
Federal Reserve Bank of New York

Staff Reports

The Cross-Sectional Distribution of Price Stickiness Implied 

by Aggregate Data

Carlos Carvalho

Niels Arne Dam

Staff Report no. 419

December 2009

Revised August 2010

This paper presents preliminary findings and is being distributed to economists

and other interested readers solely to stimulate discussion and elicit comments.

The views expressed in the paper are those of the authors and are not necessarily

reflective of views at the Federal Reserve Bank of New York or the Federal

Reserve System. Any errors or omissions are the responsibility of the authors.



The Cross-Sectional Distribution of Price Stickiness Implied by Aggregate Data

Carlos Carvalho and Niels Arne Dam

Federal Reserve Bank of New York Staff Reports, no. 419

December 2009; Revised August 2010

JEL classification: E10, E30 

Abstract

Using only aggregate data as observables, we estimate multisector sticky-price models for

twelve countries, allowing the degree of price stickiness to vary across sectors. We use a

specification that allows us to extract information about the underlying cross-sectional

distribution from aggregate data. Identification is possible because sectors play different

roles in determining the response of aggregate variables to shocks at different frequencies:

sectors where prices are more sticky are relatively more important in determining the

low-frequency response. We find that the inferred distributions of price stickiness

conform quite well with empirical distributions constructed from the available

microeconomic evidence on price setting. We then explore our Bayesian approach to

combine the aggregate time-series data with the microeconomic information on the

distributions of price rigidity, and re-estimate the models for the United States, Denmark,

and Japan. Our results show that allowing for this type of heterogeneity is critically

important to understanding the joint dynamics of output and prices, and it constitutes a

step toward reconciling the extent of nominal price rigidity implied by aggregate data

with the evidence from price micro data.
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1 Introduction

Comparisons of estimates of important economic parameters based on microeconomic or disaggre-

gated data versus those based on aggregate data often produce a con�icting picture. Perhaps the

prime example involves estimates of the elasticity of individual labor supply, which are typically

smaller than estimates of the elasticity of the aggregate labor supply.1 Other examples are the

elasticity of substitution between domestic and foreign goods - which is substantially higher when

estimated from disaggregated data, and the parameters determining the extent of habit formation in

consumption - which may di¤er signi�cantly depending on whether microeconomic or aggregate data

are employed in the estimation.2 These discrepancies are usually associated with a large amount

of heterogeneity in estimates of the parameters based on disaggregated data, which contrasts with

the (explicit or implicit) homogeneity assumption that underlies most of the estimates based on

aggregate data. These di¤erences have fostered debates about how to calibrate models with repre-

sentative agents, and also the development of heterogeneous-agents models that can reconcile the

empirical �ndings.3

Estimates of the extent of nominal price rigidity reveal the same kind of tension. A recent

empirical literature that uses price micro data from various sources documents that, on average,

prices change at least once a year (for a recent survey, see Klenow and Malin 2009). In contrast,

estimates of the frequency of price changes from dynamic stochastic general equilibrium (DSGE)

models and aggregate data imply much less frequent adjustment.4 Likewise, evidence on the response

of the aggregate price level to various shocks in vector autoregressions (VARs) points to sluggish

adjustment. This discrepancy between micro- and macro-based evidence on price stickiness has

shaped many of the developments in the �eld of Monetary Economics since the emergence of so-

called new Keynesian Economics in the 1980s.

In this paper we take a step towards reconciling the apparent disconnect between micro- and

macro-based estimates of nominal price rigidity. Our approach is motivated by the microeconomic

evidence of substantial heterogeneity in the degree of price rigidity across sectors emphasized by

Bils and Klenow (2004) and subsequent papers, and by recent work showing that such heterogeneity

matters for aggregate dynamics (Carvalho 2006, Nakamura and Steinsson 2010, and others).

We employ a Bayesian approach to estimate sticky-price models for twelve countries allowing for

1For a recent discussion of some of these contrasting empirical �ndings, see Shimer (2009).
2See, respectively, Imbs and Mejean (2009) and Ravina (2007).
3See, for example, Browning et al. (1999) and Chang and Kim (2006).
4See, for example, the recent survey by Maćkowiak and Smets (2008).
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sectoral heterogeneity in price stickiness, and using only aggregate data on nominal and real Gross

Domestic Product (GDP) as observables. We start by asking whether these data provide support

for this type of heterogeneity. We can address this question because we use models that allow

us to extract information about the underlying cross-sectional distribution from aggregate data.

Identi�cation is made possible by the fact that in the models di¤erent sectors are relatively more

important in determining the response of aggregate variables to shocks at di¤erent frequencies. In

particular, sectors where prices are more sticky are relatively more important in determining the low-

frequency response to shocks; and vice-versa for more-�exible-price sectors. To assess the empirical

support for heterogeneity we also estimate versions of the model that impose the same degree of

price rigidity for all �rms in the economy.

The results discriminate sharply between the models with heterogeneity in price stickiness and

their homogeneous-�rms counterparts, and provide strong support for this type of heterogeneity. In a

comparison with the best-�tting homogeneous model, the posterior odds in favor of the heterogeneous

models is of the order of 1011 : 1. Moreover, the homogeneous speci�cation favored by the data

implies an extent of price rigidity that, at 7 quarters, seems unrealistic in light of the microeconomic

evidence.

With our macro-based estimates in hand, we then ask whether the implied cross-sectional dis-

tribution of price rigidity is consistent with the available microeconomic evidence for the various

countries. We �nd that it is. In particular, for countries with detailed enough cross-sectional statis-

tics on price rigidity (U.S., Denmark and Japan) the macro-based estimates often capture nuanced

features of the empirical distributions. The positive answers to our two questions provide empirical

support for heterogeneity in price stickiness as an important step toward reconciling the extent of

nominal price rigidity implied by aggregate data with the evidence from price micro data.

Similarities notwithstanding, there are di¤erences between our macro-based estimates of price

rigidity and the available microeconomic evidence. Thus, a legitimate question is why should we

care about macro-based estimates if the microeconomic evidence usually relies on direct observation

of millions of individual price paths - and is thus model-free? One obvious answer is hinted at by our

estimation of the model for countries with limited availability of microeconomic evidence - or lack

thereof in some cases: if our macro-based estimates line up reasonably well with the microeconomic

evidence when the latter is available, perhaps we can rely on them in the absence of that evidence.

The second answer is actually related to the model-free nature of the microeconomic evidence. It is

possible that some price adjustments do not convey information about changes in macroeconomic
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conditions, while others do.5 In that case, macro-based estimates should convey useful information

about the price changes that do matter for aggregate dynamics.

Taking advantage of our Bayesian methodology, we argue that a promising approach to inte-

grating our micro and macro views on price setting is to combine macroeconomic observables with

microeconomic information contained in empirical cross-sectional distributions of price rigidity, in

the context of models with explicit heterogeneity along this dimension. We parameterize our prior

over the set of parameters that characterize the cross-sectional distribution in the model in a way

that easily allows us to relate its moments to an empirical distribution of price rigidity. We then

reestimate the models for the U.S., Denmark, and Japan, still using only aggregate data on nominal

and real output as observables, and discuss how the results change relative to our purely macro-based

estimates.

Until recently, most of the e¤orts devoted to reconciling micro- and macro-based evidence on

price rigidity focused on mechanisms that can slow down the adjustment of the aggregate price

level to shocks, in the context of models in which all prices are equally sticky. These mechanisms

are usually referred to as �real rigidities�(Ball and Romer 1990). As long as price changes are not

perfectly synchronized, strong enough real rigidities make it optimal for �rms to undertake a series of

partial adjustments to shocks that a¤ect the aggregate price level, rather than a single adjustment.

This delayed response is due to an interdependence in pricing decisions that is often referred to as

a �strategic complementarity�in price setting.

For a given frequency of price adjustments, a model with heterogeneity in price stickiness can

produce richer - in particular, more sluggish - aggregate dynamics than an otherwise identical

homogeneous-�rms model with the same frequency of price changes, even in the absence of pric-

ing complementarities (Carvalho 2006, Carvalho and Schwartzman 2008, Nakamura and Steinsson

2010). Yet, the two mechanisms can, and do coexist in our estimated model - which implies that

pricing decisions are strategic complements. Coupled with heterogeneity in price rigidity, this com-

plementarity leads �rms in the more sticky sectors to become disproportionately important (relative

to their sectoral weight) in shaping aggregate dynamics, through their in�uence on pricing decisions

of �rms that change prices more frequently.6

5This possibility is at the core of the debate about whether to exclude price changes due to sales when computing
measures of price rigidity (see Nakamura and Steinsson 2008 and Klenow and Kryvtsov 2008 for empirical results, and
Kehoe and Midrigan 2008 and Guimaraes and Sheedy 2009 for models that incorporate temporary price changes).

6This potential ampli�cation mechanism arising from the interaction between heterogeneity in price rigidity and
pricing complementarities is discussed in detail in Carvalho (2006) and Carvalho and Schwartzman (2008). Nakamura
and Steinsson (2010) conclude that this interaction is not important in their calibrated menu-cost model.
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While we focus on the microeconomic evidence on heterogeneity in price rigidity, the recent

literature has established a few additional empirical regularities regarding price setting in the U.S.

and other economies. After assessing how our estimated models fare in light of the evidence on

heterogeneity, we discuss their ability to match additional micro price facts (at least qualitatively).

We conclude that such models can match four out of the eight facts documented by Klenow and

Kryvtsov (2008). In addition, we provide details on how to change the models to match an additional

three of their micro facts without any changes to their aggregate implications.

Our work is related to the recent literature that emphasizes the importance of heterogeneity

in price rigidity for aggregate dynamics. However, our focus di¤ers from that of existing papers.

Most of the latter focus on the role of heterogeneity as an ampli�cation mechanism for �monetary

non-neutralities�in calibrated models (e.g., Carvalho 2006, Nakamura and Steinsson 2010, Carvalho

and Nechio 2010).7 These papers do not address the question of whether such heterogeneity does

in fact help existing sticky-price models �t the data better according to formal statistical criteria.

We do that by estimating our multi-sector model, exploring the model-implied mapping between

the distribution of price stickiness and the dynamics of macroeconomic observables. As part of this

process, we provide estimates of the distribution of price rigidity based on macroeconomic data.

In terms of empirical work on the importance of heterogeneity in price stickiness, Imbs et al.

(2007) study the aggregation of sectoral Phillips curves, and the statistical biases that can arise

from using estimation methods that do not account for heterogeneity. They rely on sectoral data for

France, and �nd that the results based on estimators that allow for heterogeneity are more in line

with the available microeconomic evidence on price rigidity. Lee (2009) and Bouakez et al. (2009a)

estimate multi-sector DSGE models with heterogeneity in price rigidity using aggregate and sectoral

data. They also �nd results that are more in line with the microeconomic evidence than the versions

of their models that impose the same degree of price rigidity for all sectors.8 Taylor (1993) provides

estimates of the distribution of the duration of wage contracts in various countries inferred solely

from aggregate data, while Guerrieri (2006) provides estimates of the distribution of the duration

of price spells in the U.S. based on aggregate data. Both (de facto) assume ex-post rather than

ex-ante heterogeneity in nominal rigidities.9 Coenen et al. (2007) estimate a model with (limited)

ex-ante heterogeneity in price contracts using only aggregate data. They focus on the estimate of

7For brevity, and given our empirical focus, we refer the reader to Carvalho and Schwartzman (2008) for references
to theoretical contributions and/or quantitative work based on calibrated models.

8Bouakez et al. (2009b) �nd similar results in an extension of their earlier paper to a larger number of sectors.
9Their frameworks are thus closer to the generalized time-dependent model of Dotsey et al. (1997) than to our

model with ex-ante heterogeneity.
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the Ball-Romer index of real rigidities and on the average duration of contracts implied by their

estimates, which they emphasize is in line with the results in Bils and Klenow (2004).10

Jadresic (1999) is a precursor to some of the ideas in this paper. He estimates a model with

ex-ante heterogeneous price spells using only aggregate data for the U.S. economy to study the

joint dynamics of output and in�ation. Similarly to our �ndings, his statistical results reject the

assumption of identical �rms. Moreover, he discusses the intuition behind the source of identi�cation

of the cross-sectional distribution of price rigidity from aggregate data in his model, which is the same

as in our model. Despite these similarities, our paper di¤ers from Jadersic�s in several important

dimensions. We use a di¤erent estimation method, and show the possibility of extracting information

about the cross-sectional distribution of price rigidity from aggregate data in a more general context -

in particular in the presence of pricing complementarities. We also provide macro-based estimates for

twelve countries other than the U.S. Most importantly, the focus of our paper goes beyond assessing

the empirical support for heterogeneity in price rigidity from aggregate data. We also investigate

the similarities between our macro-based estimates and the available microeconomic evidence, and

propose an approach to integrate the two sources of information on the distribution of price rigidity.

