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1. Introduction

Semiparametric estimators involving functionals of nonparametric estimators have been stud-

ied widely in econometrics. In particular, considerable e¤ort has been devoted to charac-

terizing conditions under which such estimators are asymptotically linear (see, e.g., Newey

and McFadden (1994), Chen (2007), and the references therein). Moreover, although the

asymptotic variance of an asymptotically linear semiparametric estimator can in principle

be obtained by means of the pathwise derivative formula of Newey (1994a), it is desirable

from a practical point of view to be able to base inference procedures on measures of disper-

sion that are �automatic�in the sense that they can be constructed without knowledge (or

derivation) of the in�uence function (e.g., Newey (1994b)).

Perhaps the most natural candidates for such measures of dispersion are variances and/or

percentiles obtained using the bootstrap.1 Consistency of the nonparametric bootstrap has

been established for a large class of semiparametric estimators by Chen, Linton, and van

Keilegom (2003). Moreover, in the important special case of the density-weighted average

derivative estimator of Powell, Stock, and Stoker (1989, henceforth PSS), a suitably im-

plemented version of the nonparametric bootstrap was shown by Nishiyama and Robinson

(2005, henceforth NR) to provide asymptotic re�nements. The analysis in NR is conducted

within the asymptotic framework of Nishiyama and Robinson (2000, 2001). Using the al-

ternative asymptotic framework of Cattaneo, Crump, and Jansson (2009, henceforth CCJ),

this paper revisits the large sample behavior of bootstrap-based inference procedures for

density-weighted average derivatives and obtains (analytical and Monte Carlo) results that

could be interpreted as a cautionary tale regarding the ease with which one might realize

�the potential for bootstrap-based inference to (...) provide improvements in moderate-sized

samples�(NR, p. 927).

Because the in�uence function of an asymptotically linear semiparametric estimator is

invariant with respect to the nonparametric estimator upon which it is based (e.g., Newey

(1994a, Proposition 1)), looking beyond the in�uence function is important if the sensitivity

of the distributional properties of an estimator or test statistic with respect to user chosen

objects such as kernels or bandwidths is a concern. This can be accomplished in various ways,

the traditional approach being to work under assumptions that imply asymptotic linearity

and then develop asymptotic expansions (of the Edgeworth or Nagar variety) intended to

1Another �automatic�measure of dispersion is the variance estimator of Newey (1994b). When applied
to the density-weighted average derivative estimator studied in this paper, the variance estimator of Newey
(1994b) coincides with Powell, Stock, and Stoker�s (1989) variance estimator whose salient properties are
characterized in Lemma 1 below.
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elucidate the role of �higher-order�terms (e.g., Linton (1995)). Similarly to the Edgeworth

expansions employed by Nishiyama and Robinson (2000, 2001, 2005), CCJ�s asymptotic dis-

tribution theory for PSS�s estimator (and its studentized version) is obtained by retaining

terms that are asymptotically negligible when the estimator is asymptotically linear. Unlike

the traditional approach, the �small bandwidth� approach taken by CCJ accommodates,

but does not require, certain departures from asymptotic linearity, namely those that occur

when the bandwidth of the nonparametric estimator vanishes too rapidly for asymptotic lin-

earity to hold. Although similar in spirit to the Edgeworth expansion approach to improved

asymptotic approximations, the small bandwidth approach of CCJ is conceptually distinct

from the approach taken by Nishiyama and Robinson (2000, 2001, 2005) and it is therefore

of interest to explore whether the small bandwidth approach gives rise to methodological

prescriptions that di¤er from those obtained using the traditional approach.

The �rst main result, Theorem 1 below, studies the validity of bootstrap-based approxi-

mations to the distribution of PSS�s estimator as well as its studentized version in the case

where PSS�s variance estimator is used for studentization purposes. It is shown that a nec-

essary condition for bootstrap consistency is that the bandwidth vanishes slowly enough for

asymptotic linearity to hold. Unlike NR, Theorem 1 therefore suggests that in samples of

moderate size even the bootstrap approximations to the distributions of PSS�s estimator and

test statistic(s) may fail to adequately capture the extent to which these distributions are

a¤ected by the choice of the bandwidth, a prediction which is borne out in a small scale

Monte Carlo experiment reported in Section 4.

