the regression model for yt. The main theoretical
problem associated with existing information criteria is that they will choose redundant factors,
as is clear from the proof of our Theorems. So, in general, they will over-parameterise the
forecasting regression. The true factors are orthonormal in our Monte Carlo study and we impose
the same restriction on the estimated factors. Therefore, selecting the appropriate factors in
the above experiments boils down to selecting the optimal number of factors. However, we will
also consider a related but distinct Monte Carlo setup where a subset of the factors enter the
forecasting regression and we wish to determine which factors do so. The setup is the same as
that given above apart from replacing (9) with

yt = α1f1t + εt, t = 1, ..., T (15)

where εt =
√

0.545εt, implying an asymptotic fit (through (14)) of 0.66, α1 and εt are specified
as before, r = 4, and we consider all possible 16 combinations of the first four dominant principal
components in our IC search. In this variant of our Monte Carlo set-up, the estimated factors
are normalised so that they converge to the true factors as T and N increase. We evaluate the
criteria by defining the true set of factors entering the forecasting regression as the 4× 1 vector
I0 = (1, 0, 0, 0)′ and similarly defining the vector of factors selected using some information
criterion, which we denote by Î. Then, a measure of the performance of a certain information
criterion is given by the mean of the squared deviations (MSD) of the IC-based selection vector
of factors relative to the true selection vector of factors I0:

MSD =
1

B

B∑
i=1

(Îi − I0)′(Îi − I0) (16)

where B is the number of Monte Carlo replications, which we set, as before, to 1000.

3.2 Results

Apart from the modified information criteria (6) in Section 2, which are relevant given DGP
(9) for the Monte Carlo experiments, we analyze in our study also the performance of standard
information criteria. As AIC is known to be inconsistent, we will in particular focus on the
performance of the BIC and HQIC criteria. Given that the extra penalty term in our criteria
will be most relevant for cases were T ≥ N , we expect specially for those cases to observe large
differences for the criteria in (6) vis-à-vis BIC and HQIC.

Our modified information criteria are not the first set of selection criteria that are specifically
developed to determine the dimensions of factor-augmented regressions, albeit that ours are the
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first consistent criteria to be proposed for this purpose. Bai and Ng (2009) suggest a forecast
prediction error (FPE) criterion that in the limit minimizes the mean squared prediction error
of a factor-augmented regression. This FPE criterion essentially entails adding a cross-sectional
penalty factor, which depends on an estimate of the factor covariance matrix, to a standard
information criterion. So using BIC the FPE for regression model (7) becomes

FPE = ln{σ̂2ê}+ (k + i)

(
ln(T )

T

)
+ ci

(
ln(N)

N

)
(17)

with

ci =
β̂′Σiβ̂

σ̂2ê

where Σr is a consistent estimator of the covariance matrix of the i factors included in (7).2 We
use this FPE criterion as a third alternative, next to BIC and HQIC, for our BICM and HQICM
criteria, which we implement by setting k = 0 in (17).

The results of the experiments based on (9)-(11) are reported in Tables 1-3. When we first
focus on the results for the standard information criteria in the upper panels of Tables 1 and
2, it becomes clear that these criteria overestimate the number of factors in a number of cases
by a considerable margin. Particularly when the time series dimension T is larger than the
cross-section dimension N of the regressor variable vector xt, indicating the potential severity
of the impact of factor estimation error variance in that case. Especially for cases when the true
r is small, the results for both large T and N in Tables 1 and 2 suggest that BIC and HQIC
are not able to provide consistent estimates of the optimal number of factors that underlie a
factor-augmented regression. On the other hand our modified criteria, see the lower panels of
Tables 1 and 2, seem to be behaving consistently, where the differences relative to the standard
criteria are the most pronounced for smaller true numbers of factors and T > N . As in the
standard time series case with non-generated regressors for BIC, our modified BIC criterion as a
slight tendency to underestimate the true r which is much less so in case of our modification of
the HQIC criterion. Not surprisingly, when the calibrated fit of (13) decreases in Tables 1-?? all
the corresponding criteria perform poorly and structurally underestimate the true factor order.

Next, the performance of the FPE criterion (17) is remarkably bad relative to both standard
and modified BIC and HQIC criteria, as can be observed from Table 3, where in a significant
number of replications it selects no factors at all across a variety of configurations. Finally, we
consider the Monte Carlo experiment based on (15) and (10)-(11) where we wish to determine
which factors enter the forecasting regression. We report the relative MSD for the standard
versus modified BIC and HQIC criteria, so (16) of the modified criterion divided by that of the
standard criterion, in Table 4. Again, we see that the modified criteria obtain relative MSDs
that are considerably below one, in the majority of cases, indicating their superior performance.

