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Abstract

This paper uses multi-level factor models to characterize within- and between-block

variations as well as idiosyncratic noise in large dynamic panels. Block-level shocks are

distinguished from genuinely common shocks, and the estimated block-level factors are

easy to interpret. The framework achieves dimension reduction and yet explicitly allows

for heterogeneity between blocks. The model is estimated using an MCMC algorithm that

takes into account the hierarchical structure of the factors. A four-level model is estimated

to study block- and aggregate-level dynamics in a panel of 445 series related to different

categories of real activity in the United States. The model illustrates the importance of

block-level variations in the data.
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1 Introduction

Recent research has found that dimension reduction in the form of common factors is useful for

forecasting and policy analysis in a data rich environment. However, a fair criticism of factor models

is that the estimated factors are difficult to interpret. One reason is that the factors are typically

estimated from a large panel of data without taking full advantage of the data structure. This paper

proposes a factor model that uses common and block-specific factors to capture the between and

within-block variations in the data. Each block can be further divided into subblocks to arrive at a

hierarchical (multi-level) model. A distinctive feature of the model is that the transition equations

for the factors at each level have time varying intercepts that depend on the factors at the next

higher level. We show how this can be taken into account in state space estimation.

A natural use of the hierarchical model is real time monitoring of economic activity which requires

filtering news from noise as data arrive on a staggered basis. This can be handled by using the timing

of the data releases to organize the data into blocks. More generally, the model can be applied

whenever a panel of data can be organized into blocks using a priori information or statistical

procedures. The block structure provides a parsimonious way to allow for covariations that are not

sufficiently pervasive to be treated as common factors. For example, in multi-country data, there

could be series-specific, country (subblock), region (block), and global (common) variations. If the

country and regional variations are not properly modeled, they would either appear as weak common

factors, or as idiosyncratic errors that would be cross-correlated amongst series in the same region.

The remainder of this paper is organized as follows. Section 2 introduces the hierarchical model

and its state space representation. Estimation via Markov Chain Monte Carlo methods will be

presented. In Section 3, a four level model is used to analyze 445 economic time series on real

economic activity in the US. We find that comovement at the block-level tends to be more important

than comovement across all variables. Furthermore, the principal components estimator tends to

treat block-level variation as common. Section 4 concludes.

2 A Hierarchical Dynamic Factor Model

We assume that the data are stationary, mean-zero, standardized to have unit variance after possible

logarithmic transformation and detrending. Let Nb denote the number of variables in block b =

1, . . . , B and let N = (N1 + . . . + NB) be the total number of variables, each with T time series

observations. We assume that N and T are both large, but that B is much smaller than N .

Consider the two level dynamic factor model considered in Geweke (1977) and Sargent and Sims
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(1977). For t = 1, . . . T , n = 1, . . . N , and k = 1, . . .KF , the data are assumed to be generated as

Xnt = λn(L)Ft + vnt,

ψF.k(L)Fkt = εFkt (1)

where Ft = (F1t, . . . , FKF t)′ is a KF × 1 vector of common factors, λn(L) is a distributed lag of

loadings on Ft, and vnt is the idiosyncratic error. We generalize this two level model by positing that

at each t, series n in a given block b has three sources of variations: idiosyncratic, block-specific,

and common. Let the mean zero block level factors be Gbt = (Gb1t, . . . , GbKGbt). For n = 1, . . . Nb, a

three level representation of the data is:

Xbnt = λn
G.b(L)Gbt + eXbnt, (2)

Gbjt = λj
F.b(L)Ft + eGbjt (3)

where λn
G.b(L) is a distributed lag in the block-level factor loadings, and λj

F.b(L) is a distributed

lag of loadings on the common factors. In the terminology of multilevel models, (2) is the level-one

equation, and (3) is the level-two equation. The stochastic process for Ft given in (1) would constitute

the level-three equation. In this three level model, variables within a block are correlated because of

the common factors Ft or the block-specific variations eGbjt. However, correlations between blocks

are possible only through Ft.