In Section 2 we present the semi-structural model and study the extent to which aggregate data

contain information about the cross-sectional distribution of price stickiness. Section 3 describes

our empirical methodology and data. In Section 4 we present our macro-based estimates of multi-

sector models for twelve countries, and perform model comparison with speci�cations that impose

the same degree of price rigidity for all �rms. In Section 5 we combine microeconomic information

and macroeconomic data in the estimation. Section 6 discusses the performance of the model in

light of additional micro price facts. We discuss robustness issues and directions for future research

in Section 7, before concluding.

2 The semi-structural model

There is a continuum of monopolistically competitive �rms divided into K sectors that di¤er in the

frequency of price changes. Firms are indexed by their sector, k 2 f1; :::;Kg, and by j 2 [0; 1]. The

distribution of �rms across sectors is summarized by a vector (!1; :::; !K) with !k > 0;
PK
k=1 !k = 1,

where !k gives the mass of �rms in sector k. Each �rm produces a unique variety of a consumption

10Their estimated model features indexation to an average of past in�ation and a (non-zero) constant in�ation ob-
jective. Thus, strictly speaking their �nding is that the average time between �contract reoptimizations�is comparable
to the average duration of price spells documented by Bils and Klenow (2004).
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good, and faces a demand that depends negatively on its relative price.

In any given period, pro�ts of �rm j from sector k (henceforth referred to as ��rm kj�) are given

by:

�t (k; j) = Pt (k; j)Yt (k; j)� C (Yt (k; j) ; Yt; �t) ;

where Pt (k; j) is the price charged by the �rm, Yt (k; j) is the quantity that it sells at the posted

price (determined by demand), and C (Yt (k; j) ; Yt; �t) is the total cost of producing such quantity,

which may also depend on aggregate output Yt, and is subject to shocks (�t). We assume that the

demand faced by the �rm depends on its relative price Pt(k;j)
Pt

, where Pt is the aggregate price level

in the economy, and on aggregate output. Thus, we write �rm kj�s pro�t as:

�t (k; j) = � (Pt (k; j) ; Pt; Yt; �t) ;

and make the usual assumption that � is homogeneous of degree one in the �rst two arguments,

and single-peaked at a strictly positive level of Pt (k; j) for any level of the other arguments.11

The aggregate price index combines sectoral price indices, Pt (k)�s, according to the sectoral

weights, !k�s:

Pt = �
�
fPt (k) ; !kgk=1;:::;K

�
;

where � is an aggregator that is homogeneous of degree one in the Pt (k)�s. In turn, the sectoral

price indices are obtained by applying a symmetric, homogeneous-of-degree-one aggregator � to

prices charged by all �rms in each sector:

Pt (k) = �
�
fPt (k; j)gj2[0;1]

�
:

We assume the speci�cation of staggered price setting inspired by Taylor (1979, 1980). Firms set

prices that remain in place for a �xed number of periods. The latter is sector-speci�c, and we save

on notation by assuming that �rms in sector k set prices for k periods. Thus, ! = (!1; :::; !K) fully

characterizes the cross-sectional distribution of price stickiness that we are interested in. Finally,

across all sectors, adjustments are staggered uniformly over time.

When setting its price Xt (k; j) at time t, given that it sets prices for k periods, �rm kj solves:

maxEt

k�1X
i=0

Qt;t+i�
�
Xt (k; j) ; Pt+i; Yt+i; �t+i

�
;

11This is analogous to Assumption 3.1 in Woodford (2003).
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where Qt;t+i is a (possibly stochastic) nominal discount factor. The �rst-order condition for the

�rm�s problem can be written as:

Et

k�1X
i=0

Qt;t+i
@�
�
Xt (k; j) ; Pt+i; Yt+i; �t+i

�
@Xt (k; j)

= 0: (1)

Note that all �rms from sector k that adjust prices at the same time choose a common price, which

we denote Xt (k).12 Thus, for a �rm kj that adjusts at time t and sets Xt (k), the prices charged

from t to t+ k � 1 satisfy:

Pt+k�1 (k; j) = Pt+k�2 (k; j) = ::: = Pt (k; j) = Xt (k) :

Given the assumptions on price setting, and uniform staggering of price adjustments, with an

abuse of notation sectoral prices can be expressed as:

Pt (k) = �
�
fXt�i (k)gi=0;:::;k�1

�
:

The structure of the supply side of our model is a multi-sector economy with Taylor (1979,

1980) staggered price setting, in which the extent of price rigidity varies across di¤erent sectors.

Instead of postulating a fully speci�ed economy to obtain the remaining equations to be used in

the estimation, we assume exogenous stochastic processes for nominal output (Mt � PtYt) and

for the unobservable �t process; hence, we refer to our model as �semi-structural�.
13 Given our

focus on estimation of parameters that characterize price-setting behavior in the economy in the

presence of heterogeneity, our goal in specifying such exogenous time-series processes is to close the

model with a set of equations that can provide it with �exibility relative to a fully-structural model.

Such �exibility is useful because it allows us to draw conclusions about price setting that are less

dependent on details of the demand side of the model, which is not the focus of our analysis.14

12 In Section 6 we discuss how the model can be enriched with idiosyncratic shocks that can help it match some
micro facts about the size of price changes without a¤ecting any of its aggregate implications.

13Several earlier papers combine structural equations with empirical speci�cations for other parts of the model.
Sbordone (2002), Guerrieri (2006) and Coenen et al. (2007) are recent examples.

14Needless to say, the results are conditional on the particular model of price setting that we adopt. In Section 7
we discuss the extent to which our conclusions may generalize to alternative price-setting speci�cations.
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2.1 A loglinear approximation

We assume that the economy has a deterministic zero-in�ation steady state characterized by Mt =

M; �t = �; Yt = Y ;Qt;t+i = �
i; and for all (k; j) ; Xt (k; j) = Pt = P , and loglinearize (1) around it

to obtain:15

xt (k) =
1� �
1� �k

Et

k�1X
i=0

�i
�
pt+i + �

�
yt+i � ynt+i

��
; (2)

where lowercase variables denote log-deviations of the respective uppercase variables from the steady

state. The parameter � > 0 is the Ball and Romer (1990) index of real rigidities. The new variable

Y nt is de�ned implicitly as a function of �t by:

@�(Xt (k; j) ; Pt; Y
n
t ; �t)

@Xt (k; j)

����
Xt(k;j)=Pt

= 0:

In the loglinear approximation, ynt moves proportionately to log
�
�t=�

�
. Strictly speaking, it is the

level of output that would prevail in a �exible-price economy. In a fully speci�ed model this would

tie it down to preference and technological shocks. Here we do not pursue a structural interpretation

of the exogenous processes driving the economy.16 Nevertheless, for ease of presentation we follow

the literature and label ynt the �natural level of output.�

The de�nition of nominal output yields:

mt = pt + yt: (3)

Finally, we postulate that the aggregators that de�ne the overall level of prices Pt and the sectoral

price indices give rise to the following loglinear approximations:17

pt =

KX
k=1

!kpt (k) ; (4)

pt (k) =

Z 1

0
pt (k; j) dj =

1

k

k�1X
j=0

xt�j (k) : (5)

Large real rigidities (small � in equation (2)) reduce the sensitivity of prices to aggregate demand

15We write all such approximations as equalities, ignoring higher-order terms.
16We think such an interpretation is unreasonable because we take nominal output to be exogenous. In that context,

an interpretation of ynt as being driven by preference and technology shocks would imply that these shocks have no
e¤ect on nominal output (i.e., that they have exactly o¤setting e¤ects on aggregate output and prices).

17This is what comes out of a fully-speci�ed multi-sector model with the usual assumption of Dixit-Stiglitz prefer-
ences.
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conditions, and thus magnify the non-neutralities generated by nominal price rigidity. In fully spec-

i�ed models, the extent of real rigidities depends on primitive parameters such as the intertemporal

elasticity of substitution, the elasticity of substitution between varieties of the consumption good,

the labor supply elasticity. It also depends on whether the economy features economy-wide or seg-

mented factor markets, whether there is an explicit input-output structure etc.18 In the context of

our model, � is itself a primitive parameter. Following standard practice in the literature, we refer

to economies with � < 1 as ones displaying strategic complementarities in price setting. To clarify

the meaning of this expression, replace (3) in (2) to obtain:

xt (k) =
1� �
1� �k

Et

k�1X
i=0

�i
�
�
�
mt+i � ynt+i

�
+ (1� �) pt+i

�
: (6)

That is, new prices are set as a discounted weighted average of current and expected future driving

variables
�
mt+i � ynt+i

�
and prices pt+i. � < 1 implies that �rms choose to set higher prices if the

overall level of current and expected future prices is higher, all else equal. On the other hand, � > 1

means that prices are strategic substitutes, in that under those same circumstances adjusting �rms

choose relatively lower prices.

2.2 Nominal (mt) and natural (ynt ) output

We postulate an AR(p1) process for nominal output, mt:

mt = �0 + �1mt�1 + :::+ �p1mt�p1 + "
m
t ; (7)

and an AR(p2) process for the natural output level, ynt :

ynt = �0 + �1y
n
t�1 + :::+ �p2y

n
t�p2 + "

n
t ; (8)

where "t = ("mt ; "
n
t ) is i.i.d. N

�
01�2;
2

�
, with 
2 =

24 �2m 0

0 �2n

35 :

18For a detailed discussion of sources of real rigidities see Woodford (2003, chapter 3).
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2.3 State-space representation and likelihood function

We solve the semi-structural model (3)-(8) with Gensys (Sims, 2002), to obtain:

Zt = C (�) +G1 (�)Zt�1 +B (�) "t: (9)

where Zt is a vector collecting all variables and additional �dummy�variables created to account

for leads and lags and "t is as de�ned before. The vector � collects the primitive parameters of the

model:

� =
�
K; p1; p2; �; �; �m; �n; !1; � � � ; !K ; �0; � � � ; �p1 ; �0; � � � ; �p2

�
:

In all estimations that follow we make use of the likelihood function L (�jZ�), where Z� is the

vector of observed time series (i.e., a subset of Z). Given that our state vector Zt includes many

unobserved variables, such as the natural output level and sectoral prices, the likelihood function is

constructed through application of the Kalman �lter to the solved loglinear model (9). Letting H

denote the matrix that singles out the observed subspace Z�t of the state vector Zt (i.e., Z
�
t = HZt),

our distributional assumptions can be summarized as:

ZtjZt�1 � N
�
C (�) +G1 (�)Zt�1; B (�) 
B (�)

0� ;
Z�t j fZ�� g

t�1
�=1 � N

�
Mtjt�1 (�) ; Vtjt�1 (�)

�
;

whereMtjt�1 (�) � HC (�) +HG1 (�) Ẑtjt�1; Vtjt�1 (�) � HB (�) �̂tjt�1B (�)0H 0; Ẑtjt�1 denotes the

expected value of Zt given fZ�� g
t�1
�=1, and �̂tjt�1 is the associated forecast-error covariance matrix.

2.4 Identi�cation of the cross-sectional distribution from aggregate data

In estimating our multi-sector model we only use data on aggregate nominal and real output as

observables. It is thus natural to ask whether the structure of the model is such that these aggregate

data reveal information about the cross-sectional distribution of price stickiness ! = (!1; :::; !K).

As in Jadresic (1999), we start by looking at a simple case where it is easy to show that ! can be

inferred from observations of those two aggregate time series. This helps develop the intuition for

a more general case for which we can also show identi�cation. We then assess the small-sample

properties of estimates of ! inferred from aggregate data through a Monte Carlo exercise. As in our

estimation, we assume throughout that the discount factor, �, is known.

