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1 Introduction

Since Jensen’s (1968) seminal work, there is a growing literature1 that questions whether a

positive alpha does in fact imply a manager’s ability to select assets by predicting returns.

A number of researchers2 answer the question by pointing out, through simulation and

examples, that by investing in options, managers can generate a positive alpha relative to

a benchmark even if they cannot predict returns. However, up to this point the answers

to the question have been ad hoc, leaving the literature unclear about the magnitude of

alpha that can be achieved by trading frequently or holding derivative securities and the

risk involved with the alpha enhancement strategy.

This paper delivers the theoretical answer to the question by deriving the explicit for-

mulas for the trading strategy that maximizes alpha, controlling for the risk. This alpha-

maximizing strategy is shown to be a variant of a buy-write strategy, which can be imple-

mented by taking long positions in the benchmark assets and writing options on them. If

common equity indices are used as benchmarks and derivative securities are priced as in

the Black-Scholes model, the potential alpha generated from trading frequently or hold-

ing options can be substantial, consistent with the numerical experiments reported in the

literature.

Such alpha generating strategies, however, carries such a huge risk that the generated

alpha is statistically insignificant and that the probability of negative alpha is close to one

half. In this sense, the manager’s ability to generate superior performance from trading

frequently or holding derivatives is by and large difficult under the Black-Scholes model. In

contrast, it is easier for him to be successful, even in the absence of superior information,

when the implied volatility of derivative securities is higher than the volatility of the under-

lying benchmark securities. These results provide the theoretical implications on alpha of

allowing a manager to trade while being evaluated with respect to a buy-and-hold portfolio

of the given benchmark.

The starting point is the consideration of a set of risky securities a fund manager can

trade. The manager aims to, and often claims to deliver superior performance. Clients,

potential clients and academics evaluate such claims based on a set of benchmark assets,

which are available to the public, including the managers’ clients and potential clients. The

challenge is to evaluate the fund’s return by asking: Could it be obtained from a portfolio

of the benchmark assets? If not, what is the increment of the evaluated return relative to

the return available in the benchmark space? How likely is the increment strictly positive?

1The literature can be traced back to Dybvig and Ingersoll (1982), Grinblatt and Titman (1989) and
Glosten and Jagannathan (1994).

2See Lo (2001), Hill et al. (2006), Goetzmann et al. (2007).
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The increment is labeled as alpha. This measure of performance is widely implemented

in practice, and financial information services report alpha for securities and funds. Some

hedge funds have even included the word “alpha” as part of their names.

If the manager delivers a series of returns which are on average higher than those obtain-

able from the benchmark assets, the evaluator may infer that the manager can outperform

the benchmark. The attribution of such out-performance to superior information, however,

may be premature because there are at least four sources for the manager’s access to a

larger space of payoffs than the space of the benchmarks. First, the manager can predict

the returns of the benchmark assets and can choose portfolio weights to reflect his predic-

tions. Second, the manager may trade securities with payoffs outside the benchmark space.

Third, the manager may trade derivatives of the benchmark assets. Fourth, the manager

may trade the benchmark assets more frequently than the evaluator observes the returns.

The last two sources only give the appearance of superior performance because they do

not depend on the manager’s access to superior information. The two sources are in fact

equivalent if derivative securities are redundant assets and their payoffs can be replicated

by judiciously trading the underlying assets. Black and Scholes (1973) and Merton (1973)

point out the equivalence between the payoff on derivatives and on such rule-based trading.

Following the literature, this paper refers to rule-based trading designed to replicate a

derivative payoff as delta trading.

The specific building blocks of the performance evaluation mechanism studied here are

familiar. The evaluator decomposes the fund’s return into two parts—the return’s linear

projection on the benchmarks and the incremental return orthogonal to the benchmarks.

The expectation of the incremental return is alpha, representing the portion of the expected

return that is not attainable by passive investment strategies in the benchmarks. The

tracking error, which is the standard deviation of the incremental return, measures the

uncertainty of alpha.

The resulting ratio of alpha to the tracking error is typically referred to as the appraisal

ratio. A high appraisal ratio is interpreted as superior performance because it indicates

a large probability of a positive return after subtracting financing costs and neutralizing

the risks associated with the benchmarks. Maximizing the appraisal ratio is necessary for

maximizing the Sharpe ratio, a widely used measure of fund performance. For a hedge

fund, the appraisal ratio of the fund is itself the Sharpe ratio of the hedged position that

neutralizes the benchmark risk. In statistical analysis of the portfolio’s performance, the

appraisal ratio is the asymptotic t statistic of the estimated alpha.

Sharpe ratios and appraisal ratios are important in practice. Nonetheless, within a

fund class, e.g., large cap long-only US equity, it is common to compare fund performance
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according to the funds’ alpha rather than consider their appraisal ratios. This practice is

reasonable when the leverage is similar across the compared funds. (e.g., zero leverage in the

large cap long-only US equity.) This practice is less reasonable when comparing funds with

different leverage or different sets of underlying assets (and therefore different benchmarks

and tracking errors). Then attention naturally turns to the Sharpe ratio.

This paper derives the best appraisal ratio (and thus the best asymptotic t statistic

of alpha) a manager can obtain. Section 2 sets up the general problem and describes the

benchmark space used by the evaluator and the payoff space accessible to the manager.

The fundamental results are in Theorem 1: as the number of payoff observations becomes

large, (i) the maximal appraisal ratio is the safe return times the norm of the difference

of the pricing kernels of the two spaces, and (ii) the maximal appraisal ratio is achieved

by a payoff which can be described as a function of the pricing kernels. This section also

discusses how constraints on the tracking error or on leverage transform an upper bound

on the appraisal ratio into an upper bound on alpha.

A novelty of the paper is in its examination of a complete market with multiple bench-

mark assets. Section 3 gives a simple formula of the optimal appraisal ratio in terms of

the moments of the benchmark assets (Theorem 2). The subsequent discussion shows that

trading derivatives on the benchmark assets will deliver only a small improvement of the

Sharpe ratio and will take thousands of monthly observations to produce a statistically

significant alpha. Alpha can however be substantial in magnitude and become statistically

significant when less frequent observations or a larger benchmark space are considered (e.g.,

by including certain additional factors).

Another novelty of the paper is in its examination of the optimal trading strategies.

Section 4 establishes that in the case of a single benchmark asset, the strategy that maxi-

mizes the appraisal ratio and alpha consists of holding the benchmark and writing out-of-the

money options on it. Under the assumption that the Black-Scholes model governs option

pricing, the best strategy still delivers low values of the appraisal ratio if the parameters

are estimated from the equity indices (Theorem 3). These low values of the appraisal ratio

are in contrast with the practical experience in which holding the S&P 500 and writing at-

the-money call options on it has delivered economically and statistically significant alphas.

Theorem 4 offers a reconciliation of the contradiction by showing that the optimal appraisal

ratio is high if options are not redundant assets and are priced at an implied volatility that

is higher than the volatilities of the benchmark assets.

Since alpha is measured by a linear projection of a managed fund’s return onto bench-

mark space, it is natural to speculate that varying the fund’s exposure to the benchmark can

cause the fund’s return to fall outside the linear space of the benchmarks and consequently

create a positive alpha. Section 5 considers the performance of the benchmark-exposure
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switching schemes. Theorem 5 shows that if the observation interval is fixed but the num-

ber of observation is large, then exposure-switching strategies deliver lower appraisal ratios

than those covered in Theorem 1. Theorem 6 offers an asymptotic upper bound on the

expected alpha if the time horizon is fixed but the observation interval converges to zero.

Theorems 5 and 6 together demonstrate that benchmark-exposure switching schemes can

produce positive alpha, but they do not deliver the maximal alpha in Theorems 1 and 2.

Especially, Theorem 6 suggests that the expected alpha generated by switching schemes

deteriorates with the time horizon.

Section 6 concludes with a discussion of the past and future research in this area.

2 Performance Maximization

In practice, a fund manager who is evaluated by his fund’s performance relative to an index

can hold the index and write options on it. (The S&P 500, Nasdaq 100 and Russell 2000

indices are examples of indices on which options can easily be written.) The intuition for

the consequent payoff is illustrated in Figure 1, which is reprinted from Wang and Zhang

(2003). If the fund is fully invested in the index, the fund return (the dashed line) is a

linear function of the market return with zero intercept. If the manager writes call options

on the index and invests the proceeds in the safe asset, the fund return (the dotted-dashed

line) is a nonlinear function of the market return. If the fund consists of a long position in

the index and a short position in the options, the fund return (the thick line) has a nonzero

alpha in the regression of the fund’s excess return on the excess return of the index (the

dotted line).

This demonstration of the possibility of generating alpha is neither an algorithm which

generates the highest possible alpha nor a proof that the highest appraisal ratio can be

generated in this way. The first subsection introduces the paper’s basic framework, which

to a large extent Theorem 1 captures. Theorem 1 is general and to study special cases

in later sections, further assumptions are made. The second subsection applies Theorem

1 to trading strategies that have been studied in the literature and shows them to be less

attractive than it had been argued.

2.1 The optimization problem and its solution

The excess return rx on an actively managed fund is evaluated against a vector of excess

returns rm = (r1, · · · , rk)′ on k benchmark assets. The period during which the fund is

evaluated is from time 0 to time T . Let ∆t, 2∆t, · · ·, n∆t, where n∆t = T , be the equally-

spaced time grid on which the evaluator observes the returns. Denote by rxi and rmi the
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observed excess returns on the fund and the benchmarks, respectively, over the time interval

from (i− 1)∆t to i∆t. The regression of the excess fund returns on the excess benchmark

returns is

rxi = α+ r′mi β + εi , (1)

where the intercept α and the vector of slope coefficients β satisfy

α = E[rx − r′m β] (2)

β = (var(rm))−1cov(rm, rx) . (3)

After hedging out the risk associated with the benchmarks by adding a short position

of β in the benchmark assets, the return of the hedged position is, rx− r′mβ, its expectation

is α, and its tracking error is
√

var(rx − r′mβ). The appraisal ratio of the hedged position

is its Sharpe ratio: the ratio of alpha to its tracking error. It is

APR =
α√

var(rx − r′m β)
. (4)

A high appraisal ratio indicates high profitability for the hedged position. The appraisal

ratio is also the asymptotic t statistic of alpha—the limit of the t statistic multiplied by the

square-root of the number of observations in the ordinary least-square (OLS) regression (1).

Thus, a high appraisal ratio is associated with a high t statistic of alpha in that regression.

The manager of the fund who seeks to maximize the appraisal ratio should have a trading

strategy such that the fund return rx solves the following maximization problem:

max
x

E[rx − r′m β]√
var(rx − r′m β)

. (5)

The maximization problem captures the tradeoff the portfolio manager faces: to maximize

the appraisal ratio, the return should have not only a high alpha but also a low tracking

error (i.e., a low standard deviation of the residual return).

