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Abstract

Contingent capital (CC), a regulatory debt that must convert into common equity when a

bank’s equity value falls below a specified threshold (a trigger), does not in general lead

to a unique equilibrium in the prices of the bank’s equity and CC. Multiplicity or absence

of equilibrium arises because economic agents are not allowed to choose a conversion

policy in their best interests. The lack of unique equilibrium introduces the potential for

price manipulation, market uncertainty, inefficient capital allocation, and unreliability of

conversion. Because CC may not convert to equity in a timely and reliable manner, it is

not a substitute for common equity as capital buffer. The problem exists even if banks can

issue new equity to avoid conversion. The problem is more pronounced when bank asset

value has jumps and when bankruptcy is costly. For a unique equilibrium to exist,

allowing for jumps and bankruptcy costs, we prove that, at trigger price, mandatory

conversion must not transfer value between equity holders and CC investors. Besides the

challenge of practically designing such a CC, absence of value transfer prevents

punishment of bank managers at conversion. This is problematic because punitive

conversion is desirable to generate the desired incentives for bank managers to avoid

excessive risk taking.
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One of the lessons learned from the financial crisis of 2007–2009 is that the capital structure

and financial insolvency procedures of banks and other financial institutions need a major

overhaul. The bailout of Bear Stearns, the bankruptcy of Lehman Brothers, and the financial

distress experienced by Citigroup, Bank of America and AIG have demonstrated the need

to revisit the financial insolvency procedures that should govern banks and other financial

institutions. In particular, the extensive amount of implicit guarantees, outright infusion of

taxpayer money, and other direct and indirect benefits extended to large financial institutions

have come under much scrutiny, and new frameworks for capital market regulation have been

proposed. The United States Congress passed “The Dodd-Frank Wall Street Reform and

Consumer Protection Act.”1 The Basel Committee on Banking Supervision set forth to

strengthen bank regulation with Basel III capital and liquidity standards.2 A central issue

in the debate on these new regulations is the design of a prudential capital structure that

ensures enough loss-absorbing capital in large financial institutions and removes the need of

public bailout.3

In the pursuit of a prudential capital structure, there has been considerable interest in

debt securities that convert into equity in periods of distress when the bank’s capitalization

is low. Some academic researchers and regulatory agencies believe that such a security may

mitigate the “too big to fail” problem as such a debt overcomes the reluctance of raising

equity in a good state and restores the level of loss-absorbing equity in a bad state.4 They

1The Dodd-Frank Wall Street Reform and Consumer Protection Act (Pub.L. 111-203, H.R. 4173) is a
federal statute in the United States. President Barack Obama signed the Act into law on July 21, 2010.

2Bank for International Settlements, Press Release, January 13, 2011, “Final elements of the reforms to
raise the quality of regulatory capital issued by the Basel Committee.”

3For example, Kashyap, Rajan, and Stein (2008) have proposed that banks buy “systemic risk insurance”
and secure the payouts on insurance. Admati and Pfleiderer (2010) have argued for increasing the liability
of owners (equity holders) and suggest that such a structure will mitigate the conflicts of interests between
equity and debt holders and may help reduce the need for bailouts. Admati, DeMarzo, Hellwig and Pfleiderer
(2010) suggest a significant increase in equity capital.

4See Risk, Reward and Responsibility: the Financial Sector and Society, HM Treasury, United Kingdom,
December 2009. Also see “Too-big-to-fail and Embedded Contingent Capital,” Remarks by Julie Dickson of
the Office of the Superintendent of Financial Institutions Canada (OSFI) on May 6, 2010.
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trust that the mandatory conversion can increase capital buffer in a timely manner and

internalize the losses within the claim holders of the firm. It has also been argued that the

potential for a “punitively dilutive” conversion of contingent debt sets the right incentives

for managers to avoid excessive risk taking, and encourages them to maintain higher capital

ratios (Squam Lake Working Group, 2010). Many scholars, regulators, and practitioners

view punitive CC as a tool to manage both the agency problem and the capital structure.

The trigger for the conversion from debt to equity is perhaps the most important and

controversial parameter in contingent capital. Since mandatory conversion happens when

the stock price of the bank is low, it is unlikely to be in the interest of CC investors because

they would like to convert to equity when the bank is doing well. However, conversion

can be at the option of bank management, as structured in the mandatorily convertible

preferred (MCP) in the 2009 U.S. Treasury’s Capital Assistance Program (CAP).5 Bolton

and Samama (2011) advocate conversion at the option of bank management. Most contingent

capital issued in the private sector places the mandatory conversion trigger on accounting

ratios. For example, the Lloyds’s Enhanced Capital Note (ECN) issued on November 5,

2009 sets the trigger at five percent of core tier 1 capital ratio, i.e., conversion must happen

if core tier 1 capital falls to or below five percent of the total risk-weighted assets. Another

example is the Rabobank’s Senior Contingent Note (SCN) issued on March 12, 2010 that

sets the trigger at seven percent of equity ratio. The Squam Lake Working Group (2009)

advocates placing the conversion trigger on accounting ratios. An alternative is to let a

regulator to decide when to convert the CC to equity. The Credit Suisse’s Buffer Capital

Note (BCN) issued on February 14, 2011 converts to equity if equity ratio hits seven percent

or at the discretion of Swiss banking regulator. The Office of the Superintendent of Financial

Institutions (OSFI) in Canada prefers leaving conversion to the discretion of the regulators.

5For the details of the MCP and CAP, see Glasserman and Wang (2011).
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So far there has not been any contingent capital issuance placing the mandatory conver-

sion trigger on market value of equity, although a group of academics strongly advocate it.6

They recommend market trigger because other triggers may not warrant timely conversion.

Leaving conversion as an option of the bank managers may not protect tax payers because

bank management may be reluctant to convert and hope for the best or a bailout. This will

be especially true if conversion is punitive. Setting a trigger on backward-looking accounting

ratios gives the management an opportunity for manipulation, as in the cases of repo 105 in

Lehman Brothers and special purpose vehicles in Enron. Another piece of evidence against

placing the trigger on accounting ratios is that the accounting ratios of many troubled banks

in the recent financial crisis did not provide any warning signals prior to the onset of the

crisis. Leaving conversion to regulatory discretion may be problematic as well: the potential

political pressure and concern about false alarms may prevent regulators from timely action.

In addition, potential intervention by regulators who make decisions based on asset value can

cause multiplicity or absence of equilibrium in asset value, in view of Bond, Goldstein and

Prescott (2010). In contrast, setting the trigger on market value may ensure that conversion

is based on criteria that are thought to be objective, timely, difficult to manipulate, and

independent of regulators’ intervention.

An important part of the design of a market trigger is the choice of security on which

we place the trigger. The price of the security should be a timely indicator of the expected

financial difficulties of the bank that issues the contingent capital. In other words, the market

value of the security should fall if the bank is expected to experience large losses. For this

reason, the security should be a financial claim that is junior to the contingent capital. If the

security is a financial claim that is senior to the contingent capital, the price will not drop

to signal expected losses when the contingent capital effectively protects this claim. Then,

6See Flannery (2002, 2009), McDonald (2010), and Calomiris and Herring (2011).
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there will be no signal for the contingent capital to convert. If the price of financial claims

that is senior or equal to the CC drop sharply even with the presence of the CC, the market

must view that conversion of contingent capital will no longer help. In this case, conversion

is likely to be too late to save the bank. Therefore, the market trigger should not be placed

on the senior debt yield (or its CDS spread) or on any other claims that are not junior

to contingent capital. Since contingent capital becomes common equity after conversion,

the only financial claim that is junior to contingent capital is common equity. This leaves

common equity as the natural choice for placing the market trigger.

Given that a market trigger on common equity is most effective in signaling future large

losses, it is important to ask whether the contingent capital with equity trigger can be a

valuable tool to provide stability to banks and markets consistent with the expectations of

policy makers and practitioners. For economic analysis, an additional advantage of market

trigger is that market value of equity is an economic variable whose dynamic stochastic

process can be derived from the statistical properties of a bank’s asset value. In contrast, it is

unclear how we may derive the dynamic stochastic process of accounting ratios or regulatory

discretion. While our paper focuses on market-equity triggers, the analysis has implications

when triggers are based on accounting ratios if accounting methods are regulated to reflect

market value closely.7 Our results also have implications to supervisory triggers if regulators

use market equity value in deciding when to pull the trigger.

In this paper, we show that a contingent capital with market equity trigger does not in

general lead to a unique equilibrium in the prices of the bank’s equity and CC. Multiplicity or

absence of equilibrium arises because economic agents are not allowed to choose a conversion

policy in their best interests. This problem exists even if banks can issue new equity to avoid

conversion. The problem is more pronounced when a bank’s asset value has jumps and when

7Mark-to-market accounting rules establish a link between market prices and accounting numbers.
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bankruptcy is costly. In the case of multiple equilibria, we note that incentives of CC-holders

are aligned towards the equilibrium with early conversion, whereas the incentives of equity

holders are aligned towards the equilibrium that delays or avoids conversion.

The lack of unique equilibrium means contingent capital does not fit into the basic eco-

nomic theory to promise a stable market price and efficient capital allocation. With multi-

plicity and absence of equilibrium, contingent capital may introduce the potential for price

manipulation, market uncertainty, inefficient capital allocation, and unreliability of conver-

sion. The incentives of CC and equity holders towards the different equilibria may cause

them to attempt market manipulation. Davis, Prescott and Korenok’s (2011) controlled ex-

periments indicate that excessive uncertainty and inefficient allocation will reign in a market

with multiplicity or absence of equilibrium. In addition, the unreliability of conversion into

equity implies that CC may not become loss-absorbing equity when it is needed. Therefore,

CC is not a substitute for common equity as capital buffer.

Allowing for jumps and bankruptcy cost, we prove that for a unique equilibrium to exist,

at trigger price, mandatory conversion must not transfer value between equity holders and

CC investors. Besides the challenge of practically designing such a CC, it also prevents

punishing equity holders at conversion. This is problematic because punitive conversion is

important to generate the desired incentives for bank managers to avoid excessive risk taking.

The road map for the paper is as follows. In section I, we provide intuition on the possi-

bility of multiplicity or absence of equilibrium, and its dependence on the conversion ratio.

In section II, under the assumption that bank asset value exhibits smooth diffusive shocks

as well as jump risk and costly bankruptcy, we derive the condition for an equilibrium to

exist and be unique and numerically characterize the range of multiple equilibria. In Section

III, we discuss several additional issues. We demonstrate that a practically implementable

contingent capital contract that gives unique equilibrium is possible if there is no jump risk
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in the asset value and verification of the conversion condition is continuous. We further show

that banks’ ability to issue new shares of equity does not guarantee a unique equilibrium. We

also show that multiple equilibria may exist even when financial distress costs are present.