The second main result, Theorem 2, establishes consistency of the bootstrap approxi-

mation to the distribution of PSS�s estimator studentized by means of a variance estimator

proposed by CCJ. As a consequence, Theorem 2 suggests that the fragility with respect to

bandwidth choice uncovered by Theorem 1 is a property which should be attributed to PSS�s

variance estimator rather than the bootstrap distribution estimator. Another prediction of

Theorem 2, namely that the bootstrap approximation to the distribution of an appropriately

studentized estimator performs well across a wide range of bandwidths, is borne out in the

Monte Carlo experiment of Section 4. Indeed, the range of bandwidths across which the

bootstrap is found to perform well is wider than the range across which the standard normal

approximation is found to perform well, indicating that there is an important sense in which

bootstrap-based inference is capable of providing improvements in moderate-sized samples.

The variance estimator used for studentization purposes in Theorem 2 is one for which the

studentized estimator is asymptotically standard normal across the entire range of bandwidth
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sequences considered in CCJ�s approach. The �nal main result, Theorem 3, studies the

bootstrap approximation to the distribution of PSS�s estimator studentized by means of

an alternative variance estimator also proposed by CCJ and �nds, perhaps surprisingly,

that although the associated studentized estimator is asymptotically standard normal across

the entire range of bandwidth sequences considered in CCJ�s approach, consistency of the

bootstrap requires that the bandwidth vanishes slowly enough for asymptotic linearity to

hold.

In addition to NR, whose relation to the present work was discussed in some detail above,

the list of papers related to this paper includes Abadie and Imbens (2008) and Gonçalves

and Vogelsang (2010). Abadie and Imbens (2008) study a nearest-neighbor matching esti-

mator of a popular estimand in the program evaluation literature (the e¤ect of treatment

on the treated) and demonstrate by example that the nonparametric bootstrap variance

estimator can be inconsistent in that case. Although the nature of the nonparametric es-

timator employed by Abadie and Imbens (2008) di¤ers from the kernel estimator studied

herein, their inconsistency result would appear to be similar to the equivalence between

(i) and (ii) in Theorem 1(a) below. Comparing the results of this paper with those ob-

tained by Abadie and Imbens (2008), one apparent attraction of kernel estimators (relative

to nearest-neighbor estimators) is their tractability which allows to develop fairly detailed

characterizations of the large-sample behavior of bootstrap procedures, including an array of

(constructive) results on how to achieve bootstrap consistency even under departures from

asymptotic linearity. Gonçalves and Vogelsang (2010) are concerned with autocorrelation

robust inference in stationary regression models and establish consistency of the bootstrap

under the �xed-b asymptotics of Kiefer and Vogelsang (2005). Although the �xed-b approach

of Kiefer and Vogelsang (2005) is very similar in spirit to the �small bandwidth�approach of

CCJ, the fact that some of the results of this paper are invalidity results about the bootstrap

is indicative of an important di¤erence between the nature of the functionals being studied

in Kiefer and Vogelsang (2005) and CCJ, respectively.

The remainder of the paper is organized as follows. Section 2 introduces the model,

presents the statistics under consideration, and summarizes some results available in the

literature. Section 3 studies the bootstrap and obtains the main results of the paper. Section

4 summarizes the results of a simulation study. Section 5 concludes. The Appendix contains

proofs of the theoretical results.
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2. Model and Existing Results

Let Zn = fzi = (yi; x0i)
0 : i = 1; : : : ; ng be a random sample of the random vector z = (y; x0)0,

where y 2 R is a dependent variable and x 2 Rd is a continuous explanatory variable with
a density f (�). The density-weighted average derivative is given by

� = E
�
f (x)

@

@x
g (x)

�
, g (x) = E [yjx] .

It follows from (regularity conditions and) integration by parts that � = �2E [y @f (x)/ @x].
Noting this, PSS proposed the kernel-based estimator

�̂n = �2
1

n

nX
i=1

yi
@

@x
f̂n;i (xi) , f̂n;i (x) =

1

n� 1

nX
j=1;j 6=i

1

hdn
K

�
xj � x
hn

�
,

where f̂n;i (�) is a �leave-one-out�estimator of f (�), with K : Rd ! R a kernel function and
hn a positive (bandwidth) sequence.

To analyze inference procedures based on �̂n, some assumptions on the distribution of z

and the properties of the user-chosen ingredients K and hn are needed. Regarding the model

and kernel function, the following assumptions will be made.

Assumption M. (a) E[y4] < 1, E [�2 (x) f (x)] > 0 and V [@e (x) =@x� y@f (x) =@x] is
positive de�nite, where �2 (x) = V [yjx] and e (x) = f (x) g (x).
(b) f is (Q+ 1) times di¤erentiable, and f and its �rst (Q+ 1) derivatives are bounded,

for some Q � 2.
(c) g is twice di¤erentiable, and e and its �rst two derivatives are bounded.