Before presenting the solution to the maximization problem, it is necessary to describe

the payoff space and the pricing function. The space of payoffs attainable by the manager in

a given period by trading in the securities available to him, denoted by Xa, is the attainable

space. The payoffs are assumed to have finite second moments, that is Xa ⊂ L2(P,Ω),

where Ω is a sample space and P is a probability measure, and L2(P,Ω) is the set of all

measurable functions with second moments. For any x ∈ L2(P,Ω), the square-root of its

second moment is the norm of x, denoted by ‖x‖ = E[x2]1/2. The assumption of finite

second moment is a minimal requirement to ensure that the sample estimates of linear

regressions converge to their population counterparts.
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The assumptions on the attainable space are standard and flexible, allowing the market

to be incomplete because the space Xa is allowed to be a strict subset of L2(P,Ω). The

dimension of Xa may be infinite. This is important because a payoff space that contains

options with infinitely many strike prices and maturities has an infinite dimension. The only

restriction is the linearity of the payoff space, which excludes the presence of constraints or

frictions that a fund manager may face in the market.

The linear space of payoffs spanned by the benchmark assets, denoted by Xb, is the

benchmark space. The number of benchmark assets is typically small and the dimension of

Xb is assumed to be k + 1. Let {xj}j=0,···,k be the payoffs of the k + 1 independent assets

that span Xb. For simplicity and practical applications, the first benchmark payoff x0 is

assumed to be the constant payoff of a safe asset. If the payoffs in Xb do not exhaust the

set of payoffs attainable by the manager, then Xb is a strict subset of Xa. A fund has

abnormal return relative to the benchmarks if and only if its return or payoff falls outside

the benchmark space.

Let v : Xa 7→ < be the pricing function, where < is the set of real numbers. Assume

that the law of one price holds, and thus v is linear. A stochastic discount factor for Xa is a

random variable m ∈ L2(P,Ω) such that v(x) = E[xm] for all x ∈ Xa. Denote the set of all

stochastic discount factors for Xa by Ma. By the Riesz representation theorem, there exists

some ma ∈ Xa such that v(x) = E[xma] for all x ∈ Xa, i.e., ma ∈ Xa ∩Ma. It follows that

ma has the smallest norm among all the stochastic discount factors in Ma (see chapter V of

Riesz and Sz.-Nagy (1955)). Since the price function also applies to the set of benchmark

assets, the set of the stochastic discount factors for Xb is Mb = {m ∈ L2(P,Ω) : v(x) =

E[mx] for all x ∈ Xb}, and there exists a smallest-norm discount factor mb ∈ Xb ∩Mb.

A trading strategy of the fund corresponds to a payoff x ∈ Xa. To obtain excess returns,

assume that the payoff of the safe asset is x0 = 1 and its price is v(1) > 0. The return

on the safe asset is R0 = 1/v(1). The excess return on the fund is rx = x − v(x)R0,

and the excess return on the jth benchmark is rj = xj − v(xj)R0 (for j = 1, · · · , k). Let

rm = (r1, · · · , rk)′. Based on the observations of (rx, r
′
m) over n time intervals of equal

length, the sample estimates of alpha (denoted by α̂n) and appraisal ratio (denoted by

ÂPRn) are obtained in the OLS regression (1). The sample estimate of the appraisal ratio

is in fact the t statistic of α̂n multiplied by
√
n. As n→∞, the sample estimate converges

to their population counterparts, i.e., lim α̂n = α and lim ÂPRn = APR, where α and APR

are defined in equations (2) and (4), respectively. The alpha and appraisal ratio depend on

the fund’s strategy x, and are denoted by α(x) and APR(x).

The optimization problem is to find a strategy x ∈ Xa that maximizes APR(x). The
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maximal appraisal ratio is denoted by

APRmax = max{APR(x) : x ∈ Xa} . (6)

The solution to the optimization problem (6) is similar in spirit to the construction of the

mean-variance frontier in Hansen and Richard (1987) and Huberman and Kandel (1987),

starting with the observation that any payoff can be decomposed into three components

with uncorrelated payoffs. The first component accounts for beta and is alpha-neutral;

the second one accounts for alpha and is beta-neutral; the third component is alpha- and

beta-neutral and only adds variance. Therefore the best tradeoff between alpha and the

variance of the regression residual is achieved for those returns in which only the first two

components are present. The solution to (6) is characterized in the following theorem.

Theorem 1 The alpha of any payoff x ∈ Xa is:

α(x) = R0E[rx(mb −ma)] . (7)

The maximal appraisal ratio over all the payoffs in Xa is

APRmax = R0‖mb −ma‖ , (8)

and the maximum is achieved for any payoff x of the form:

x = z + θ(mb −ma) (9)

for some z ∈ Xb and θ > 0.

The proofs of the theorems are relegated to the Appendix.

Theorem 1 is closely linked to earlier analyses of payoff spaces. This should not surprise

a reader familiar with the interpretation of asset payoffs as elements of Hilbert spaces.

Numerous papers have studied asset payoffs in that context. The closest earlier pieces

appear to be Chamberlain and Rothschild (1983), Hansen and Richard (1987), and Hansen

and Jagannathan (1991, 1997).

Hansen and Jagannathan (1997) apply the properties of L2 norms to the comparison of

asset-pricing models. The right-hand side of equation (8) is the product of R0 and the L2

norm of mb−ma; the latter term can also be interpreted as the Hansen and Jagannathan’s

(HJ) distance of mb from the set of discount factors that price all payoffs in Xa. The HJ

distance is

δ = min {‖mb −m‖ : m ∈Ma} . (10)

Any discount factor m ∈Ma can be written as m = ma + (m−ma) with E[(m−ma)x] = 0

for all x ∈ Xa. It follows from mb −ma ∈ Xa that

‖mb −m‖2 = ‖mb −ma‖2 + ‖m−ma‖2 . (11)
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The minimum of ‖mb − m‖ over m ∈ Ma is achieved when ‖m − ma‖ = 0, and thus

APRmax = R0δ. In this interpretation, mb is understood as a given asset-pricing model, and

δ measures the misspecification of the model.

The maximal appraisal ratio is related to the variance bounds derived by Hansen and

Jagannathan (1991). With R0 denoting the safe rate, equation (8) reduces to:

APRmax = R0

√
var(ma)− var(mb) (12)

because E[mbma] = ‖mb‖2 and E[mb] = E[ma] = 1/R0. According to Hansen and Ja-

gannathan, var(ma) is the greatest lower bound of the variance of the stochastic discount

factors in Ma, and the same statement holds for var(mb) and Mb. It then follows from

equation (12) that the square root of the difference between the two variance bounds gives

the maximal squared appraisal ratio discounted by R0.

The maximal appraisal ratio is also related to the Sharpe ratios of the payoff spaces Xb

and Xa, which are

SHPi = max{E[rx]/var(rx)1/2 : x ∈ Xi} for i = a, b. (13)

According to Hansen and Jagannathan (1991), the Sharpe ratio of a payoff space is the

standard deviation of the smallest-norm discount factor scaled by the safe return, i.e.,

SHPi = R0

√
var(mi) for i = a, b , (14)

which imply

APRmax =
√

SHP2
a − SHP2

b . (15)

Therefore, as one enlarges the payoff space from Xb to Xa, the improvement in the squared

Sharpe ratio is the squared maximal appraisal ratio APRmax. The relation between the

appraisal ratio and the Sharpe has appeared in the literature under various specialized

assumptions. Goeztmann et al. (2007) derive this relation for the case where security prices

are discrete (see equation 7 in that paper) and markets are complete. In the case that

Xa consists of payoffs of the benchmarks and a set of additional assets, APRmax = 0 if

and only if the efficient frontier of Xa is spanned by Xb, as discussed by Huberman and

Kandel (1987). The simplest version of equation (15), in which Xb consists of only the

market return and Xa includes an additional stock return, can be traced back to Treynor

and Black (1973).

In summary, Theorem 1 covers or implies multiple existing results in the literature.

Besides its generality, the theorem allows novel applications, which will appear in Sections

3 and 4, in the analysis of maximal performance ratio and derivative trading.
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2.2 Maximizing alpha

Theorem 1 considers maximization of the appraisal ratio and offers the solution to the

maximization of alpha itself. Indeed, because alpha scales with leverage, if there is a zero

price payoff with nonzero alpha, then there are payoffs with arbitrarily large alphas. In

practice, such large alphas may not be attainable at least for two reasons: limits on risk

and collateral requirements, both of which imply constraints on leverage.

First, money managers may not exceed a certain level of risk. A typical risk management

mandate entails that the tracking error, defined as the standard deviation of the hedged

payoff, be lower than a certain upper bound TE:√
var(rx − r′mβ) ≤ TE

Thus, a manager with such a mandate will choose a payoff of the form:

x = z + TE
mb −ma√

var(mb)− var(ma)

where z is an arbitrary payoff in the benchmark space. Such a choice scales a payoff with

maximum appraisal ratio to the maximum tracking error TE allowed, obtaining a maximum

alpha equal to the maximum appraisal ratio, times the maximum tracking error:

αmax = APRmaxTE = R0

√
var(mb)− var(ma) TE

Second, managers face collateral requirements, which depend on the riskiness of the

total position3, and effectively limit their leverage. Assume, as an approximation, that a

zero-price payoff requires a margin proportional to its standard deviation, and denote by

c the margin required for a unit standard deviation. Thus, the manager will concentrate

capital on the position which maximizes alpha per unit of standard deviation, and this

position is precisely mb −ma. If the manager’s capital is w, the alpha-maximizing position

is:

x =
w

c

mb −ma√
var(mb)− var(ma)

and the corresponding maximum alpha is directly proportional to the available capital w,

and inversely proportional to the margin requirement c:

αmax = APRmax
w

c
= R0

√
var(mb)− var(ma)

w

c

3As an example, since April 2007 the CBOE calculates the daily collateral requirement of a position
in options with the same underlying as the maximum loss on the total position, assuming changes in the
underlying asset ranging from -8% to +6% for a broad-based index and from -10% to 10% for a non broad-
based index. See http://www.sec.gov/rules/sro/cboe/2006/34-54919.pdf
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In summary, the maximal alpha that can be achieved in practice is limited by institutional

constraints, which imply directly or indirectly leverage bounds. With such bounds, the

optimal strategy is to invest the maximum allowed amount in the payoff maximizing the

appraisal ratio.

3 Maximal Performance in a Complete Market

This Section studies the implications of Theorem 1 under the standard assumption that the

benchmark assets follow a geometric Brownian motion. The first subsection offers explicit

formulas for the maximal Sharpe and appraisal ratios in general, and then approximates

these results for the limiting case that the observation interval is small. The intuition of

this limiting case is transparent. The second subsection offers numerical examples, demon-

strating that under the Black Scholes assumptions it would typically take a long time for

a manager who has no superior information and augments his portfolio with options to

produce a positive alpha which is statistically significant.

3.1 Theoretical results

As equation (15) shows, the maximal appraisal ratio can be calculated from the Sharpe

ratios of Xa and Xb. The calculation of the Sharpe ratio of Xb is straightforward from the

moments of the benchmark returns because

SHPb =
√
E[r′m][var(rm)]−1E[rm] . (16)

Similarly, if the attainable space Xa is spanned by a finite number of observable asset

returns, it is straight forward to calculate the Sharpe ratio SHPa from the moments of asset

returns in Xa. The maximal appraisal ratio APRmax then follows from equation (15) as the

square-root of the difference between SHP2
a and SHP2

b .

Since the space Xa may contain infinitely many security payoffs, the Sharpe ratio of

Xa is more difficult to obtain than that of Xb. In this section, for a given benchmark

space Xb, the attainable space Xa is assumed to be the set of all L2-integrable functions of

the benchmark payoffs. That is, Xa = L2(P,Ω), where L2(P,Ω) is the set of all squared-

integrable functions of the benchmarks. In this case, the market of Xa is said to be complete,

and ma is the minimum-norm stochastic discount factor in L2(P,Ω).