For some blocks, it may be appropriate to further break up the data into subblocks. Let Zbsnt be

the n-th series in subblock s of block b at time t. Let Hbst be the KHbs factors in subblock s. The

level-four dynamics are defined by

Zbsnt = λn
H.bs(L)Hbst + eZbsnt,

Hbst = ΛG.bs(L)Gbt + eHbst,

Gbt = ΛF.b(L)Ft + eGbt.

As not all series need to belong to blocks and sublocks, the data used in a level-four model are a

mixture of Zbsnt, Xbnt, and Xnt. In general, a model at any level can always be decomposed into a

sequence of two level models, so long as there is a reasonable number of series at each level.

An example helps to illustrate the key features of the model. Suppose that we are given data for

production, employment, consumption, etc. Then X1it would be one of the N1 series collected for

production, X2it would be one of the N2 series collected for employment, X3it would be one of the

N3 consumption series, and so forth. The production, employment and consumption factors G1t, G2t
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and G3t would be correlated because of economy wide fluctuations, as captured by Ft. However, if

the N2 employment series are derived from two different surveys, specifying two employment sublocks

would allow us to model the two independent signals about the state of the labor market.

To close the model, the idiosyncratic components, the subblock-specific, block-specific and econ-

omy wide factors are assumed to be stationary, normally distributed autoregressive processes of order

qZbsn, qXbn, qHbsi
, qGbj

, and qFk
respectively. That is, for b = 1, . . . , B,

ψF.k(L)Fkt = εFkt, εFk
∼ N(0, σ2

Fk
) k = 1, . . . ,KF ,

ψG.bj(L)eGbjt = εGbjt, εGbj ∼ N(0, σ2
Gbj) j = 1, . . . ,KGb,

ψH.bsi(L)eHbsit = εHbsit, εHbsi ∼ N(0, σ2
Hbsi) i = 1, . . . ,KHbs

,

ψX.bn(L)eXbnt = εXbnt, εXnbt ∼ N(0, σ2
Xbn) n = 1, . . . Nb,

ψZ.bsn(L)eZbsnt = εZbnst, εZnbst ∼ N(0, σ2
Zbsn) n = 1, . . . Nbs.

The lag orders can differ across units, subblocks, and blocks. The model could be further enriched

by allowing for stochastic volatility or Markov switching effects at different levels of the hierarchy.

The factors and the loadings are not separately identified even in a two level dynamic factor

model. To see this, let Xt = (X1t, . . . , XNt)′ so that in vector form, the observation equation of the

model is Xt = Λ(L)Ft + et. Obviously, there could exist an invertible polynomial matrix Θ(L) of

arbitrary order such that the common component Λ(L)Ft is observationally equivalent to Λ̃(L)F̃t,

where Λ̃(L) = Λ(L)Θ(L) and F̃t = Θ(L)−1Ft. To achieve identification, two level models often

assume that Λ(L) = Λ is a constant lower triangular matrix of order zero where the elements on

the diagonal have a fixed sign, see e.g. Geweke and Zhou (1996) or Aguilar and West (2000).

The assumption of constant, lower triangular factor loading matrices can still be used to handle

multiple factors in a hierarchical setting. Note that the lower triangular structure is necessary but not

sufficient for identification when λn(L) has lagged dynamics. As shown in Theorem 3 of Heaton and

Solo (2004), additional restrictions on the polynomial structure will be necessary even for two level

models. Since the data are standardized to have unit variance, we further assume that innovations to

the factors have fixed variances. Then ΨF , ΨG.b, ΨH.bs, ψX.bn, ψZ.bsn, and the idiosyncratic variances

σXbn and σZbsn are free parameters that adjust to satisfy the variance decomposition identity.

A unique feature of the hierarchical structure is that the transition equation at the block and

subblock level has a time-varying intercept since the autoregressive dynamics of eGbjt imply that

ΨG.b(L)Gbt = ΨG.b(L)ΛF.b(L)Ft + εGbt.
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This leads to the block-level transition equation

Gbt = αF.bt + ΨG.b1Gbt−1 + . . .+ ΨG.bqGb
Gbt−qGb

+ εGbt, (4)

where αF.bt = ΨG.b(L)ΛF.b(L)Ft is correlated across blocks due to Ft. Intuitively, knowledge of

the comovement across blocks is useful in estimating the block-specific dynamics. Similarly, the

dependence of Ht on Gt implies that

Hbst = αG.bst + ΨH.bs1Hbst−1 + . . .+ ΨH.bsqHbs
Hbst−qHbs

+ εHbst,

where αG.bst = ΨH.bs(L)ΛG.bs(L)Gbt is common across subblocks. In Section 2.2 below, we show

how this additional term can be incorporated into a standard sampling method for linear state space

models. Appendix A-1 summarizes the main equations of the four level model.