In Section IV we conclude.

I The Intuition for the Pricing Problem

The main thrust of our paper is the following: When triggers for mandatory conversion are

placed directly on the market value of equity, there is a need to ensure that conversion does

not transfer value between equity holders and CC holders when equity value hits exactly the

trigger level. The economic intuition behind this design problem is as follows: A contingent

capital is essentially a junior debt that converts to equity shares when the stock price reaches

a certain low threshold. This sounds like a normal and innocuous feature. However, the

unusual part of the CC design is that conversion into equity is mandatory as soon as the

stock price hits the trigger level from above. Since common equity is the residual claim of

the bank’s value, it must be priced together with the CC. Keeping firm value and senior

bond value fixed, a dollar more for the CC value must be associated with a dollar less for

the equity value. Therefore, a transfer of value between equity and CC disturbs equilibrium

by moving the stock price up or down depending on the conversion ratio. To have a unique

equilibrium, the design of the conversion ratio must ensure that there is no such transfer of

value.

If the transfer of value never pushes the stock price across the trigger, there is no problem

because, given each asset value, investors always know whether or not there will be a conver-

sion. However, if the transfer of value pushes the stock price across the trigger from above

to below, there are two possible equilibria. In the first one, all investors believe conversion

will not happen, leading the equity value to stay above the trigger. In the second one, all
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investors believe conversion will happen, leading the equity value to hit the trigger. Since

two prices are possible whenever the firm’s value drops to a certain level, by combining these

dual equilibria around the trigger at different times in the future, numerous expected equity

values are possible well before conversion happens. These numerous values can form a range,

and the whole range can be above the trigger.

There are also economic conditions in which CC with a market trigger may not even

have an equilibrium price. This happens if equity value would fall below the trigger without

conversion but conversion pushes stock price above the trigger level by transferring value

from CC holders to equity holders. In this case, investors cannot believe that conversion

will not happen because with such a belief, equity value will fall below the trigger and

the CC must convert. Investors cannot believe that conversion will happen either because

with such beliefs, the equity price will stay above the trigger level and the CC must not

convert. Therefore, there is no belief and stock price that are consistent with the mandatory

conversion rule of the CC. Then, there is no rational expectations equilibrium in the values

of equity and CC.

The only way to prevent multiplicity or absence of equilibrium is to ensure that no value

is transferred when the equity value hits the trigger. If economic agents are permitted to

convert in their self interest, they would select the optimal conversion strategy endogenously

by comparing the value of conversion with the value of holding CC unconverted but taking

into account optimal future conversion strategy. This, however, is prevented by the design

of CC in which conversion is mandatory and dictated by the equity value. The zero value

transfer condition requires that, at all possible conversion times, the value of shares converted

at the trigger price must be exactly the same as the market value of the non-converted CC.

Although methods for pricing of subordinated debt and equity are established, the pricing

of contingent capital with a market trigger poses special challenges. In this section, we illus-
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trate these challenges in discrete time, leaving the formal analysis in dynamic continuous-time

models to the next section. The analysis in discrete time demonstrate that the conversion

trigger and ratio cannot be chosen arbitrarily for a unique equilibrium price to exist.

Let us first describe a bank that has a capital structure with CC. Consider a bank that has

senior bondholders and common-equity holders who have claims on an asset (or a business).

The asset requires an investment of A0 dollars today (time 0). The asset is typically risky;

its value at time t is a random number At. At time 0, the bank has also issued a security

called “contingent capital.” The security is in the form of a debt (or preferred equity) with

face value C̄, which is junior to the bond but converts to common equity when certain

pre-specified conditions are met.8

The contingent capital with market trigger sets the conversion condition on the bank’s

equity value. Suppose St is the stock price of this bank and there are n shares outstanding.

At any time t, the bank converts the junior debt under the contingent capital to mt shares of

common equity as soon as the share price St falls to level Kt. The quantity mt is referred to

as the conversion ratio and Kt as the conversion trigger. The conversion trigger is hit if the

stock price reaches Kt/n, which is referred to as the trigger price. If n = 1, the conversion

trigger and trigger price are the same. In general, the conversion ratio and trigger are either

constant or pre-specified functions of observable variables. A particular contract specifies

the conversion ratio m(·) and trigger K(·) as functions of observable variables over time.

The following are two examples of contingent capital contracts. The simple form of

contingent capital can have a constant trigger K and a constant conversion ratio m. The

contingent capital contracts proposed in the literature typically have a time-varying conver-

sion trigger and ratio. The one suggested by Flannery (2002) specifies that Kt = z ·RWAt/n,

8To keep the analysis simple, we assume in this section that the contingent capital does not pay a coupon
or dividend. We make a similar assumption for the bond. Also, we assume that the asset does not generate
cash flow. We will relax these assumptions in the next section.
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where RWAt is the most recent risk-weighted asset value and z is a constant related to reg-

ulatory capital ratios. To ensure that the converted shares and the CC have the same value

if conversion happens at the trigger price on maturity date, the conversion ratio should be

set to mt = nC̄/Kt. Since the risk-weighted asset changes only at the end of each quarter,

this contingent capital takes the simple form after its last change of risk-weighted asset, if it

is not converted by then.

A The Pricing Restriction at Maturity

First consider the equilibrium stock price at the maturity, which is time T . The bank’s asset

will finish at certain value AT , which is random. The par value of the bank’s senior bond is

B̄, at maturity. The bank’s contingent capital, which also matures at the same time, has a

par value of C̄. The trigger of the contingent capital is K. The bank has n shares of equity.

We suppose that the contingent capital has not been converted because the asset value has

been so high that the equity value is above the trigger. At maturity, if the CC is still not

converted, the stock price should be

SuT = (AT − B̄ − C̄)/n. (1)

If the CC is converted, the stock price should be

ScT = (AT − B̄)/(n+m). (2)

The above pricing formula and the CC’s trigger rule lead to the unconversion and con-

version criteria in terms of asset value: (a) Since the CC stays unconverted at maturity

if and only if nSuT > K, equation (1) implies that there is no conversion if and only if

AT > B̄+K+ C̄; (b) Since the CC should be converted at maturity if and only if nScT ≤ K,

equation (2) implies conversion happens if and only if AT ≤ B̄ +K + (m/n)K.
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From the conversion criteria in terms of asset value, we can see the pricing restriction on

the CC’s conversion ratio. If C̄ < (m/n)K, the asset value AT can fall into (B̄+K+ C̄, B̄+

K + (m/n)K]. Then, both criteria for unconversion and conversion are met. In this case,

there are multiple equilibrium stock prices. One price is above the trigger price and the other

is below. If C̄ > (m/n)K, the asset value AT can fall into (B̄ +K + (m/n)K, B̄ +K + C̄).

Then, neither the criteria for unconversion or conversion is met. In this case, there is no

equilibrium stock price. If and only if C̄ = (m/n)K, will we have either AT > B̄+K + C̄ or

AT ≤ B̄ +K + (m/n)K, but not both, for all asset value AT . In this case, there is always a

unique equilibrium. Therefore, a unique equilibrium always exists at maturity if and only if

C̄ = mK/n or m = nC̄/K. The last equation implies that the conversion ratio is restricted

by other parameters if we want to assure a unique equilibrium

As a numerical example, let n = 1, B̄ = 90, C̄ = 10 and K = 5. Notice that nC̄/K = 2.

If m = 3, which is higher than 2, then there can be multiple equilibria when the asset value

turns out to be AT = 106. One equilibrium stock price is SuT = (106− 90− 10)/1 = 6, which

is above the trigger, and the other is ScT = (106− 90− 10)/(1 + 3) = 4, which is below the

trigger. If m = 1, which is smaller than 2, then there is no equilibrium when the asset value

turns out to be AT = 104. This is because the stock price associated with unconversion

is SuT = (104 − 90 − 10)/1 = 4, lower than the trigger, and stock price associated with

conversion is ScT = (104− 90)/(1 + 1) = 7, higher than the trigger. However, one can easily

verify that these cases of multiple or no equilibrium do not occur if m = 2.

The above analysis of zero value transfer condition at maturity is simple because if the

contingent capital does not convert at maturity, the value of contingent capital is simply its

face value C̄. The conversion ratio m = nC̄/K does not transfer value at trigger price on

maturity date because if the stock price hits on the trigger, the contingent capital investors

receive mST = m(K/n) dollars, which is the same C̄ dollars they would have received in the
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absence of conversion.

B The Pricing Restriction Before Maturity

The conversion ratio that guarantees zero value transfer at the trigger price on maturity date

may still transfer value at the trigger price on some days before maturity, causing multiple

equilibria. To ensure a unique equilibrium, the pricing restriction needs to hold at any

possible conversion time t: Ct = mK/n. To see this intuitively, we can repeat the previous

analysis by switching T to t. Then, with C̄ = mK/n, two possibilities may arise. The first

possibility is Ct = C̄ = mK/n at any time before conversion and before default.9 The other

possibility is Ct 6= mK/n at some possible conversion time. This can lead to multiple or no

equilibrium at this time, translating to multiplicity or absence of equilibrium in the initial

price.

In a one-period discrete-time model, it is easy to show that keeping conversion ratio fixed

as m = nC̄/K through the period allows multiple equilibrium in the initial equity and CC

prices. In the discrete model, all securities are priced and traded at the initial time of the

period, t = 0, and the terminal time, t = T , when both the bond and CC matures. The

initial asset value is A0, and the terminal value, AT , is a random variable. Let P (·) and p(·)

be the CDF and PDF, respectively, of the risk neutral distribution. To keep things simple,

assume the risk-free rate is zero. With face value B̄, the initial value of the bond is

B0 = B̄(1− P (B̄)) +
∫ B̄

0
ATp(AT )dAT . (3)

With face value C̄, the initial value of the CC, if it is not converted at time 0, is

Cu
0 = C̄(1− P (B̄ + C̄ +K)) +

m

n+m

∫ B̄+C̄+K

B̄
(AT − B̄)p(AT )dAT . (4)

9For this to happen, the economic system needs to satisfy certain restrictive conditions later described
by Theorem 3 in Section A.
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Given m = nC̄/K, the maximum payoff the CC holders may receive is C̄. This implies

Cu
0 ≤ C̄, which can also be verified by some trivial algebra.