An important practical issue is the analysis of the payoff space which can be generated

from trading derivatives on the benchmark assets. It is taken up next under the assumption

that the prices of the benchmark assets follow a multivariate geometric Brownian motion.

If the vector of the instantaneous annualized expected returns on the benchmark assets
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is µ = (µ1, · · · , µk)′, under the assumption of geometric Brownian motion, the price of

benchmark asset j at time t is

Sj,t = Sj,0e
(µj−0.5σ2

j )t+σBjt 1 ≤ j ≤ k . (17)

where Bjt is a Brownian motion, σj is its annualized volatility, and Sj0 is the price at t = 0.

The Brownian motions can be correlated. Let the correlation between Bjt and Blt be ρil.

Then, Bt = (B1t, · · · , Bkt)′ ∼ N(0k, tΣ), where the covariance matrix Σ has ρjlσjσl as the

element on the jth row and lth column and is assumed positive-definite. During the time

interval [t , t + ∆t], where time is measured in years, the return on benchmark asset j is

Rj = Sj,t+∆t/Sj,t. If the instantaneous annualized safe rate is denoted by r, the return on

the safe asset during the same time interval is

R0 = er∆t . (18)

The parameters of the geometric Brownian motion are restricted by the moments of

the benchmark excess returns. Since the jth benchmark excess return is rj = Rj − R0, its

expectation satisfies

E[rj ] = er∆t
(
e(µj−r)∆t − 1

)
, j = 1, · · · , k . (19)

The variance of the jth benchmark excess return satisfies

var(rj) = e2r∆te2(µj−r)∆t
(
eσ

2
j ∆t − 1

)
, j = 1, · · · , k . (20)

The covariance between rj and rl satisfies

cov(rj , rl) = e2r∆te[(µj−r)+(µl−r)]∆t
(
eρjlσjσl∆t − 1

)
(21)

for j, l = 1, · · · , k; j 6= l .

If the moments of the excess returns are given, equations (18)–(21) can be used to obtain the

parameters in the geometric Brownian motion. The converse also holds: if the parameters

of the geometric Brownian motion are given, these equations can be used to calculate the

first two moments of rm and then be substituted into equation (16) to obtain the Sharpe

ratio of Xb.

Under the assumptions of geometric Brownian motion, which implies complete market,

the maximal appraisal ratio can be obtained from equation (15) as derived in the Appendix.

The result is as follows.

Theorem 2 If the prices of the benchmark assets follow the geometric Brownian motion

(17), the Sharpe ratio generated from derivatives or delta trading strategies is

SHPa =

√
e(µ−r1k)′Σ−1(µ−r1k)∆t − 1 . (22)
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Once the Sharpe ratios of Xb and Xa are calculated, the maximal appraisal ratio can be

obtained from equation (15), which becomes

APRmax =
√
e(µ−r1k)′Σ−1(µ−r1k)∆t − E[r′m][var(rm)]−1E[rm]− 1 , (23)

where E[rm] and var(rm) can be calculated from equations (19)–(21). An important feature

of the APRmax in equation (23) is that it approaches to zero if the observation interval ∆t

shrinks to zero or if the vector of risk premiums µ− r1k drops to zero.

To see the exact relation between the maximal appraisal ratio and the risk premium,

expression (23) is simplified. Without loss of generality, the benchmark excess returns can

be chosen orthogonal to each other. In this case, ρjl = 0 for all j 6= l. Denote the annualized

Sharpe ratio of the jth benchmark by sj , which equals (µj− r)/σj , and let s = (s1, · · · , sk)′.
The maximal appraisal ratio becomes

APRmax =

√√√√√e(s′s)∆t −
k∑
j=1

e−2sjσj∆t(esjσj∆t − 1)2(eσ
2
j ∆t − 1)−1 − 1 . (24)

The first-order approximation of (24) in terms of ∆t is

APRmax =
{
s′[Σ + 2Diag(µ− r1k)]s+ (s′s)2

}1/2 ∆t√
2

+ O(∆t2) , (25)

where Diag(µ−r1k) is the k×k diagonal matrix in which the jth diagonal element is µj−r.
In the case of a single benchmark (setting k = 1 and dropping off the subscripts of µ1, σ1

and s1), the formula of the maximal appraisal ratio simplifies to

APRmax =
√
es2∆t − e−2sσ∆t(esσ∆t − 1)2(eσ2∆t − 1)−1 − 1 , (26)

and its first-order approximation is

APRmax = (µ− r + s2)
∆t√

2
+ O(∆t2) . (27)

According to the approximation, the maximal appraisal ratio is positively associated with

the annualized risk premium µj−r and the annualized Sharpe ratio sj of each benchmark.4

It is also positively associated with time interval between the evaluator’s two consecutive

observations. This is reasonable because a longer observation period increases the manager’s

attainable space by delta trading or, equivalently, allows to more effectively exploit the non-

linearity associated with the option payoffs.

4Figure 1 helps understand the relation between the appraisal ratio and the risk premium. Holding all
other parameters fixed, an increase in the risk premium implies an increase in the slope of the dashed line
representing the index return as well as an increase in the Sharpe ratio. Therefore the intercept of the dotted
regression line will increase, thus showing a higher alpha. Since other parameters are being held constant,
it follows that a higher alpha is associated with a higher appraisal ratio.
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The previous formulas remain valid in the presence of additional securities other than

the benchmarks, which carry additional unpriced idiosyncratic risk. Put differently, us-

ing options on individual securities cannot improve the appraisal ratio if the returns on

the benchmark assets span the risk factors and the options on the benchmarks are used

optimally.

To understand this argument, consider a market where, in addition to the k log-normally

distributed benchmark asset returns, rjt for 1 ≤ j ≤ k, there are n securities with excess

returns rit for k + 1 ≤ i ≤ k + n, given by:

rit =
k∑
j=1

βijrjt + εit,

where βij are constants, εit for k+ 1 ≤ i ≤ k+n are random variables that are independent

of the benchmarks and of each other, and E[εit] = 0. In other words, these securities

are exposed to unpriced idiosyncratic risks. Both discount factors price all the additional

securities because E[εit] = 0 and εi is uncorrelated with the benchmark returns. Therefore,

the discount factors ma and mb are the same as in the market consisting of the benchmark

assets alone.

3.2 Numerical results

In performance evaluation the benchmark payoffs are often the factors used in the studies of

the linear asset pricing models. The first factor is usually the market factor (MKT), which

is the excess return on the value-weighted aggregate equity index compiled by the Center of

Research on Security Prices (CRSP). Three additional factors are used by researchers, e.g.,

Fama and French (1993, 1996), to explain average stock returns: the firm-size factor (SMB)

captures the firm-size premium documented by Banz (1981), the book-to-market factor

(HML) captures the value premium presented by Stattman (1980), and the momentum

factor (MOM) captures the profit of momentum trading strategy reported by Jegadeesh

and Titman (1993). The monthly observations of these factors are available at Kenneth

French’s web site, which also provides the returns on one-month Treasury bills (TBL).

The sample of monthly excess returns on the factors from January of 1963 to December of

2006 are displayed in panel A of Table 1. Panel B reports the geometric Brownian motion

parameters that are consistent with the sample moments. These parameters are solved from

equations (18)–(21).

Consider three benchmark spaces: (1) XCA
b is the benchmark space spanned by the

MKT factor (CA alludes to the CAPM) and the safe return; (2) XFF
b is the benchmark

space spanned by the MKT, SMB and HML factors and the safe return; (3) XMM
b is

the benchmark space spanned by the MKT, SMB, HML and MOM factors and the safe
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return. The Sharpe ratios of these benchmark spaces can be calculated using equation (16)

based on the parameters in Table 1 and various assumptions on the time interval ∆t of

observations. Column B of Table 2 reports the Sharpe ratios of the benchmark spaces for

monthly (∆t = 1/12), quarterly (∆t = 1/4) and semiannual (∆t = 1/2) observations. As

expected, a larger benchmark space or a longer observation period are associated with higher

Sharpe ratios. For example, the Sharpe ratio of XMM
b is 0.631 for quarterly observation,

higher than the ratio for monthly observation, which is 0.367. The quarterly Sharpe ratio

of XMM
b is also higher than the Sharpe ratio of XFF

b for the same quarterly observation

frequency, which is 0.463.

Let Xi
a be the payoff space that contains all the functions (with finite second moment)

of the benchmarks in Xi
b, for i = CA, FF, and MM. In the absence of derivative securities

on these factors, the payoffs in XCA
a , XFF

a XMM
a must be achieved by delta trading. The

Sharpe ratios of the payoff spaces can be calculated using equation (22) and the parameters

in Table 1. Column C of Table 2 reports the Sharpe ratios of the attainable spaces for

monthly, quarterly and semi-annual observations. Again as expected, a larger attainable

space or a longer observation period are associated with higher Sharpe ratios, and the Sharpe

ratio of an attainable space is always higher than its corresponding benchmark space. For

quarterly observations, as an example, the Sharpe ratio of XMM
a is 0.708, higher than the

Sharpe ratio of XFF
b , which is 0.631.

By equation (15), the squared difference between the Sharpe ratios of the benchmark and

attainable spaces gives the maximal appraisal ratio (namely, APRmax), which is reported in

column D of Table 2. In each observation frequency, the maximal appraisal ratio increases

at least four fold when the SMB and HML factors are added to the benchmark space.

When the MOM factor is further added to the benchmark space, the maximal appraisal

ratio is nearly doubled. For example, in quarterly observations, APRmax is 0.037 when the

benchmark space is XCA
b but increases to 0.171 when the benchmark space is enlarged to

XFF
b . It goes up to 0.322 when the MOM factor is added. As shown earlier, the strategy

maximizing the appraisal ratio also maximizes alpha, controlling for risk. Column E reports

the maximal alpha, subject to the constraint that the annualized tracking error does not

exceed a generous 10%. (In practice, money managers aim to have a tracking error no

greater than 2–3%.)

The positive alpha is difficult to realize if one examines the statistical significance of

alpha samples and the probability for a sample to be negative. The t statistic of alpha can be

approximated by the product of APRmax and the square-root of the number of observations

n. A significant t statistic at 95% confidence level requires
√
n × APRmax > 1.96. Then,

n = (1.96/APRmax)2 is approximately the minimum number of observations to obtain a

significant t statistic. These numbers are reported in column F of Table 2. Column G
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reports the probability that alpha turns out to be negative. It is noteworthy that these

numbers are calculated assuming zero trading costs, an assumption that favors a higher

alpha and a lower probability of alpha being negative than what one can realistically expect.

Two patterns emerge from Table 2: as the benchmark space increases and as the ob-

servation period increases the appraisal ratio increases (and therefore the minimal number

of years to obtain a significant t statistic decreases). The appraisal ratio increases because

the risk premium and Sharpe ratio of the benchmark space increase as more indices are

added to the benchmark space. Table 1 shows that HML and MOM factors have relatively

high growth rates. Table 2 shows that inclusion of HML and MOM evidently increases the

Sharpe ratio. As indicated by Theorem 2 and equation (27), the appraisal ratio is positively

related to the risk premia of benchmark assets and the Sharpe ratio of the benchmark space.