(d) v is di¤erentiable, and vf and its �rst derivative are bounded, where v (x) = E[y2jx].
(e) limkxk!1 [f (x) + je (x)j] = 0, where k�k is the Euclidean norm.

Assumption K. (a)K is even and di¤erentiable, andK and its �rst derivative are bounded.

(b)
R
Rd
_K (u) _K (u)0du is positive de�nite, where _K (u) = @K (u) =@u.

(c) For some P � 2,
R
Rd jK (u)j (1 + kuk

P )du+
R
Rd k _K (u) k(1 + kuk

2)du <1, and

Z
Rd
ul11 � � �u

ld
d K (u)du =

(
1; if l1 = � � � = ld = 0;
0; if (l1; : : : ; ld)

0 2 Zd+ and l1 + � � �+ ld < P
.

The following conditions on the bandwidth sequence hn will play a crucial role in the sequel.

(Here, and elsewhere in the paper, limits are taken as n!1 unless otherwise noted.)
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Condition B. (Bias) min
�
nhd+2n ; 1

�
nh

2min(P;Q)
n ! 0.

Condition AL. (Asymptotic Linearity) nhd+2n !1.

Condition AN. (Asymptotic Normality) n2hdn !1.

PSS studied the large sample properties of �̂n and showed that if Assumptions M and K

hold and if Conditions B and AL are satis�ed, then �̂n is asymptotically linear with (e¢ cient)

in�uence function L (z) = 2 [@e (x)/ @x� y @f (x)/ @x� �]; that is,

p
n(�̂n � �) =

1p
n

nX
i=1

L (zi) + op (1) N (0;�) , � = E
�
L (z)L (z)0

�
, (1)

where denotes weak convergence. PSS�s derivation of this result exploits the fact that the

estimator �̂n admits the (n-varying) U -statistic representation �̂n = �̂n(hn) with

�̂n(h) =

�
n

2

��1 n�1X
i=1

nX
j=i+1

U (zi; zj;h) , U (zi; zj;h) = �h�(d+1) _K
�
xi � xj
h

�
(yi � yj) ,

which leads to the Hoe¤ding decomposition �̂n � � = Bn + �Ln + �Wn, where

Bn = � (hn)� �, �Ln = n
�1

nX
i=1

L (zi;hn) , �Wn =

�
n

2

��1 n�1X
i=1

nX
j=i+1

W (zi; zj;hn),

with

� (h) = E [U (zi; zj;h)] , L (zi;h) = 2 [E[U (zi; zj;h) jzi]� � (h)] ,

W (zi; zj;h) = U (zi; zj;h)�
1

2
(L (zi;h) + L (zj;h))� � (h) .

The purpose of Conditions B and AL is to ensure that the terms Bn and �Wn in the Ho-

e¤ding decomposition are asymptotically negligible. Speci�cally, because Bn = O(hmin(P;Q)n )

under Assumptions M and K, Condition B ensures that the bias of �̂n is asymptotically

negligible. Condition AL, on the other hand, ensures that the �quadratic�term �Wn in the

Hoe¤ding decomposition is asymptotically negligible because
p
n �Wn = Op(1=

p
nhd+2n ) under

Assumptions M and K. In other words, and as the notation suggests, Condition AL is crucial

for asymptotic linearity of �̂n.

While asymptotic linearity is a desirable feature from the point of view of asymptotic e¢ -

ciency, a potential concern about distributional approximations for �̂n based on assumptions
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which imply asymptotic linearity is that such approximations ignore the variability in the

�remainder�term �Wn. Thus, classical �rst-order, asymptotically linear, large sample theory

may not accurately capture the �nite sample behavior of �̂n in general. It therefore seems

desirable to employ inference procedures that are �robust� in the sense that they remain

asymptotically valid at least under certain departures from asymptotic linearity.

In an attempt to construct such inference procedures, CCJ generalized (1) and showed

that if Assumptions M and K hold and if Conditions B and AN are satis�ed, then

V �1=2n (�̂n � �) N (0; Id) , (2)

where

Vn = n
�1� +

�
n

2

��1
h�(d+2)n �, � = 2E

�
�2 (x) f (x)

� Z
Rd
_K (u) _K (u)0 du.