2.1 Related Work

A vast number of papers in macroeconomics and finance have studied variants of the two level

dynamic factor model. The difference between our multilevel and a two level model is best understood

when there is a single factor at each level. With KGb = KF = 1,

Xbnt = λn
G.b(λ

j
F.bFt + eGbt) + eXbnt

= λbnFt + vbnt, (5)

where λbn = λn
G.bλ

j
F.b and vbnt = λn

G.beGbt+eXbnt. A standard factor model ignores the block structure

and simply stacks all observations up. The data would be modeled as

Xnt = λnFt + vnt.

This two level representation corresponds to an exact factor model if the block-specific components

{eGbt : b = 1, ..., B} were zero for all t, but is an ‘approximate factor model’ if vnt was ‘weakly

correlated’ across n and t. Weak cross-sectional correlation requires that the variation in vbnt is not

dominated by eGbt as N → ∞ and Nb → ∞. Instead of imposing this possibly invalid assumption,

our hierarchical model explicitly specifies the block structure. The factors are also easier to interpret

because the data blocks have a well-defined interpretation.

Multilevel factor models have been considered extensively in the psychology literature. As seen

from the review in Goldstein and Browne (2002), for example, these models do not allow for dynamics

and typically assume that either T or N is small. Dynamic hierarchical linear models were considered

by Gammerman and Mignon (1993), but there are no latent variables.
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Two models closely related to ours are Diebold et al. (2008) and Giannone et al. (2008). Diebold

et al. (2008) study a three level hierarchical factor model for government bond yield data from

four different countries. They estimate their model in two steps. Country-level yield factors are

first estimated by nonlinear least squares, and then treated as data in the estimation of the global

factors. Hence, they do not take into account the global factor dynamics in the estimation of the

country-level block factors. Giannone et al. (2008) are interested in taking advantage of the different

timing of data releases for the purpose of ‘now-casting’. First, they estimate the static factors in a

two level model by principal components. Then, they estimate the loadings in a second step using

Kalman filtering and smoothing techniques.

Kose et al. (2003, 2008) use multi-level factor models to study international business cycle co-

movements. For each observable variable n in country b, they have

xbnt = cnFt + dbneGbt + eXbnt

where Ft is a world factor, eGbt is a common shock specific to region b (such as Europe or Asia), and

where ebnt is a component specific to variable n in country b. A similar framework was recently used

by Stock and Watson (2009) to analyze national and regional factors in housing construction. While

we take a ‘bottom up’ approach which explicitly estimates the factors at each level, their top down

approach only yields a block-level component eGbt that is orthogonal to Ft. Thus Kose et al. (2003,

2008) can only estimate European or Asian factors that are uncorrelated with the global factors, but

not factors for those regions per se. Another important difference is that cn is unconstrained in Kose

et al. (2003), which vastly increases the number of parameters to estimate. Since we impose that Gbt

is linear in Ft, the responses of shocks to Ft for all variables in block b can only differ to the extent

that their exposure to the block-level factors differs. Because of this hierarchical structure, we have

a total of KG ×KF and N ×KG parameters characterizing loadings on Ft and Gt, whereas Kose et

al. (2003) have N ×KF and N ×KG parameters, respectively. As KG is much smaller than N , our

framework is more parsimonious.

2.2 Estimation via Markov Chain Monte Carlo

The simplest way to estimate the hierarchical model is to first estimate Ht subblock by subblock

via principal components, then estimate Gt from the principal components estimates of Ht, and

finally estimate Ft from the principal components estimates of Gt. However, sequential estimation

by principal components would not take into account the dependence of Ht on Gt and Gt on Ft
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through αGt and αFt, respectively. Furthermore, principal components estimates the static and not

the dynamic factors.