Wang and Zhang (2003) anticipate these observations. Studying the frequency and

magnitude with which pricing kernels associated with certain benchmarks take on negative

values, they note that such negative values are relatively rare and small when the benchmark

space is spanned by the market portfolio but become increasingly more frequent and larger

as SMB and HML are added as benchmark portfolios. Negativity of the pricing kernel

suggests that by trading options one can outperform the returns spanned in the benchmark

space.

4 Performance Enhancement through Option Writing

Figure 1 suggests that the most intuitive way to appear to be out-performing is by writing

options. This section explores this intuition, arguing that one can deliver the optimal

policy exclusively by writing options. The next subsection applies Theorem 1 to describe

the optimal option writing strategy. The relation between the pricing of the options and the

process generating the benchmark returns is important for the assessment of the appraisal

ratio that the optimal policy is likely to generate.

Subsection 4.1 studies these maximal appraisal ratios under the assumption that the

S&P 500, Nasdaq 100 and Russell 2000 indices follow a geometric Brownian motion and

that therefore the Black-Scholes formula correctly prices options on these indices with the

volatility of the underlying geometric Brownian motion process. Under these assumptions

it turns out that a fund manager who cannot predict future returns is unlikely to generate a

statistically reliable alpha by trading derivatives, even though a positive alpha is expected

ex ante.

Departures from geometric Brownian motion price evolution and the associated Black-

Scholes option pricing have been studied, e.g., in Jones (2006) and Broadie, Chernov and

Johannes (2007). Subsection 4.2 relaxes the geometric Brownian motion assumption and
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allows options to be priced at the actual implied volatility rather than at the volatility of

the stochastic process governing the underlying asset. In this set up option payoffs cannot

always be replicated by delta trading and therefore options are not redundant assets. In

this more general case it is possible to generate a statistically reliable alpha. A comparison

between this more general case and the preceding one indicates that an alpha is likely to

emerge even for the manager who cannot predict future returns not because of the non-linear

nature of the payoff on the options but because of market incompleteness, i.e., because the

option prices reflect departures from the assumptions in the Black-Scholes model.

4.1 When physical and implied volatilities coincide

Under the assumption of geometric Brownian motion, the solutions to the performance

maximization problem (6) are combinations of the benchmark payoffs and the variable

mb − ma, which is a nonlinear function of the benchmark payoff. When the benchmark

space consists of only one risky asset (in addition to the safe asset), the expression of the

optimal payoff as function of the benchmark return Rm can be derived.

Theorem 3 Assume that the benchmark space consists of only one risky asset and its

price follows a geometric Brownian motion with growth rate µ and volatility σ. Assume the

continuously-compounded safe rate is r. Then for any numbers γ and φ and any positive

number θ the payoff satisfying

x = γ + φRm − θf(Rm) , (28)

where

f(Rm) = cR−bm with b = (µ− r)/σ2 ; c = e[−r+0.5b(µ+r−σ2)]∆t , (29)

solves the optimization problem (6).

The payoff of the optimal strategy in equation (28) is a non-linear function of Rm

because the function f is non-linear. Notice that the first derivative of the function is

negative (f ′ < 0) and its second derivative is positive (f ′′ > 0). To show the nonlinear

nature of the optimal strategies, panel A of Figure 2 displays the excess return on one-

dollar investment in the strategy as a function of the rate of return on the benchmark

index. The parameters in the stochastic process of the index are µ = 11.43%, σ = 14.98%

and r = 5.59% per annum, which are the estimates for the market factor and T-bills rate

in Table 1. The parameter θ is set to 1. The parameter φ is chosen so that the strategy’s

delta with respect to the benchmark is 1. To make x a return on one-dollar investment, γ

is chosen so that the value of the strategy is 1. All the returns in the figure are annualized

by setting ∆t = 1.
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Panel B of Figure 2 displays the excess return on one-dollar investment in the optimal

strategy that is benchmark-neutral. In the benchmark-neutral strategy, φ is chosen so that

its delta with respect to the benchmark is zero, implying cov(rx, rm) ≈ 0. The parameter θ

is again set to 1, and γ is chosen so that the value of the hedged strategy is 1. Notice that

the excess return on the hedged strategy stays positive as long as the rate of return on the

benchmark is between −13% and 17%. This means that the hedged strategy is profitable

as long as the benchmark stays within the range around the current level. In practice, the

profitable range should be narrower due to transaction costs and borrowing rates that are

higher than the safe return. Losses will occur when the benchmark rises or drops outside

of the range.

The optimal strategy can be implemented by writing options on the benchmarks because

the nonlinear part f(Rm) can be replicated by a portfolio of call and put options. In fact,

integration by parts shows that for any K > 0 and any twice differentiable function f ,

f(Rm) = f(K) + f ′(K)(Rm −K)

+

∫ K

0
f ′′(k)(k −Rm)+dk +

∫ ∞
K

f ′′(k)(Rm − k)+dk . (30)

The first and second integrations in equation (30) sum the payoffs of long positions in

put and call options, respectively. Equations (28) and (30) indicate that the strategy that

achieves the highest appraisal ratio involves writing a set of options.

If K = 1 and θ = 1, the payoff of the performance maximizing strategy is

x̂ = γ̂ + φ̂Rm −
∫ 1

0
f ′′(k)(k −Rm)+dk −

∫ ∞
1

f ′′(k)(Rm − k)+dk (31)

where γ̂ = γ + (b − 1)c and φ̂ = φ + bc. The first integration of equation (31) is over

payoffs of out-of-the-money put options, and the second integration is over payoffs of out-

of-the-money call options. Therefore, the optimal strategy can be implemented by writing

out-of-the-money options on the benchmark.

The strategy in equation (31) can be approximated by taking positions in options with

discrete grids of moneyness k. For example, let ∆k = 1% and ki = i∆k. In this strategy

the position in the call or put options out of the money by 100|1−ki| percent is −f ′′(ki)∆k
units. For one-dollar investment in the strategy and the same parameters used in Figure

2, panel A of Figure 3 displays −f ′′(ki)∆k. Notice that it is an increasing function of ki.

Thus, the strategy of equation (31) shorts more puts than calls. Also, the strategy shorts

more puts when they are more out of the money. In contrast, the strategy shorts fewer calls

that are more out of the money.

In the strategy in equation (31) the value of the short position on an option decreases

fast as the option moves further out of the money. Use h(k) to denote the price of a call
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(put) options on Rm with strike price k ≥ 1 (k < 1) and maturity ∆t. Then, h(ki)f
′′(ki)∆k

is the premium collected from writing the call or put option that is out of the money by

100|1 − ki| percent. If the parameters are chosen so that the value of the payoff x̂ is one

dollar, then −h(ki)f
′′(k)∆k is the portfolio weight on the options with moneyness ki. The

portfolio weights are plotted in panel B of Figure 3 which shows that in terms of option

premiums collected, the strategy writes more options near the money than the options far

out of the money.

The short leg of the performance-ratio maximization strategy implies that its delta, the

sensitivity of the strategy’s value to the index price, decreases as the time passes or as the

index price rises. The delta of the strategy decreases as time passes because the delta of

each call or put option is an increasing function of the time to maturity. Since each call or

put option has a positive gamma, which is the sensitivity of delta to the index price, the

strategy has a negative gamma, implying that its delta is a decreasing function of the index

price. Figure 4 illustrates the delta of the performance maximization strategy for different

levels of the index price and different time to maturity.

The maximal performance ratios relative to the S&P 500 (SPX), Nasdaq 100 (NDX),

and Russell 2000 (RUT) indices are examined next because these indices often serve as

benchmarks for evaluation of actively managed funds and options on these indices are

actively traded. The daily realized index returns from February 23, 1985 to April 30, 2007,

are used to estimate the relevant parameters. The resultant Sharpe ratios of the benchmark

spaces and of the attainable spaces are reported in Table 3. The maximal appraisal ratios

of the payoff spaces that contain all the derivatives on the benchmarks as well as the

approximate number of years required to attain significant expected t statistics are also

provided.

The attainable payoff spaces underlying the reported calculations are larger than the

actual available derivative payoff spaces in that the calculations assume the availability of all

derivatives. Actual index options are not available at all strike prices. Thus, the estimated

Sharpe ratios of the attainable spaces and the appraisal ratio are biased upwards.

The expected alphas of the Sharpe ratio-maximizing strategies analyzed here are positive

and substantial in magnitude. Table 3, however, suggests that it should be difficult to

generate statistically significant alpha from trading options on the S&P 500, Nasdaq 100 and

Russell 2000 indices. The results for MKT in Table 2 and those for SPX in Table 3 are similar

because the returns of the two indices are highly correlated. More generally, the messages

of Tables 2 and 3 are similar. It will take over a thousand years to generate statistically

significant alpha if it is estimated from monthly returns. For example, with the SPX as

the benchmark, 1803 years is the expected minimum time required to obtain a statistically

significant alpha by writing options on the SPX. If alpha is estimated from quarterly or
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semiannual returns, it takes hundreds of years to generate statistically significant alpha by

trading derivatives. Therefore, the attempt to generate a statistically significant alpha by

trading index options is unlikely to succeed, so long as the benchmark returns follow a

multivariate geometric Brownian motion and options are priced accordingly.

Table 4 follows the structure of Table 3, but in it the Fama-French portfolios span the

benchmark spaces. The table reflects a purely theoretical exercise because its construction

not only ignores transactions costs (as does the construction of the other tables) but also

it ignores the current absence of tradable options on the Fama-French portfolios. The

results—especially for the case of 2 × 3 portfolios—indicate more room to generate alpha

with lower uncertainty, if options on these portfolios were available or the cost of trading

these portfolios is negligible.5

4.2 When physical and implied volatilities differ

The results reported in subsection 4.1 appear to be inconsistent with the practical experience

in generating alpha by writing index options. Lo (2001) reports a high Sharpe ratio from a

strategy which entails holding the S&P 500 index and writing put options. In a similar vein,

Hill et al. (2006) report that a large alpha can be obtained from the strategy of buying the

S&P 500 index and writing index call options. The attractiveness of the strategy led the

Chicago Board of Options Exchange (CBOE) to create the BuyWrite monthly index (BXM)

to track the return from the strategy of writing one-month at-the-money call options every

month. Indeed, the regression of monthly excess returns on the BXM index with respect to

the S&P 500 delivers significant t statistics for the period from January 1990 to December

2005 (see Table 5). The performance of the BXM index is especially good in the first

sub-period.

The results reported in Table 5 are based on actual option prices as oppose to theoret-

ical Black-Scholes prices. Empirical regularities inconsistent with the Black-Scholes model

highlights a number of stylized facts. First, the implied volatility index VIX is consistently

higher than the realized volatility of the underlying. Second, the implied volatility is higher

for options more out-of-the-money they are (the so-called volatility smile) or the lower their

strike prices (the volatility skew). Third, both implied and realized volatilities exhibit ample

time-variation across different strikes and maturities. The deviations from the Black-Scholes

model as well as the nonlinearity of the payoffs may account for the excess performance of

the BXM index. The rest of this subsection will show that the first stylized fact (i.e., the

implied volatility being higher than the realized volatility) alone can account for a large

part of the excess performance of the BXM index.

5We are grateful to the referee, who suggested considering this spanning benchmark spaces by Fama-
French portfolios.
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To apply the framework developed in this paper to the performance of the BXM index,

one needs to identify the pricing kernels mb and ma. For simplicity, assume here a single

risky benchmark asset whose return has a log-normal distribution. Options on it are priced

according to the Black-Scholes formula, but possibly with a different implied volatility.