Similarly to the asymptotic linearity result of PSS, the derivation of (2) is based on the

Hoe¤ding decomposition of �̂n. Instead of requiring asymptotic linearity of the estimator,

this result provides an alternative �rst-order asymptotic theory under weaker assumptions,

which simultaneously accounts for both the �linear�and �quadratic�terms in the expansion

of �̂n. A key di¤erence between (1) and (2) is the presence of the term
�
n
2

��1
h
�(d+2)
n � in

Vn, which captures the variability of �Wn. In particular, result (2) shows that while failure

of Condition AL leads to a failure of asymptotic linearity, asymptotic normality of �̂n holds

under the signi�cantly weaker Condition AN.2

The result (2) suggests that asymptotic standard normality of studentized estimators

might be achievable also when Condition AL is replaced by Condition AN. As an estimator

of the variance of �̂n, PSS considered V̂0;n = n�1�̂n, where �̂n = �̂n(hn),

�̂n(h) =
1

n

nX
i=1

L̂n;i(h)L̂n;i(h)
0, L̂n;i(h) = 2

"
1

n� 1

nX
j=1;j 6=i

U(zi; zj;h)� �̂n(h)
#
.

CCJ showed that this estimator admits the stochastic expansion

V̂0;n = n
�1 [� + op (1)] + 2

�
n

2

��1
h�(d+2)n [� + op (1)] ,

2Condition AN permits failure not only of asymptotic linearity, but also of
p
n-consistency (when nhd+2n !

0). Indeed, �̂n can be inconsistent (when limn!1n
2hd+2n <1) under Condition AN.
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implying in particular that it is consistent only when Condition AL is satis�ed. Recognizing

this lack of �robustness� of V̂0;n with respect to hn, CCJ proposed and studied the two

alternative estimators

V̂1;n = V̂0;n �
�
n

2

��1
h�(d+2)n �̂n(hn) and V̂2;n = n

�1�̂n(2
1=(d+2)hn),

where

�̂n(h) = h
d+2

�
n

2

��1 n�1X
i=1

nX
j=i+1

Ŵn;ij(h)Ŵn;ij(h)
0,

Ŵn;ij(h) = U(zi; zj;h)�
1

2

�
L̂n;i(h) + L̂n;j(h)

�
� �̂n(h).

The following result is adapted from CCJ and formulated in a manner that facilitates

comparison with the main theorems given below.

Lemma 1. Suppose Assumptions M and K hold and suppose Conditions B and AN are

satis�ed.

(a) The following are equivalent:

i. Condition AL is satis�ed.

ii. V �1n V̂0;n !p Id.

iii. V̂
�1=2
0;n (�̂n � �) N (0; Id).

(b) If nhd+2n is convergent in �R+ = [0;1], then V̂
�1=2
0;n (�̂n � �) N (0;
0), where


0 = limn!1(nh
d+2
n � + 4�)�1=2(nhd+2n � + 2�)(nhd+2n � + 4�)�1=2.

(c) For k 2 f1; 2g, V �1n V̂k;n !p Id and V̂
�1=2
k;n (�̂n � �) N (0; Id).

Part (a) is a qualitative result highlighting the crucial role played by Condition AL in

connection with asymptotic validity of inference procedures based on V̂0;n: The equivalence

between (i) and (iii) shows that Condition AL is necessary and su¢ cient for the test statistic

V̂
�1=2
0;n (�̂n � �) proposed by PSS to be asymptotically pivotal. In turn, this equivalence is
a special case of part (b), which is a quantitative result that can furthermore be used to

characterize the consequences of relaxing Condition AL. Speci�cally, part (b) shows that
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also under departures from Condition AL the statistic V̂
�1=2
0;n (�̂n � �) can be asymptotically

normal with mean zero, but with a variance matrix 
0 whose value depends on the limiting

value of nhd+2n . This matrix satis�es Id=2 � 
0 � Id (in a positive semide�nite sense), and
takes on the limiting values Id=2 and Id when limn!1 nh

d+2
n equals 0 and1, respectively. By

implication, part (b) suggests that inference procedures based on the test statistic proposed

by PSS will be conservative across a nontrivial range of bandwidths. In contrast, part (c)

shows that studentization by means of V̂1;n and V̂2;n achieves asymptotic pivotality across the

full range of bandwidth sequences allowed by Condition AN, suggesting in particular that

coverage probabilities of con�dence intervals constructed using these variance estimators will

be close to their nominal level across a nontrivial range of bandwidths.

Monte Carlo evidence consistent with these conjectures was presented by CCJ. Notably

absent from consideration in Lemma 1 and the Monte Carlo work of CCJ are inference

procedures based on resampling. In an important contribution, NR studied the behavior

of the standard (nonparametric) bootstrap approximation to the distribution of PSS�s test

statistic and found that under bandwidth conditions slightly stronger than Condition AL

bootstrap procedures are not merely valid, but actually capable of achieving asymptotic

re�nements. This �nding leaves open the possibility that bootstrap validity, at least to �rst-

order, might hold also under departures from Condition AL. The �rst main result presented

here (Theorem 1 below) shows that, although the bootstrap approximation to the distribu-

tion of V̂
�1=2
0;n (�̂n � �) is more accurate than the standard normal approximation across the

full range of bandwidth sequences allowed by Condition AN, Condition AL is necessary and

su¢ cient for �rst-order validity of the standard nonparametric bootstrap approximation to

the distribution of PSS�s test statistic.