Kose et al. (2003) use Gibbs sampling to estimate latent dynamic factors. By considering their

conditional joint distribution, they have to invert a variance-covariance matrix of rank T at each

sweep of the sampler. The procedure is computationally costly when N and T are both large. We

put more structure on the factors between levels, and we exploit the prediction error decomposition

of Ft and Gt to avoid inverting large matrices.

Specifically, we use the method of Markov Chain Monte Carlo (MCMC) which samples a Markov

chain that has the posterior density of the parameters as its stationary distribution. Kim and Nelson

(2000), and Lopes and West (2004), among others, have used the algorithm proposed in Carter and

Kohn (1994) and Fruhwirth-Schnatter (1994) to estimate two level factor models with a single factor.

We generalize the algorithm to allow for a multi-level structure with multiple factors.

Let Λ = (ΛH ,ΛG,ΛF ), Ψ = (ΨF ,ΨG,ΨH ,ΨZ), Σ = (ΣF ,ΣG,ΣH ,ΣZ). The main steps are:

1. Organize the data into blocks and subblocks to yield Zbst, b = 1, . . . B, s = 1, . . . BS . Get initial

values for {Ht}, {Gt} and {Ft} using principal components. Use these to produce initial values

for Λ, Ψ, Σ.

2. Conditional on Λ,Ψ, Σ, {Gbt}, and the data Zbst draw {Hbst} ∀ b ∀ s.

3. Conditional on Λ,Ψ, Σ, {Hbt} and {Ft}, draw {Gbt} ∀ b.

4. Conditional on Λ,Ψ, Σ, and {Gt}, draw {Ft}.

5. Conditional on {Ft}, {Gt} and {Ht}, draw Λ, Ψ, and Σ.

6. Return to 2.

To analyze series Xbnt without a subblock structure, Ht would be dropped from the algorithm and

Step 2 would be omitted. To analyze series Xnt without a block structure, Gt as well as Steps 2 and

3 would be omitted, and the algorithm reduces to that for a two level model. The only complication

going from the two level to a multilevel model is that the transition equations for the subblock and

the block-specific factors feature time varying intercepts which depend on the factors at the next

higher level. This dependence needs to be taken into account in sampling the factors.

Denote ΞGb the set of parameters {~ΛG.b, ~ΨG.b,~ΣG.b,ΣX.b}. The modified algorithm consists of first

running the Kalman filter forward to obtain the sequence
{
~Gbt|t

}
that accounts for ~αF.bt and the
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corresponding covariance matrix ~PGbT |T in period T based on all available sample information. This

implies the following prediction and updating equations:

~Gbt+1|t = ~αF.bt + ~ΨG.b
~Gbt|t

PGbt+1|t = ~ΨG.bPGbt|t~Ψ
′
G.b + ~ΣG.b

~Gbt|t = ~Gbt|t−1 + PGbt|t−1
~̃Λ
′
G.b

(
~̃ΛG.bPGbt|t−1

~̃Λ
′
G.b + ΣX.b

)−1(
X̃bt −

~̃ΛG.b
~Gbt|t−1

)
PGbt|t = PGbt|t−1 − PGbt|t−1

~̃Λ
′
G.b

(
~̃ΛG.bPGbt|t−1

~̃Λ
′
G.b + ΣX.b

)−1
~̃ΛG.bPGbt|t−1

We can then sample the entire set of factor observations conditional on the parameters ΞGb and all

the data. The Gaussian and Markovian structure of the state-space model imply that the distribution

of ~Gbt given ~Gbt+1 and X̃bt is normal. Thus

~Gbt|X̃bt, ~G
∗
bt+1,ΞGb ∼ N(~Gbt|t, ~G∗bt+1

, ~PGbt|t, ~G∗bt+1
)

where using ~G∗bt+1 and ~Ψ∗G.b to denote the first KGb rows of ~Gbt+1 and ~ΨG.b, respectively,

~Gbt|t, ~G∗bt+1
= E[~Gbt|X̃bt, ~G

∗
bt+1]

= ~Gbt|t + ~PGbt|t~Ψ
∗′
G.b

(
~Ψ∗G.b

~PGbt|t~Ψ
∗′
G.b + ΣG.b

)−1
(~G∗bt+1 − ~αF.bt+1 − ~Ψ∗G.b

~Gbt|t)

~PGbt|t, ~G∗bt+1
= V ar(~Gbt|X̃bt, ~G

∗
bt+1)

= ~PGbt|t − ~PGbt|t~Ψ
∗′
G.b

(
~Ψ∗G.b

~PGbt|t~Ψ
∗′
G.b + ΣG.b

)−1
~Ψ∗G.b

~PGbt|t.