Only options with single one-period maturity are considered and therefore there is no room

for a term structure of implied volatilities. Moreover, all options of the same maturity are

assumed to have the same implied volatility, thus abstracting from the volatility smile and

skew. With the options having implied volatility different from that of the underlying asset,

it is in general not possible to replicate the option payoffs by delta trading. Put differently,

with these assumptions it is also assumed that the benchmark assets do not complete the

market, and therefore options are not redundant assets.

In the market considered here investment is made at time t and the return is received

at time t+ ∆t. The continuously-compounded safe rate is r. The return on the risky asset

follows a log-normal distribution, i.e., the return is

Rm = e(µ−0.5σ2)∆t+σ
√

∆tψ . (32)

where ψ is a standard normal random variable under the physical probability measure P .

The parameters µ and σ are the physical growth rate and the physical volatility of the risky

asset, respectively. From equation (32), it does not follow that the evolution of asset prices

is governed by a geometric Brownian motion.

Derivative securities are also available in this market. The volatility according to which

they are priced is the implied volatility, denoted by σ̂. It is different from the physical

volatility σ. Let λ = σ̂/σ. Assume that all derivatives on the asset price with time-

to-maturity ∆t are priced by the implied volatility σ̂. Then, the risk-neutral probability

measure Q satisfies

EQ[Rm] = er∆t , (33)

varQ(logRm) = σ̂2∆t . (34)

Let the benchmark payoff space Xb be spanned by the safe return and the return on the

risky asset. To evaluate the performance generated from trading derivatives, let Xa be

the payoff space spanned by Xb and its derivative securities, i.e., Xa is spanned by all the

functions f(Rm) with finite second moments. The assumed completeness of Xa implies that

ma is the unique SDF and thus has the smallest-norm.

Theorem 4 Under the assumptions in equations (32)–(34), if 0 < λ <
√

2, then the

maximal appraisal ratio is

APRmax(λ) =
[
λ−1(2− λ2)−1/2eδ

2(2−λ2)−1∆t
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− e−2sσ∆t(esσ∆t − 1)2(eσ
2∆t − 1)−1 − 1

]1/2
. (35)

where s = (µ− r)/σ and δ = s+ σ(λ2 − 1)/2.

When the implied volatility equals the physical volatility (i.e., λ = 1), the above equation

reduces to equation (26). As the time interval ∆t approaches zero, the maximum appraisal

ratio approaches

lim
∆t→0

APRmax(λ) =

√
1

λ
√

2− λ2
− 1 . (36)

The above limit is 0 if λ = 1 and is an increasing function of λ for λ ∈ [1,
√

2). Therefore,

when the implied volatility is higher than the actual volatility, trading derivatives can lead

to a high appraisal ratio even when the observation interval is very short. It is however

difficult to accomplish this when the implied and physical volatilities are the same.

Table 6 shows that the relatively high implied volatility during 1990–2005 offered an

opportunity for the derivative trading strategy to perform well. During this period, the

historical volatility estimated from the daily S&P 500 index is 16%, whereas the average

VIX is 19%, giving λ = 1.21. Using equation (35) of Theorem 4, the maximal appraisal ratio

of monthly returns during the period is
√

192× APRmax = 5.77. This is much higher than

the realized performance ratio of 2.20 reported in Table 5 for the BXM index, but it points

in the right direction. Various explanations for the discrepancy between the theoretical and

actual performance ratios are readily available. First, the strategy in BXM—buying S&P

500 index and selling at-the-money call options—does not necessarily achieve the maximal

performance, whereas the strategy underlying the numbers in Table 6 is optimal. Second,

the theoretical analysis ignores temporal variations in the implied and physical volatilities.

Third, the realized performance is based on a finite sample instead of an infinite sample as

assumed for APRmax. These discrepancies between the assumptions in Theorem 4 and the

data could lead to the difference between the numbers reported in Tables 5 and 6.

One pattern is common to Tables 5 and 6, namely that performance of the strategy

was stronger in the earliest sub-period and deteriorated subsequently. Table 6 also shows

that the opportunity offered by the high implied volatility declined over time. The ratio

of implied-to-physical volatility was high (λ = 1.39) in the first five years of the sample

in the table, and fell in later sub-periods. Correspondingly, the maximal appraisal ratio

drops from 14.01 in the first sub-period to 1.48 in the last sub-period. The decline of the

implied volatility relative to the physical volatility might have contributed to the weaker

performance of the BXM during the last two sub-periods. Possibly the decline in the

difference between implied and actual volatility reflects the entry of arbitragers who sought

to profit from this difference.
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5 Exposure-switching strategies

The standard approach to performance evaluation entails the estimation of the regressions

of the managed portfolio’s excess returns on the benchmark excess returns. Can time- and

performance-dependent variation in the exposure of the managed portfolio to the benchmark

enhance estimated performance? A desired property of a performance estimation procedure

is that if benchmark returns are not predictable, then switching exposure between periods

should not generate an alpha.

An exposure-switching managed portfolio policy may lead to a biased estimation of the

portfolio’s risk (beta) which in turn renders the regression misspecified. A misspecification

of the regression can lead to a positive estimate of the regression’s intercept which even in

the absence of the ability to trade in anticipation of future returns would lead to the false

inference that the portfolio manager has superior performance.

In a simulation, Goetzmann at al. (2007) report that switching exposure to a single-

index benchmark can generate an alpha although the benchmark returns are identically

and independently distributed (IID). Under the assumption of IID returns, this section

establishes a limit on the ability to bolster the fund performance by switching benchmark

exposure between observation periods. Two cases are considered in this section. In the

first case the observation interval is fixed (e.g., a month), and the number of observations

is very large, implying a very long time horizon T . It will be shown that switching risk

exposure results in a lower appraisal ratio than the maximal one covered in Theorem 1. In

the second case the time horizon T is fixed but the observation interval ∆t is very small.

It will be shown that alpha generated by switching risk exposure deteriorates as the time

horizon T gets longer.

5.1 With Fixed Observation Interval

Consider a fund manager seeking to enhance the performance of a trading strategy by

cleverly changing benchmark exposures over time. Let rmi be the excess benchmark re-

turn during the time period [(i − 1)∆t, i∆t], with mean η and variance δ2. The sequence

{rmi}i=1,···,n is assumed IID, i.e., the terms in the sequence have identical and indepen-

dent distributions. Let rzi be the excess return of any payoff z ∈ Xa for the time period

[(i−1)∆t, i∆t]. Assume that the sequence {rzi}i=1,···,n is also IID, and, without loss of gen-

erality, that the excess return rzi is uncorrelated with the benchmark returns. Denote the

mean of rzi by a and its variance by h2. Consequently, the appraisal ratio of this strategy

is a/h, and, by Theorem 1 is no greater than APRmax.

Suppose the fund manager attempts to further enhance the appraisal ratio of the strategy
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z by combining it with a strategy with time- and performance-dependent exposure to the

benchmark. The total excess return of the fund takes the form of rxi = βirmi + rzi, with βi

as a function of the past realizations of {βj}j=1,···,i−1, {rmj}j=1,...,i−1, and {rzj}j=1,...,i−1.

With n periods of observed returns, the OLS regression of rxi on rmi produces an

estimated alpha (denoted by α̂n), an estimated beta (denoted by β̂n), and the appraisal

ratio (denoted by ÂPRn), which is the ratio of α̂n to the estimated tracking error σ̂n. The

next theorem proves that in the long run switching benchmark exposures only increases

tracking error, thereby worsening, not enhancing the appraisal ratio or the Sharpe ratio.

Theorem 5 Assume that rmi has a finite fourth moment and that limn→∞
1
n

∑n
i=1 β

k
i exists

for k ≤ 4 and positive for k = 2, 4. Then, as n approaches to infinity, the alpha and the

appraisal ratio converge, and the limits are

lim
n→∞

α̂n = a (37)

lim
n→∞

ÂPRn =
a√(

1 + η2

δ2

)
(h2 + ρ(η2 + δ2))

(38)

where ρ is given as

ρ = lim
n→∞

1

n

n∑
i=1

(βi − β̄n)2 with β̄n =
1

n

n∑
i=1

βi . (39)

The theorem implies that lim ÂPRn < a/h, where a/h is in fact the appraisal ratio of

the payoff z. This inequality shows that it is impossible to improve long-run performance

by switching the benchmark exposure between observation periods if each period has fixed

length ∆t (e.g., a month or a quarter).

5.2 With Fixed Time Horizon

At variance with the preceding result, benchmark exposure switching can lead to positive

alpha if the time horizon T is fixed and the observation interval ∆t is very short, as will

be demonstrated in the next theorem. Suppose the price of the benchmark asset follows a

geometric Brownian motion:

St = S0e
(µ−0.5σ2)t+σBt , (40)

where Bt is a Brownian motion. It follows from Ito’s lemma that the asset’s instantaneous

return, dXt = dSt/St, follows the diffusion process

dXt = µdt+ σdBt . (41)
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If βt is the benchmark exposure of the fund at time t, the instantaneous fund return satisfies

dYt = βtdXt (42)

Let n be the number of times to observe the excess returns of the benchmark and the

fund and ∆t = T/n be the length of time between two observations. Regression of the

observed fund return on the observed benchmark returns gives the intercept α̂n and slope

β̂n. The next theorem shows how to choose βt to maximize α̂n asymptotically.

Theorem 6 Consider all the strategies with benchmark exposures βt bounded between βmin

and βmax. Their maximal expected asymptotic alpha is

maxE
[

lim
n→∞

α̂n
]

=

√
2

9πT
σ(βmax − βmin) . (43)

The maximum is achieved by a strategy that switches its benchmark exposure β∗t between

the lower and upper bounds:

β∗t =

{
βmin , if Bt ≥ 0
βmax , if Bt < 0 .

(44)

The strategy with the exposure β∗t in equation (44) is a simple bang-bang strategy: choose

the lowest feasible exposure to the benchmark when the cumulative excess return to date

is positive, and the highest feasible exposure to the benchmark when the cumulative return

is negative. The maximum expected asymptotic alpha in Theorem 6 is proportional to the

volatility of the benchmark and the range of exposures. This is intuitive; higher volatility

and a range of exposures allow a larger payoff space to be generated from dynamic strategies.

The apparent similarity of Theorem 6 and Theorem 1 notwithstanding, they are different

in several ways. Indeed, if the optimal strategy in Theorem 1 is achieved by delta trading,

the strategy has dynamic exposure to the benchmark, similar to the strategy in Theorem 6.

However, trading occurs at the same frequency of the observations in Theorem 6, whereas

in Theorem 1 trading can be more frequent than observations. In addition, the observation

interval ∆t in Theorem 1 is fixed, whereas it shrinks to zero in Theorem 6. Moreover, the

maximum expected asymptotic alpha in Theorem 6 is inversely proportional to the square-

root of the time horizon T . As the time horizon increases, the alpha generated by switching

benchmark exposure is pushed toward zero.