2There are a variety of estimators possible for Σr, and the choice of such an estimator impacts the finite
sample behavior of (17). We choose to apply a HAC-consistent covariance matrix estimator on the r (i.e. the
total number factors driving the dynamics in xt) estimated factors to proxy Σr - this makes sense as each factor
is a linear combination of the individual predictor series whose dynamics is not explicitly modeled. Also, we use
a HAC estimator for σ̂2

ê in cr of (17) when h > 1. In particular, we found that both in the Monte Carlo and
the empirical applications using the Den Haan and Levin (1997) VAR-HAC estimator based on BIC lag selection
resulted in the most accurate performance of the FPE criterion.
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Table 4: Monte Carlo results for selecting which factors enter (2)

BIC, modified relative to standard HQIC, modified relative to standard

N / T 30 50 100 200 400 30 50 100 200 400

30 0.753 0.803 1.384 1.687 2.885 0.566 0.467 0.638 0.809 1.117
50 0.683 0.745 0.918 1.411 2.212 0.568 0.497 0.504 0.587 0.738
100 0.737 0.675 0.792 0.919 1.230 0.707 0.563 0.410 0.395 0.320
200 0.854 0.789 0.730 0.802 1.025 0.859 0.777 0.546 0.434 0.305
400 0.891 0.920 0.811 0.679 0.711 0.940 0.901 0.723 0.491 0.391

Notes: The entries are the ratio of the MSD statistic (16) for the modified BIC (HQIC)
criterion relative to the standard BIC (HQIC) criterion, where each are minimized for
24 potential combinations of the first 4 factors extracted from xt across 1,000 Monte
Carlo replications. The variables are generated through the DGPs in (15) and (10)-(11)
that imposes an asymptotic fit (through (14)) of 0.66, for different values of the time
series dimension of all series, T , and the cross-section dimension, N , of series in xt.

4 Empirical Application

The purpose of this section is to assess the performance of our proposed framework when ap-
plied on real world data, in particular by assessing its impact on the out-of-sample forecasting
performance of factor-augmented regressions. We summarize the set-up of our application in
Section 4.1 and discuss the results in Section 4.2.

4.1 Set-Up

We focus in Section 4.2 on the performance of direct forecasts from factor-augmented regres-
sions for a number of macroeconomic variables. It is standard practice in the macroeconomic
forecasting literature to use as forecasting benchmarks for factor-augmented regressions an au-
toregressive (AR) model and the unconditional mean. The AR benchmark model in the context
of direct forecasting can be writing as

∆yt+h,t = αh +

p̂∑
j=1

ρh,j∆yt−j+1,t−j + εt+h,t, t = 1, . . . , T (18)

with ∆yt+h,t = yt+h − yt for h > 0 and ∆yt−j+1,t−j = yt−j+1 − yt−j for j = 1, . . . , p. The
number of lagged first differences p̂ in (18) is determined by sequentially applying the standard
BIC starting with a maximum lag order of p = pmax down to p = 0. The unconditional mean
benchmark is simply

∆yt+h,t = αh + εt+h,t, (19)

which implies a random walk (RW) forecast for the level of the forecast variable yt. The assess-
ment of the forecasting performance relative to pure AR-based and random walk-based forecasts
is based on the square root of the mean of the squared forecast errors (RMSE). In Section 4.2
we will report ratios of the RMSE of factor-augmented regressions vis-à-vis the RMSE based
on either (18) or (19). Obviously, superior out-of-sample performance of a factor-augmented
regression relative to these benchmarks is indicated by a RMSE ratio smaller than one and vice
versa.
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Following Stock and Watson (2002b) we take our T × N matrix of N predictor variables
X = (X ′1 · · ·X ′T )′ and normalize these such that they are in zero-mean and unity variance space,
which results in the T×N matrix X̃. We then compute the rmax eigenvectors of the N×N matrix
X̃ ′X̃ that correspond to the first rmax largest eigenvalues of that matrix and post-multiplying
X̃ with these eigenvectors results in the estimated factors f̂1,t, . . . , f̂rmax,t that potentially can
be used in our factor-augmented regressions. These adhere to the following specification:

∆yt+h,t = αh +
rmax∑
i=1

δh,iβh,if̂i,t +

p̂∑
j=1

ρh,j∆yt−j+1,t−j + εt+h,t, (20)

where δh,i = 1 if factor i is in the optimal subset of the rmax factors otherwise δh,i = 0.
It is, of course, the aim of this exercise to evaluate the finite sample performance of different

selection criteria that can be used to determine the optimal dimensions of a factor-augmented
regression like (20). Given (20), we search across the range p = 0, . . . , pmax as well as the 2r

max

possible factor subsets ((pmax + 1)× 2r
max

potential lag order-factor subset combinations), and
select the optimal lag order-factor subset combination that minimizes either the BICM or the
HQICM criterion outlined in (8). In addition, we do similar searches using the standard BIC and
HQIC criteria as well as the Bai-Ng FPE criterion (17). In the end this results in five different
versions of (20) for each forecast horizon that we will assess relative to our two benchmark
models. The forecasting models will be updated based on a fixed window of w observations:

1. First forecast for all h is generated on t0.

2. Extract rmax principal components from the N predictor variables over the sample t =
t0 − w + 1, . . . , t0 − h.

3. Determine for each h over the sample t = t0 − w + 1, . . . , t0 − h the optimal lag order
and the optimal subset of factors for (20) for each of our five criteria: BICM, HQICM,
BIC, HQIC and Bai-Ng FPE across the lag order range p = 0, . . . , pmax and the 2r

max

possible factor subsets. In a similar vein, determine also the optimal lag order for the AR
benchmark based on BIC.

4. Given the outcome of step 3, estimate (18), (19) and versions of (20) that are based on
BICM, HQICM, BIC, HQIC and Bai-Ng FPE selection over the sample t = t0 − w +
1, . . . , t0 − h for each h.

5. Extract rmax principal components from the N predictor variables N over the sample
t = t0 − w + 1, . . . , t0.

6. Generate for h the forecast ∆ŷt+h,t using the estimated dimensions from step 3 and the
parameter estimates from step 4 as well as, in case of (20), the common factors from step
5.

7. Repeat for t0 + 1, . . . , T − h for each h.

The choice of using rolling data windows in updating our forecasting models serves two
purposes. Firstly, it allows the models to cope better with the unavoidable instabilities in
the underlying data. Also, it greatly simplifies inference on the significance of any observed
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outperformance of the benchmark models by a factor-augmented model. In order to be able
to do that we employ the Diebold and Mariano (1995)-West (1996) test statistic (hereafter
DMW statistic) for the null hypothesis of equal forecasting performance vis-à-vis the alternative
hypothesis that a factor-augmented model has a lower MSE than the benchmark model:

zMSE =
√
T − t0 − h

 MSEB −MSEF√
V ar(ut+h − (MSEB −MSEF))

 (21)

with B = AR or RW, and

ut+h = e2B,s,s+h − e2Fs,s+h; s = t0, . . . , T − h

In (21) MSEB and MSEF are the MSE corresponding to the benchmark prediction, based on
either (18) or (19), and the factor-augmented regression respectively, ut+h is the difference in
the squared prediction error from the benchmark and factor-augmented based forecasts, and
V ar(ut+h− (MSEB−MSEF)) is an estimate of the variance of the demeaned ut+h’s. It is shown
in Giacomini and White (2006, Theorem 4) that the DMW statistic (21) has a standard normal
limiting distribution when rolling windows are used, as long as a HAC estimator is used for
V ar(ut+h − (MSEB −MSEF)) at each horizon h. We will use the Den Haan and Levin (1997)
VAR-HAC estimator based on BIC lag selection to approximate V ar(ut+h − (MSEB −MSEF))
in (21).

4.2 Empirical Results

We base our empirical exercise on a large panel of monthly macroeconomic, financial and survey-
based indicator variables for the United States, which is similar to that used Stock and Watson
(2007) but updated by us up to mid-2008. This panel consists of 108 monthly series, which
before transformation span a sample starting in January 1959 and ending in July 2008. It spans
real variables (sectoral industrial production, employment, subcomponents of unemployment
and hours worked), nominal variables (subcomponents of consumer price index, producer price
indexes, deflators, wages, money and credit aggregates), asset prices (interest rates, stock prices
and exchange rates) and surveys. Of these 108 series, we use 106 as predictor variables that
are transformed such that they are I(0). In general this means that the real variables are
expressed in log first differences and we simply use first differences of series expressed in rates,
such as interest rates and unemployment series; see Appendix B for more details. We transform
the nominal variables into first differences of annual growth rates in order to guarantee that
the dynamic properties of these transformed series are comparable to those of the rest of the
predictor variable panel, as for example motivated in D’Agostino and Giannone (2006, Appendix
B). Hence, after transforming the predictor variables we end up with an effective span of the
data that starts in February 1960 (i.e. 1960.2) and ends in July 2008 (i.e. 2008.07).