Given these conditional distributions, we can then proceed backwards to generate draws ~G∗bt for

t=T−1, . . . , 1. The subblock factors Hbst are sampled in an analogous manner, taking into account

the dependence on the block-level factors via the time-varying intercept αG.bst.

3 A Four Level Model of Real Activity

We illustrate our model with a hierarchial factor analysis of real economic activity in the US using a

balanced panel of 445 monthly time series from 1992:01-2011:03. The data include series on capacity

utilization, industrial production, manufacturers’ shipments, inventories and orders of durable goods,

the labor market as perceived by firms and households, retail sales, wholesale trade, housing starts,

new home sales, as well as manufacturing surveys.

We arrange the data into five blocks:- Production, Employment, Consumption, Housing, and

Manufacturing surveys. The Housing block is comprised of data on housing starts and new home
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sales, while the Manufacturing survey block combines data from the Institute for Supply Manage-

ment, the Philadelphia Fed and the Chicago Fed. The other three blocks have subblocks that are

defined as follows. Industrial production (IP), capacity utilization (CU), durable goods (DG) consti-

tute the production block; the establishment survey (ES) and the household survey (HS) constitute

the employment block; retail sales (RS) and wholesale trade (WT) constitute the consumption block.

Our blocks are thus defined using prior information about the structure of the data. An analysis

could also be conducted with the blocks determined by statistical criteria such as suggested by Hallin

and Liska (2008). However, the prior information facilitates interpretation of blocks and the factor

estimates.

We assume that the factor loading matrix is constant and estimate one common factor, one

common factor per block, and one or two factors per subblock.1 For the two subblocks with KHbs = 2,

we follow Aguilar and West (2000) and assume a lower triangular factor loading matrix with ones

on the diagonal:

ΛH.bs =


1 0

λH.bs2,1 1
λH.bs3,1 λH.bs3,2

: :
λH.bsNbs,1

λH.bsNbs,2

 .
This normalization implies that in the presence of multiple subblock-level factors, the first factor only

loads on the variable ordered first in a given subblock. It further identifies the signs of the factors.

We order first the series thought most likely to represent the subblock dynamics. A summary of the

data structure is provided in Table 1. The data are transformed to be stationary using Stock and

Watson (2008) as a guide. After the data transformation, our sample effectively starts in April 1992,

giving T = 227 observations for all blocks. A list of all 445 series is provided in the online appendix.

We assume the prior distribution for all factor loadings Λ and autocorrelation coefficients Ψ to

be Gaussian with mean zero and variance one. The prior distribution for the variance parameters

is that of an inverse chi-square distribution with ν degrees of freedom and a scale of d where ν and

d2 are set to 4 and 0.01, respectively. After discarding the first 50,000 draws as a burn-in, we take

another 50,000 draws, storing every 50-th draw. The reported statistics for posterior distributions

are based on these 1,000 draws. We use the principal components estimates of the factors as initial

values for Ft, Gt, and Ht. As a cross-check, we run the MCMC algorithm using randomly generated

numbers for the factors as starting values and find that it converges to the same posterior means.
1We started by estimating two factors for each subblock and dropped factors whose posterior distribution was not

tightly estimated.
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We also run the sampler on simulated data and find that it converges to the true posterior means.

3.1 Comparison With Principal Components

Let ’tilde’ denote estimates obtained by the method of principal components, and let ’hat’ denote

estimates obtained from our MCMC algorithm. The IC2 criterion of Bai and Ng (2002) suggests two

static factors in our panel of 445 time series. If block-level variations are important, the principal

components extracted from the entire panel of data might capture block-specific rather than aggregate

common dynamics. A regression of the principal components F̃rt on F̂t yields residuals ẽrt for each

r = 1, . . . 2. These are variations deemed common by the method of principal components but not

by our hierarchical model. We use regressions of ẽrt on êGbjt and êHbsit to check if these residuals

can be explained by our estimated block- and subblock-specific components.