A strategy similar to Theorem 6 is devised by Goetzmann et al (2007). Choosing

µ = 10%, σ = 20%, βmin = 0.5, βmax = 1.5, and T = 5 years, they report an average alpha

of 2.05% in 10,000 simulation runs. The average Sharpe ratio of their dynamic strategy is

0.673, slightly larger than the Sharpe ratio of 0.6 delivered by a simple investment strategy
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in the benchmark. Applying the same set of parameters to the right hand side of equation

(43) gives

maxE[ lim
n→∞

α̂n] =
5.32%√

T
=

5.32%√
5

= 2.38% , (45)

which is not much higher than the average alpha obtained by Goetzmann at al., suggesting

that their alpha is close to the maximum that can be generated by switching beta.

Although the strategy in (44) is only optimal with continuous trading, its performance

with discrete trading can be easily evaluated through simulation. Another important reason

to do simulation is to evaluate the risk of the strategy in Theorem 6. Notice that Theorem

6 only demonstrates the positive expected alpha but says nothing about its uncertainty.

Figure 5 presents the simulation of the optimal exposure-switching strategy.

Each point in Figure 5 corresponds to the annualized alpha and its tracking error in one

of 100,000 simulation runs of the optimal strategy. The average alpha of 2.33% is consistent

with the 2.05% reported by Goetzmann et al and is only slightly below the asymptotic upper

bound of 2.38%, confirming that continuous-time results offer reasonable approximation for

monthly observations. Therefore, exposure-switching strategies can create non-trivial alpha.

In addition, it is possible to design a strategy that comes close to achieving the maximum

alpha of the exposure-switching strategy.

The uncertainty of alpha in the strategy is clearly shown by Figure 6. The slope of the

line connecting a point to the origin is the t statistics or the alpha of the corresponding

simulation run. The t statistic of only 13% of the runs is 1.65 or higher. Close to 15% of

the alphas are negative. Thus, although the exposure-switching strategy generates positive

alpha, it does not do so sufficiently often or compellingly safely.

According to Theorem 6, the asymptotic upper bound on alpha decreases with the time

horizon. For example, when T = 10, alpha should be expected to be below 5.32%/10 =

1.68% over average. Figure 6 presents results of 100,000 simulations for the parameter

set, except the horizon T varies from 2 to 20 years. The average alpha is sensitive to the

horizon and deteriorates as the horizon gets longer. However, the fraction of negative alphas

exceeds the fraction of significantly positive alphas for all horizons. Managers’ often-stated

mantra is that over a long run their strategies will win. A manager who considers building a

business around exposure switching strategy will however see his results weaken over time.

The enthusiasm for this strategy is tempered once one realizes that the expected fraction of

negative alphas is as big as the fraction of statistically significant and positive alphas and

that with longer horizons the expected alpha gets lower.
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6 Concluding Remarks

The maximization of alpha and the management of the associated risk are closely related

to the evaluation of actively managed funds, which amounts to addressing the following

question: are the returns on the funds unusually good in comparison with those available

by a portfolio of a given benchmark assets? Asset pricing theory states that if the space

of payoffs spanned by the benchmark assets satisfies certain regularity conditions, then

the question is equivalent to the question, are the returns on funds unusually good by the

standard of the stochastic discount factor (SDF) which prices all the assets in the benchmark

space?

This paper’s original motivation is the observation that some commonly used SDFs take

on negative values in some circumstances. Thus, they may price correctly the benchmark

assets, but will price incorrectly derivative securities on the benchmark assets—even assign

them negative prices. (A simple example is a security which pays one dollar when the SDF

is negative and zero otherwise. Priced by the SDF, its price must be negative, which cannot

be because the security entails no liability to its holder.)

This criticism is well known for linear asset pricing models. Typically, a linear pricing

model delivers period-by-period arbitrage-free pricing of existing assets (and portfolios of

these assets), given the factor structure of their returns. Dybvig and Ingersoll (1982) note

the possible negativity of the SDF of the CAPM and study some of its implications. Grin-

blatt and Titman (1989) point out that the nonlinear value function distorts Jensen’s alpha

in the CAPM. They argue that valuation models should have positive state price densities.

Trading existing assets and derivatives on them are closely related. Famously, Black and

Scholes (1973) and Merton (1973) show that trading of existing securities can replicate the

payoffs of options on these securities. Therefore, one should be careful in interpreting excess

returns of actively managed funds estimated from linear models because such funds trade

rather than hold on to the same portfolios. Examples of interpretations of asset management

techniques as derivative securities include Merton (1981) who argues that market-timing

strategies are akin to option trading, Fung and Hsieh (2001) who report that hedge funds

using trend-following strategies behave like a look-back straddle, and Mitchell and Pulvino

(2001) who report that merger arbitrage funds behave like an uncovered put.

Motivated by the challenge of evaluating rule-based trading strategies, Glosten and Ja-

gannathan (1994) suggest replacing the linear factor models with the Black-Scholes model.

Wang and Zhang (2003) study the problem extensively and develop an econometric method-

ology to identify the problem in factor-based asset pricing models. They show that a linear

model with many factors is likely to have large pricing errors over actively managed funds,

because empirically the model delivers an SDF that allows for arbitrage over derivative-like
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payoffs.

Lo (2001) devotes a section to dynamic risk analysis in which he offers a series of

numerical examples of how a fund can write options or equivalently trade the benchmark

asset and thereby appear to have superior performance. Goetzmann et al. (2007) also study

the ability of money managers to manipulate performance measures, and conclude that “a

manager that seeks to manipulate many of the more popular measures can indeed produce

very impressive performance statistics.”

This paper considers a general problem of performance evaluation, focusing primarily

on three closely related quantities: the appraisal ratio, the improvement of the Sharpe

ratio relative to the highest Sharpe ratio from a static strategy which invests only in the

benchmark assets, and the reliability of the estimated alpha (its t statistic).

The paper’s basic result establishes: (i) a formula for the maximal appraisal ratio, as-

suming a constant investment opportunity set and an identical investment strategy across

the observation intervals, a strategy which may include derivatives on the benchmark as-

sets; (ii) the strategy which produces the maximal appraisal ratio. This formula shows

the relation between the maximal improvement in the Sharpe ratio and the SDFs of the

benchmark space and the larger space from which the manager picks his strategy’s payoffs.

The set of payoffs which delivers that maximal improvement in the Sharpe ratio is given in

terms of the two SDFs.

Applying the basic result to a set-up in which the benchmark asset prices follow a

geometric Brownian motion with parameters matching those estimated from familiar index

returns (e.g., the S&P 500 returns), a money manager who uses options optimally will only

minimally enhance the measured Sharpe ratio of his fund if the options are priced according

to the Black-Scholes model. Another aspect of the basic result is that the alpha generated

by this manager will be statistically indistinguishable from zero unless he is followed by the

evaluator for many years.

Recognizing the possibility of generating positive alpha, in the absence of private infor-

mation, by trading only in the benchmark assets (as often as he wishes) and derivatives on

them, the paper studies the viability of such strategies by examining the maximum appraisal

ratio, which measures the reward relative to the risk. Exposure-switching strategies appear

more promising than those deploying options. Still, the magnitude of the generated alpha

and the ratio of negative to significantly positive alphas would lead a manager away from

using these techniques, even before he incorporates transactions costs into the analysis.

Options with prices which are at variance with the Black-Scholes model may open the

possibility of enhancing the Sharpe and appraisal ratios. But this is due not merely to the

non-linear nature of the options payoff, but to the violation of the assumption of geometric
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Brownian motion which is necessary for the validity of the Black-Scholes formula.

A Appendix

A.1 Proof of Theorem 1

As shown in Hansen and Jagannathan (1991) the stochastic discount factor mb satisfies

mb =
1

R0
− 1

R0
E[r′m](var(rm))−1(rm − E[rm]) . (A1)

It follows from equations (2), (3) and (A1) that the asymptotic alpha can be written as

α(x) = E[rxmb]R0, which gives equation (7) in Theorem 1 because E[rxma] = 0.

Being projected on rm and mb −ma, the return rx can be decomposed as

rx = γ + r′m β + (mb −ma)θ + ε (A2)

where ε is the residual of the projection. It follows that E[ε] = E[(mb − ma)ε] = 0 and

E[rmε] = 0k. Since mb −ma and rm are uncorrelated, β satisfies equation (3). In view of

equation (7), the decomposition gives

α(x) = R0E[(γ + r′m β + θ(mb −ma) + ε)(mb −ma)]

= θ‖mb −ma‖2R0 . (A3)

Once ‖mb −ma‖ is nonzero, α(x) is positive if and only if θ > 0.

The decomposition in equation (A2) also gives

var(rx − r′m β) = θ2‖mb −ma‖2 + ‖ε‖2 . (A4)

It then follows from equations (4), (A3) and (A4) that the appraisal ratio is

APR(x) =
θ ‖mb −ma‖2R0√
θ2‖mb −ma‖2 + ‖ε‖2

. (A5)

It has an upper bound ‖mb −ma‖ because

|θ| · ‖mb −ma‖2R0√
θ2‖mb −ma‖2 + ‖ε‖2

≤ ‖mb −ma‖R0 . (A6)

The upper bound is achieved when ‖ε‖ = 0. For any z ∈ Xb and θ > 0, the payoff

x = z + θ(mb − ma) has zero residual in projection (A2) and thus its appraisal ratio

APR(x) achieves the upper bound. This gives equation (9) in Theorem 1. It follows that

max{APR(x) : x ∈ Xa} = ‖mb −ma‖R0, which is equation (8) in Theorem 1.
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A.2 Proof of Theorem 2

Under the assumption of geometric Brownian motion, the unique (and hence the smallest-

norm) discount factor ma is the discounted Radon-Nikodym density of the risk-neutral

probability Q with respect to the physical probability:

ma = e−[r+0.5(µ−r1k)′Σ−1(µ−r1k)] ∆t−(µ−r1k)′Σ−1∆B , (A7)

where ∆B is the change of the Brownian motion from t to t+∆t, and 1k is a k-dimensional

vector with all components equal to 1 (see Karatzas and Shreve, 1998, section 1.5). Equation

(A7) is the key to the solution of the fund manager’s maximization problem. With this

equation, the variance of the stochastic discount factor is calculated as

var(ma) = e−2r∆t
(
e(µ−r1k)′Σ−1(µ−r1k)∆t − 1

)
. (A8)

A substitution this equation into (14) implies that the Sharpe ratio of Xa is

R0

√
var(ma) , (A9)

which gives equation (22).

A.3 Proof of Theorem 3

Under the assumption of geometric Brownian motion, the solutions to the performance

maximization problem (6) are linear combinations of the benchmark payoffs and the variable

mb − ma. The expression of the optimal solution can be derived in the case of a single

benchmark return Rm. In this case, the stochastic discount factor is

ma = e−[r+0.5(µ−r)2/σ2]∆t−[(µ−r)/σ2]σ∆B

= e−[(µ−r)/σ2]{[µ−0.5σ2]∆t+σ∆B}+{−r∆t+0.5(µ−r)(µ+r−σ2)/σ2}∆t . (A10)

It follows from equations (17) and (A10) that ma = f(Rm) where f(Rm) is defined in

(29). The optimal strategy also involves mb, which must be a linear function of Rm, i.e.,

mb = a + amRm for some constants a and am. It follows from equation (9) in Theorem 1

that the payoff in equation (28) is an optimal strategy to the maximization problem (6).