The stock value at time 0 depends on whether the CC is converted. If the CC is not

converted, the stock value is Su0 = (A0 − B0 − C0)/n. It follows from the condition for

no-conversion, nSu0 > K, that the CC is not converted if and only if A0 > B0 + C0 + K. If

the CC is converted, the stock value is Sc0 = (A0 − B0)/(n + m). Because the condition for

conversion is nSc0 ≤ K, the CC is converted if and only if A0 ≤ B0 + (m/n)K + K. This

inequality is equivalent to A0 ≤ B0 + C̄ + K, in view of m = nC̄/K. Since C0 < C̄, the

interval (B0 + C0 + K, B0 + C̄ + K] is nonempty. For every A0 in this interval, both the

conditions for no-conversion and conversion hold, and thus there are two equilibrium stock

prices, Su0 and Sc0. The CC price associated with Su0 is Cu
0 . With conversion at time 0, the

value received by the CC holders is the value of m shares: Cc
0 = mSc0.

As a numerical example, let B̄ = 90, C̄ = 10, K = 5, m = 2, and n = 1. Notice

that m = nC̄/K holds for these parameters. Assume that the probability distribution of

AT is discrete: p{AT = 80} = 0.25, p{AT = 100} = 0.50, and p{AT = 120} = 0.25. It

follows that A0 = E[AT ] = 100. Straightforward calculation, using equations (3) and (4),

gives B0 = 87.50 and Cu
0 = 5.83. Then, no conversion at time 0 is an equilibrium because

nSu0 = 100− 87.50− 5.83 = 6.67, which is higher than the trigger K = 5. Conversion is also

an equilibrium because nSc0 = (100− 87.50)/(1 + 2) = 4.17, which is below the trigger. The

CC values associated with the two equilibria are Cu
0 = 5.83 and Cc

0 = 8.33. To visualize the

two equilibria intuitively, this example is displayed as a trinomial tree in Figure 1.

The above example illustrates a key problem: equity holders prefer the “no conversion”

equilibrium as their value is higher in that equilibrium. On the other hand, contingent

capital holders prefer the “ conversion” equilibrium as their values are higher in that equi-

librium. If a contingent capital of this design were to be issued by a bank, and the stock
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price subsequent to the issuance approaches the trigger level, equity holders would have an

incentive to manipulate the stock price up and keep it above the trigger. By the same token,

contingent capital holders would have the incentive to manipulate the stock price down so

that it hits the trigger to force conversion. For this reason, CC holders have an incentive

to sell the bank stock short. If they succeed in forcing the stock to hit the trigger, they

can cover their short positions using the new shares that have been issued by the bank to

fulfill the mandatory conversion. Consequently, a bank’s equity price can be volatile when it

approaches the trigger level.10 Such manipulative behavior may arise due to the possibility

of value transfers, which pit the equity holders against the holders of contingent capital. It

may be argued that the market should be able to anticipate such value transfers ahead of

time and incorporate them before the equity price approaches the trigger. This, however,

is not possible when there are multiple equilibria, as there is no credible way to tell which

equilibrium will result in the future.

The two equilibria leave the stock price and CC value undetermined before maturity.

Multiple equilibria occurred on a node before maturity because the conversion ratio, m = 2,

is too high at time 0 and transfers value from equity holders to contingent capital investors.

To prevent such a value transfer, we need to set the conversion ratio so that, at time 0, the

value of the converted shares at trigger price equals the value of the non-converted contingent

capital. As shown in Figure 1, the non-converted contingent capital is valued as $5.83 on this

node. Accordingly, the conversion ratio should be set to m = 5.83/K = 5.83/5 = 1.166. To

use this conversion ratio, we need to know the value of the non-converted contingent capital

10In fact, such problems have been already witnessed in the markets of securities such as barrier options,
which have payoffs when a trigger is reached. During 1994–1995, “knock-in” barrier options on Venezuelan
Brady bonds, which pay when the underlying bonds reach a high enough level (trigger) experienced manipu-
lation. The fund owning the option attempted to push the price up by buying the bond, and the investment
bank that sold the option attempted to keep the prices down. During the height of manipulation, about
20% of the outstanding bonds changed hands, and the prices went up by 10%. See, “Barrier grief: hedge
funds,” Economist, March 18, 1995.
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on this node. To know the value of non-converted CC at every time and in every state is

not practical for two reasons: first, the conversion ratio is typically specified ex-ante, and

second, relying on a market price of CC for every future state to determine the conversion

ratio is not judicious because the specification of a contract should not depend on the future

market price of the contract itself.

The discussion in this section is meant to illustrate the challenge in the design of CC. To

formally establish the pricing restriction, in the next section we use a dynamic continuous-

time framework in which the bank asset value follows a general stochastic process, which al-

lows for both continuous changes and discontinuous jumps. We also assume that bankruptcy

is costly, deviating from Modigliani and Miller’s world. In such a dynamic setting we show

the pricing restriction under which we can obtain a unique equilibrium. When the restriction

is breached, multiplicity or absence of equilibria may occur in the market.

II The Analysis in Dynamic Continuous-Time Model

A The Dynamic Continuous-Time Model

Valuation of contingent capital can be performed using the analytical approach developed

in structural models of default pioneered by Merton (1974) and extended by Black and

Cox (1976) who value default-risky senior and subordinated debt securities. These models

work with the asset value of the issuing firm as the state variable and derive simultaneously

the equity and debt values. The paper by Black and Cox, is particularly relevant as they

explicitly model a safety covenant as a trigger for bondholders to take over the firm. The

contingent claims approach has been standard for pricing corporate debt and hybrid securities

in industry, as presented in detail by Garbade (2001).

We develop the ideas in the context of a structural model of default, along the lines of
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Merton (1974) and Black and Cox (1976). We assume that the asset value process, denoted

by At, is observable, but the trigger for the CC is specified in terms of the stock price St.

Consistent with these models, we assume that pricing should exclude arbitrage profits and

thus operate in a risk-neutral probability. Let the assets generate cash flows at the rate of at.

Our analysis allows the bank asset value At to have time-varying drift µt and volatility σt.

The analysis also allows the stochastic process of bank asset value to have jumps11 because

large downward changes in asset value are often associated with financial or economic crisis.

Following Merton (1976), we assume

dAt = µtAtdt+ σtAtdzt + At(yt − 1)dqt, (5)

where zt is a Wiener process, qt is a Poisson process with expected arrival rate λt, and yt

follows a log-normal distribution with parameters µy and σy. Let rt be the instantaneous

risk-less interest rate at time t. In risk-neutral probability measure, we should have µt =

rt − at − λE[yt − 1].

We assume that the bank has issued a senior bond with a par value B̄ and maturity T .

The coupon rate of the senior bond is bt, which can be constant or time-varying. This allows

both fixed- and floating-rate debt. Let δ be the time when the senior bond defaults. We

model bankruptcy through a default barrier. Generally, the default barrier is set to limit

the loss of the bond holder’s investment. Upon default, bond holders take over the firm and

receive its liquidation value. No value is left to securities that are subordinate to the bond.

There are several ways to specify default condition, which determines the default time. In

general, the time of bankruptcy is

δ = inf{t ≥ 0 : At ≤ Γt} . (6)

11Duffie and Lando (2001) have developed a framework in which the true At process is continuous, but
stock and bond prices exhibit discontinuities due to imperfect information. To keep our analysis simple, we
work with an asset value process that exhibits jumps and is observed by the agent.
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where Γt is the default barrier. We define δ = +∞ if At is above the barrier all the time. As

an example, we can let the default barrier at time t be Γe−γ(T−t), where Γ and γ are positive

constants. This is the barrier in Black and Cox (1976). Alternately, we can model default as

the choice of equity holders, who default when the value of their stake in the firm is zero. In

this case, the default time is δ = inf{t ≥ 0 : At ≤ Bt}. The theorems derived in this section

apply to both types of default conditions.

Bankruptcy is costly in practice. To bond holders, the loss after default consists of three

parts: the loss of asset value relative to the par value, the liquidation discount, and legal

expenses. We refer to the last two parts as bankruptcy cost. Altman (1984) examines

a sample of 19 industrial firms which went bankrupt over the period of 1970-1978 and

estimates the bankruptcy costs to be about 20% of the value of the firm measured just

prior to bankruptcy. For banks and financial institutions, which may have much more

interconnectedness, the true expected costs of bankruptcy may be significant. When a bank

defaults at time δ, the loss of asset value relative to the par is B̄ − Aδ. Let ω represent

bankruptcy cost as a fraction of the asset value. The sum of the liquidation discount and

legal expenses is ωAδ. The value received by bond holders is (1− ω)Aδ.

The value function of the senior bond can be expressed in terms of the risk-free discount

factor and an event indicator. Given that the instantaneous risk-free interest rate is rt, the

risk-free discount factor from time t to s is P (t, s) = exp (−
∫ s
t rudu). The event indicator

1event equals either 1 or 0, depending on whether or not the event happens. The value of the

bond before default (t < δ) is, in rational expectation,

Bt = Et
[
B̄P (t, T ) · 1δ>T + (1− ω)AδP (t, δ) · 1δ≤T + IBt

]
, (7)

where Et[·] denotes the expectation, conditional on the information up to time t, and IBt is
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the discounted value of interest income:

IBt =
∫ min{δ,T}

t
btB̄P (t, s)ds . (8)

Besides senior bond, the bank capital structure consists of n shares of common equity

and a contingent capital in the capital structure of the bank. The par value of contingent

capital is C̄, and it pays coupon at a rate ct until the contingent capital converts to mτ

shares of common equity if conversion happens at time τ . After conversion, the number of

outstanding shares of common equity is n + mτ . Both Kt and mt are given functions of

observable variables at time t, and they are assumed to be finite and positive.

Conversion to common equity is mandatory when the value of equity hits or runs below

a trigger. The trigger condition is specified in terms of the value of common equity relative

to the risk-weighted asset of the firm. The general form of conversion rules is that the

contingent capital converts to m shares of common equity if the value of equity falls to or

below X percent of risk-weighted asset (RWAt). Let Kt = RWAt×X/100, which is referred

to as the conversion trigger. Conversion happens when stock price hits or runs below Kt/n,

which is referred to as the trigger price.

Theoretically, equity value can be compared to conversion trigger at any time, but prac-

tical CC contract must compare equity value and trigger at specified times such as daily

market close. Let Λ be the set of time points when the equity value is compared to the

trigger and assume T ∈ Λ. The first time when a stock price is found to be equal or lower

than the trigger is

τ = min {t ∈ Λ : nSt ≤ Kt} . (9)

If nSt > Kt for all t ∈ Λ, we define τ = +∞. If condition in (9) is verified continuously, i.e.,

equity value is compared to the trigger at any time, then use Λcontinuous = [0,+∞) for Λ. For
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the contingent capital contracts that verify the conversion condition with daily or weekly

closing stock prices, we use Λdaily = {i/252 : i = 0, 1, 2, · · ·}, assuming there are 252 trading

days in a year, or Λweekly = {i/52; i = 0, 1, 2, · · ·}, respectively. The theorem derived in this

section applies to both continuous and discrete verification of the conversion condition.