The aforementioned panel is used to forecast inflation based on the U.S. personal consump-
tion expenditures (PCE) price index as well as the federal funds rate – see Table 5 for an overview
of the appropriate transformation of each forecast variable – and we deliberately keep these two
variables separate from the panel of predictor series. The federal funds rate is determined by the
Federal Reserve Board, which sets the target for the federal funds rate by taking into account
both a range of nominal and real developments, so factor methods could potentially be very

14



Table 5: Transformation of the forecast variables

Yt ∆yt,t−1 ∆yt+h,t

PCE index ∆ lnYt,t−12 −∆ lnYt−1,t−13 ∆ lnYt+h,t+h−12 −∆ lnYt,t−12
Federal Funds rate ∆Yt,t−1 ∆Yt+h,t

Notes: The table illustrates the transformation of a forecast variable Yt, indicated in the first
column, for use in the prediction regression (20).

useful in predicting this variable. Inflation based on the PCE price index is of interest, as the
expenditure weights of the individual consumption goods in this price index vary from period
to period and it is a chain-linked index. As such, one would expect that PCE inflation better
reflects the effects of substitution across goods by consumers when relative prices change than
other inflation measures, such as CPI inflation. Also, the Federal Reserve Board has made it
clear that it views PCE inflation as its primary measure of inflation.3

As described in the previous subsection, the forecasting models are updated based on a
fixed window of data of size w and all forecasts are direct forecasts for 2 horizons (in months):
h = 1 and h = 12, which are horizons commonly analyzed in the literature. We set w = 156,
which corresponds with 13 years worth of data. This window size was chosen as a compromise
between having a data set with a large enough time series relative to cross-sectional size of the
predictor variable panel as well as the potential lag order in (20), and having a not ‘too long’
data window so that our models can adapt when there are instabilities in the data. In each
update we determine five versions of the factor-augmented regression (20) using our modified
information criteria in (8), BIC, HQIC and the Bai-Ng FPE measure (17), using a lag order upper
bound of 12 lags and 8 principal components extracted from our panel. For each criterion we
simultaneously select the optimal lag order as well as the optimal subset of factors across 13×28

potential lag order-factor subset combinations such that a particular criterion is minimized. In
case of the AR benchmark (18) we select that lag order from p = 0, . . . , 12 that minimizes
the BIC criterion for (18). The forecast evaluation spans three samples: January 1973 - July
2008, January 1973 - December 1984 and January 1985 - July 2008. The latter two sub-samples
split the first sample in two around the start of the ‘Great Moderation’: e.g. Kim and Nelson
(1999), McConnell and Perez-Quiros (2000) and Sensier and van Dijk (2004) all find evidence
for a downward, exogenous, shift in the volatility of a large number of U.S. macroeconomic time
series around 1985.

Let us now turn to the out-of-sample forecasting results for both PCE inflation and the federal
funds rate. Before we discuss the out-of-sample comparison relative to naive benchmark models,
it may be worthwhile to firstly report the RMSE estimates themselves for the different factor-
augmented regressions. We plot these RMSE estimates in Figure 1 across both the full 1973-2008
evaluation sample as well as the two sub-samples (1973-1984 and 1985-2008, respectively). One
striking observation in this figure is that for both PCE inflation and the fed funds rate at both
h = 1 and h = 12 the RMSE’s are higher for the 1973-1984 evaluation sample than for the

3See ‘Monetary Policy Report to the Congress’, February 2000, Federal Reserve Board.
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Figure 1: Out-of-sample RMSE estimates

PCE Inflation Fed Funds Rate

Notes: In this figure we plot the out-of-sample RMSE, which are reported in percentage points, for both PCE

inflation and the Federal Funds rate at horizons h = 1 and h = 12 based on factor- and lag order selection

using, respectively, BIC, HQIC, BICM, HQICM (see (8)) and FPE (see (17)) criteria. The first row plots the

RMSE estimates for the full January 1973 - July 2008 evaluation sample, the second row for the January 1973 -

December 1984 sub-sample, and the last row for the January 1985 - July 2008 sub-sample.
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later 1985-2008 sample. This is, of course, a testimony to the earlier cited finding from the
empirical macroeconomics literature that there has been a downward shift in the volatility of a
range of macroeconomic series around 1985. The resulting lower RMSE estimates would suggest
an improved prediction performance for the factor-augmented regressions, albeit that a lower
volatility environment could also imply that naive but parsimonious autoregressive or random
walk specifications are very hard to beat by our factor-augmented models. Another observation
from Figure 1 is that it seems at first sight that the differences in the RMSE estimates across
BIC-, HQIC-, BICM-, HQICM-, and FPE-based factor-augmented regressions are often not
that big, especially at h = 1. Of course, the only way to really assess the validity of these
observations is to compare the out-of-sample performance of our range of factor-augmented
regressions relative to parsimonious time series models, taking into account the variability of the
different RMSE estimates, and we do that in the following.