A.4 Proof of Theorem 4

The smallest-norm discount factor mb is given by (A1) and satisfies

var(mb) = e−2(µ+r)∆t(eµ∆t − er∆t)2(eσ
2∆t − 1)−1 . (A11)
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The unique stochastic discount factor (SDF) in Xa is the Radon-Nikodym density of the

risk-neutral probability Q with respect to the physical probability P , divided by the safe

return. The expression for the SDF is

ma = λ−1e−r∆t+0.5ψ2−0.5λ−2(ψ+δ
√

∆t)2 ,

where δ = (µ− r)/σ + 0.5σ(λ2 − 1) . (A12)

This is also the smallest-norm discount factor in Xa. The variance of ma is finite and

satisfies

var(ma) = e−2r∆t
(
λ−1(2− λ2)−1/2eδ

2∆t/(2−λ2) − 1
)
, (A13)

provided that λ ≤
√

2. It follows by equation (12) that the maximal appraisal ratio is (35).

A.5 Proof of Theorem 5

The assumption in the theorem implies the existence of number b satisfying equation (39)

and

lim
n→∞

1

n

n∑
i=1

βi = b (A14)

lim
n→∞

1

n

n∑
i=1

β2
i = b2 + ρ . (A15)

Let σ̂n be the estimated tracking error, which is the product of
√
n and the standard error

of the estimated alpha. To prove the theorem, it is sufficient to derive

lim
n→∞

α̂n = a (A16)

lim
n→∞

σ̂n =

(
1 +

η2

δ2

)
(h2 + ρ(η2 + δ2)) (A17)

because equation (38) will follow immediately from (A16) and (A17), since ÂPRn = αn/σ̂n.

To show equation (A16), the following limits are shown first:

lim
n→∞

1

n

n∑
i=1

rmi = η (A18)

lim
n→∞

1

n

n∑
i=1

r2
mi = η2 + δ2 (A19)

lim
n→∞

1

n

n∑
i=1

rxi = a+ bη (A20)

lim
n→∞

1

n

n∑
i=1

rmirxi = aη + b(η2 + δ2) . (A21)
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These equations give

lim
n→∞

β̂n =
1
n

∑n
i=1 rmirxi − ( 1

n

∑n
i=1 rmi)(

1
n

∑n
i=1 rxi)

1
n

∑n
i=1 r

2
mi − ( 1

n

∑n
i=1 rmi)

2

=
b(η2 + δ2)− η2b

η2 + δ2 − η2
= b . (A22)

Equation (A16) can then be obtained from equations (A18), (A20) and (A22) as

lim
n→∞

α̂n = lim
n→∞

(
1

n

n∑
i=1

rxi − β̂n
1

n

n∑
i=1

rmi

)
= (a+ bη)− bη = a . (A23)

Note that equations (A18) and (A19) immediately follow from the law of large numbers.

The derivation of equation (A20) applies a Lemma from Section 12.14 in Williams (1991),

which is a version of the strong law of large numbers for martingales:

Lemma: Let (Mn)n≥0 be a square-integrable martingale, and denote by An =∑n
i=1Ei−1[(Mi −Mi−1)2]. If An ↑ ∞ a.s., then Mn/An → 0 a.s.

To derive equation (A20), consider

1

n

n∑
i=1

rxi =
1

n

n∑
i=1

βirmi +
1

n

n∑
i=1

rzi

=
1

n

n∑
i=1

βi(rmi − η) + η
1

n

n∑
i=1

βi +
1

n

n∑
i=1

rzi . (A24)

The second term converges to bη by equation (A14), and the last one converges to a by

the law of large numbers. For the first term, observe that Mn =
∑n
i=1 βi(rmi − η) is an

L2 martingale, and that An =
∑n
i=1Ei−1[(Mi −Mi−1)2] = δ2∑n

i=1 β
2
i . Hence, the lemma

implies limn→∞Mn/An = 0. Since

lim
n→∞

Mn

An
= lim

n→∞

∑n
i=1 βi(rmi − η)

δ2
∑n
i=1 β

2
i

= lim
n→∞

1

n

n∑
i=1

βi(rmi − η) lim
n→∞

1

δ2 1
n

∑n
i=1 β

2
i

, (A25)

it follows from equation (A15) that

lim
n→∞

1

n

n∑
i=1

βi(rmi − η) = 0 . (A26)

In a similar fashion, one can obtain equation (A21) by writing

1

n

n∑
i=1

rmirxi =
1

n

n∑
i=1

βi(r
2
mi − E[r2

mi]) + (η2 + δ2)
1

n

n∑
i=1

βi +
1

n

n∑
i=1

rmirzi , (A27)
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which employed E[r2
mi] = η2 + δ2. The second term converges to b(η2 + δ2), and the third

one converges to aη by the law of large numbers and the assumption that rmi and rzi are

uncorrelated. The assumption of a finite fourth moment ensures that the martingale in the

first term is square integrable. Thus, it converges to zero by the lemma.

Now turn to equation (A17), which requires calculating the limit of

σ̂2
n =

∑n
i=1(rxi − α̂n − β̂nrmi)2

n− 2

1
n

∑n
i=1 r

2
mi

1
n

∑n
i=1 r

2
mi − ( 1

n

∑n
i=1 rmi)

2
. (A28)

For the second factor, (A18) and (A19) imply that:

lim
n→∞

1
n

∑n
i=1 r

2
mi

1
n

∑n
i=1 r

2
mi − ( 1

n

∑n
i=1 rmi)

2
=

(
1 +

η2

δ2

)
. (A29)

For the sum of squared regression residuals, write:

1

n

n∑
i=1

(rxi − α̂n − β̂nrmi)2

=
1

n

n∑
i=1

(α̂2
n − 2α̂nrxi + 2α̂nβ̂nrmi + r2

xi + β̂2
nr

2
mi − 2β̂nrmirxi)

= α̂2
n − 2α̂n

1

n

n∑
i=1

rxi + 2α̂nβ̂n
1

n

n∑
i=1

rmi

+ β̂2
n

1

n

n∑
i=1

r2
mi − 2β̂n

1

n

n∑
i=1

rmirxi +
1

n

n∑
i=1

r2
xi . (A30)

By the previously established limits, the first term converges to a2, the second to−2a(a+bη),

the third to 2abη, the fourth to b2(η2 + δ2) and the fifth to −2b(aη + b(η2 + δ2)). For the

sixth term, one has

lim
n→∞

1

n

n∑
i=1

r2
xi = a2 + h2 + 2abη + (η2 + δ2)(ρ+ b2) . (A31)

To see this, expand it as:

1

n

n∑
i=1

r2
xi =

1

n

n∑
i=1

r2
zi + 2

1

n

n∑
i=1

βiE[rmirzi] +
1

n

n∑
i=1

β2
i E[r2

mi]

+
1

n

n∑
i=1

2βi(rmirzi − E[rmirzi]) +
1

n

n∑
i=1

β2
i (r2

mi − E[r2
mi]) . (A32)

The last two terms converge to zero by the lemma. The first term converges to a2 + h2 by

the law of large numbers. The second term converges to bηa, and the third term converges

to (η2 + δ2)(b2 + ρ). Summing up, it follows that

lim
n→∞

1

n

n∑
i=1

(rxi − αn − βnrmi)2 = h2 + ρ(η2 + δ2) , (A33)

which gives equation (A17).
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A.6 Proof of Theorem 6

The benchmark and portfolio returns during the time interval [(i− 1)∆t, i∆t] are

xi = µ∆t+ σ(Bi∆t −B(i−1)∆t) (A34)

yi =

∫ i∆t

(i−1)∆t
βtdXt . (A35)

The estimated beta in the OLS regression of yi on xi is

β̂n =

∑n
i=1 xiyi − ( 1

n

∑n
i=1 xi)(

∑n
i=1 yi)∑n

i=1 x
2
i − ( 1

n

∑n
i=1 xi)(

∑n
i=1 xi)

, (A36)

and the estimated alpha is

α̂n =
1

n

n∑
i=1

yi − β̂n
1

n

n∑
i=1

xi . (A37)

Let αT = limn→∞ α̂n and βT = limn→∞ β̂n. The first task is to show

β̂T =
1

T

∫ T

0
βtdt (A38)

α̂T =
σ

T

(∫ T

0
βtdt−BT β̂T

)
. (A39)

It follows from equations (A34) and (A35) that
∑n
i=1 xi = 1

n(µT + BT ), and 1
n

∑n
i=1 xi

converges to zero as n increases to infinity. By the same token,
∑
yi converges to

∫ T
0 µβtdt+∫ T

0 βtσdBt and 1
n

∑n
i=1 yi converges to zero. One also has

lim
n→∞

1

n

n∑
i=1

x2
i = lim

n→∞

n∑
i=1

(µ∆t+ σ(Bi∆t −B(i−1)∆t))
2 = σ2T (A40)

and, similarly,

lim
n→∞

1

n

n∑
i=1

xiyi = σ2
∫ T

0
βtdt . (A41)

Applying these results to equation (A36) proves equation (A38). When n → ∞, the esti-

mated alpha in equation (A36) gives

α̂T =
YT
T
− β̂T

XT

T
= σ

(
1

T

∫ T

0
βtdBt − β̂T

BT
T

)
, (A42)

which implies equation (A39).

The expected alpha of a trading strategy is given by:

E[α̂T ] = − σ

T 2
E

[∫ T

0
βtBTdt

]
= − σ

T 2

∫ T

0
E[βtBT ]dt = − σ

T 2

∫ T

0
E[βtBt]dt (A43)
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Thus, to maximize this quantity while leaving βt ∈ [βmin, βmax] at all times, one needs to

minimize E[βtBt]. This is the same as cov(βt, Bt) since Bt has zero mean. This minimum

is attained for

β̂s =

{
βmin if Bs ≥ 0
βmax if Bs < 0

, (A44)

and therefore

E[βtBt] = βminE[Bt|Bt > 0]/2 + βmaxE[Bt|Bt < 0]/2 . (A45)

Since

E[Bt|Bt > 0] = 2

∫ ∞
0

u
e−

u2

2t

√
2πt

du =

√
2t

π
, (A46)

it follows that

E[βtBt] = −(βmax − βmin)

√
t

2π
(A47)

and hence

E[α̂T ] =
σ

T 2

∫ T

0
(βmax − βmin)

√
t

2π
dt =

σ√
T

(βmax − βmin)
1

3

√
2

π
, (A48)

which proves equation (43).
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B Tables and Figures

B.1 Tables

Table 1: Estimated Parameters for the Factors. Panel A reports the sample means, standard
deviations, covariances, correlations and Sharpe ratios of the monthly excess returns on the
MKT, SMB, HML, and MOM factors from January of 1963 to December of 2006. It
also reports the average monthly Treasury bill rates. Variable definitions are in the text.
The data of the monthly excess returns are from the web site of Kenneth French. Panel
B presents the geometric Brownian motion parameters consistent with the sample means
and covariances of the monthly returns. These parameters are annualized and solved from
equations (18)–(21).