After contractual coupons on the senior bond and contingent capital are paid, the cash

flow generated from the assets of the bank will be paid to equity holders as dividends.

Therefore, before conversion, the total dividend paid to equity holders during a short period

dt is (atAt − btB̄ − ctC̄)dt. After conversion and before default of the senior bond, the total

dividend paid to equity holders (including those new equity holders after conversion) during

an infinitesimal period dt is (atAt − btB̄)dt.

At any time t before the contingent capital converts (t < τ), the per-share value of

common equity is, in rational expectation,

St = Et

[
1

n

{
(AT − B̄ − C̄)P (t, T ) · 1min{τ, δ}>T + It

}]
+ Et

[
1

n+mτ

{
(AT − B̄)P (t, T ) · 1τ≤T<δ + JτP (t, τ) · 1τ<min{δ, T}

}]
, (10)

where It is the time-t value of total dividends before conversion, and Jτ is the time-τ value

of the total dividends after conversion:

It =
∫ min{τ, δ, T}

t
(asAs − bsB̄ − cs C̄)P (t, s)ds (11)

Jτ =
∫ min{δ, T}

τ
(asAs − bsB̄)P (τ, s)ds. (12)

The value of the contingent capital before conversion is

Ct = Et
[
C̄P (t, T ) · 1min{τ, δ}>T +Ht

]
+ Et

[
mτ

n+mτ

{
(AT − B̄)P (t, T ) · 1τ≤T<δ + JτP (t, τ) · 1τ<min{δ, T}

}]
, (13)

where Ht is the present value of coupon interests that the CC holders receive before conver-
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sion:

Ht =
∫ min{τ, δ, T}

t
csC̄P (t, s)ds . (14)

After the contingent capital converts to mτ shares and before the senior bond matures or

defaults (τ ≤ t < min{δ, T}), the per-share value of common equity becomes

St =
1

n+mτ

Et
[
(AT − B̄)P (t, T ) · 1δ>T + Jt

]
. (15)

B The Pricing Restriction

Since the value function Bt defined in equation (7) exists and is continuous in t and At,

we focus on the value function of equity share St and the value of the contingent capital

Ct before conversion. Given conversion trigger Kt and conversion ratio mt, a pair of value

functions, (St, Ct), that satisfy equations (9), (10), (13) and (15) is called a dynamic rational

expectations equilibrium or, simply, an equilibrium. The equilibrium is unique if each of St

and Ct has a unique value for every realization of At at any time t. In fact, such an equilibrium

does not always exist for arbitrary specification of mt. The next theorem presents the pricing

restriction of a unique equilibrium.

Theorem 1 For any given trigger Kt and conversion ratio mt, a necessary condition for

the existence of a unique equilibrium (St, Ct) is nCt = mtKt for every t ∈ Λ.

This necessary condition is also sufficient in the following sense:

Theorem 2 For any given trigger Kt, there exists a conversion ratio mt and a unique

equilibrium (St, Ct) satisfying nCt = mtKt for every t ∈ Λ.

The pricing restriction of unique equilibrium has important implications to the design of

contingent capital. These theorems say that if conversion is at the trigger price, there should
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be no transfer of value from CC holders to equity holders, or vice versa. To see this, we can

rewrite the pricing restriction as mt(Kt/n) = Ct for every t ∈ Λ. If equity value hits right

on the trigger at the conversion time t, we should have St = Kt/n. Then, the value of mt

shares of stock at conversion time is mtSt, which equals Ct. More importantly, the theorems

imply that conversion can not be punitive to equity holders. At conversion time t, we have

have nSt ≤ Kt. Then, mtSt ≤ mtKt/n = Ct, which means that the value of the converted

shares, mtSt, will never exceed the CC value, Ct. Therefore, in a contingent capital that

entertains a unique equilibrium, conversion may punish the CC holders but never punish the

equity holders.

The pricing restriction becomes nC̄ = mTKT at maturity. If the conversion trigger

and ratio are both constant and denoted by m and K respectively, the restriction becomes

m = nC̄/K, as seen in section A. When this restriction is violated, multiplicity or absence

of equilibrium may occur at maturity, as shown by the examples in the previous section. We

have also seen that the restriction at maturity does not guarantee that it will be met before

maturity. The above two theorems require that the pricing restriction be satisfied at every

possible conversion time. As long as the restriction can be violated at some conversion time,

unique equilibrium is not assured.

It is important to point out that even without bankruptcy costs or jumps, multiplicity

or absence of equilibrium may arise when the pricing restriction in Theorems 1 and 2 is

violated. Thus, even in a Modigliani-Miller’s world, violation of the pricing restriction can

lead to multiple or no equilibrium. Since Theorems 1 and 2 still hold if the assets value follows

a geometric Brownian motion, a contingent capital that violates the pricing restriction may

cause stock prices to jump in a capital market even when the underlying asset prices have no

jumps. Consequently, a contingent capital that violates the pricing restriction can disturb the

continuity of the stochastic process of the stock price. From this point of view, contingent
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capital can potentially be a factor of instability, rather than an instrument to maintain

stability.

If the pricing restriction is violated at many potential conversion points, the possible

equilibrium prices may span a wide range on the initial day. We demonstrate this with a

numerical example, in which the asset follows a simple geometric Brownian motion: dAt =

rAt + σAtdzt and conversion condition is verified using daily closing prices: Λ = Λdaily. In

Table I, the column with the heading “GBM” presents the parameters used in this example

and the equilibrium values.12 We assume that the bank’s initial asset level is 100. Its

volatility is 4%. To keep things simple, we assume a flat term structure, anchored at 3%.

The par value of the senior bond is 87 percent of the current asset, and its coupon rate is 4%.

We chose the default barrier to be the par value of the bond plus the accrued coupon. There

is a unique equilibrium value for the senior bond, which is 88.03, showing that the 3.34%

coupon rate prices the bond over par. The par value of the CC is 5% of the bank’s current

asset value, and the CC converts to equity if equity value based on the daily closing price

is less than or equal to 1 percent of the initial asset value. To avoid running into the case

where no equilibrium exists, we set the coupon of the CC to zero. The maturities of both

the senior bond and CC are five years. The range of prices generated by multiple equilibria

seems substantial. Multiple equilibria produce equity values ranging from 5.86% to 6.46%

of the initial asset value. They are associated with CC values ranging from 3.86% to 4.46%

of initial asset value. The range of the multiple equilibrium prices is 0.6% of the initial asset

value.

The range of multiple prices depends on the asset volatility, the senior bond, and the

contract parameters of the CC. In Figure 2, we let one parameter vary to see how the range

of multiple prices changes. Panel A shows that the price range is an increasing function of

12We calculate the prices with a binomial tree that approximates the diffusion process, following Cox, Ross
and Rubinstein (1979).
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the bank’s asset volatility. Panel B shows how the range is related to the bank’s leverage

with the senior bond. In the first part the range is wider for a bank that has higher leverage,

and in the later part the range decreases. These panels demonstrate that the bank-specific

information such as asset volatility and leverage play important roles in determining the

severity of multiple equilibria. In Panel C, the range widens as the par value of the CC

increases. Therefore, the larger CC a bank issues, the wider its range of equity prices.

Panel D shows how the range is related to the conversion trigger. The range is wider for

a lower trigger than for a higher trigger, because the time to reach the trigger is longer in

expectation, incorporating more conversion points in generating the multiple equilibria. The

last two panels demonstrate that the severity of multiple equilibria depends on the amount

and characteristics of the CC.

With jumps in the asset value, there can still be a wide range of multiple equilibrium

prices. We demonstrate this by letting the asset follow the jump diffusion process in equation

(5) and using conversion time Λdaily. In Table I, the column with the heading “JD” presents

the parameters used in this numerical example. We assume that the arrival rate of jumps

is 4 times per year, reflecting the quarterly regulatory and accounting filings. The mean

of logarithm jump size is −2 percent and its volatility is 3 percent. With the presence of

jumps, we assume that the volatility of the continuous process is 4%, lower than the volatility

assumed for the GBM. To calculate the equilibrium prices, we follow Hilliad and Schwartz

(2005) to build a bi-variate tree that approximates the jump diffusion process. With jumps,

the yield 3.34% prices the bond at par, which is 87% of the initial asset value. The contingent

capital and equity have a bigger range of equilibrium prices. An equilibrium equity value can

be as low as 3.84% or as high as 5.44% of the initial asset value, and the CC value ranges

from 2.30% to 3.90% of initial asset value. The pricing range is 1.6% of the initial asset

value. Since JD is different from GBM only in the parameters about jumps, these examples
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show that jumps enlarge the pricing range of the multiple equilibria.

It is useful to provide some perspective on why the multiple equilibria arise in the above

example but do not generally arise in the pricing of convertible bonds or options.13 With a

convertible bond, the investor has the “option” to convert and get a pre-specified number

of shares of common stock. In each state, the investor can compare values associated with

different conversion decision and select the maximum. Likewise, the holder of the option

can also make the optimal decision in each state. These optimal decisions can be modeled

by the “smooth pasting” or the “high contact” condition pioneered by Merton (1973) and

further elucidated by Dixit and Pindyck (1994). In such models, the exercise boundary itself

is endogenous and not mandated, and the economic agent, acting in his self interest will

select the conversion decision optimally so that there is no value transfer at the trigger price.

With mandatory conversion, no agent is allowed to optimally act at the trigger. This

absence of a “smooth pasting” condition then leads to the problems we have articulated

above. The smoothness breaks down if the mandatory conversion transfers value between

the equity holders and CC holders at the trigger price.14 The state-contingent conversion

ratio presented in the theorems prevents the value transfer and, in effect, keeps the prices

“smooth” at conversion.15 However, conversions that are mandatory only at maturity do

not pose any essential difficulty as the bond trades at par at maturity and hence the zero

13It should be noted that there are some studies of the multiple equilibrium in convertible bonds and
options. Constantinides (1984) shows the possibility of multiple competitive equilibria, and Spatt and
Sterbenz (1988) have examined sequential exercise strategies and gains to hoarding warrants. In these
papers, however, multiplicity of equilibrium is caused by the distribution of ownership of warrants and
reinvestment policies. Furthermore, in the context of bank runs, the possibility of multiple equilibriua has
been identified by Diamond and Dybvig (1983).

14The effect of value transfer at mandatory conversion is similar to an exogenous value transfer caused by
tax distortion. Albul et al (2010) have shown that differential tax treatment of CC’s coupon interest and
equity’s dividend can cause multiple equilibria for a mandatory convertible debt with the trigger on asset
value.