In Table 6 we summarise the out-of-sample comparison of the factor-augmented models rel-
ative to (18) and (19) for PCE inflation and the Federal funds rate at one-month (h = 1) and
one-year (h = 12) horizons. Both the point estimates, the RMSE ratios, as well as test statistics
for the null that the benchmark models cannot be outperformed by the factor-augmented re-
gressions are reported. In case of PCE inflation the factor-augmented model selection strategy
based on our BICM criterion results in the best performing inflation forecast, and in case of the
1-month horizon BICM’s outperformance of the benchmark forecasts is statistically significant
in most cases. Our BICM and HQICM criteria applied to a factor-augmented regression appears
to be the most useful in forecasting future changes in the federal funds rate at the 1-year horizon,
especially for factor-augmented models based on the BICM measure. Only for the 1972-1984
sub-sample it appears that all the employed strategies for factor selection in factor-augmented
regressions are very effective in outperforming the benchmark models for fed fund rate forecasts
at h = 12, particularly relative to the AR-based benchmark predictions.

The empirical results in this section confirm our earlier insights from theory and Monte
Carlo experiments. By taking into account factor estimation error when selecting the dimen-
sions of a factor-augmented regression, which perform at least as well as, and often better
than, factor-augmented regressions whose dimensions are determined through standard model
selection criteria.

5 Conclusions

Factor-augmented regressions are often used for macroeconomic forecasting and analysis as a
parsimonious way of basing the forecast or the analysis on information from a large number
of variables. This paper is focused on the issue of how to determine which factors that are
relevant for such a factor-augmented regression, whereas existing work has been more focused
on criteria that can consistently estimate the appropriate number of factors that drive the
dynamics in a large-dimensional panel of explanatory variables. However, in the latter case the
resulting number of factors are not necessarily all relevant for modeling a specific dependent
variable within a factor-augmented regression. Further, determining the number of factors in
large datasets is a very difficult task, and, as of yet, no satisfactory method that works in the
majority of possible modeling scenarios seems to have been developed.

Factor estimation error is an important issue in determining the dimensions of a factor-
augmented regression, particularly when the time series dimension of the underlying panel of
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predictor series is larger than the cross-section dimension. We develop a number of theoretical
conditions selection criteria have to fulfill in order to estimate the factor subset that is relevant
for such a regression in a consistent manner. The framework does not hinge on a particular factor
estimation methodology. Based on this framework it is clear that standard model selection cri-
teria like AIC, BIC and HQIC do not necessarily provide consistent estimates of the dimensions
of a factor-augmented regression. As a consequence, we suggest selection criteria that do fulfill
the conditions set by our theoretical framework and thus are consistent. Our criteria essentially
take standard consistent information criteria that are commonly used in time series econometrics
and modify these such that the corresponding penalty function for dimensionality also penalizes
factor estimation error. We show through Monte Carlo applications and empirically, through
forecast evaluations for PCE inflation and the fed funds rate, that our model selection criteria
are useful in determining the dimensions of factor-augmented regressions.
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Table 6: Out-of-sample forecasting results

h BIC HQIC BICM HQICM FPE BIC HQIC BICM HQICM FPE

PCE Inflation Federal Funds Rate

January 1973 - July 2008 January 1973 - July 2008

Benchmark: RW Benchmark: RW
1 0.960 0.967 0.914∗∗∗ 0.941∗ 0.927∗∗∗ 0.898 0.946 0.936 0.959 0.960

(-1.129) (-0.863) (-2.720) (-1.606) (-2.358) (-1.053) (-0.527) (-0.979) (-0.583) (-0.530)
12 1.076 1.095 1.011 1.199 1.050 1.018 1.030 0.983 0.992 1.003

(1.287) (1.657) (0.234) (1.200) (1.140) (0.375) (0.667) (-0.351) (-0.164) (0.043)
Benchmark: AR Benchmark: AR

1 1.032 1.040 0.983∗ 1.012 0.999 0.920 0.930 0.883 0.943 0.944
(1.288) (1.485) (-1.295) (0.453) (-0.270) (-0.645) (-0.421) (-0.723) (-0.531) (-0.406)