Table 2 reports the R2 of these regressions that exceed 0.1. The residuals associated with both

the first and the second principal component are correlated with the employment block factor, while

ẽ2t is correlated with Manufacturing Surveys. The residuals ẽ1t and ẽ2t are correlated with all three

subblocks of production. The largest correlation of 0.55 is between ẽ2t and the second factor in the

establishment survey subblock. Furthermore, ẽ2t has a correlation of .36 with the second durable

goods factor. A possible explanation why principal components treat these variations as pervasive

is that the employment and durable goods data are over-represented (in terms of number of series)

in the panel.

Figure 1 graphs our F̂t and the first principal component F̃1t. Note that F̂t is noticeably smoother

than F̃1t. For example, F̂1t features large spikes in 1996 that are not prevalent in our common

factor estimate F̂t. One potential explanation for this relates to the government shutdown of the

budget in January 1996. Due to the large number of employment related series in the dataset, the

first principal component extracted from the panel puts a lot of weight on this block-level event.

In contrast, it is appropriately treated as variations associated with the employment subblock in

our model. Notice also that our estimated common factor nicely tracks the two recessions in our

sample period. According to the common factor estimate, real activity bottomed at the end of 2001,

consistent with the official NBER business cycle chronology which reports November 2001 as the

trough of the recession. The estimated factor also documents the striking collapse of real activity in

late 2008 and its subsequent sharp rebound in early 2009.
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3.2 Importance of Block-Level Variations

Our model can be used to compute the importance of the aggregate (shareF ), block-specific (shareG),

subblock-specific (shareH) components as well as idiosyncratic noise (shareZ) relative to the total

variation in the data. A two level factor model does not distinguish between Ft and Gt or Ht. Table

3 reports the posterior means and standard deviations of the estimated variance shares for all blocks

and subblocks of our dataset. The latter show that all shares are precisely estimated.

For housing and manufacturing (which have no subblock structure), the block-specific variations

dominate the aggregate variations as shareG is much larger than shareF . The capacity utilization

and industrial production subblocks of production both have shareF of around .15 while shareG

and shareH are around .10. However, for durable goods in the same block, shareF and shareG are

much smaller than shareH . Each of the two subblocks in the employment block also feature larger

shareG and shareH than shareF . Interestingly, in all categories shareZ exceeds .65 highlighting the

importance of series-specific shocks.

The hierarchical model also allows us to track the developments in certain sectors of the economy.

Figure 2 plots the estimated aggregate factor F̂ , along with Ĝ for the employment and the housing

block. Leading into the 2001 recession, housing activity was stronger than aggregate activity F̂t, and

only retraced briefly during the recession. The recession of 2001 was followed by a jobless recovery

as the employment factor failed to keep pace with F̂t after the recession. In the most recent recession

of 2008-2009, housing activity declined well ahead of aggregate activity as measured by F̂t, and

dropped back to negative growth rates after a brief recovery. Figure 2 thus shows that comovement

in economic time series can coexist with heterogeneous variations between blocks. The hierarchical

model allows us to jointly model these common variations at different levels.

4 Conclusion

This paper lays out a framework in which the effects of aggregate, block-level, and idiosyncratic

shocks can be coherently analyzed while still achieving a reasonable level of dimension reduction.

By extracting common components from blocks, the estimated factors have a straightforward inter-

pretation. While multi-level models are computationally more demanding than two level models,

explicitly modeling the block-level variation also makes it less likely that shocks at the block-level

will be confounded with genuinely common shocks. Estimation only requires a simple variation to

existing MCMC methods for estimating two level factor models.
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Appendix

A-1 Four Level Model: State Space Representation

Stacking all variables Zbsnt in a subblock and pseudo-differencing the serially correlated idiosyncratic
components eZbsnt, the observation equation at the subblock level can be written as

Z̃bst = Λ̃H.bs(L)Hbst + εZbst, ∀ b = 1, . . . , B, ∀ s = 1, . . . , BS ,

where Z̃bst = ΨZ.bs(L)Zbst and where Λ̃H.bs(L) = ΨZ.bs(L)ΛH.bs(L) is a Nb×KHbs matrix polynomial
of order l∗H = qZ + lH . Moreover, the state equation at the subblock level is