15In the valuation of barrier options, the exercise boundary is exogenous and their structure shares some
of the features of CC. But the exercise of such options does not influence the underlying stock price itself,
as there are no dilution effects to consider. These options are also in zero net supply.

23



value transfer restriction at maturity can be satisfied with fixed conversion trigger and ratio.

The mandatory convertible preferred security in the Treasury’s Capital Assistance Program

in 2009 has such features at maturity.16

Although all our numerical examples demonstrate the case of multiple equilibrium, we

should emphasize that the absence of equilibrium is equally important. While the range

of multiple equilibrium offers a sense of the severity of the problem, there is no simple

way to characterize the severity of no equilibrium. This does not imply that the absence

of equilibrium is not a serious concern. The problem with the absence of equilibrium is

demonstrated in the laboratory experiments conducted by Davis, Prescott and Korenok

(2011). They let groups of heterogeneous agents trade an asset in a market where there is

no equilibrium due to intervention by a market regulator and compare the results obtained

in a market where there is a unique equilibrium without intervention. They observe large

uncertainty in trading prices and inefficient allocation of the asset, with efficiency in their

analysis measured by how much assets are allocated to the traders who value them the most.

In the case of the multiple equilibria caused by regulator intervention, their experiments also

show price uncertainty and allocation inefficiency.

III Additional Issues

A The Issue with Implementation

The pricing restriction presents a challenge to the implementation of the CC design: the

restricted conversion ratio is tied to the market value of the contingent capital if we want a

unique equilibrium. Since we cannot tell what the future market value will be, the value Ct

of the nonconverted CC can be different from a pre-specified mtKt/n at any time t ∈ Λ. If

we set the conversion ratio to mt = nCt/Kt, it depends on the future market value of the

16See Glasserman and Wang (2011), who describe and value the capital assistance program.
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nonconverted CC. However, if the unconverted CC is always priced at the par value, the

problem will be solved by setting mt = nC̄/Kt.

To make a CC priced at par all the time before conversion, we need to focus on a structure

that makes the market value of the CC immune to changes in interest rates and default risk.

For example, if the CC had no default risk until conversion, by selecting the coupon rate at

each instance to be the instantaneously risk-free rate we can ensure that the CC will trade at

par. See Cox, Ingersoll, and Ross (1980) for a proof of this assertion.17 In this case, CC will

work well, because we can determine the conversion ratio ex-ante as mt = nCt/Kt = nC̄/Kt.

Since C̄ and Kt are known ahead of time, we can specify the conversion ratio ahead as well.

Without jumps in asset value, CC can be designed to be default-free during its life before

conversion, even though the bank may have a positive probability of default on its debt

claims subsequent to the expiration of CC. This idea is formalized in Theorem 3 below.

Theorem 3 Suppose a bank’s asset value follows a geometric Brownian motion, dAt =

(rt−αt)Atdt+σAtdzt, where αt is the rate of cash flow from the asset, rt is the instantaneous

risk-free interest rate, and zt is a Wiener process. Given any conversion trigger Kt that is

a continuous function in time, the contingent capital with coupon rate ct = rt, continuous

verification Λ = [0,+∞], and conversion ratio mt = nC̄/Kt has a unique equilibrium value,

which equals the par value.

This theorem generalizes the immunization results of Cox, Ingersoll, and Ross (1980) to

a setting where there is mandatory conversion and a positive probability of default after the

expiration date of CC. Since the coupons float with the risk-free rate and the principal is

guaranteed at conversion, the CC is fully immunized and therefore sells at par. The economic

rationale is also intuitive. Since the CC sells at par, we can design the CC with an ex-ante

17In the context of a CC that is exposed to default risk, the appropriate indexed coupon may also require
a compensation for the mandatory conversion in addition to the risk-free rate.
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conversion ratio that guarantees that, upon conversion, the CC holders will get par. This

theorem demonstrates the existence of simple CC design that gives a unique equilibrium. In

this CC, conversion trigger K and ratio m can be constant. To assure a unique equilibrium,

we only need to set K and m so that m = nC̄/K.

Theorem 3 appears to make a CC with market trigger implementable, but it is imprac-

ticable. Theorem 3 needs the asset price process to be continuous and the verification to

be continuous. In reality, the underlying process of an asset value can have discontinuous

jumps. Consequently, the bond is not free of default risk before conversion, and the theorem

does not hold. Also, continuous verification is impractical; practical contract specifications

are always based on closing or settlement prices, sampled over daily or other regular inter-

vals. In addition, bank-issued CC will be less liquid than risk-free assets such as Treasury

securities, and hence the coupon will have to include a component for the liquidity premium

in order to make the CC value equal to par. Theorem 3 indicates the restrictive assumptions

that are needed to design a CC with market trigger that produces a unique equilibrium.

B Equity Issuance and Conversion Policies

In the analysis so far, we assume that the bank does not issue new equity shares during

the life of the contingent capital, particularly when the bank’s equity level is low. It is a

reasonable assumption because the reason for regulators to require contingent capital stems

from their belief that it is too expensive or difficult for a bank to raise equity capital when the

bank is under stress and highly leveraged. However, it is still interesting to ask whether the

absence of a unique equilibrium may occur if banks can issue new shares to avoid conversion.

Calomiris and Herring (2011) argue that the option to issue new shares and avoid con-

version eliminate the equilibriums that are disadvantageous to equity holders and assures a

unique equilibrium. They also assert that the need to avoid a disadvantageous equilibrium
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forces banks to issue common equity. They suggest that regulators should require banks to

hold contingent capital mainly to force banks to issue equity in bad times or states.

In this subsection, we will show that equity issuance may eliminate some of the equilib-

rium in which the CC converts and ensure unique equilibrium at maturity but not before

maturity. This result at maturity is of limited interest as the bank becomes unlevered at ma-

turity. In demonstrating this, we assume a frictionless world where issuing new shares does

not incur additional cost beyond the shares’ fair value. Finally, we show that the additional

cost of issuing new shares will make multiplicity of equilibrium even more likely.

We first show how equity issuance eliminates a conversion equilibrium at the maturity of

the senior bond. Let us use the same notations in Section I. To have multiple equilibria at

maturity, we need to set m > nC̄/K so that conversion is punitive. As we have discussed

before, for every AT ∈ (B̄ + C̄ + K, B̄ + (m/n)K + K], there are two equilibria. In one

equilibrium the CC does not convert, and the stock price is SuT = (AT −B̄− C̄)/n > K/n. In

the other equilibrium the CC converts, and the stock price is ScT = (AT−B̄)/(n+m) ≤ K/n.

If the bank issues enough (say l) new shares to avoid conversion, the second equilibrium

cannot sustain. Since conversion can be avoided, the share price with new issuance must

be SuT . Since ScT < SuT , the bank will choose to issue new shares as otherwise everyone may

believe conversion could happen. Consequently, the only possible equilibrium stock price is

SuT for every AT ∈ (B̄ + C̄ +K, B̄ + (m/n)K +K].18

Equity issuance ensures a unique equilibrium in the above example because the bank is

not leveraged after stock issuance. If the firm continues to be leveraged at time T , issuing

new shares of equity will increase the safety of the outstanding bond and CC and raise their

18It is worth pointing out that no matter how large the conversion ratio m is, equity issuance does not
eliminate the chance of conversion. Conversion must happen when AT ≤ B̄ + C̄ + K because Su

T ≤ K/n
in this case. Issuing new shares will not increase Su

T . Therefore, the probability of conversion is at least as
large as P{B̄ + C̄ +K}, which is independent of m.
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values. This transfers some value from equity holders to bond holders. Suppose, at time T ,

the bond value without issuing equity turns out to be equal to B and the bond gains ∆B > 0

with the issuance of l shares of new equity. Then, the bond value with equity issuance at T

is Bi
T = B + ∆B. The equity price with the issuance of new equity, denoted by SiT , should

satisfy (AT + l · SiT −Bi
T − C̄)/(n+ l) = SiT . Solving for SiT , we obtain that the stock price

should be SiT = (AT −BT − C̄)/n = (AT −B −∆B − C̄)/n, which is smaller than SuT .

Then, for every AT ∈ (B+C̄+K, B+(m/n)K+K], there are two equilibria. In the first

equilibrium, all investors believe that CC will not convert. In this case, bank management

does not issue new shares because new issuance will lead to lower stock price. Without

conversion and issuance, the stock price is SuT . In the second equilibrium, all investors

believe that the CC converts if no new shares are issued to avoid the conversion. In this

case, the result of the equilibrium depends on the magnitude of ∆B. If ∆B is so small that

SiT > ScT , then the bank management prefers issuing new shares to conversion. Consequently,

CC does not convert, new shares are issued, and the stock price is SiT , which is larger than

ScT but smaller than SuT . However, if ∆B ≥ n(AT −B)/(n+m)− C̄, it is easy to verify that

SiT ≤ ScT . In this case, the bank management will be better off by letting the CC convert.

Therefore, the converted share price ScT should be the equilibrium price, and no new shares

are issued.

The above analysis suggests that equity issuance does not ensure a unique equilibrium

in a dynamic setting. Take the example of one-period discrete model in Section B but set

conversion ratio to m = 3. Recall that B̄ = 90, C̄ = 10, K = 5, and n = 1. The probability

distribution of AT is: p{AT = 120} = .25, p{AT = 100} = 0.50, and p{AT = 80} = 0.25.

With the assumption of zero risk-free rate, the initial asset value is A0 = 100, and bond value

is B0 = 87.50, as shown in panel A of Figure 3. Similarly as in Section B, without issuance

of new shares, we obtain two equilibria: (Cu
0 , S

u
0 ) = (6.25, 6.25) and (Cc

0, S
c
0) = (9.38, 3.13),
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as shown in panel B of Figure 3.

Now, assume that the bank plans to issue new shares today so that the total number of

shares enlarges by fifty percent. Suppose the issuance price is $5.26, which will be shown

in the next paragraph to be the equilibrium stock price with the issuance. For simplicity,

assume that the proceeds of the new shares can be reinvested to enlarge the bank asset

and earn the same return.19 The asset value with reinvestment of the proceeds is Ai0 =

100 + 0.5× 5.26 = 102.63. If the original asset value AT is 120, 100, or 80, the value of the

enlarged asset, AiT , is 123.16, 102.63, or 82.10, respectively. These asset values are shown in

panel A of Figure 3. The enlarged asset makes the bond safer and increases the bond value

from 87.50 to 88.03, as shown in the same panel.

With new equity issuance being allowed, no conversion today is still an equilibrium as

shown in panel B of Figure 3 because the stock price, Su0 = 6.25, is above the trigger.