12 1.052 1.070 0.989 1.172 1.026 0.916 0.927 0.884 0.893 0.902
(1.058) (1.452) (-0.227) (1.136) (0.610) (-1.022) (-0.872) (-1.110) (-0.977) (-0.893)

January 1985 - July 2008 January 1985 - July 2008

Benchmark: RW Benchmark: RW
1 0.999 0.982 0.955∗∗ 0.970 0.977 1.175 1.212 1.027 1.052 1.198

(-0.027) (-0.399) (-1.854) (-0.678) (-1.008) (1.173) (1.327) (0.315) (0.571) (1.162)
12 1.157 1.179 1.138 1.161 1.145 1.058 1.136 1.012 1.038 1.040

(1.328) (2.078) (1.336) (1.612) (1.864) (0.580) (1.740) (0.112) (0.502) (0.426)
Benchmark: AR Benchmark: AR

1 1.016 0.999 0.971∗ 0.986 0.993 1.362 1.405 1.191 1.219 1.389
(0.468) (-0.036) (-1.515) (-0.389) (-0.404) (2.074) (2.165) (1.923) (2.103) (1.870)

12 1.048 1.068 1.032 1.052 1.040 1.031 1.107 0.987 1.012 1.014
(0.790) (1.246) (0.671) (1.094) (0.681) (0.381) (1.603) (-0.144) (0.186) (0.181)

January 1973 - December 1984 January 1973 - December 1984

Benchmark: RW Benchmark: RW
1 0.912∗ 0.949 0.862∗∗ 0.906∗∗ 0.865∗∗ 0.869∗ 0.923 0.918∗ 0.949 0.937

(-1.419) (-0.768) (-2.205) (-1.715) (-2.142) (-1.557) (-0.969) (-1.289) (-0.847) (-1.173)
12 1.037 1.058 0.957 1.197 1.006 0.985 0.978 0.958 0.952 0.969

(0.512) (0.802) (-0.760) (0.907) (0.092) (-0.249) (-0.449) (-0.931) (-0.964) (-0.483)
Benchmark: AR Benchmark: AR

1 1.058 1.101 1.000 1.051 1.003 0.896 0.891 0.844 0.922 0.910
(1.480) (2.314) (0.050) (1.280) (0.181) (-0.613) (-0.908) (-1.136) (-0.558) (-1.000)

12 1.041 1.062 0.960 1.201 1.010 0.862∗∗ 0.856∗∗ 0.839∗∗ 0.834∗∗ 0.848
(0.652) (0.700) (-0.563) (0.982) (0.174) (-1.851) (-1.866) (-2.292) (-2.280) (-1.229)

Notes: The table reports the ratio of the RMSE of a version of (20) vis-à-vis the random walk model (19) or the
autoregressive model (18) for PCE inflation and fed funds rate (see Table 5)) at each horizon h (in months). In
parentheses we report the DMW statistic (21) for the null of equal forecasting performance relative to the alternative
that a factor-augmented regression has a lower MSE. A ∗(∗∗)[∗∗∗] indicates a rejection of the null at a one-sided 10%
(5%) [1%] significance level based on a standard normal distribution. For (20) the optimal lags are picked from a
range between 0 and 12, whereas an upper bound of 8 is used when selecting the number of factors. Columns BIC,
HQIC, BICM, HQICM and FPE report the results when the optimal number of lags and factors are chosen to
minimize, respectively, the BIC, Hannan-Quinn IC, the modified BIC and Hannan-Quinn IC measures, see (8), and
the Bai-Ng FPE criterion (17). The method that performs relatively best vis-à-vis the benchmark is highlighted in
bold.
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Appendix

A Proofs

Proof of Theorem 1

Let F̂ = (f̂1, . . . , f̂T )′ and F = (f1, . . . , fT )′ where f̂t denotes a generic set of estimated factors
and ft denote its probability limit. From now on when the matrices F and M = I−F′(F′F)−1F′

have superscript (i), they are constructed using f
(i)
t . When the coefficient vector β has super-

script (i) then it refers to a model using f
(i)
t . Also, β̂ indicate estimated parameters in a model

with estimated factors and β̃ indicate estimated parameters in a model with true unobserved
factors. Throughout a 0 superscript denotes use of the true set of factors. We denote the

penalty term for f
(i)
t by C

(i)
T,N = r(i)C̃

(i)
T,N , with C̃

(i)
T,N solely depending on T and N . Finally,

collect the error terms of (2) in e = (e1, ..., eT )′. The feasible information criterion takes the
following form

ÎC(β,CT,N ) =
T

2
ln{ 1

T
(y − F̂β)′(y − F̂β)}+ CT,N (A.1)