The key simplifying assumption to show identi�cation in the �rst case is absence of pricing
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interactions: � = 1. In that case, from (6) new prices xt (k) are set on the basis of current and

expected future values of the two exogenous processes mt and ynt . For simplicity and without loss

of generality, assume further that the latter follow the AR(1) processes:

mt = �1mt�1 + "
m
t ; and (10)

ynt = �1y
n
t�1 + "

n
t : (11)

Then, new prices are set according to:

xt (k) = F (�; �1; k)mt � F (�; �1; k) ynt ;

where

F (�; a; k) �
 
1 +

1� �
1� �k

�a� (�a)k

1� �a

!
:

Replacing this expression for newly set prices in the sectoral price equation (5) and aggregating

according to (4) produces the following expression for the aggregate price level:

pt =
K�1X
j=0

KX
k=j+1

F (�; �1; k)
!k
k
mt�j �

K�1X
j=0

KX
k=j+1

F (�; �1; k)
!k
k
ynt�j : (12)

If we observe mt and yt - and thus pt, estimates of the coe¢ cients on mt�j in (12) allow us to

infer the sectoral weights !. The reason is that F (�; �1; k) is �known�, since �1 can be estimated

directly from (10). Thus, knowledge of the coe¢ cient on the longest lag of mt�j (attained when

j = K � 1) allows us to uncover !K . The coe¢ cient on the next longest lag (mt�(K�2)) depends

on !K�1 and !K , which reveals !K�1. We can thus recursively infer the sectoral weights from

the coe¢ cients F (�; �1; k)
!k
k . Moreover, identi�cation obtains with any estimation method that

produces consistent estimates of these coe¢ cients.19

Checking for identi�cation of ! in the presence of pricing interactions (� 6= 1) is slightly more

involved. To gain intuition on why this is so, �x the case of pricing complementarities (� < 1).

Then, because of the delayed response of sticky-price �rms to shocks, �rms with �exible prices will

only react partially to innovations to mt and ynt on impact. They will eventually react fully to the

shocks, but also with a delay. This illustrates why the straightforward recursive identi�cation that

19Jadresic (1999) discusses identi�cation in a similar context. The main di¤erences are that he considers a regression
based on a �rst-di¤erenced version of the analogous equation in his model, and assumes �1 = 1 and that the term

corresponding to
XK�1

j=0

XK

k=j+1
F (�; �1; k)

!k
k
�ynt�j is an i.i.d. disturbance.
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applies when � = 1 no longer works.

It turns out that, in equilibrium, pricing interactions manifest themselves through a dependence

of the aggregate price level on its own lags. This is how pricing interactions serve as a propagation

mechanism. Speci�cally, the expression for the equilibrium price level becomes:

pt =
K�1X
j=1

ajpt�j +
K�1X
j=0

bjmt�j �
K�1X
j=0

bjy
n
t�j ; (13)

where a1, :::, aK�1, b0, :::, bK�1 are functions of the model parameters. Knowledge of the coe¢ cients

on the lags of the aggregate price level and on lagged nominal output again allows us to solve for

the sectoral weights - and for �.20

The intuition behind the identi�cation result in the absence of pricing interactions is clear: the

impact of older developments of the exogenous processes on the current price level depends on

prices that are sticky enough to have been set when the shocks hit. This provides information on

the share of the sector with that given duration of price spells (and sectors with longer durations).

More generally, in the presence of pricing interactions, fully forward-looking pricing decisions may

also re�ect past developments of the exogenous processes. This dependence manifests itself through

lags of the aggregate price level. The intuition behind the mechanism that allows for identi�cation

extends in a natural way: sectors where prices are more sticky are relatively more important in

determining the impact of older shocks to the exogenous processes on the current price level, and

vice-versa for sectors where prices are more �exible. Moreover, the relative sizes of the coe¢ cients

on past prices and past nominal output in (13) pin down the index of real rigidities �.

These results on identi�cation are of little use to us if the mechanism highlighted above does

not work well in practice, especially in �nite samples. To analyze this issue we rely on a Monte

Carlo exercise. We generate arti�cial data on aggregate nominal and real output using a model

with K = 4, and parameter values that roughly resemble what we �nd when we estimate a model

of this size on actual U.S. data. Then, we estimate the parameters of the model by maximum

likelihood. We conduct both a large- and a small-sample exercise. Details and results are reported

in the Appendix.

The bottom line is that for large samples the estimates are quite close to the true parameter

values, and fall within a relatively narrow range. For samples of the same size as our actual sample

we also �nd the aggregate data to be informative of the distribution of sectoral weights. However,

20 In the Appendix we illustrate how the process works in a two-sector model.
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in this case the estimates are slightly biased and less precise. This �nding underscores our case

for incorporating prior information from the microeconomic evidence on price-setting, as we do in

Section 5.

3 Empirical methodology and data

With the challenges involved in bridging the gap between microeconomic information on �rms�

pricing behavior and time series of aggregate nominal and real output, the choice of empirical

methodology is of critical importance. We employ a Bayesian approach as this allows us to eventually

integrate microeconomic information on the distribution of price rigidity with those macroeconomic

time series. With some abuse of notation, the Bayesian principle can be shortly stated as:

f (�jZ�) = f (Z�j�) f (�) =f (Z�) / L (�jZ�) f (�) ;

where f denotes density functions, Z� is the vector of observed time series de�ned previously, � is

the vector of primitive parameters; and L (�jZ�) is the likelihood function.

We use our sources of information in two ways. First, in Section 4, we estimate the cross-sectional

distribution of price stickiness for twelve countries using time-series data on aggregate nominal and

real output under a prior distribution that is ��at�(uninformative) over the domain of the vector

of sectoral weights. The macro-based estimates are then compared with available microeconomic

evidence on price rigidity. The countries are: Australia, Canada, Denmark, France, Italy, Japan,

Korea, Norway, Sweden, Switzerland, the U.K., and the U.S.

In a second estimation, in Section 5, for the three countries with a comprehensive cross-section of

micro-based statistics on price rigidity (U.S., Denmark, and Japan), we combine prior information

from the microeconomic data with the information obtained from the likelihood function jointly

implied by the model and macroeconomic observables. In the next subsections we detail our prior

distributions, sources of data, and estimation approach.

3.1 Prior over !

We specify priors over the set of sectoral weights ! = (!1; :::; !K), which are then combined with

the priors on the remaining parameters to produce the joint prior distribution for the set of all

parameters of interest. We impose the combined restrictions of non-negativity and summation to

unity of the !�s through a Dirichlet distribution, which is a multivariate generalization of the beta
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distribution. Notationally, ! � D (�1; :::; �K) with density function:

f! (!j�1; :::; �K) /
KY
k=1

!�k�1k ; 8�k > 0; 8!k � 0;
KX
k=1

!k = 1:

The Dirichlet distribution is well known in Bayesian econometrics as the conjugate prior for the

multinomial distribution, and the hyperparameters �1; :::; �K are most easily understood in this

context, where they can be interpreted as the �number of occurrences� for each of the K possible

outcomes that the econometrician assigns to the prior information.21 Thus, for given �1; :::; �K ,

�0 �
P
k �k captures in some sense the overall level of information in the prior distribution. The

information about the cross-sectional distribution of price stickiness comes from the relative sizes

of the �k�s. The latter also determine the marginal distributions for the !k�s. For example, the

expected value of !k is simply �k=�0, whereas its mode equals (�0 �K)�1 (�k � 1) (provided that

�i > 1 for all i).

As mentioned previously, our �rst estimation does not make use of the microeconomic informa-

tion. It imposes a ��at�prior in which all ! vectors in the K-dimensional unit simplex are assigned

equal prior density. This corresponds to �k = 1 for all k, and thus �0 = K. This case allows us

to extract the information that the aggregate data contain about the cross-sectional distribution of

price stickiness. Subsequently, when we incorporate the microeconomic information in the estima-

tion, we relate the relative sizes of the hyperparameters �1; :::; �K to the empirical sectoral weights

for each of the U.S., Denmark, and Japan, and choose the value �0 > K to determine the tightness

of the prior distribution around the empirical distribution. We leave the details of how we construct

the informative priors to Section 5.

3.2 Priors on remaining parameters

The remaining model parameters fall into three categories that we deal with in turn. Our goal in

specifying their prior distributions is to avoid imposing any meaningful penalties on most parameter

values - except for those that really seem extreme on an a priori basis. The �rst set comprises the ��s

and ��s, parameterizing the exogenous AR processes for nominal and natural output, respectively.

These are assigned loose Gaussian priors with mean zero. We choose to �x the lag length at two for

both processes, i.e. p1 = p2 = 2.22 The second set of parameters consists of the standard deviations
21Gelman et al. (2003) o¤ers a good introduction to the use of Dirichlet distribution as a prior distribution for the

multinomial model.
22 In principle we could specify priors over p1; p2 and estimate their posterior distributions as well. However, the

computational cost of estimating all the models in the paper is already quite high, and we restrict ourselves to this
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of the shocks to nominal (�m) and natural output (�n). These are strictly positive parameters to

which we assign loose Gamma priors. The last parameter is the Ball-Romer index of real rigidity,

�, which should also be non-negative. This is captured with a very loose Gamma prior distribution,

with mode at unity and a 5-95 percentile interval equal to (0:47; 16:9). Hence, any meaningful degree

of pricing complementarity or substitutability should be a result of the estimation rather than of

our prior assumptions. These priors are summarized in Table 1.23

Table 1: Prior distributions for remaining parameters
Parameter Distribution Mode Mean Std.dev.

� Gamma(1:2; 0:2) 1:00 6:00 5:48
�n; �m Gamma(1:5; 20) 0:025 0:075 0:06
�j ; �j N

�
0; 52

�
0:00 0:00 5:00

Note: The hyper-parameters for the Gamma distribution specify
shape and inverse scale, respectively, as in Gelman et al. (2003).

3.3 Macroeconomic time series

We estimate the model using quarterly data on nominal and real output. These are measured as

seasonally-adjusted GDP at, respectively, current and constant prices. We take natural logarithms

and remove a linear trend from the data. The sample period is driven by the choice for the U.S.

economy. Whereas the assumptions underlying the model include one of an unchanged economic

environment, the U.S. economy has undergone profound changes in the recent decades, including

the so-called �Great Moderation�and the Volcker Disin�ation. As a consequence, we choose not to

confront the model with the full sample of post-war data. We use the period from 1979 to 1982 as

a pre-sample, and evaluate the model according to its ability to match business cycle developments

in nominal and real output in the period 1983-2007.24 Data for the U.S. are from the Bureau of

Economic Analysis. Estimations for the other eleven countries use the analogous data taken from

the OECD database (http://stats.oecd.org).25 Data for Sweden are only available since 1980, and

data for Italy are available since 1981. In these cases we shorten the pre-sample and start the actual

speci�cation with �xed number of lags. Our conclusions are robust to alternative assumptions about the number of
lags (see Section 7).

23We do not include � in the estimation, and set � = 0:99.
24We make use of the pre-sample 1979-1982 by initializing the Kalman �lter in the estimation stage with the

estimate of Zt and corresponding covariance matrix obtained from running a Kalman �lter in the pre-sample. We use
the parameter values in each draw. For the initial condition for the pre-sample, we use the unconditional mean and a
large variance-covariance matrix.

25With the exception of Denmark and the U.S., the countries were chosen precisely on the basis of availability of
these data in the OECD database. In the case of Denmark, the quarterly data starting in 1979 were provided to us
by Danmarks Nationalbank.
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sample in 1983Q1, as for the U.S. economy.

3.4 Empirical distributions of price stickiness

We work at a quarterly frequency, and for computational reasons consider economies with at most

8 quarters of price stickiness. Sectors correspond to price spells which are multiples of one quarter.

We denote an empirical cross-sectional distribution of price rigidity by fb!kg8k=1, where b!1 denotes
the fraction of �rms that change prices every quarter, b!2 the fraction that change prices every other
quarter, and so on.

For each country, our goal is to map the available statistics on the frequency of price changes into

an empirical distribution of sectoral weights b!. We aggregate the items for which the statistics are
reported (usually categories of goods and services) so that the ones which have an average implied

duration of price spells between zero and one quarter (inclusive) are assigned to the �rst sector; the

ones with an average duration between one (exclusive) and two quarters (inclusive) are assigned to

the second sector, and so on. The sectoral weights are aggregated accordingly by adding up the

corresponding expenditure weights associated with the items, which are usually reported along with

the pricing statistics. We proceed in this fashion until the sector with 7-quarter price spells. Finally,

we aggregate all the remaining items, which have average implied durations of price rigidity that

exceed 7 quarters, into the sector with 2-year price spells. This gives rise to the empirical cross-

sectional distributions of price stickiness that we use to either assess the results obtained under �at

priors, or as information to be incorporated in the estimation. For each country we also compute

the average duration of price spells, b�k = P8
k=1 b!kk; and the standard deviation of the underlying

distribution, b�k=rP8
k=1 b!k �k � b�k�2.