However, if all investors believe that conversion would happen if the bank does not avoid it,

issuing new shares today is another equilibrium as shown in panel C of Figure 3. Issuing new

shares is a strategy that dominates conversion because Si0 = 5.26 is higher than Sc0 = 3.13.

Also notice that Si0 = 5.26 is the same as the issuance price we assumed at the beginning of

the previous paragraph. This confirms that Si0 = 5.26 is an equilibrium price with issuance.

Therefore, using equity issuance to avoid conversion, we still have two equilibria: (Cu
0 , S

u
0 ) =

(6.25, 6.25) and (Ci
0, S

i
0) = (6.71, 5.26).

It is difficult to analyze a dynamic continuous time model with optimal equity issuance,

but the above analysis and example in discrete models are sufficient to demonstrate that

optimal equity issuance does not guarantee a unique equilibrium, even if we assume equity

issuance is possible and costless. Given the complicated pricing dynamics of contingent cap-

19That is, we assume that the bank asset has constant returns to scale. If we assume that the asset has a
decreasing return to scale, it strengthens the case for multiple equilibria.
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ital, the incentives of contingent capital to bank managers are largely uncertain. Therefore,

using a contingent capital requirement appears to be an indirect way to force banks to issue

common equity. It may be more direct and simple to set a regulatory policy that requires

banks to issue common equity when the market equity ratio is low.

C Financial Distress

When deriving the condition of unique equilibrium in Section II, we allow for bankruptcy

costs but not for financial distress. We assume that the cash outflows for paying coupons of

the bonds and contingent capital come from operating cash flows and, when needed, from

equity holders. This assumption allows us to derive the necessary and sufficient condition

for the unique equilibrium in a general setting.

An argument frequently cited in favor of contingent capital is, however, that it can be

converted into equity if the bank is under financial distress. The conversion thereby conserves

capital as the bank is relieved of paying the coupons associated with the CC. In periods of

financial distress when banks may not be able to raise capital, contractual coupon obligations

may be a burden and carry significant costs. In particular, meeting such obligations may

result in asset depletion, which may further exacerbate the financial distress. One reason

for introducing contingent capital is to reduce the likelihood for a financial institution to

experience default because the chance of costly bankruptcy destroys the value of the firm

that is under financial distress.

Given that financial distress is assumed away in Section II, it is natural to ask whether

there are multiple equilibria under financial stress if the contingent capital has a constant

conversion ratio. This question is difficult to analyze in a setting that is as general as in

Section II. Nevertheless, using a two-period discrete model, we are able to demonstrate that

under financial distress when debt service depletes assets, there can still be multiple equilibria
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of CC and equity values. In the case of financial distress, there can even be multiple equilibria

of firm values and senior bond values. In other words, contingent capital can lead the equity,

bond and firm values to be all different in different equilibria. More generally, the analysis

in this two-period model suggests that with financial distress a contingent capital does not

always have unique equilibrium even if we place the conversion trigger on any combination

of the claims of the firm.20

Our two-period model has three dates: dates 0, 1 and 2. For simplicity, we assume that

the risk-free rate is zero. During each period, the risky asset value either has positive return

R or a negative return −R with equal probability. Thus, on date 1, the asset value will be

A1 = A0(1 ± R) with equal probability for each value. On date 2, however, the asset value

will depend on what happens to the bond and CC on dates 0 and 1. Assume there is a bond

with face value B̄ and coupon rate b per period and a CC with face value C̄ and coupon

rate c per period. Both the bond and CC start from date 0 and mature on date 2. Unlike

in the previous section, we assume that the bank has to sell assets to serve debt obligations.

Then, if neither the bond defaults nor the CC converts on date 0 or 1, the asset value on

date 2 is A2 = (A1− bB̄− cC̄)(1±R), which has four possible values with equal probability.

If the bond does not default on date 0 or 1 but the CC converts on date 0 or 1 when the

asset value is A1, the asset value on date 2 is A2 = (A1− bB̄)(1±R), which has two possible

values with equal probability conditioning on A1.

The firm and bond values also depend on whether the bond is defaulted. If the bond is

not defaulted up to date i, the firm and bond values on date i are

Fi =

{
A2 if i = 2
E[Fi+1] if i = 0, 1

and Bi =


(1 + b)B̄ if i = 2
E[Bi+1] + bB̄ if i = 1
E[Bi+1] if i = 0,

(16)

where E[Fi+1] and E[Bi+1] are the expected firm and bond values on date i+1, respectively.

20For example, Pennacchi (2011) suggests that placing the trigger on the sum of the equity and CC values
may ensure a unique equilibrium.
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Notice that the bond value is “cum-dividend.” In this model, we assume that default happens

if and only if the equity value is zero. Thus, the condition for default on date i is that the firm

value Fi is smaller than or equal to the bond value conditioning on the bond not defaulting.

This default strategy maximizes the shareholders value. Bankruptcy is costly, and the cost

is a fraction (ω) of the assets. Then, if the bond has defaulted by date i, the firm and bond

values on date i are

Fi = Bi = (1− ω)Ai. (17)

The CC and equity values depend on whether the CC is converted, besides depending on

the status of the bond. Let K be the trigger level for contingent capital and m the conversion

ratio. Assume there is one share outstanding on date 0. If the CC has not been converted

on date i, the CC and equity values on date i are

Ci =


(1 + c)C̄ if i = 2
E[Ci+1] + cC̄ if i = 1
E[Ci+1] if i = 0

and Si = Fi −Bi − Ci. (18)

If the CC has been converted on date i but the bond has not been defaulted, the CC and

equity values on the date are

Ci = mSi and Si =
1

1 +m
(Fi −Bi). (19)

If the bond has been defaulted on date i, the CC and equity value on date i are

Ci = 0 and Si = 0. (20)

The set of the firm, bond, CC, and equity values, {(Fi, Bi, Ci, Si)}i=0,1,2, is a dynamic

rational expectations equilibrium in the model if the values satisfy equations (16)–(20). The

equilibrium in this model is not always unique. This can be shown by a numerical example.

Let A0 = 100, R = 0.06, ω = 0.1, B̄ = 85, b = 0.02, C̄ = 6, c = 0.04 and K = 1. We

have two equilibria, which are displayed in Figure 4. Panel A is an equilibrium in which
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conversion does not occur, and the bank has to pay coupons to CC holders on date 1. This

reduces the assets and as a consequence increases the likelihood of default on date 2. Panel

B is an equilibrium in which conversion occurs on date 1, and hence the bank is able to

conserve its capital and avoids bankruptcy on date 2.

The following are worth noting. First, the trees in Figure 4 are not recombining as the

assets are reduced to meet contractual coupon payments under financial distress. Studies of

a multi-period model with non-recombining trees are often difficult, and this is the reason

we limit ourselves to a two-period model. Second, the asset value at each node is potentially

different from the bank’s firm value since the latter will be the asset value minus the expected

costs of default, which are the financial distress costs.

Of the two equilibria, the conversion equilibrium in panel B is welfare improving in the

sense that it results in lower dead-weight losses. Notice that the date 0 firm value (100) in

the equilibrium with conversion is higher than the value (97.84) in the equilibrium without

conversion. This shows that the conversion equilibrium results in lesser dead-weight losses

as the bank avoids paying coupons when “bad states” are reached. On the other hand, the

no-conversion equilibrium results in higher dead-weight losses. This example suggests that

contingent capital can be potentially welfare improving in the sense of reducing the expected

dead-weight losses, but there is no credible way to select this equilibrium ex-ante. In fact,

equity holders would prefer the no-conversion equilibrium because the equity value in this

equilibrium is 6.00, which is larger than the equity value (5.36) in the other equilibrium.

IV Conclusion

Contingent capital with a mandatory conversion feature can be designed by placing the

trigger for conversion on the value of securities issued by the bank. Our paper shows that
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depending on the design of the CC and the underlying asset dynamics, one can obtain unique,

multiple, or no equilibrium. Contingent capital and other securities are claims on the same

assets and that their prices (which reflect conversion policies) often need to be determined

simultaneously. Since no agent is allowed to act in his interest with mandatory conversion,

conversion rules must ensure that, at the trigger, conversion does not change the value of

the security on which the trigger is placed.

Our paper shows, for equity triggers, that the conversion ratio that gives a unique equi-

librium must produce no value transfer. Hence, the design of “dilutive” ratios in order to

penalize bank managers or to promote coercive equity issuance will lead to multiple equilib-

ria. Multiple equilibria imply that CC holders and equity holders have precisely the opposite

motives, which can lead to potential manipulation of market prices when the equity price

approaches the trigger level. Under some conditions, we show that equity triggers can also

result is no equilibrium, which does not promote stability. Although our paper mainly fo-

cuses on the equity price trigger, our analysis has implications for all triggers that depend

on market value of equity either directly or indirectly.

The pricing restriction developed in this paper offers better understanding of the litera-

ture developed recently on pricing contingent capitals. Albul, Dwight and Tchistyi (2010)

obtain a closed-form solution of a unique equilibrium by assuming that the bond and con-

tingent capital are both perpetual. The most striking distinction between the work of Albul

et al and our paper is that they assume that the conversion trigger is on the level of asset

value, rather than the price of a financial claim on the asset. The assumption of an asset

value trigger ensures the existence of a unique equilibrium, although the assumption makes

their contingent capital very different from all the proposed CC. The work of Albul et al and

the pricing restriction developed by us together show that placing the trigger on asset value

is not equivalent to placing the trigger on the market equity ratio.
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Pennacchi (2010) takes a different approach to avoid the problem of multiple or no equi-

librium. He focuses on a bank that, besides having short-term deposits and common equity,

issues contingent capital but no long-term bond. The short-term deposits are always priced

at par, and its total value is assumed to have an exogenous stochastic process. He suggests

placing the trigger on the ratio of the asset value to the combined value of the CC and

equity. Since the asset value is the sum of the deposits, equity and CC values, his approach

is equivalent to placing the trigger on the asset-to-deposits ratio. This equivalence arises

due to the assumption that financial distress/bankruptcy are costless. This ensures a unique

equilibrium in stock and CC prices because the ratio is independent of the conversion of CC.

However, this mechanism of obtaining a unique equilibrium will not work in a world with

bankruptcy and distress costs. Pennacchi’s work confirms the necessity of placing the trigger

on variables that are unaffected by the conversion of contingent capital.

To avoid the problem with the lack of unique equilibrium, McDonald (2010) directly

assumes that the firm’s equity value follows a geometric Brownian motion exogenously. Then,

he places conversion trigger directly on the equity value as well as a broad market index,

which is unaffected by the firm that issues CC. In contrast, Glasserman and Nouri (2010)

assume that the asset value follows an exogenous geometric Brownian motion and place the

conversion trigger on the ratio of “book value” of equity to the firm value, where the “book

value” is obtained by subtracting the par values and obligated coupons of the bond and CC

from the asset value. The lesson we can learn from these two papers is that as long as the

variables for the conversion trigger are exogenous, we can steer clear of the multiplicity and

absence of equilibrium and calculate a price of the contingent capital.