Hbst = αG.bst + ΨH.bs1Hbst−1 + ...+ ΨH.bsqH
Hbst−qH

+ εHbst

where
αG.bst = ΨH.bs(L)ΛG.bs(L)Gbt, ∀ b = 1, . . . , B, ∀ s = 1, . . . , S,

Together, these two equations imply the following state-space form

Z̃bst =
[

Λ̃H.bs0 Λ̃H.bs1 · · · Λ̃H.bsl∗H

]
Hbst

Hbst−1
...

Hbst−l∗H

+ εZbst


Hbst

Hbst−1
...

Hbst−l∗H

 =


αG.bst

0
...
0

+


ΨH.bs1 · · · ΨH.bsqH

0 · · · 0

I 0
...

...
...

...
. . . . . .

...
...

0 · · · I 0 · · · 0




Hbst−1

Hbst−2
...

Hbst−l∗H−1

+


εHbst

0
...
0


or

Z̃bst = ~̃ΛH.bs
~Hbst + ~εZbst (6)

~Hbst = ~αG.bst + ~ΨHbs
~Hbst−1 + ~εHbst (7)

For blocks that do have a subblock structure, the observation and state equation at the block
level become

H̃bt =
[

Λ̃G.b0 Λ̃G.b1 · · · Λ̃G.bl∗G

]
Gbt

Gbt−1
...

Gbt−l∗G

+ εHbt


Gbt

Gbt−1
...

Gbt−l∗G

 =


αF.bt

0
...
0

+


ΨG.b1 · · · ΨG.bqG

0 · · · 0

I 0
...

...
...

...
. . . . . .

...
...

0 · · · I 0 · · · 0




Gbt−1

Gbt−2
...

Gbt−l∗G−1

+


εGbt

0
...
0


or

H̃bt = ~̃ΛG.b
~Gbt + ~εHbt (8)

~Gbt = ~αF.bt + ~ΨG.b
~Gbt−1 + ~εGbt (9)
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For blocks that do not have a subblock structure, the observation and state equation at the block
level are

X̃bt = Λ̃G.b(L)Gbt + εXbt

and Gbt = αF.bt + ΨG.b1Gbt−1 + . . .+ ΨG.bqGb
Gbt−qGb

+ εGbt

where X̃bt = ΨX.b(L)Xbt and Λ̃G.b(L) = ΨX.b(L)ΛG.b(L) is a Nb × KGb matrix polynomial of
order l∗G = qX + lG. Furthermore, αF.bt = ΨG.b(L)ΛF.b(L)Ft, ∀ b = 1, . . . , B.

Finally, we have the following observation and state equations at the aggregate level:

G̃t = Λ̃F (L)Ft + εGt (10)
and Ft = ΨF.1Ft−1 + . . .+ ΨF.qF

Ft−qF + εFt (11)

where Gt = ΨG(L)Gt and Λ̃F (L) = ΨG(L)ΛF (L) is a KG × KF matrix polynomial of order
l∗F = qG + lF .

A-2 Variance Decomposition

The total unconditional variance for each individual variable Zbsn can be decomposed according to:

V ar(Zbsn) = γ′F.bsnvec(V ar(F )) + γ′G.bsnvec(V ar(eGb)) + . . .

+γ′H.bsnvec(V ar(eHbs)) + vec(V ar(eZbsn)) (12)

where

γ′F.bsn =

(
lH∑
l=0

λ′H.bsn(l)⊗ λ′H.bsn(l)

)
·

(
lG∑
l=0

λ′G.bs(l)⊗ λ′G.bs(l)

)
·

(
lF∑
l=0

λ′F.b(l)⊗ λ′F.b(l)

)

γ′G.bsn =

(
lH∑
l=0

λ′H.bsn(l)⊗ λ′H.bsn(l)

)
·

(
lG∑
l=0

λ′G.bs(l)⊗ λ′G.bs(l)

)

γ′H.bsn =

(
lH∑
l=0

λ′H.bsn(l)⊗ λ′H.bsn(l)