For the U.S., we extract our microeconomic information about the cross-sectional distribution of

price stickiness from Nakamura and Steinsson (2008). Following the seminal work of Bils and Klenow

(2004), they analyze the frequency of price changes in the U.S. economy using quite disaggregated

datasets from the Bureau of Labor Statistics, which underlie the construction of price indices. We

work with the statistics on the frequency of regular price changes (i.e. excluding those associated

with sales and product substitutions) that they report for 272 categories of goods and services

contained in the Consumer Price Index.

Among the other eleven countries, we are aware of studies reporting price-setting statistics based

on micro data for Canada (Harchaoui et al. 2008), Denmark (Hansen and Hansen 2006), France

(Baudry et al. 2007), Italy (Fabiani et al. 2006), Japan (Higo and Saita 2007), Norway (Wulfsberg
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2009), Switzerland (Kaufmann 2008), and the U.K. (Bunn and Ellis 2009). With the exception of

Canada, we have access to the cross-sectional price-setting statistics for these countries.26

Unfortunately, Denmark and Japan are the only cases where the level of cross-sectional detail is

comparable to the studies for the U.S. economy. For Denmark, Hansen and Hansen (2006) include

statistics for 391 goods and services categories at the COICOP 5-digit level. For Japan, Higo and

Saita (2007) provide statistics for 513 goods and services categories at a very disaggregated level.

The papers for Switzerland, France and Italy also provide statistics at the COICOP 5-digit level,

but for 139, 136 and 48 categories, respectively. Wulfsberg (2009) provides statistics for Norway for

89 4-digit COICOP classes. Finally, Bunn and Ellis (2009) provide much more aggregated statistics

for the U.K..

The empirical distributions for the U.S., Denmark and Japan are summarized in Table 2. For

the countries with coarser, but still minimally detailed microeconomic information we focus on the

average duration of price spells and cross-sectional standard deviation of the sectoral distribution

of price spells (we report these statistics in Table 6, Subsection 4.2).

Table 2: Empirical distributions of price stickiness

b!1 b!2 b!3 b!4 b!5 b!6 b!7 b!8 b�k(�) b�(�)k
U:S: 0:273 0:071 0:098 0:110 0:059 0:129 0:061 0:198 4:25 2:66
Denmark 0:136 0:179 0:045 0:091 0:124 0:067 0:108 0:250 4:77 2:60
Japan 0:311 0:204 0:043 0:045 0:070 0:046 0:039 0:244 3:87 2:85

(*) In quarters.
Pb!k might di¤er from unity due to rounding.

3.5 Simulating the posterior distribution

The joint posterior distribution of the model parameters is obtained through application of a Markov-

chain Monte Carlo (MCMC) Metropolis algorithm. The algorithm produces a simulation sample

of the parameters that converges to the joint posterior distribution under certain conditions.27 We

provide details of our speci�c estimation process in the Appendix. The outcome is a sample of one

million draws from the joint posterior distribution of the parameters of interest, based on which we

draw the conclusions that we start to report in the next section.

Having obtained a sample of the posterior distribution of parameters from any given model, we

26We thank Philip Bunn, Silvia Fabiani, Niels Lynggård Hansen, Daniel Kaufmann, Herve Le Bihan, Yumi Saita,
and Fredrik Wulfsberg for providing us with the statistics from their respective papers.

27These conditions are discussed in Gelman et al. (2003, part III).
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can estimate the marginal posterior density (henceforth mpd) of the data given the model as:

mpdj = f (Z�jMj) =

Z
L (�jZ�;Mj) f (�jMj) d�; (14)

and use it for model-comparison purposes. In (14),Mj refers to a speci�c con�guration of the model

and prior distribution, and f (�jMj) denotes the corresponding joint prior distribution. Speci�cally,

we approximate log(mpdj) for each model using Geweke�s (1999) modi�ed harmonic mean. We use

these estimates to evaluate the empirical �t of the models relative to one another. The mpd ratio of

two model con�gurations constitutes the Bayes factor, and �when neither con�guration is a priori

considered more likely �the posterior odds. It indicates how likely the two models are relative to

one another given the observed data Z�.

4 Macro-based estimates

4.1 U.S., Denmark, and Japan

Tables 3-5 and Figures 1-3 report the results for, respectively, the U.S., Denmark, and Japan, in

terms of marginal distributions for the parameters.28 The empirical distributions of price rigidity

from Table 2 are reproduced in the last column of each table for ease of comparison.

The distributions that we infer from aggregate data conform quite well with the empirical ones.

In what follows, we use the posterior means as the point estimates for the sectoral weights, reported in

the third column of each table.29 The macro-based estimates for the U.S. imply that approximately

28% of �rms change prices every quarter; 43% change prices at least once a year; 13% change prices

once every two years. The average duration of price spells is 13 months, and the standard deviation

of the (cross-sectional) distribution of price spells is approximately 8 months. These numbers are

quite close to the empirical distribution. The correlation between estimated and empirical sectoral

weights is 0:62. The index of real rigidities implies strong pricing complementarities. The posterior

mean of � is 0.05 and the 95th percentile equals 0.11, which falls within the 0.10-0.15 range that

Woodford (2003) argues can be made consistent with fully speci�ed models. As highlighted in

Carvalho (2006), in this type of model such complementarities interact with heterogeneity in price

stickiness to amplify the aggregate e¤ects of nominal rigidities.

28We use a Gaussian kernel density estimator to graph the marginal posterior density for each parameter. The
priors on �k and �k are based on 100,000 draws from the prior Dirichlet distribution.

29The results are almost insensitive to using alternative point estimates such as the values at the joint posterior
mode, or taking medians or modes from the marginal ditributions and renormalizing so that the weights sum to unity.
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Table 3: Parameter estimates for the U.S. economy - �at prior

Model with K = 8; �k = 1 for all k
Empirical
distribution

� 4:440
(0:466;16:863)

0:042
(0:015;0:111)

0:050 �

!1 0:094
(0:007;0:348)

0:264
(0:099;0:493)

0:276 0:273

!2 0:094
(0:007;0:348)

0:072
(0:007;0:212)

0:086 0:071

!3 0:094
(0:007;0:348)

0:020
(0:002;0:078)

0:027 0:098

!4 0:094
(0:007;0:348)

0:027
(0:002;0:107)

0:037 0:110

!5 0:094
(0:007;0:348)

0:144
(0:017;0:337)

0:156 0:059

!6 0:094
(0:007;0:348)

0:123
(0:011;0:345)

0:144 0:129

!7 0:094
(0:007;0:348)

0:120
(0:010;0:353)

0:143 0:061

!8 0:094
(0:007;0:348)

0:112
(0:010;0:323)

0:132 0:198

�k 4:501
(3:245;5:760)

4:394
(3:214;5:462)

4:37 4:25

�k 2:139
(1:584;2:678)

2:523
(2:112;2:893)

2:62 2:66

�0 0:000
(�8:224;8:224)

0:000
(�0:001;0:001)

0:000 �

�1 0:000
(�8:224;8:224)

1:426
(1:273;1:576)

1:426 �

�2 0:000
(�8:224;8:224)

�0:446
(�0:593;�0:296)

�0:446 �

�m 0:059
(0:009;0:195)

0:005
(0:005;0:006)

0:005 �

�0 0:000
(�8:224;8:224)

0:002
(�0:002;0:007)

0:003 �

�1 0:000
(�8:224;8:224)

0:541
(0:270;0:763)

0:532 �

�2 0:000
(�8:224;8:224)

0:146
(�0:027;0:331)

0:149 �

�n 0:059
(0:009;0:195)

0:069
(0:030;0:172)

0:081 �

Note: The �rst two columns report the medians of, respectively, the marginal
prior and posterior distributions; the third column gives the mean of the mar-
ginal posterior distribution; numbers in parentheses correspond to the 5th and
95th percentiles; the last column reproduces the empirical distribution from
Table 2.
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Table 4: Parameter estimates for the Danish economy - �at prior

Model with K = 8; �k = 1 for all k
Empirical
distribution

� 4:440
(0:466;16:863)

0:190
(0:060;0:586)

0:240 �

!1 0:094
(0:007;0:348)

0:283
(0:109;0:521)

0:295 0:136

!2 0:094
(0:007;0:348)

0:051
(0:004;0:170)

0:064 0:179

!3 0:094
(0:007;0:348)

0:034
(0:003;0:125)

0:045 0:045

!4 0:094
(0:007;0:348)

0:034
(0:003;0:133)

0:047 0:091

!5 0:094
(0:007;0:348)

0:065
(0:005;0:239)

0:086 0:124

!6 0:094
(0:007;0:348)

0:074
(0:006;0:264)

0:097 0:067

!7 0:094
(0:007;0:348)

0:176
(0:017;0:458)

0:198 0:108

!8 0:094
(0:007;0:348)

0:147
(0:014;0:402)

0:169 0:250

�k 4:501
(3:245;5:760)

4:507
(3:214;5:731)

4:58 4:77

�k 2:139
(1:584;2:678)

2:668
(2:203;3:044)

2:78 2:60

�0 0:000
(�8:224;8:224)

0:001
(�0:001;0:003)

0:001 �

�1 0:000
(�8:224;8:224)

0:774
(0:607;0:938)

0:774 �

�2 0:000
(�8:224;8:224)

0:183
(0:020;0:348)

0:183 �

�m 0:059
(0:009;0:195)

0:013
(0:011;0:014)

0:013 �

�0 0:000
(�8:224;8:224)

0:001
(�0:004;0:007)

0:001 �

�1 0:000
(�8:224;8:224)

0:297
(0:063;0:505)

0:292 �

�2 0:000
(�8:224;8:224)

0:299
(0:147;0:449)

0:298 �

�n 0:059
(0:009;0:195)

0:065
(0:032;0:171)

0:079 �

Note: The �rst two columns report the medians of, respectively, the marginal
prior and posterior distributions; the third column gives the mean of the mar-
ginal posterior distribution; numbers in parentheses correspond to the 5th and
95th percentiles; the last column reproduces the empirical distribution from
Table 2.
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In the case of Denmark, 30% of �rms change prices every quarter; 54% change prices at least once

a year; 17% change prices once every two years. The average duration of price spells is 13.7 months,

and the standard deviation of the (cross-sectional) distribution of price spells is approximately 8.3

months. With the exception of the split of weights between the �rst two sectors, the estimated

distribution is quite close to the empirical distribution. If we construct a 7-sector distribution by

combining sectors one and two, the correlation with the empirical distribution is 0:85. The same

correlation for the estimated 8-sector distribution is 0:34. The index of real rigidities is noticeably

higher than in the U.S., implying weaker pricing complementarities.

Table 5: Parameter estimates for the Japanese economy - �at prior

Model with K = 8; �k = 1 for all k
Empirical
distribution

� 4:440
(0:466;16:863)

0:034
(0:014;0:085)

0:040 �

!1 0:094
(0:007;0:348)

0:295
(0:134;0:523)

0:307 0:311

!2 0:094
(0:007;0:348)

0:072
(0:006;0:212)

0:085 0:204

!3 0:094
(0:007;0:348)

0:059
(0:005;0:177)

0:070 0:043

!4 0:094
(0:007;0:348)

0:048
(0:004;0:164)

0:061 0:045

!5 0:094
(0:007;0:348)

0:043
(0:003;0:158)

0:057 0:070

!6 0:094
(0:007;0:348)

0:052
(0:004;0:192)

0:069 0:046

!7 0:094
(0:007;0:348)

0:131
(0:012;0:363)

0:151 0:039

!8 0:094
(0:007;0:348)

0:187
(0:025;0:415)

0:199 0:244

�k 4:501
(3:245;5:760)

4:291
(3:055;5:470)

4:28 3:87

�k 2:139
(1:584;2:678)

2:732
(2:351;3:044)

2:82 2:85

�0 0:000
(�8:224;8:224)

0:000
(�0:002;0:002)

0:000 �

�1 0:000
(�8:224;8:224)

1:378
(1:193;1:580)

1:381 �

�2 0:000
(�8:224;8:224)

�0:401
(�0:609;�0:213)

�0:405 �

�m 0:059
(0:009;0:195)

0:011
(0:010;0:012)

0:011 �

�0 0:000
(�8:224;8:224)

0:005
(�0:004;0:014)

0:005 �

�1 0:000
(�8:224;8:224)

0:485
(0:210;0:737)

0:480 �

�2 0:000
(�8:224;8:224)

0:183
(�0:020;0:390)

0:184 �

�n 0:059
(0:009;0:195)

0:146
(0:060;0:295)

0:158 �

Note: The �rst two columns report the medians of, respectively, the marginal
prior and posterior distributions; the third column gives the mean of the mar-
ginal posterior distribution; numbers in parentheses correspond to the 5th and
95th percentiles; the last column reproduces the empirical distribution from
Table 2.