The pricing problem demonstrated in this paper and reflected in the literature shows the

challenge regulators typically face when they interact with markets. The challenge can come

in two ways: (1) regulation with a good intention may interfere with the markets and cause
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instability with unintended consequences; and (2) regulation’s function may be constrained

by the markets, causing it to become ineffective. In the example of contingent capital with

market trigger, a conversion that is punitive to equity holders may introduce instability be-

cause it creates multiple equilibria. The unique equilibrium restriction strips off the incentive

function of the CC. In view of the problems with bank manager option, accounting trigger,

and regulator’s discretion that we have discussed earlier, and the challenges of designing a

CC with market trigger that we have shown, it may not be practical to design the security

so that it converts to common equity in a timely and reliable manner when a bank is under

stress. As a result, contingent capital may not be a close substitute of common equity as a

capital buffer.

Some researchers assert that contingent capital is a cheaper substitute of equity because

the CC’s coupon payments qualify for tax deduction. This assertion is inconsistent with

the current U.S. tax code. According to Revenue Rule 85-119, the feature of paying back

the par value at maturity, if a CC is not converted, appears to make the CC a debt for tax

purpose. However, the coupon payments are not tax deductible according to Section 163(l)

of the Internal Revenue Codes. A security is a disqualified debt instrument in IRC Sec.

163(l) if (a) a substantial amount of the principal and interest of the security is required

to be paid in or converted into the equity of the issuer, (b) a substantial amount of the

principal or interest is required to be determined by reference to the value of such equity, or

(c) the indebtedness is part of an arrangement which is reasonably expected to result in a

transaction described in (a) or (b). Clearly, contingent capital is not tax deductible in the

U.S. unless the U.S. government changes its tax codes to exempt CC particularly. However,

we should not forget that banks’ saving from tax deduction is taxpayers’ cost.

Regulators around the world have taken positions on the credibility and impracticality

of contingent capital as a loss-absorbing capital for banks and financial institutions. We
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summarize below the recent development of policies related to contingent capital. This

provides a context for our study and helps us to put a perspective on the policy debate.

Daniel Tarullo, a Federal Reserve Governor, has argued that it is unclear that contingent

capital can be designed in a way so as to be cheaper than equity but still structured so as to

convert in a timely, reliable fashion. The concern is around the trigger for conversion, which

has been the focus of our paper: the possibility of manipulation of prices around trigger

and the likelihood of “death spiral” being two of the main concerns. Our paper shows that

there is a potential for manipulation around the trigger level because the forces of supply

and demand do not cause the market to converge to a unique equilibrium.

The Office of the Superintendent of Financial Institutions (OSFI) in Canada has ex-

pressed the view that the conversion trigger should be activated relatively late in the dete-

rioration of a bank’s health, when the supervisor has determined that the bank is no longer

viable as currently structured. They have argued that an identifiable conversion trigger event

could be when the regulator is ready to seize control of the institution because problems are

so deep that no private buyer would be willing to acquire shares in the bank, or when a

government injects capital into (or otherwise provides guarantees to) a bank. Upon occur-

rence of a trigger event, each contingent security would convert into common equity. Thus

a regulatory trigger appears to be the preferred policy initiative in Canada.

Basel III, in its consultative document has concluded that contingent capital should not

be used by global systemically important banks (G-SIB) for loss-absorbency, on the ground

that absorbing losses at the point of non-viability violates the spirit of the “going-concern”

objectives. The Basel committee noted several similarities between equity capital and CC

(such as the possibility that both can be issued in good states so that they can offer protection

in bad states, and both are pre-funded, which increases the liquidity of the banks in good

states). After enumerating the pros and cons of CC, the Basel committee concluded that

37



the G-SIB be required to meet the loss absorbency requirement with common equity Tier-1

capital only. Their recommendations exclude CC from the core 7% capital requirements and

the 2.5% surcharge on G-SIB.

Although Basel III leaves to regional regulators to decide on the use of CC in any ad-

ditional capital requirements, it issued guidelines on the design of contingent capital. The

guidelines contain three important requirements. First, a contingent capital that qualifies

for “additional tier-1” should trigger conversion at equity ratio not lower than 7% of the risk-

weighted assets, whereas those qualify for tier-2 should trigger conversion at equity ratio not

lower than 3%. Second, a contingent capital should include a regulatory trigger that forces

conversion when the bank is non-viable without public assistance. Third, the contingent

capital must impose a cap on share issuance. It is unclear how to set triggers on claims other

than equity to meet the first requirement. The second requirement appears to reflect Basel

committee’s doubts about the reliability of equity triggers. The third requirement excludes

any design that involves unlimited issuance of common equity shares.

Several regional regulators issued rules that are consistent with Basel III and echoes

concerns expressed by the Basel committee. Switzerland has imposed additional capital

requirements on its big banks. It requires that big banks maintain at least 19% capital ratio,

comprised of 10% equity, 3% tier-1 CC and 6% tier-2 CC. European Commission (EC) in

its Capital Requirements Directive mandates that banks maintain 8% of their risk-weighted

assets in capital, of which 4.5% should be in equity, 1.5% in tier-1 CC and 2% in tier-2, along

with surcharges of 7.5%, which may only be in common equity. In U.K., the Independent

Commission on Banking (ICB) in its final report concluded: Equity is the only form of loss-

absorbing capacity that works both pre- and post-resolution. In particular, it is the only

form of loss-absorbing capacity that certainly absorbs losses before a bank fails. Contingent

capital may be of some value in this regard, but this is not yet proven.
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We interpret the actions of regulators as cautionary in the use of CC for the purposes

of loss-absorbency of banks. The potential problems such as the uncertainty about whether

the CC will convert to equity in a timely fashion, the propensity for manipulation around

the trigger and the market instability associated with the multiplicity and the absence of

equilibrium suggest that the role of CC as a capital instrument to internalize banks losses

must be monitored carefully.

Appendix Proofs of the Theorems

Before proving the theorems, it is useful to make the following observation. If there were no

CC, at any time t before maturity and default (t ≤ min{δ, T}), the equity value would have

been

Ut = Et
[
(AT − B̄)P (t, T ) · 1δ>T + Jt

]
, (A1)

where Jt is defined in equation (12) by replacing τ with t. Since it is known from Merton

(1974) and Black and Cox (1976) that Ut is a measurable function of t and At, we can define

another hitting time based on Ut and the given Kt and mt:

υ = inf
{
t ∈ Λ :

n

n+mt

Ut ≤ Kt

}
. (A2)

The following lemma will be useful for all the proofs.

Lemma 1 If (St, Ct) is the stock and CC prices in an equilibrium, then nSt +Ct = Ut when

t < min{τ, δ}, and St = Ut/(n+mτ ) when τ ≤ t < δ.

A Proof of Lemma 1

Suppose t < min{τ, δ}. It follows from equations (10) and (13) that

nSt + Ct = Et
[
(AT − B̄)P (t, T ) · 1min{τ,δ}>T + It +Ht

]
39



+ Et
[
(AT − B̄)P (t, T ) · 1τ≤T<δ + JτP (t, τ) · 1τ<min{δ,T}

]
. (A3)

Substituting equations (11), (12) and (14) for It, Jτ and Ht, respectively, in equation (A3),

we obtain

nSt + Ct = Et
[
(AT − B̄)P (t, T ) · 1min{τ,δ}>T

]
+ Et

[∫ min{τ,δ,T}

t
(asAs − bsB̄ − cs C̄)P (t, s)ds

]

+ Et

[∫ min{τ,δ,T}

t
csC̄P (t, s)ds

]
+ Et

[
(AT − B̄)P (t, T ) · 1τ≤T<δ

]
+ Et

[∫ min{δ, T}

τ
(asAs − bsB̄)P (τ, s)dsP (t, τ) · 1τ<min{δ,T}

]
. (A4)

Combining the terms in equation (A4), we obtain

nSt + Ct = Et
[
(AT − B̄)P (t, T ) · 1δ>T

]
+ Et

[∫ min{τ,δ,T}

t
(asAs − bsB̄)P (t, s)ds

]

+ Et

[∫ min{δ, T}

τ
(asAs − bsB̄)P (t, s)ds · 1τ<min{δ,T}

]
. (A5)

In equation (A5), we can rewrite the integral in the second term into

∫ min{δ,T}

t
(asAs − bsB̄)P (t, s)ds · 1τ≥min{δ,T} +

∫ τ

t
(asAs − bsB̄)P (t, s)ds · 1τ<min{δ,T}. (A6)

Combining the integrals of the last terms in equations (A5) and (A6), we obtain

nSt + Ct = Et
[
(AT − B̄)P (t, T ) · 1δ>T

]
+ Et

[∫ min{δ,T}

t
(asAs − bsB̄)P (t, s)ds · 1τ≥min{δ,T}

]

+ Et

[∫ min{δ,T}

t
(asAs − bsB̄)P (t, s)ds · 1τ<min{δ,T}

]
. (A7)

The last two terms in equation (A7) can be combined to give

nSt + Ct = Et

[
(AT − B̄)P (t, T ) · 1δ>T +

∫ min{δ,T}

t
(asAs − bsB̄)P (t, s)ds

]
= Et

[
(AT − B̄)P (t, T ) · 1δ>T + Jt

]
= Ut .

40



This proves nSt + Ct = Ut.

For τ ≤ t < δ, equations (15) and (A1) imply St = Ut/(n+mτ ). Q.E.D.

B Proof of Theorem 1

For τ < min{δ, T}, it follows from Lemma 1 that Sτ = Uτ/(n + mτ ). Since nSτ ≤ Kτ by

equation (9), we have nUτ/(n+mτ ) ≤ Kτ , which implies

υ ≤ τ (A8)

in view of equation (A2). On the other hand, equation (A2) implies nUυ/(n + mυ) ≤ Kυ,

and thus conversion is an equilibrium at time υ. If nSυ > Kυ, then no conversion is also

an equilibrium at time υ, contradicting to the assumption of unique equilibrium. Thus, the

uniqueness of the equilibrium implies nSυ ≤ Kυ. It follows that

τ ≤ υ , (A9)

in view of equation (9). Combining equations (A8) and (A9), we have τ = υ. It then follows

from equations (9), (A2) and Lemma 1 that

inf{t ∈ Λ : Ut ≤ Kt + Ct} = inf{t ∈ Λ : Ut ≤ Kt(n+mt)/n} . (A10)

The above equation holds for all possible paths of Ut if and only if Kt +Ct = Kt(n+mt)/n

for all t ∈ Λ, which implies mt = nCt/Kt for all t ∈ Λ. Therefore, in order to have a unique

equilibrium, the conversion ratio must satisfy mt = nCt/Kt for t ∈ Λ. Q.E.D.