At first, we consider the case where M(i)F0 = 0 and M(j)F0 6= 0. We wish to show that

lim
T→∞

P{ÎC(β̂(j), C
(j)
T,N )− ÎC(β̂(i), C

(i)
T,N ) < 0} = 0 (A.2)

It is straightforward to show, using (A.1), that (A.2) becomes

lim
N,T→∞

P


T
2 ln

[
1
T
y′M(j)y

1
T
y′M(i)y

]
+ T

2 ln

[
1
T (y−F̂(j)β̂(j))

′
(y−F̂(j)β̂(j))

1
T (y−F(j)β̃(j))

′
(y−F(j)β̃(j))

]
−

T
2 ln

[
1
T (y−F̂(i)β̂(i))

′
(y−F̂(i)β̂(i))

1
T (y−F(i)β̃(i))

′
(y−F(i)β̃(i))

]
< C

(i)
T,N − C

(j)
T,N

 = 0. (A.3)

We first examine the first term of the LHS of the inequality within (A.3). By expanding y
we get that

T

2
ln

[
1
T y
′M(j)y

1
T y
′M(i)y

]
=
T

2
ln

[
1
T (β0

′
F0′M(j)F0β0 + eM(j)e + 2e′M(j)F0β0)

1
T (β0′F0′M(i)F0β0 + eM(i)e + 2e′M(i)F0β0)

]

But idempotency implies positive-definiteness and as a result β0
′
F0′M(j)F0β0 > 0. Also,

M(i)F0 = 0, and so β0
′
F0′M(i)F0β0 = 0. Further, by the assumed stationarity of the model,

and using the assumptions of the theorem, we get

0 < p lim
1

T

∥∥∥F0′F0
∥∥∥ <∞, 0 < p lim

1

T

∥∥∥F(i)′F(i)
∥∥∥ <∞,

0 < p lim
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∥∥∥F(j)′F(j)
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1
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1

T
F0′e= Op

(
T−1/2

)
,

1

T
F(i)′e= Op

(
T−1/2

)
,

and
1

T
F(j)′e= Op

(
T−1/2

)
.
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So, (
1

T
F(i)′e

)′( 1

T
F(i)′F(i)

)−1( 1

T
F(i)′e

)
= Op

(
T−1

)
, (A.4)

and (
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T
F(j)′e

)′( 1
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)−1( 1
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. (A.5)
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1

T
e′M(j)F0β0 →p0, and

1

T
e′M(i)F0β0 →p0.

As a result of all the above ln

[
1
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1
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y′M(i)y

]
is positive and Op(1) and, therefore, we have in (A.3)
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and
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2
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(
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as long as N →∞. Since C
(i)
T,N −C

(j)
T,N = o(T ), (A.3) holds, proving (A.2). We will show (A.7).

(A.8) follows very similarly. We start by noting Lemma A.1 of Bai and Ng (2006), which states
that

1

T

T∑
t=1

(f̂t − ft)q′t = Op
(
min(k, T )−1

)
(A.9)

as long as qt has finite fourth moments, nonsingular covariance matrix and 1√
T

∑T
t=1 (qt − E(qt))

satisfies a central limit theorem. These conditions are satisfied for ft and yt. Using this result,
we have that

1

T
F(j)y− 1

T
F̂(j)′y =Op

(
min(N,T )−1

)
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Then,
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which immediately implies (A.7).
Now, we want to prove that (A.2) holds, when M(i)F0 = M(j)F0 = 0 and r(i) < r(j). Then,
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by (A.4) and (A.5). As a result of (A.10),
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as long as C0
T,N − CT,N → −∞. But, (A.7) implies this is not enough for (A.2) to hold. For

(A.2) to hold, and given (A.12), we need that
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But (A.13) holds, if
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T,N

T min(N,T )−1 → −∞. Given we assume this due to the fact that F has more

columns than F0, the result is proven.
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Proof of Theorem 2

The result follows immediately from the proof of Theorem 1 once we note that for any set of
factors, F, (A.7) can be replaced by

T

2
ln

[
1
T (y − F̂β̂)′(y − F̂β̂)
1
T (y − Fβ̃)′(y − Fβ̃)

]
= Op (TqNT ) = op(T ). (A.14)
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Table B.1: Transformation of the predictor variables

Transformation code Transformation Xt of raw series Yt

1 Xt = Yt
2 Xt = ∆Yt,t−1
3 Xt = ∆Yt,t−12 −∆Yt−1,t−13
4 Xt = lnYt
5 Xt = ∆ lnYt,t−1
6 Xt = ∆ lnYt,t−12 −∆ lnYt−1,t−13

B Data Set

The data set used for forecasting are the monthly series from the panel of U.S. indicator series as
employed in Stock and Watson (2007), but excluding our two forecast variables: PCE inflation
and the (effective) federal funds rate. In order to be sure that these predictor variables are I(0),
the underlying raw series need to be transformed such that this is the case; generally we employ
the same transformation as Stock and Watson (2007), except for the bulk of the nominal series
where we follow, e.g., D’Agostino and Giannone (2006) and use first differences of twelve-month
transformations of the raw series. Table B.1 summarizes our potential transformations for the
raw series.