In the case of Japan, 31% of �rms change prices every quarter; 52.3% change prices at least once
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a year; 20% change prices once every two years. The average duration of price spells is 12.8 months,

and the standard deviation of the (cross-sectional) distribution of price spells is approximately 8.5

months. The correlation between the estimated and empirical sectoral weights is 0:8. The estimated

extent of pricing complementarities is similar to the U.S.30

4.2 Other countries

Due to the limited cross-sectional information available for the other countries, we focus on a com-

parison between the average duration of price spells and cross-sectional standard deviation of the

sectoral distribution of price spells implied by our macro-based estimates, and their empirical coun-

terparts. The results are summarized in Table 6.

Countries are ranked (roughly) in descending order in terms of available level of detail about the

cross-section of interest. Perhaps with the exception of the cross-sectional standard deviation of the

duration of price spells in France, the results are broadly in line with the available microeconomic

evidence. In particular, our macro-based estimates pick up the fact that France exhibits noticeably

less price stickiness than the average in the Euro area (Dhyne et al. 2006). For completeness, in the

Appendix we report a full set of parameter estimates for the remaining countries.

4.3 Comparison with homogeneous-�rms models

In this subsection we ask how sharply the data allow us to discriminate between multi-sector models

with heterogeneity in price stickiness and one-sector models with homogeneous �rms. To that end

we estimate one-sector models with price spells ranging from two to eight quarters. We keep the

same prior distributions for all parameters besides the sectoral weights. A one-sector model with

price spells of length k, say, can be seen as a restriction of the multi-sector model, with a degenerate

distribution of sectoral weights (!k = 1, !k0 = 0 for all k0 6= k). For brevity, we focus on the

U.S. economy, for which the disconnect between micro and macro estimates of price rigidity is well

documented.

We pick the best-�tting one-sector model according to the marginal density of the data given

the models. The results are reported in Table 7 and Figure 4. The best-�tting model is the one

in which all price spells last for 7 quarters. This seems unreasonable in light of the microeconomic

evidence. Given the extent of nominal rigidity, not surprisingly the degree of pricing complementarity

30An interesting question that we leave for future research is to analyze the di¤erences across countries in estimated
parameters. For example, why is the estimated degree of real rigidities in Denmark smaller than in the U.S. and
Japan? Similarly, why are the estimated dynamics for nominal aggregate demand di¤erent?
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Table 6: Estimates of moments of the cross-sectional distribution of price stickiness - �at prior
Model with
K = 8; �0 = 8

Empirical
distribution

�k �k �k �k
Switzerland1) 4:91

(3:71;5:98)
2:39

(1:81;2:68)
4:87 2:52

France 3:86
(2:72;5:03)

2:86
(2:35;3:09)

3:20 1:60

Italy2) 4:47
(3:20;5:63)

2:67
(2:07;2:93)

4:70 2:35

Norway3) 4:30
(3:20;5:41)

2:35
(1:72;2:71)

4:50 2:33

U:K: 4:46
(3:22;5:71)

2:65
(1:98;3:02)

� �

Canada 4:65
(3:34;5:88)

2:78
(2:19;3:05)

� �

Australia 4:98
(3:65;6:16)

2:68
(2:10;2:93)

� �

Korea 4:52
(3:24;5:74)

2:72
(2:14;2:99)

� �

Sweden 4:49
(3:23;5:73)

2:67
(1:99;3:02)

� �

Note: Model-based estimates for the moments �k and �k are com-
puted using the means of the marginal posterior distributions as
the point estimates of the sectoral weights; numbers in parentheses
correspond to the 5th and 95th percentiles. The last two columns
report the empirical moments computed from the available micro-
economic evidence: 1) statistics based on the durations reported
in Kaufmann (2008, Table 7); 2) statistics based on the implied
median durations reported in Fabiani et al. (2006, Table A3.1); 3)
durations for individual classes are scaled up proportionately so that
the cross-sectional (weighted) average duration computed from the
monthly statistics matches the mean duration reported by Wulfs-
berg (2009, Table 1) for the sub-period 1990-2004; this adjustment
makes Wulfsberg�s statistics more comparable to those of the other
countries, which are based on more recent samples covering periods
of lower in�ation.
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is smaller. The posterior distributions for the parameters of the nominal output process are quite

similar to the ones obtained in the multi-sector models. Perhaps this should be expected given that

this variable is one of the observables used in the estimation. In contrast, the distributions of the

parameters of the unobserved driving process are di¤erent under the restriction of homogeneous

�rms. We defer a discussion of what might drive this result to the end of this subsection.

Table 7: Best-�tting model with homogeneous �rms
Prior K = 7, !7 = 1

� 4:440
(0:466;16:863)

0:362
(0:193;0:830)

0:419

�0 0:000
(�8:224;8:224)

0:000
(�0:001;0:001)

0:000

�1 0:000
(�8:224;8:224)

1:430
(1:284;1:568)

1:428

�2 0:000
(�8:224;8:224)

�0:454
(�0:590;�0:310)

�0:452

�m 0:059
(0:009;0:195)

0:005
(0:005;0:006)

0:005

�0 0:000
(�8:224;8:224)

0:003
(�0:003;0:011)

0:004

�1 0:000
(�8:224;8:224)

0:064
(�0:154;0:319)

0:071

�2 0:000
(�8:224;8:224)

0:135
(�0:027;0:327)

0:141

�n 0:059
(0:009;0:195)

0:216
(0:087;0:421)

0:230

Note: The �rst two columns report the medians of,
respectively, the marginal prior and posterior distri-
butions; the third column gives the mean of the mar-
ginal posterior distribution; numbers in parentheses
correspond to the 5th and 95th percentiles.

The multi-sector model withK = 8 nests the best-�tting homogeneous-�rms model. Thus, under

measures of �t that do not �correct�for the number of parameters the former model will necessarily

perform at least as well as the latter model. To circumvent that problem we base our comparison

on the marginal posterior density of the data given the models, which already accounts for the fact

that the multi-sector model has more parameters than the homogeneous-�rms model.31

Table 8 reports the results for the multi-sector model with the �at prior for !, and the best-

�tting one-sector model. The �t of the multi-sector model is much better than that of the best-�tting

one-sector model: the posterior odds in favor of the former model is of the order of 1011 : 1.

Our model-comparison criterion has the disadvantage that it does not provide any information on

what drives the improved empirical �t of the multi-sector model. To shed some light on this question

we compare model-implied dynamics for in�ation and output to those of a restricted bivariate VAR

including nominal and real output. In estimating the VAR we impose the same assumption used in

the models, that nominal output is exogenous and follows an AR(2) process. We allow real output

31The reason is that the vector of parameters is �integrated out� in (14).
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Table 8: Model comparison, U.S. economy
Multi-sector
model

Best-�tting
1-sector model

log mpd 808:03 781:33

Note: The logarithm of the marginal posterior den-
sity of the data given the models (log mpd) is ap-
proximated with Geweke�s (1999) modi�ed harmonic
mean.

to depend on four lags of both itself and nominal output, and to be contemporaneously a¤ected by

innovations to nominal output. Estimation is by ordinary least squares. The multi-sector model

is the one estimated under �at priors for !, while the one-sector model is the one with the best

�t. The parameter values are �xed at their posterior means. Since the impulse response functions

are conditional on speci�c parameter values, the comparison does not correct for the larger number

of parameters in the multi-sector model. Thus, it is only meant to provide some indication of the

sources of the large di¤erences in the posterior odds of the models.

The panel in Figure 5 shows the impulse response functions of output (yt, left column) and

in�ation (�t, right column) to positive innovations "mt (top row) and "
n
t (bottom row) of one standard

deviation in size.32 Relative to the one-sector model, the estimated multi-sector model does a better

job at approximating the impulse response functions produced by the VAR at both short and medium

horizons, in response to both shocks. Thus the overwhelming statistical support for heterogeneity

does not seem to depend on any single feature of the dynamic response of macroeconomic variables

to the shocks. Finally, these results suggest one explanation for why the estimated parameters

associated with the unobserved driving process are di¤erent in the one-sector economy. While the

multi-sector model can rely on the distribution of sectoral weights to balance the response of the

economy to shocks at di¤erent horizons, the one-sector model lacks this mechanism. Given the facts

that nominal output is observed and that its parameter estimates imply quite persistent dynamics

in both economies, perhaps the one-sector economy needs to rely on the unobserved process as a

more transient and volatile component that can help it do a better job at matching higher-frequency

features of the data.

32Following the notation of the semi-structural model, in the VAR "mt denotes innovations to nominal output, and
"nt denotes the other (orthogonal) innovations.
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5 Combining micro and macro data in the estimation

In this section we use the empirical cross-sectional distributions reported in Table 2 to incorporate

microeconomic information in our Bayesian estimation through the use of �informative�priors. For

that purpose, we specify the relative sizes of the hyperparameters (�1; :::; �K) of the Dirichlet prior

over the sectoral weights ! for each country so that the mode of the prior distributions coincide

with the empirical sectoral weights b!. That requires setting �k = 1 + b!k (�0 �K). Incidentally,
note that the �at-priors case analyzed previously obtains when �0 = K. As discussed in Subsection

3.1, we control the tightness of the prior by varying the parameter �0.

Table 9 and Figures 6-8 present the results for the U.S., Denmark (DK), and Japan (JP), in

terms of marginal distributions for the parameters assuming �0 = 80.33 As expected, the posterior

distributions for the sectoral weights now look even more similar to the empirical distributions. As

an indication of the e¤ect on the estimation of incorporating the microeconomic information, the

correlation between estimated and empirical sectoral weights is now above 0:97 for all three countries

(using the posterior means as the point estimates of the sectoral weights).

Incorporating the microeconomic information produces only small changes to the posterior dis-

tributions of the remaining parameters, in most cases. This was somewhat expected, since the

distribution of the duration of price spells inferred purely from aggregate data already conforms

well with the empirical distributions, especially for the U.S. and Japan. The largest changes in the

estimates of the remaining parameters occur in the case of Denmark, which has the largest discrep-

ancies between purely macro-based estimates of ! and empirical sectoral weights. This estimation

exercise illustrates the potential for incorporating at least some of the vast amounts of microeco-

nomic information about pricing behavior produced by the empirical literature into the estimation

of macroeconomic models of price setting.