)

vec(V ar(F )) =

I − qF∑
q=1

(ΨF.q ⊗ΨF.q)

−1

vec(ΣF )

vec(var(eGb)) =

I − qGb∑
q=1

(ΨG.bq ⊗ΨG.bq)

−1

· vec(ΣGb
)

vec(var(eHbs)) =

I − qHbs∑
q=1

(ΨH.bsq ⊗ΨH.bsq)

−1

· vec(ΣHbs
)

vec(V ar(eZbsn)) =

1−
qZbsn∑
q=1

ψ2
Z.bsnq

−1

· σ2
Zbsn.
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Table 1: Data and Model Structure
This table summarizes the block structure of the four level model of real activity in the US discussed in Section 3. The

data sources for the variables in the block, the number of series N in the block as well as the number of estimated

subblock factors KHbs are provided. Fed denotes the Federal Reserve, BLS the Bureau of Labor Statistics, Census

the Census Bureau, ISM the Institute of Supply Managers.

Block Subblock Source N KHbs

Production CU Fed 25 1
IP Fed 38 1
DG Census 60 2

Employment ES BLS 82 2
HS BLS 92 1

Consumption WT Census 54 1
RS Census 30 1

Housing Census 29
Mfg Surveys ISM, Fed 35

Table 2: Correlation of ẽrt with Gbjt and Hbsit

This table summarizes the R2’s obtained from regressions of ẽrt onto Ĝbt and Ĥbst. ẽrt is the residual from a regression

of F̃rt on F̂t where F̃rt is r-th factor estimated by principal components and F̂t is the posterior mean of the aggregate

factor from the four level model of real activity estimated via MCMC.

r Block j factor j R2

1 Employment 1 0.16
2 Employment 1 0.17
2 Mfg Surveys 1 0.25

Block j Subblock s factor i R2

1 Production IP 1.00 0.29
1 Production DG 2.00 0.25
1 Employment ES 1.00 0.22
1 Employment ES 2.00 0.14
2 Production CU 1.00 0.17
2 Production DG 2.00 0.36
2 Employment ES 2.00 0.55
2 Consumption RS 1.00 0.15

Table 3: Decomposition of Variance
This table summarizes the decomposition of variance for the four level model of real activity. For each (sub)block of

data, shareF , shareG, shareH , and shareZ denote the average variance share across all variables in the block due to

aggregate, block-level, subblock-level and idiosyncratic shocks, respectively.

Block Subblock ShareF ShareG ShareH ShareZ

Posterior Mean (Standard Deviation)
Production CU 0.137 (0.027) 0.031 (0.006) 0.030 (0.005) 0.802 (0.035)
Production IP 0.162 (0.028) 0.037 (0.006) 0.027 (0.005) 0.773 (0.035)
Production DG 0.032 (0.010) 0.007 (0.002) 0.177 (0.039) 0.784 (0.046)

Employment ES 0.012 (0.007) 0.122 (0.025) 0.213 (0.035) 0.652 (0.049)
Employment HS 0.003 (0.002) 0.026 (0.011) 0.109 (0.030) 0.863 (0.037)
Consumption WT 0.031 (0.011) 0.033 (0.010) 0.031 (0.010) 0.906 (0.029)
Consumption RS 0.010 (0.005) 0.011 (0.005) 0.106 (0.029) 0.874 (0.034)

Housing 0.010 (0.006) 0.074 (0.018) 0.916 (0.018)
Mfg Surveys 0.034 (0.015) 0.096 (0.026) 0.871 (0.035)
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Figure 1: Comparison to Principal Components Estimates

This figure plots the posterior mean of the common factor estimate F̂ (solid line) from our four level model of real

activity along with the first principal component F̃ (dashed line) extracted from the entire data panel. Shaded areas

indicate NBER recessions. The sample period is 1992:04 - 2011:03.
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Figure 2: Four Level Model of Real Activity with 5 Blocks

This figure plots the posterior mean of the common factor estimate F̂ (solid) along with the posterior means of the

block-level factors Ĝ for the employment (dashed) and housing (dash-dotted) block, respectively, estimated from our

four level model of real activity in the US. Shaded areas indicate NBER recessions. The sample period is 1992:04 -

2011:03.
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