C Proof of Theorem 2

To prove Theorem 2, we use the hitting time υ defined in (A2) as the conversion time of a

CC. For any conversion ratio mt, in rational expectations, the stock price and the CC value
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before conversion, default, and maturity (t < min{υ, δ, T}) are

S∗t = Et
[
(AT − B̄ − C̄)P (t, T ) · 1min{υ, δ}>T + I∗t

]
+ Et

[
1

n+mυ

{
(AT − B̄)P (t, T ) · 1υ≤T<δ + J∗υP (t, υ) · 1υ<min{δ, T}

}]
, (A11)

C∗t = Et
[
C̄P (t, T ) · 1min{υ, δ}>T +H∗t

]
+ Et

[
mυ

n+mυ

{
(AT − B̄)P (t, T )1υ≤T<δ + J∗υP (t, υ) · 1υ<min{δ, T}

}]
, (A12)

H∗t =
∫ min{υ, δ, T}

t
csC̄P (t, s)ds (A13)

I∗t =
∫ min{υ, δ, T}

t
(asAs − bsB̄ − cs C̄)P (t, s)ds (A14)

J∗υ =
∫ min{δ,T}

υ
(asAs − bsB̄)P (υ, s)ds. (A15)

The stock price after conversion (υ ≤ t < min{δ, T}) is

S∗t =
1

n+mυ

Et
[
(AT − B̄)P (t, T ) · 1δ>T + J∗t

]
. (A16)

Following the proof of Lemma 1, we can use equations (A11)–(A16) to derive similarly

nS∗t + C∗t = Ut, which implies

nS∗t = Ut − C∗t . (A17)

Now, we use S∗t to define another hitting time: τ ∗ = inf{t ∈ Λ : nS∗t ≤ Kt}. In view

of equation (A17), we have τ ∗ = inf{t ∈ Λ : Ut ≤ Kt + C∗t }. Setting mt = nC∗t /Kt for all

t ∈ Λ, we have

τ ∗ = inf{t ∈ Λ : Ut ≤ Kt + C∗t }

= inf{t ∈ Λ : Ut ≤ Kt(n+mt)/n} = υ . (A18)

Therefore, (S∗t , C
∗
t ) satisfies equations (9), (10), (13) and (15) and thus is an equilibrium.

If (St, Ct) is another equilibrium with the conversion ratio mt = nCt/Kt, following similar

reasoning in the derivation of equation (A18), we can show that the conversion time τ =
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inf{t ∈ Λ : nSt ≤ Kt} equals υ, which gives τ = τ ∗. Therefore, the values of the common

stock and CC calculated in equations (10), (13), (A11) and (A12) imply St = S∗t and Ct = C∗t .

This proves the uniqueness of the equilibrium. Q.E.D.

D Proof of Theorem 3

In this theorem, ct = rt for all t. With the conversion ratio mt = nC̄/Kt, we first show

that, in any equilibrium, the value of unconverted contingent capital equals its par value,

i.e., Ct = C̄ for all t ≤ τ .

Let (Ct, St) be an equilibrium. The value of the unconverted contingent capital satisfies

equation (13). Using ct = rt and the definition of the discount factor, we can write equation

(14) as

Ht =
∫ min{τ, δ, T}

t
rsC̄e

−
∫ s

t
rududs = −C̄

∫ min{τ, δ, T}

t
e−
∫ s

t
rudu d

(
−
∫ s

t
rudu

)
. (A19)

It follows from the fundamental law of calculus that

Ht = −C̄ e−
∫ s

t
rudu

∣∣∣∣min{τ, δ, T}

t
= C̄ [1− P (t, min{τ, δ, T})] . (A20)

The last term can be split into two terms to give

Ht = C̄
[
1− P (t, T ) · 1min{τ,δ}>T − P (t, min{τ, δ}) · 1min{τ,δ}≤T

]
. (A21)

Substituting the above expression for Ht back into the valuation function of Ct in equation

(13) and using the properties of iterated expectations, P (t, T ) = P (t, τ)P (τ, T ) and 1τ≤T<δ =

1T<δ1τ≤min{δ, T}, we obtain

Ct = C̄ − Et
[
C̄P (t,min{τ, δ}) · 1min{τ, δ}≤T

]
+ Et

[
mτ

n+mτ

{
(AT − B̄)P (τ, T ) · 1T<δ + Jτ

}
P (t, τ) · 1τ≤min{δ,T}

]
, (A22)

Since equation (15) implies

1

n+mτ

Eτ
[
(AT − B̄)P (τ, T ) · 1T<δ + Jτ

]
= Sτ , (A23)
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the value of contingent capital with the floating coupon rate rt equals

Ct = C̄ − Et
[
C̄P (t,min{τ, δ}) · 1min{τ, δ}≤T

]
+ Et

[
mτSτP (t, τ) · 1τ≤min{δ, T}

]
. (A24)

Since the asset follows a continuous process and the verification is continuous, default cannot

occur before conversion, i.e., τ ≤ δ. Hence, the above equation can be written as

Ct = C̄ − Et
[
C̄P (t, τ) · 1τ≤min{δ, T}

]
+ Et

[
mτSτP (t, τ) · 1τ≤min{δ, T}

]
. (A25)

The continuous process and verification also imply nSτ = Kτ at the conversion time τ .

Substituting Sτ = Kτ/n and mτ = nC̄/Kτ , we obtain

Ct = C̄ − Et
[
C̄P (t, τ) · 1τ≤min{δ, T}

]
+ Et

[
nC̄

Kτ

Kτ

n
P (t, τ) · 1τ≤min{δ, T}

]
= C̄, (A26)

which shows that the CC is priced at par.

Since the contingent capital is always priced at par, the equilibrium price of CC is unique.

Then, Lemma 1 implies St = (Ut − C̄)/n before conversion and St = Ut/(n + mτ ) after

conversion. Consequently, the equilibrium price of the common stock is also unique. Q.E.D.
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Table and Figures

Table I
Numerical Examples for the Range of Multiple Equilibria

Parameter Notation GBM JD
Asset

Initial asset value A0 100.00 100.00
Risk-free interest rate r 3.00% 3.00%
Asset volatility σ 4.00% 4.00%
Arrival rate of jumps λ 4.00
Mean of log(jump size) µy −1.00%
Volatility of jump size σy 3.00%

Bond
Par value of bond B̄ 87.00 87.00
Coupon rate of bond b 3.34% 3.34%
Years to Maturity T 5.00 5.00
Bankruptcy cost ω 10.00% 10.00%

CC
Par value of CC C̄ 5.00 5.00
Coupon rate of CC c 0.00 0.00
Years to Maturity T 5.00 5.00
Trigger on equity value K 1.00 1.00

Value
Firm value F0 98.35 94.74
Bond value B0 88.03 87.00
Equity value S0 [5.86 , 6.46] [3.84 , 5.44]
CC value C0 [3.86 , 4.46] [2.30 , 3.90]
Price range 0.60 1.60
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Figure 1 Multiple Equilibria in a One-Step Trinomial Tree Model

A. Bank’s asset value and bond value

sA0 = 100.00   
   

   
   

  s120.00 Probability = 0.25

s100.00 Probability = 0.50`````````````s 80.00 Probability = 0.25

sB0 = 87.50   
   

   
   

  s 90.00 no default

s 90.00 no default`````````````s 80.00 default

B. No conversion is an equilibrium

sCu
0 = 5.83   

   
   

   
  s 10.00 no conversion

s 6.67 convert to 2 shares`````````````s 0.00 default

sSu
0 = 6.67   

   
   

   
  s 20.00 = (120− 90− 10)/1

s 3.33 = (100− 90)/(1 + 2)`````````````s 0.00 default

C. Conversion is another equilibrium

sCc
0 = 8.33

= 2× 4.17

   
   

   
   

 s 20.00 = 2 shares × $10

s 6.67 = 2 shares × $3.33`````````````s 0.00 default

sSc
0 = 4.17

= (100− 87.50)/(1 + 2)

   
   

   
   

 s 10.00 = (120− 90)/(1 + 2)

s 3.33 = (100− 90)/(1 + 2)`````````````s 0.00 default

48



Figure 2 The Range of Multiple Equilibria

The range of multiple equity and CC prices depend on the asset volatility, the leverage in
terms of bond and CC, as well as the trigger level. The solid lines represent the upper and
lower bounds of the multiple equity prices, and the dot lines represent the bounds of CC
values. The parameters used for the figure are the same as those in the second-last column
of Table I, except the one that varies in a range indicated by the horizontal axis. For the
varying parameter, the value in Table I is indicated by the vertical dash line.
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Figure 3 Multiple Equilibria When Equity Issuance Is Allowed

A. Bank’s asset value and bond value

s[
A0 = 100.00
Ai

0 = 102.63

]
���

���
���

���
�s[ 120.00

123.16

]
probability = 0.25

s[ 100.00
102.63

]
probability = 0.50XXXXXXXXXXXXXs[ 80.00

82.10

]
probability = 0.25

s[
B0 = 87.50
Bi

0 = 88.03

]
��

���
���

���
��s[ 90.00

90.00

]
no default

s[ 90.00
90.00

]
no defaultXXXXXXXXXXXXXs[ 80.00

82.10

]
default

B. If no issuance, there are two equilibria: (Cu
0 , S

u
0 ) and (Cc

0, S
c
0)

sCu
0 = 6.25

Cc
0 = 3× 3.13 = 9.38

   
   

   
   

 s 10.00 no conversion

s 7.50 convert to 3 shares`````````````s 0.00 default

sSu
0 = 6.25

Sc
0 = (100− 87.50)/(1 + 3) = 3.13

   
   

   
   

 s 20.00 = (120− 90− 10)/1

s 2.50 = (100− 90)/(1 + 3)`````````````s 0.00 default

C. Issuing half share gives (Ci
0, S

i
0), which dominates (Cc

0, S
c
0).

sCi
0 = 6.71    

   
   

   
 s 10.00 no conversion

s 8.42 convert to 3 shares`````````````s 0.00 default

sSi
0 = 5.26    

   
   

   
 s 15.44 = (123.16− 90)/1.5

s 2.81 = (102.63− 90)/(1.5 + 3)`````````````s 0.00 default
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Figure 4 Multiple Equilibria under Financial Distress

A. An equilibrium without conversion
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B. An equilibrium with conversion
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