6 Consistency with other dimensions of the micro data

Our results show that allowing for heterogeneity in price rigidity goes a long way toward reconciling

the degrees of price rigidity implied by micro and macro data. However, so far we have not discussed

how the estimated multi-sector models perform when confronted with other features of price setting

documented in the recent empirical literature. Here we provide such an assessment. Speci�cally,

33 In previous versions of the paper we reported results with di¤erent degrees of prior tightness. The results reported
here are representative of what we learn from alternative con�gurations.
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Table 9: Parameter estimates for the U.S., Denmark (DK), and Japan (JP) - informative priors
Models with K = 8; �0 = 80 Empirical distributions

U:S: DK JP U:S: DK JP
� 0:041

(0:02;0:10)
0:047 0:228

(0:09;0:59)
0:269 0:029

(0:02;0:06)
0:033 � � �

!1 0:282
(0:21;0:37)

0:283 0:158
(0:10;0:23)

0:161 0:307
(0:23;0:39)

0:309 0:273 0:136 0:311

!2 0:071
(0:03;0:12)

0:074 0:152
(0:10;0:22)

0:154 0:179
(0:12;0:25)

0:18 0:071 0:179 0:204

!3 0:069
(0:04;0:11)

0:071 0:040
(0:02;0:08)

0:043 0:043
(0:02;0:09)

0:046 0:098 0:045 0:043

!4 0:087
(0:05;0:14)

0:090 0:078
(0:04;0:13)

0:081 0:046
(0:02;0:09)

0:049 0:110 0:091 0:045

!5 0:071
(0:03;0:13)

0:074 0:118
(0:07;0:18)

0:121 0:065
(0:03;0:12)

0:068 0:059 0:124 0:070

!6 0:138
(0:08;0:21)

0:141 0:069
(0:03;0:12)

0:072 0:048
(0:02;0:09)

0:051 0:129 0:067 0:046

!7 0:067
(0:03;0:12)

0:071 0:116
(0:06;0:19)

0:119 0:046
(0:02;0:10)

0:050 0:061 0:108 0:039

!8 0:193
(0:13;0:27)

0:195 0:247
(0:17;0:33)

0:249 0:244
(0:17;0:33)

0:246 0:198 0:250 0:244

�k 4:28
(3:81;4:75)

4:28 4:79
(4:31;5:25)

4:78 3:97
(3:47;4:45)

3:97 4:25 4:77 3:87

�k 2:68
(2:51;2:83)

2:70 2:62
(2:45;2:78)

2:64 2:85
(2:67;3:00)

2:86 2:66 2:60 2:85

�0 0:000
(�0:00;0:00)

0:000 0:001
(�0:00;0:00)

0:001 0:000
(�0:00;0:00)

0:000 � � �

�1 1:429
(1:28;1:58)

1:428 0:779
(0:61;0:94)

0:778 1:364
(1:19;1:56)

1:366 � � �

�2 �0:449
(�0:60;�0:30)

�0:448 0:179
(0:01;0:35)

0:179 �0:386
(�0:58;�0:21)

�0:389 � � �

�m 0:005
(0:00;0:01)

0:005 0:013
(0:01;0:02)

0:013 0:011
(0:01;0:02)

0:011 � � �

�0 0:002
(�0:00;0:01)

0:002 0:002
(�0:00;0:01)

0:002 0:005
(�0:00;0:02)

0:005 � � �

�1 0:544
(0:37;0:72)

0:543 0:122
(�0:06;0:31)

0:125 0:375
(0:20;0:57)

0:378 � � �

�2 0:150
(0:00;0:30)

0:150 0:360
(0:24;0:49)

0:361 0:289
(0:13;0:44)

0:288 � � �

�n 0:066
(0:03;0:16)

0:077 0:091
(0:04;0:21)

0:104 0:145
(0:07;0:27)

0:154 � � �

Note: For each country the two columns report, respectively, the medians and means of the marginal
posterior distributions; numbers in parentheses correspond to the 5th and 95th percentiles; the last three
columns reproduce the empirical distributions from Table 2.
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we focus on the facts documented by Klenow and Kryvtsov (2008) for the U.S., and discuss the

ability of the estimated model to match them - at least qualitatively. It turns out that of the eight

price-setting facts documented by Klenow and Kryvtsov,34 four are matched by our model in its

current form. Moreover, we can adapt the model to match an additional three facts without any

e¤ect on its implications for aggregate dynamics.

Speci�cally, our estimated model matches the empirical facts when it comes to i) frequent price

changes; ii) many small price changes; iii) the intensive margin dominates the variance of in�ation;

and iv) the frequency of price increases and decreases moves with in�ation. The last feature of

the model probably deserves some comment. In standard time-dependent pricing models the total

frequency of price changes is exogenous and constant, and as such it obviously does not covary with

in�ation. However, in these models the frequency of price increases usually covaries positively with

in�ation, whereas the frequency of price decreases covaries negatively.

In contrast with fact ii), the model in its current form fails to match fact v): the large average

absolute size of price changes. This is because the model only includes aggregate shocks, which are

too small to produce enough price changes that are as large as in the micro data. We can easily

change this feature of the model to match fact v), by adding �rm-level heterogeneity in the form

of idiosyncratic shocks that induce a non-degenerate distribution of prices among adjusting �rms in

any given sector. As long as these shocks cancel out when averaged over a continuum of �rms, they

do not have any �rst-order e¤ect on aggregate dynamics. The reason is that with such shocks the

(loglinear) optimal price setting equation (2) is replaced by:

xt (k; j) =
1� �
1� �k

Et

k�1X
i=0

�i
�
pt+i + �

�
yt+i � ynt+i

��
+ "t (k; j) ;

where "t (k; j) is proportional to the idiosyncratic shock to �rm kj.35 Thus, (2) can be interpreted

as the average price set by �rms from sector k that change prices at time t. As a result, all of the

aggregate results are identical under this speci�cation. As long as the idiosyncratic shocks cancel

out in the cross-section, they can be used to match moments of the distribution of the size of price

changes.36

Other two facts that the current model fails to match are: vi) variable durations of price spells;

34Table VIII in Klenow and Kryvtsov (2008).
35Here we implicitly assume that idiosyncratic shocks follow a �rst-order Markov process.
36This additional dimension of the price micro data might impose restrictions on the nature of the real rigidities that

are assume in the model. The reason is that some types of real rigidity might a¤ect the coe¢ cient of proportionality
between "t (k; j) and the underlying idiosyncratic shock. See, e.g., Klenow and Willis (2006).
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and vii) �at hazard rates for price adjustment. The source of the mismatch is the assumption that all

�rms in sector k always set prices for k periods. It turns out that this assumption can be replaced

with one that allows the model to match these two facts without a¤ecting any of its aggregate

implications.

Start from a given multi-sector economy with Taylor pricing, as in our estimated models. Rather

than having sector-speci�c time-invariant durations of price spells, the idea is to add some random

variation in price spells in each sector, as follows. Each time a �rm from sector k is about to set

a new price, it draws the duration for the new price spell from a distribution that has mean k

(periods). Note that this is not the assumption underlying either the Calvo (1983) model, or models

with generalized adjustment hazards (e.g., Dotsey et al. 1997). Here the durations of the spells are

known by �rms when they set their prices. The duration draws are independent across all �rms. Any

economy-wide distribution of price spells can be obtained through an appropriate choice of sectoral

weights and sector-speci�c distributions of spells. Thus, although each �rm now has time-varying

spells of price rigidity, at any point in time the cross-sectional distributions of spells of rigidity and

of the corresponding prices set by �rms are exactly the same as in the original multi-sector Taylor

economy. This produces identical aggregate dynamics in the two models. This modi�cation takes

care of fact vi).

As for fact vii), if one has access to the empirical distributions of spells used to estimate the em-

pirical hazard rates of price adjustments, it is clear that one can pick the sector-speci�c distributions

of durations to produce the same hazard estimates.37 Note, however, that the pooling of observed

spells leads the econometrician to estimate a misspeci�ed model for the adjustment hazard. In real-

ity, in the model with the duration draws laid out in the previous paragraph, the true (unobserved)

hazard function for each spell is still of the Taylor variety: the �rm knows the duration of each price

spell at its start. In contrast, the hazard estimated from the pooled observations would be non-zero

at more than just one point.

Finally, we believe that the extended versions of the model described in this section would

sill have di¢ culties matching the eighth fact documented by Klenow and Kryvstov (2008): the

size of price changes does not increase with the duration of price spells. In the estimated model

with only aggregate shocks, these are somewhat persistent, and as a result the innovations that are

incorporated at each price change �build up�over time. On average, this leads to larger price changes

after longer price spells. The introduction of more transient idiosyncratic shocks should attenuate

37The reason is that the modi�cation spelled out in the previous paragraph does not restrict features of the sectoral
distributions of spells, other than their �rst moments.
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this e¤ect, since these shocks add a component to �rms�desired prices that does not become so

dispersed over time. Thus, in the micro data produced by a model with such relatively transient

idiosyncratic shocks, the size of price changes would appear to be less related to the duration of price

spells relative to the model with only aggregate shocks, especially if the latter are small relative to

the idiosyncratic shocks. This might lead to an apparent lack of an empirical relationship between

the duration of price spells and the size of price changes in small (short time-series) samples.38

In fact, the same small-sample problem might apply to the regressions estimated by Klenow and

Kryvtsov (2008) on actual micro data. Whether our conjecture is correct is a question we leave for

future research.

7 Robustness, and directions for future research

7.1 Robustness39

Our �ndings are robust to di¤erent prior assumptions for the parameters �i, �i, �m, �n and �, as

well as di¤erent de-trending procedures and speci�cations for the exogenous time-series processes.

In particular, they are robust to using a Baxter and King (1999) �lter or �rst-di¤erences instead of

removing linear trends from the data, and to assuming p1 = p2 = 3. In all cases that we analyzed

we found overwhelming support for the models with heterogeneity.

We also considered versions of the models with Calvo (1983) pricing. In that case, not all

of our conclusions are equally robust. The reason is that, in the context of our semi-structural

framework, identi�cation of heterogeneity in price stickiness under Calvo pricing is �more di¢ cult�

than under Taylor pricing. Building on Monte Carlo analysis and analytical insights from simple

versions of these two pricing models, we found that clear-cut identi�cation of the distribution of price

stickiness depends crucially on whether the observable driving process has high variance relative to

the unobservable process. While this applies to both price-setting speci�cations, the identi�cation

problem is more acute under Calvo pricing. The reason is that, in terms of implications for the

aggregate dynamics of output and prices, the di¤erences between speci�cations with varying degrees

of price stickiness are starker under Taylor pricing than under Calvo pricing. Based on Monte

Carlo analysis, we found that with the sample size that we have and the relative variances for the

two exogenous processes implied by our point estimates, the likelihood criterion fails to provide
38The cumulative e¤ect of aggregate innovations would still be present in this context, and we conjecture that with

enough arti�cial micro data one should be able to detect that relationship.
39Due to the high computational cost of estimating the models, in our robustness exercises we focus on the U.S.

economy.
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a sharp discrimination between alternative (non-degenerate) distributions of price stickiness under

Calvo pricing. This mirrors what we �nd in the data: under Calvo pricing they do not allow clear

discrimination between models with heterogeneity in the frequency of price changes. In contrast,

given the same sample size and relative variances for those two processes, the version of the model

with Taylor pricing provides more information about the underlying distribution of price stickiness.

However, despite that obstacle, one of the main �ndings of the paper does hold under the Calvo

pricing model: the (log) posterior density of the data given speci�cations with heterogeneity in price

stickiness is roughly 5-7 points higher than under the best speci�cation with homogeneous �rms.

In addition, using classical methods we �nd that a likelihood-ratio test of the homogeneous Calvo

model against a two-sector version of the model leads to rejection of the former at signi�cance levels

of less than 1%.40

7.2 Directions for future research

Our experience based on speci�cations with Taylor and Calvo pricing models suggests that the

shape of the hazard function for price adjustments assumed in the price-setting model is important

in determining how precisely the cross-sectional distribution of price stickiness can be inferred from

aggregate data. An interesting way to address this question would be to specify a generalized

pricing model with a more �exible price adjustment hazard than in the Calvo and Taylor models,

and take the model to the data allowing for sectoral heterogeneity in the hazards.41 The question,

then, would be how to use the microeconomic evidence on price setting to inform the priors over

the nature of such adjustment hazard functions. One alternative would be to use a parsimonious

parametric family of hazard functions, say a two-parameter family characterized by level and slope of

the hazard. Then, one could use the microeconomic evidence on the frequency of price changes and

on the shape of adjustment hazard functions estimated from microeconomic data (e.g., Klenow and

Kryvtsov 2008) to form priors over those two parameters, and estimate the model using aggregate

data as observables, as we do.

We wish to emphasize that our results do not imply that identi�cation of more nuanced features

40The likelihood-ratio statistic ranges from roughly 10:5 to 14 (depending on the speci�cation for the exogenous
time-series processes), whereas the 0:1% and 1% critical values for the �2 (1) distribution are, respectively, 10:83 and
6:64.