Hence, we are using as predictor variables the following 106 series, which span the sample
January 1959 - July 2008 before the appropriate transformations are applied, and we refer to
Stock and Watson (2007) for more details regarding data construction and sources:

Series Yt Transformation:
(See Table B.1)

INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL 5
INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS 5
INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT 5
INDUSTRIAL PRODUCTION INDEX - MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 5
INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES 5
INDUSTRIAL PRODUCTION INDEX - FUELS 5
NAPM PRODUCTION INDEX (PERCENT) 1
CAPACITY UTILIZATION - MANUFACTURING (SIC) 1
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 6
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 6
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 6
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 5
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 5
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 5
EMPLOYEES, NONFARM - TOTAL PRIVATE 5
EMPLOYEES, NONFARM - GOODS-PRODUCING 5
EMPLOYEES, NONFARM - MINING EMPLOYEES, NONFARM - CONSTRUCTION 5
EMPLOYEES, NONFARM - MFG 5
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EMPLOYEES, NONFARM - DURABLE GOODS 5
EMPLOYEES, NONFARM - NONDURABLE GOODS 5
EMPLOYEES, NONFARM - SERVICE-PROVIDING 5
EMPLOYEES, NONFARM - TRADE, TRANSPORT, UTILITIES 5
EMPLOYEES, NONFARM - WHOLESALE TRADE 5
EMPLOYEES, NONFARM - RETAIL TRADE 5
EMPLOYEES, NONFARM - FINANCIAL ACTIVITIES 5
EMPLOYEES, NONFARM - GOVERNMENT 5
INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) 2
EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF 2
CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 5
CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 5
UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) 2
UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) 5
AVG WKLY HOURS, PROD WRKRS, NONFARM - GOODS-PRODUCING 1
AVG WKLY OVERTIME HOURS, PROD WRKRS, NONFARM - MFG 2
HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 4
HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,U)SA 4
HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 4
HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 4
HOUSING STARTS:SOUTH (THOUS.U.)S.A. 4
HOUSING STARTS:WEST (THOUS.U.)S.A. 4
INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 2
BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM) 2
BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM) 2
INTEREST RATE SPREAD: 6-MO. TREASURY BILLS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: 1-YR. TREASURY BONDS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: 10-YR. TREASURY BONDS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: AAA CORPORATE MINUS 10-YR. TREASURY BONDS 1
INTEREST RATE SPREAD: BAA CORPORATE MINUS 10-YR. TREASURY BONDS 1
MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA) 6
MZM (SA) FRB St. Louis 6
MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP)(BIL$,SA) 6
MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 6
DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 6
DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 6
Commercial and Industrial Loans at All Commercial Banks (FRED) Billions $ (SA) 6
CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) 6
Personal Consumption Expenditures, Price Index (2000=100) , SAAR 6
Personal Consumption Expenditures - Durable Goods, Price Index (2000=100), SAAR 6
Personal Consumption Expenditures - Nondurable Goods, Price Index (2000=100), SAAR 6
Personal Consumption Expenditures - Services, Price Index (2000=100) , SAAR 6
PCE Price Index Less Food and Energy (SA) Fred 6
PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 6
PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 6
PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 6
PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 6
Real PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 5
SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 6
Real SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 5
PRODUCER PRICE INDEX: CRUDE PETROLEUM (82=100,NSA) 6
PPI Crude (Relative to Core PCE) 5
NAPM COMMODITY PRICES INDEX (PERCENT) 1
UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) 5
FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5
FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5
FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5
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FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5
S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5
S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5
S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 2
COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE 5
S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2
PURCHASING MANAGERS’ INDEX (SA) 1
NAPM NEW ORDERS INDEX (PERCENT) 1
NAPM VENDOR DELIVERIES INDEX (PERCENT) 1
NAPM INVENTORIES INDEX (PERCENT) 1
NEW ORDERS (NET) - CONSUMER GOODS & MATERIALS, 1996 DOLLARS (BCI) 5
NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 DOLLARS (BCI) 5
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