A. Sample Moments of Monthly Returns
TBL MKT SMB HML MOM

Mean 0.47% 0.49% 0.25% 0.47% 0.82%
Standard deviation 1.26% 0.93% 0.83% 1.15%
Sharpe ratio 0.112 0.077 0.162 0.205
Correlation MKT 0.301 −0.409 −0.064

SMB −0.280 0.022
HML −0.115

B. Parameters in Geometric Brownian Motion
TBL MKT SMB HML MOM

Growth rate 5.6% 11.4% 8.5% 11.2% 15.3%
Volatility 15.0% 11.0% 9.9% 13.6%
Sharpe ratio 0.390 0.266 0.564 0.712
Correlation MKT 0.302 −0.409 −0.064

SMB −0.280 0.022
HML −0.115
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Table 2: Performance with Factors as Benchmarks. Three sets of benchmark assets (and
their corresponding payoff spaces) are considered: (i) the safe asset and MKT, (ii) the safe
asset, MKT, SML and HML, and (iii) the safe asset, MKT, SML, HML and MOM. Variable
definitions are in the text. Three observation frequencies are considered: monthly, quarterly
and semi-annual. Using the data and parameters in Table 1, for each benchmark set and
each observation period, the following are estimated: Sharpe ratio of the benchmark space
(column B), Sharpe ratio of the space generated by the benchmark space and delta trading
on its members (column C), the maximal appraisal ratio of the space according to Theorem
2 (column D), the annualized maximal alpha when constraining the annualized tracking
error to be no more than 10 percent (column E), the approximate minimum number of
years it would take to obtain a significantly positive alpha t-statistics in the regression of
the returns of the optimal delta trading strategy on returns of the benchmark assets (column
F), and the probability of incurring a loss by a benchmark-neutral portfolio that maximizes
alpha (column G).

A B C D E F G
Factors Sharpe Sharpe Maximal Maximal Minimal Probability

spanning ratio of ratio of appraisal alpha years for to incur
benchmark benchmark attainable ratio (annual) significance a loss

Monthly Observations
MKT 0.112 0.113 0.012 0.43% 2084 0.495
MKT, SMB, HML 0.269 0.275 0.056 1.93% 103 0.478
MKT, SMB, HML, MOM 0.367 0.381 0.103 3.56% 30 0.459
Quarterly Observations
MKT 0.193 0.197 0.037 0.74% 694 0.485
MKT, SMB, HML 0.463 0.494 0.171 3.42% 33 0.432
MKT, SMB, HML, MOM 0.631 0.708 0.322 6.44% 9 0.374
Semi-annualy Observations
MKT 0.271 0.281 0.074 1.05% 346 0.470
MKT, SMB, HML 0.649 0.739 0.354 5.00% 15 0.362
MKT, SMB, HML, MOM 0.883 1.120 0.689 9.75% 4 0.245

38



Table 3: Performance Ratios with Market Indices as Benchmarks. Three sets of benchmark
assets (and their corresponding payoff spaces) are considered: (i) the safe asset and SPX (the
S&P 500) (ii) the safe asset, SPX, NDX (the Nasdaq 100), and (iii) the safe asset, SPX,
NDX, and RUT (Russell 2000). Variable definitions are in the text. Three observation
frequencies are considered: monthly, quarterly and semi-annual. For each benchmark set
and each observation period, the following are estimated: Sharpe ratio of the benchmark
space (column B), Sharpe ratio of the space generated by the benchmark space and delta
trading on its members (column C), the maximal appraisal ratio of the space according to
Theorem 2 (column D), the annualized maximal alpha when constraining the annualized
tracking error to be no more than 10 percent (column E), the approximate minimum number
of years it would take to obtain a significantly positive alpha t-statistics in the regression
of the returns of the optimal delta trading strategy on returns of the benchmark assets
(column F), and the probability of incurring a loss by a benchmark-neutral portfolio that
maximizes alpha (column G). The data of the indices are from Bloomberg.

A B C D E F G
Indices Sharpe Sharpe Maximal Maximal Minimal Probability

spanning ratio of ratio of appraisal alpha years for to incur
benchmark benchmark attainable ratio (annual) significance a loss

Monthly Observations
SPX 0.117 0.118 0.013 0.46% 1803 0.495
SPX, NDX 0.126 0.127 0.017 0.58% 1148 0.493
SPX, NDX, RUT 0.128 0.129 0.017 0.60% 1052 0.493
Quarterly Observations
SPX 0.202 0.206 0.040 0.80% 600 0.484
SPX, NDX 0.216 0.221 0.050 1.00% 384 0.480
SPX, NDX, RUT 0.219 0.225 0.052 1.04% 352 0.479
Semi-annualy Observations
SPX 0.283 0.295 0.080 1.13% 299 0.468
SPX, NDX 0.301 0.317 0.100 1.41% 193 0.460
SPX, NDX, RUT 0.305 0.322 0.104 1.47% 177 0.459

39



Table 4: Performance Ratios with Fama-French Portfolios as Benchmarks. Three sets of
benchmark assets (and their corresponding payoff spaces) are considered: (i) the FF 2× 3
portfolios, (ii) the FF 5×5 portfolios, and (iii) the FF 10×10 portfolios. Variable definitions
are in the text. Three observation frequencies are considered: monthly, quarterly and semi-
annual. For each benchmark set and each observation period, the following are estimated:
Sharpe ratio of the benchmark space (column B), Sharpe ratio of the space generated by
the benchmark space and delta trading on its members (column C), the maximal appraisal
ratio of the space according to Theorem 2 (column D), the annualized maximal alpha when
constraining the annualized tracking error to be no more than 10 percent (column E), the
approximate minimum number of years it would take to obtain a significantly positive alpha
t-statistics in the regression of the returns of the optimal delta trading strategy on returns of
the benchmark assets (column F), and the probability of incurring a loss by a benchmark-
neutral portfolio that maximizes alpha (column G). The data of the FF portfolios are
obtained from Kenneth French’s web site.

A B C D E F G
Indices Sharpe Sharpe Maximal Maximal Minimal Probability

spanning ratio of ratio of appraisal alpha years for to incur
benchmark benchmark attainable ratio (annual) significance a loss

Monthly Observations
FF 2× 3 Portfolios 0.370 0.386 0.112 3.87% 26 0.456
FF 5× 5 Portfolios 0.198 0.200 0.030 1.04% 356 0.488
FF 10× 10 Portfolios 0.213 0.216 0.035 1.20% 266 0.486
Quarterly Observations
FF 2× 3 Portfolios 0.629 0.719 0.348 6.96% 8 0.364
FF 5× 5 Portfolios 0.341 0.353 0.091 1.82% 116 0.464
FF 10× 10 Portfolios 0.368 0.383 0.105 2.11% 86 0.458
Semi-annualy Observations
FF 2× 3 Portfolios 0.868 1.141 0.741 10.48% 3 0.229
FF 5× 5 Portfolios 0.481 0.515 0.185 2.62% 56 0.427
FF 10× 10 Portfolios 0.519 0.562 0.215 3.04% 41 0.415
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Table 5: The Alpha of the BXM Index, 1990-2005. The alpha and the corresponding t-
statistic of the BXM index are estimated by OLS regression of the monthly excess returns
of the BXM index on the monthly excess returns of the S&P 500 index. The data of the
monthly indices are from Bloomberg.

Annualized Annualized Annualized t Statistic p Value
average average alpha of of alpha of of alpha of

return of return of BXM over BXM over BXM over
Period S&P 500 BXM S&P 500 S&P 500 S&P 500

1990.01 – 2005.12 0.07 6.82% 2.66% 2.20 0.0144
1990.01 – 1994.12 0.04 6.55% 4.11% 2.59 0.0061
1995.01 – 1999.12 0.21 14.32% 2.41% 0.90 0.1864
2000.01 – 2005.12 −0.03 0.80% 2.53% 1.22 0.1138
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Table 6: Maximal Appraisal Ratios with Implied Volatility Possibly Greater than Realized
Volatility. The maximal appraisal ratios are calculated from equation (35). The historical
volatility is estimated from the daily observations of the S&P 500 index for the each of the
periods indicated in the table. The estimated implied volatility is the daily average of VIX
for the corresponding period. The ratio of estimated implied volatility to the estimated
historical volatility is the λ used in equation (35). The maximal alpha are computed under
the constraint that the tracking error cannot exceed 10 percent. The last column is the
probability of incurring a loss by a benchmark-neutral portfolio that maximizes alpha. The
data of the S&P 500 index and VIX are from Bloomberg.

Historical Implied Ratio of Maximal Maximal Probability
volatility volatility implied to appraisal alpha to incur

Period of S&P 500 (VIX) historical ratio a loss
1990.01 – 2005.12 16% 19% 1.21 5.77 4.16% 0.000
1990.01 – 1994.12 12% 17% 1.39 14.01 18.08% 0.000
1995.01 – 1999.12 16% 20% 1.27 7.96 10.28% 0.000
2000.01 – 2005.12 19% 21% 1.11 1.48 1.75% 0.069
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B.2 Figures
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Figure 1: Generating Positive Alpha by Writing Options. A fund which is completely
invested in the market index has a return equal to the market’s return (the dashed line)
and zero intercept. A fund which writes an index call option and invests the proceeds in
the safe asset will have a return which is sensitive to the market’s return in a nonlinear
fashion (the dotted-dashed line). A fund which invests in the index and writes call options
will also have a return which is sensitive to the market’s return in a nonlinear fashion (the
thick line). That return has a positive intercept in its regression on the market’s return
(the dotted line). Figure reprinted from Wang and Zhang (2003).
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Figure 2: The Nonlinear Returns on Optimal Strategy. Panel A displays the excess return
on one-dollar investment in the optimal strategy in equation (28) as a function of the rate
of return on the benchmark. Panel B displays the excess return on one-dollar investment
in the hedged optimal strategy. The parameters in the stochastic process of the benchmark
are µ = 11.43%, σ = 14.98% and r = 5.59% per annum. The parameter θ is set to 1. In the
unhedged strategy, φ is chosen so that the strategy’s delta with respect to the benchmark
is 1, whereas in the hedged strategy φ is chosen so that its delta is zero. In each strategy, γ
is chosen so that the value of the strategy is 1. All the returns in the figure are annualized
by setting ∆t = 1.
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Figure 3: Options Position which Maximizes the Appraisal Ratio. For one-dollar investment
in the optimal strategy in equation (31), panel A displays the positions in the options of
each 1% of moneyness k. Panel B displays the portfolio weight on the options of each 1% of
moneyness k. The parameters in the stochastic process of the benchmark are µ = 11.43%,
σ = 14.98% and r = 5.59% per annum, same as those used in Figure 2.
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Figure 4: Delta of the Options in the Optimal Strategy. Each of the curves from bottom to
top is the number of shares in the underlying asset, as a function of the asset price itself, at
one month, three months, six months and one year before expiration. Original asset price
is normalized to 1.
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Figure 5: Performance of Optimal Exposure-Switching Strategy. Each point represents the
sample tracking error (x axis) and the sample alpha (y axis), of a portfolio which follows
the strategy in Theorem 6 for 5 years of monthly returns. The points the x axis correspond
to positive alpha, and the points above the solid line correspond to a statistically significant
alpha. The parameters values are µ = 10%, σ = 20%, βmin = 0.5, βmax = 1.5, and T = 5.
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Figure 6: Exposure-Switching Strategies as the Observation Period Increases. The plot
shows the performance of exposure-switching strategies, obtained by simulating 100 000
samples of monthly returns for each value of the observation period, which increases from
2 to 20 years. The average alpha (solid line, right scale) declines as the observation period
increase, while the fractions (left scale) of negative (long dashes), significantly positive (short
dashes), and insignificantly positive (dotted line) alphas remains stable. The parameters
values are µ = 10%, σ = 20%, βmin = 0.5, βmax = 1.5.
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