41Dotsey et al. (1997) proposed such a generalized price-setting model, assuming that all �rms are ex-ante identical.
Similar speci�cations have been used subsequently by Wolman (1999) and Mash (2004), among others. Coenen et
al. (2007), Guerrieri (2006), Sheedy (2007), and Yao (2009) estimate models with generalized price-setting hazards
using aggregate data. To our knowledge the only paper to allow for generalized adjustment hazards and ex-ante
heterogeneity in models of price setting is Carvalho and Schwartzman (2008).
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of the distribution of price stickiness from aggregate data is infeasible under Calvo pricing. In fact,

as we show in the Appendix, in this version of the model the sectoral weights are also identi�ed in

the formal sense. However, our �ndings do suggest that, in practice, additional structure is needed

for estimation. It is possible that the restrictions obtained by moving to a fully speci�ed model and

using additional observables in the estimation will impose more �discipline�on the latent stochastic

processes and thus attenuate the identi�cation problems we encountered in our semi-structural

framework with Calvo pricing. In addition, making use of sectoral data as well, along the lines of

Lee (2009), and Bouakez et al. (2009a,b), seems promising.

Finally, in the previous section we described a variant of the model that we estimate that can -

at least qualitatively - match additional micro price facts while preserving the exact same aggregate

implications as those of our estimated models. Moreover, that variant has the potential to perform

at least as well as the Calvo (1983) model in terms of matching the empirical facts documented

by Klenow and Kryvtson (2008). An interesting open (quantitative) question is how well such an

extended model performs when confronted with those facts.

8 Conclusion

We estimate small semi-structural models for twelve countries, allowing the extent of price rigidity

to vary across sectors. We provide estimates of the underlying cross-sectional distribution based only

on aggregate data, and estimates that incorporate prior microeconomic information from the recent

empirical price-setting literature. Perhaps surprisingly, we �nd that the macro-based estimates

accord well with the latter evidence. More generally, we �nd overwhelming empirical support for

speci�cations with heterogeneity in price stickiness, over ones in which all prices are equally sticky.

We �nd the results su¢ ciently compelling to warrant further research. In particular, it would be

interesting to evaluate the consequences of allowing for heterogenous pricing behavior when estimat-

ing fully speci�ed DSGE models on aggregate data. The experience with our semi-structural model

suggests that combining microeconomic information and macroeconomic data within a Bayesian

framework can help us integrate our views on price setting at the microeconomic and macroeco-

nomic levels. Quantitative normative analysis in models with heterogeneity in price stickiness,

along the lines of Eusepi et al. (2009), might also bene�t from such a combination.
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Appendix

A Identi�cation

A.1 When � 6= 1

When � 6= 1 equation (12) becomes:

pt =
K�1X
j=1

ajpt�j +
K�1X
j=0

bjmt�j �
K�1X
j=0

bjy
n
t�j ;

where a1, :::, aK�1, b0, :::, bK�1 are functions of the model parameters. Checking for identi�cation

amounts to solving for these coe¢ cients, and showing that !1, :::,!K , and � can be recovered from

them.

Here we illustrate how the process works in a model with K = 2. Using the method of undeter-

mined coe¢ cients we can show that a1; b0; b1 satisfy:

a1 =

!2
2
1��
1��2 (1� �)

1�
��
!1 +

!2
2
1��
1��2 (1 + �)

�
(1� �) +

�
!2
2
1��
1��2�

�
(1� �)a1

� ;
b0 =

�
!1 +

!2
2
1��
1��2 (1 + �)

�
� +

�
!2
2
1��
1��2�

�
(��+ (1� �)b1)

1�
��
!1 +

!2
2
1��
1��2 (1 + �)

�
(1� �) +

�
!2
2
1��
1��2�

�
(1� �)a1

�
�
�
!2
2
1��
1��2�

�
(1� �)�

;

b1 =

!2
2
1��
1��2 �

1�
��
!1 +

!2
2
1��
1��2 (1 + �)

�
(1� �) +

�
!2
2
1��
1��2�

�
(1� �)a1

� :
The �rst equation is quadratic in a1 and for each solution the other two equations yield b0 and

b1 as a function of the model parameters. The stable solution for the �rst equation (ja1j � 1) yields:

a1 =
(1+�) (2�+(1� �)!2)+

q
(1 + �)2 ((� � 1)!2 � 2�)2 � 4� (� � 1)2 !22
2� (1� �)!2

;

b0 =
� (�� 1) (�� � 1)!2

2 (1 + �) �� + (� � 1) (�� 1) (�� � 1)!2

+
� (1 + �) (1 + � (1 + 2� (� � 1)))

� (� � 1) (2 (1 + �) �� + (� � 1) (�� 1) (�� � 1)!2)

�� (1 + �)
(1 + �) 2� +

q
4 (1 + �)2 �2 � 4 (1 + �)2 (� � 1) �!2 + (� � 1)2 (� � 1)2 !22

� (� � 1)2 !2 (2 (1 + �) �� + (� � 1) (�� 1) (�� � 1)!2)
;
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b1=�
(1 + �) (2� + (1� �)!2) +

q
(1 + �)2 ((� � 1)!2 � 2�)2 � 4� (� � 1)2 !22
2� (1� �)2 !2

;

where we have used the fact that !1 + !2 = 1. Finally, we can the combine the expressions for a1

and b1 to solve for !2 and �:

!2 =
2 (1 + �) b1

(1� a1) (1� �a1)
;

� =
b1

a1 + b1
:

A.2 Monte Carlo exercise

We generate arti�cial data on aggregate nominal and real output using a model with K = 4, and

parameter values that roughly resemble what we �nd when we estimate a model of this size on

actual U.S. data. Then, we estimate the parameters of the model by maximum likelihood.42 We

conduct both a large- (1000 observations) and a small-sample exercise (100 observations, as in our

actual sample). Table 10 reports the results.

Table 10: Monte Carlo - maximum likelihood estimation
Large sample Small sample

True Mean 5 th perc. 95 th perc. Ini. guess Mean 5 th perc. 95 th perc. Ini. guess
� 0:10 0:106 0:059 0:15 1:00 0:179 0:022 0:415 1:00
!1 0:40 0:395 0:183 0:621 0:25 0:318 0:033 0:871 0:25
!2 0:10 0:100 0:000 0:257 0:25 0:096 0:000 0:376 0:25
!3 0:10 0:091 0:000 0:197 0:25 0:088 0:000 0:304 0:25
!4 0:40 0:414 0:233 0:570 0:25 0:498 0:064 0:801 0:25
�0 0:00 0:000 0:000 0:000 0:000 0:000 �0:002 0:002 0:000
�1 1:43 1:432 1:388 1:468 1:429 1:403 1:256 1:547 1:538
�2 �0:45 �0:456 �0:499 �0:410 �0:455 �0:446 �0:579 �0:302 �0:577
�m 0:005 0:005 0:0048 0:0051 0:005 0:005 0:0043 0:0056 0:0058
�0 0:00 0:000 �0:001 0:001 0:000 0:000 �0:004 0:004 0:000
�1 0:35 0:336 0:091 0:513 1:066 0:231 �0:257 0:616 0:954
�2 0:15 0:146 0:049 0:258 �0:199 0:133 �0:073 0:326 �0:076
�n 0:05 0:053 0:033 0:083 0:0067 0:105 0:020 0:311 0:0062

The �rst column shows the true parameter values used to generate the data. The columns under

�Large sample�report statistics across 75 arti�cial samples of 1000 observations each. The �Small

sample� columns report statistics across 240 arti�cial samples of 100 observations each.43 The

42We apply the same procedure that we use in the initial maximization stage of the Markov Chain Monte Carlo
algorithm that we use to estimate the models with actual data, including the choice of initial values for the optimization
algorithm (see Subsection 3.5).

43 In each replication, the sample contains an additional 16 observations that we use as a pre-sample to initialize the
Kalman �lter, as we do in the actual estimation. The value of � is �xed at 0:99. The smaller number of replications
for the large-sample exercise is simply due to its much higher computational cost.
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�Ini. guess� column reports the average value of the initial guesses supplied for the optimization

algorithm across the corresponding samples. Following the procedure that we use in the actual

estimation algorithm, the initial guesses for � and !1 � !4 are the same across replications; the

guesses for the remaining parameters in each replication are set equal to the ordinary least squares

estimates based on nominal output (for the ��s) and actual output (for the ��s).

A.3 In a multi-sector Calvo (1983) model

Under the assumption of Calvo pricing, equations (6) and (5) are replaced by, respectively:

xt (k) = (1� ��k)Et
1X
i=0

(�k�)
i �pt+i + � �yt+i � ynt+i�� ; (15)

and

pt (k) =

Z 1

0
pt (k; j) dj = (1� ��k)

1X
i=0

��ik xt�i (k) ;

where 1 � �k is the frequency of price changes in sector k. The remaining equations of the model

are:

pt =
KX
k=1

!kpt (k)

pt + yt = mt = �1mt�1 + �me"mt
ynt = �1y

n
t�1 + �ne"nt :

We focus on the case of strategic neutrality in price setting (� = 1). Then, (15) simpli�es to:

xt (k) = (1� ��k)Et
1X
i=0

(�k�)
i �mt+i � ynt+i

�
= F (�; �1; �k)mt � F (�; �1; �k) ynt :

In that case the aggregate price level evolves according to:

pt =

1X
j=0

KX
k=1

!k (1� ��k)F (�; �1; �k)�
�j
k mt�j

�
1X
j=0

KX
k=1

!k (1� ��k)F (�; �1; �k)��jk y
n
t�j :

We illustrate how identi�cation obtains in a model withK = 2. As in Subsection 2.4, the starting
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point is a set of consistent estimates of the coe¢ cients onmt�j (
XK

k=1
!k (1� ��k)F (�; �1; �k)�

�j
k ),

which we denote by aj . With K = 2, this implies the following system of equations:

!1 (1� ��1)F (�; �1; �1) + (1� !1) (1� ��2)F (�; �1; �2) = a0
!1 (1� ��1)F (�; �1; �1)��11 + (1� !1) (1� ��2)F (�; �1; �2)��12 = a1

!1 (1� ��1)F (�; �1; �1)��21 + (1� !1) (1� ��2)F (�; �1; �2)��22 = a2;

which can be solved for !1, �1; and �2 as a function of a0, a1 and a2 (and �, �1).

B Details of the estimation algorithm

Our speci�c estimation strategy is as follows. We run two numerical optimization routines sequen-

tially in order to maximize the posterior distribution. This determines the starting point of the

Markov chain and provides a �rst crude estimate of the covariance matrix for our Random-Walk

Metropolis Gaussian jumping distribution. The �rst optimization routine is csminwel by Chris

Sims, while the second is fminsearch from Matlab�s optimization toolbox. For the starting values,

we set � = 1 and !k = 1=K; the values for the remaining parameters are set equal to the ordi-

nary least squares estimates based on nominal output (for the ��s) and actual output (for the ��s).

Following the �rst optimization, we run additional rounds, starting from initial values obtained by

perturbing the original initial values, and then the estimate of the �rst optimization round.

Before running the Markov chains we transform all parameters to have full support on the real

line. We use the logarithmic transformation for each of (�; �m; �n), while !1; :::; !K are transformed

using a multivariate logistic function (see next subsection). Then we run a so-called adaptive phase

of the Markov chain, with three sub-phases of 100, 200, and 600 thousand iterations, respectively.

At the end of each sub-phase we discard the �rst half of the draws, update the estimate of the

posterior mode, and compute a sample covariance matrix to be used in the jumping distribution in

the next sub-phase. Finally, in each sub-phase we rescale the covariance matrix inherited from the

previous sub-phase in order to get a �ne-tuned covariance matrix that yields rejection rates as close

as possible to 0.77.44 Next we run the so-called �xed phase of the MCMC. We take the estimate of

the posterior mode and sample covariance matrix from the adaptive phase, and run 5 parallel chains

of 300,000 iterations each. Again, before making the draws that will form the sample we rescale

such covariance matrix in order to get rejection rates as close as possible to 0.77. To initialize each

44This is the optimal rejection rate under certain conditions. See Gelman et al. (2003, p. 306).
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chain we draw from a candidate normal distribution centered on the posterior mode estimate, with

covariance matrix given by 9 times the �ne-tuned covariance matrix. We check for convergence

for the latter 2/3s of the draws of all 5 chains by calculating the potential scale reduction45 (psr)

factors for each parameter and inspecting the histograms of all marginal distributions across the

parallel chains. Upon convergence, the latter 2/3s of the draws of all 5 chains are combined to form

a posterior sample of 1 million draws.

B.1 Transformation of the sectoral weights

We transform vectors ! = (!1; :::; !K) in the K-dimensional unit simplex into vectors v = (v1; :::; vK)

in RK using the inverse of a restricted multivariate logistic transformation. We want to be able to

draw v�s and then use a transformation that guarantees that ! = h�1 (v) is in the K-dimensional

unit simplex. For that purpose, we start with:

!k =
evkPK
k=1 e

vk
; k = 1; :::;K:

The transformation above guarantees the non-negativity and summation-to-unity constraints.

However, without additional restrictions the mapping is not one-to-one. The reason is that all

vectors v along the same ray give rise to the same !. Therefore, we impose the restriction v (K) = 0

and in e¤ect draw vectors ev = (v1; :::; vK�1) in RK�1. Thus, the transformation becomes e! = eh�1 (ev),
with e! = (!1; :::; !K�1) and:

!k =
evk

1 +
PK�1
k=1 e

vk
; k = 1; :::;K � 1

!K =
1

1 +
PK�1
k=1 e

vk
:

If the density f! (!j�) is that of the Dirichlet distribution with (vector) parameter �, the density

of ev is given by:
fev (evj�) = jJ jf!

 
ev1

1 +
PK�1
k=1 e

vk
; :::;

1

1 +
PK�1
k=1 e

vk
j�
!
;

45For each parameter, the psr factor is the ratio of (square root of) an estimate of the marginal posterior variance
to the average variance within each chain. This factor expresses the potential reduction in the scaling of the estimated
marginal posterior variance relative to the true distribution by increasing the number of iterations in the Markov-chain
algorithm. Hence, as the psr factor approaches unity, it is a sign of convergence of the Markov-chain for the estimated
parameter. See Gelman et al. (2003, p. 294 ¤) for more information. For all speci�cations we require that the factor
be below 1.01 for all parameters.
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where jJ j is the determinant of the Jacobian matrix
h
@eh�1(ev)
@ev

i
ij
given by:

26666664

@!1
@v1

@!1
@v2

::: @!1
@vK�1

@!2
@v1

@!2
@v2

::: @!2
@vK�1

...
...

. . .
...

@!K�1
@v1

@!K�1
@v2

:::
@!K�1
@vK�1

37777775 ;

with:

@!k
@vk

=
evk
�
1 +

PK�1
k=1 e

vk
�
� evkevk�

1 +
PK�1
k=1 e

vk

�2
=

evk

1 +
PK�1
k=1 e

vk
� evkevk�

1 +
PK�1
k=1 e

vk

�2 :
So:

J = �

266664
ev1

1+
PK�1
k=1 e

vk

...

evK�1

1+
PK�1
k=1 e

vk

377775
"

ev1

1 +
PK�1
k=1 e

vk
; :::;

evK�1

1 +
PK�1
k=1 e

vk

#
+

266666664

ev1

1+
PK�1
k=1 e

vk
0 ::: 0

0
. . . 0

...
... 0

. . . 0

0 ::: 0 evK�1

1+
PK�1
k=1 e

vk

377777775
:

To recover the vk�s from ! simply set:

vk = log (!k)� log (!K) :

C Estimates for other countries

Tables 11 and 12 present the full set of estimates for the remaining countries:
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Table 11: Parameter estimates for remaining countries - K=8, �at prior
Prior Switzerland France Italy Norway

� 4:440
(0:466;16:863)

0:403
(0:103;1:387)

0:193
(0:074;0:474)

1:272
(0:479;3:312)

8:068
(3:157;18:516)

!1 0:094
(0:007;0:348)

0:072
(0:016;0:233)

0:365
(0:143;0:615)

0:278
(0:105;0:519)

0:128
(0:028;0:335)

!2 0:094
(0:007;0:348)

0:043
(0:003;0:190)

0:058
(0:005;0:205)

0:027
(0:002;0:106)

0:163
(0:022;0:383)

!3 0:094
(0:007;0:348)

0:219
(0:088;0:359)

0:110
(0:016;0:234)

0:055
(0:005;0:169)

0:055
(0:004;0:206)

!4 0:094
(0:007;0:348)

0:080
(0:007;0:236)

0:045
(0:003;0:170)

0:037
(0:003;0:137)

0:089
(0:008;0:309)

!5 0:094
(0:007;0:348)

0:109
(0:010;0:305)

0:029
(0:002;0:119)

0:077
(0:006;0:255)

0:123
(0:010;0:398)

!6 0:094
(0:007;0:348)

0:050
(0:004;0:191)

0:034
(0:002;0:134)

0:070
(0:006;0:237)

0:070
(0:006;0:264)

!7 0:094
(0:007;0:348)

0:061
(0:005;0:203)

0:049
(0:004;0:187)

0:271
(0:051;0:523)

0:098
(0:008;0:341)

!8 0:094
(0:007;0:348)

0:255
(0:061;0:467)

0:221
(0:083;0:385)

0:067
(0:003;0:276)

0:087
(0:007;0:313)

�k 4:501
(3:245;5:760)

4:940
(3:711;5:979)

3:848
(2:718;5:028)

4:496
(3:203;5:633)

4:305
(3:198;5:410)

�k 2:139
(1:584;2:678)

2:284
(1:812;2:683)

2:785
(2:350;3:088)

2:562
(2:067;2:925)

2:235
(1:720;2:713)

�0 0:000
(�8:224;8:224)

0:000
(�0:001;0:002)

�0:000
(�0:001;0:001)

�0:000
(�0:002;0:001)

0:002
(�0:002;0:006)

�1 0:000
(�8:224;8:224)

1:528
(1:382;1:671)

1:610
(1:492;1:726)

1:523
(1:387;1:657)

0:920
(0:748;1:091)

�2 0:000
(�8:224;8:224)

�0:547
(�0:690;�0:403)

�0:618
(�0:734;�0:500)

�0:534
(�0:670;�0:398)

�0:011
(�0:184;0:162)

�m 0:059
(0:009;0:195)

0:006
(0:006;0:007)

0:005
(0:004;0:006)

0:009
(0:008;0:010)

0:022
(0:020;0:025)

�0 0:000
(�8:224;8:224)

0:001
(�0:002;0:006)

0:000
(�0:002;0:002)

0:000
(�0:001;0:002)

�0:000
(�0:003;0:003)

�1 0:000
(�8:224;8:224)

0:223
(�0:081;0:771)

0:770
(0:442;1:037)

0:862
(0:589;1:110)

0:461
(0:248;0:642)

�2 0:000
(�8:224;8:224)

0:454
(0:093;0:676)

0:137
(�0:111;0:419)

0:062
(�0:169;0:311)

0:441
(0:261;0:639)

�n 0:059
(0:009;0:195)

0:030
(0:012;0:107)

0:012
(0:008;0:025)

0:009
(0:007;0:013)

0:016
(0:014;0:020)

Note: The �rst column reports the medians of the marginal prior distributions;
the other columns provide the analogous statistics for the posterior marginal
distributions in each country; numbers in parentheses correspond to the 5th and
95th percentiles.
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Table 12: Parameter estimates for remaining countries - K=8, �at prior, continued
Prior U:K: Canada Australia Korea Sweden

� 4:440
(0:466;16:863)

3:681
(1:269;10:330)

1:040
(0:389;2:776)

0:599
(0:231;1:490)

0:556
(0:102;1:630)

3:035
(1:053;8:697)

!1 0:094
(0:007;0:348)

0:254
(0:100;0:484)

0:253
(0:090;0:490)

0:197
(0:069;0:417)

0:211
(0:064;0:452)

0:247
(0:086;0:488)

!2 0:094
(0:007;0:348)

0:040
(0:003;0:153)

0:055
(0:004;0:181)

0:055
(0:004;0:178)

0:119
(0:017;0:271)

0:035
(0:003;0:136)

!3 0:094
(0:007;0:348)

0:037
(0:003;0:147)

0:028
(0:002;0:108)

0:037
(0:003;0:130)

0:037
(0:003;0:128)

0:063
(0:005;0:222)

!4 0:094
(0:007;0:348)

0:086
(0:006;0:304)

0:070
(0:006;0:223)

0:035
(0:003;0:129)

0:062
(0:005;0:197)

0:078
(0:006;0:299)

!5 0:094
(0:007;0:348)

0:072
(0:005;0:264)

0:054
(0:004;0:193)

0:065
(0:006;0:209)

0:078
(0:007;0:243)

0:046
(0:003;0:192)

!6 0:094
(0:007;0:348)

0:093
(0:007;0:321)

0:060
(0:005;0:220)

0:114
(0:012;0:295)

0:078
(0:007;0:248)

0:072
(0:006;0:272)

!7 0:094
(0:007;0:348)

0:093
(0:007;0:315)

0:147
(0:015;0:398)

0:179
(0:019;0:430)

0:079
(0:006;0:271)

0:143
(0:012;0:413)

!8 0:094
(0:007;0:348)

0:158
(0:014;0:444)

0:209
(0:031;0:461)

0:210
(0:030;0:443)

0:219
(0:037;0:451)

0:146
(0:012;0:425)

�k 4:501
(3:245;5:760)

4:456
(3:220;5:710)

4:665
(3:338;5:883)

5:012
(3:650;6:162)

4:529
(3:241;5:741)

4:501
(3:231;5:732)

�k 2:139
(1:584;2:678)

2:540
(1:975;3:020)

2:685
(2:195;3:049)

2:573
(2:102;2:927)

2:615
(2:137;2:991)

2:558
(1:994;3:022)

�0 0:000
(�8:224;8:224)

�0:000
(�0:002;0:001)

0:001
(�0:001;0:002)

0:000
(�0:001;0:002)

�0:001
(�0:004;0:002)

0:001
(�0:001;0:003)

�1 0:000
(�8:224;8:224)

1:198
(1:034;1:363)

1:516
(1:381;1:650)

1:478
(1:334;1:622)

1:476
(1:321;1:676)

1:074
(0:907;1:241)

�2 0:000
(�8:224;8:224)

�0:207
(�0:373;�0:042)

�0:553
(�0:687;�0:418)

�0:493
(�0:636;�0:350)

�0:485
(�0:697;�0:327)

�0:099
(�0:263;0:067)

�m 0:059
(0:009;0:195)

0:008
(0:007;0:009)

0:007
(0:007;0:008)

0:009
(0:008;0:010)

0:016
(0:015;0:019)

0:013
(0:012;0:015)

�0 0:000
(�8:224;8:224)

0:000
(�0:001;0:001)

0:001
(�0:001;0:003)

0:000
(�0:002;0:003)

0:001
(�0:004;0:009)

0:001
(�0:001;0:003)

�1 0:000
(�8:224;8:224)

1:100
(0:842;1:322)

0:867
(0:591;1:112)

0:584
(0:297;0:848)

0:677
(0:365;0:949)

0:865
(0:650;1:068)

�2 0:000
(�8:224;8:224)

�0:148
(�0:367;0:102)

0:041
(�0:186;0:287)

0:242
(0:013;0:475)

0:196
(�0:068;0:482)

0:094
(�0:106;0:304)

�n 0:059
(0:009;0:195)

0:006
(0:005;0:008)

0:012
(0:009;0:019)

0:021
(0:014;0:037)

0:037
(0:025;0:144)

0:012
(0:010;0:016)

Note: The �rst column reports the medians of the marginal prior distributions; the other columns
provide the analogous statistics for the posterior marginal distributions in each country; numbers
in parentheses correspond to the 5th and 95th percentiles.
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Figure 1: Marginal prior (dashed line) and posterior (solid line) distributions, K=8, �at prior -
U.S.
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Figure 2: Marginal prior (dashed line) and posterior (solid line) distributions, K=8, �at prior -
Denmark
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Figure 3: Marginal prior (dashed line) and posterior (solid line) distributions, K=8, �at prior -
Japan
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Figure 4: Marginal prior (dashed line) and posterior (solid line) distributions, one-sector model
with 7-quarter price spells - U.S.
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Figure 5: Impulse response functions of models and bivariate VAR - U.S.
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Figure 6: Marginal prior (dashed line) and posterior (solid line) distributions, K=8, informative
prior - U.S.
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Figure 7: Marginal prior (dashed line) and posterior (solid line) distributions, K=8, informative
prior - Denmark
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Figure 8: Marginal prior (dashed line) and posterior (solid line) distributions, K=8, informative
prior - Japan
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