This equivalence can be viewed as a bootstrap analog of Lemma 1(a) and it therefore

seems natural to ask whether bootstrap analogs of Lemma 1(c) are available for the inference

procedures proposed by CCJ. Theorem 2 establishes a partial bootstrap analog of Lemma

1(c), namely validity of the nonparametric bootstrap approximation to the distribution of

V̂
�1=2
1;n (�̂n��) across the full range of bandwidth sequences allowed by Condition AN. That this
result is not merely a consequence of the asymptotic pivotality result reported in Lemma 1(c)

is demonstrated by Theorem 3, which shows that notwithstanding the asymptotic pivotality

of V̂
�1=2
2;n (�̂n��); the nonparametric bootstrap approximation to the distribution of the latter

statistic is valid only when Condition AL holds.
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3. The Bootstrap

3.1. Setup. This paper studies two variants of the m-out-of-n replacement bootstrap

with m = m(n) ! 1, namely the standard nonparametric bootstrap (m(n) = n) and

(replacement) subsampling (m(n)=n! 0).3 To describe the bootstrap procedure(s), letZ�n =
fz�i = (y�i ; x�0i )

0 : i = 1; : : : ;m(n)g be a random sample with replacement from the observed

sample Zn. The bootstrap analogue of the estimator �̂n is given by �̂
�
m(n) = �̂

�
m(n)(hm(n)) with

�̂
�
m(h) =

�
m

2

��1 m�1X
i=1

mX
j=i+1

U(z�i ; z
�
j ;h), U(z�i ; z

�
j ;h) = �h�(d+1) _K

�
x�i � x�j
h

�
(y�i � y�j ),

while the bootstrap analogues of the estimators �̂n and �̂n are �̂�m(n) = �̂�m(n)(hm(n)) and

�̂�
m(n) = �̂

�
m(n)(hm(n)), respectively, where

�̂�m(h) =
1

m

mX
i=1

L̂�m;i(h)L̂
�
m;i(h)

0, L̂�m;i(h) = 2

"
1

m� 1

mX
j=1;j 6=i

U(z�i ; z
�
j ;h)� �̂

�
m(h)

#
,

and

�̂�
m(h) =

�
m

2

��1
hd+2

m�1X
i=1

mX
j=i+1

Ŵ �
m;ij(h)Ŵ

�
m;ij(h)

0,

Ŵ �
m;ij(h) = U(z

�
i ; z

�
j ;h)�

1

2

�
L̂�m;i(h) + L̂

�
m;j(h)

�
� �̂�m(h).

3.2. Preliminary Lemma. The main results of this paper follow from Lemma 1 and the

following lemma, which will be used to characterize the large sample properties of bootstrap

analogues of the test statistics V̂ �1=2k;n (�̂n � �), k 2 f0; 1; 2g. Let superscript � on P, E, or V
denote a probability or moment computed under the bootstrap distribution conditional on

Zn, and let  p denote weak convergence in probability (e.g., Gine and Zinn (1990)).

Lemma 2. Suppose Assumptions M and K hold, suppose hn ! 0 and Condition AN is

satis�ed, and suppose m(n)!1 and limn!1m(n)=n <1.

(a) V �
�1

m(n)V�[�̂
�
m(n)]!p Id, where

V �m = m
�1� +

�
1 + 2

m

n

��m
2

��1
h�(d+2)m �.

3This paper employs the terminology introduced in Horowitz (2001). See also Politis, Romano, and Wolf
(1999).
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(b) ��
�1

m(n)�̂
�
m(n) !p Id and ��1�̂�

m(n) !p Id, where

��m = �+ 2m
�
1 +

m

n

��m
2

��1
h�(d+2)m �.

(c) V �
�1=2

m(n) (�̂
�
m(n) � ��m(n)) p N (0; Id).

The (conditional on Zn) Hoe¤ding decomposition gives �̂
�
m � ��m = �L�m + �W �

m, where

��m = �
�(hm), �L�m = m

�1
mX
i=1

L�(z�i ;hm), �W �
m =

�
m

2

��1 m�1X
i=1

mX
j=i+1

W �(z�i ; z
�
j ;hm),

with

��(h) = E�[U(z�i ; z�j ;h)], L�(z�i ;h) = 2[E�[U(z�i ; z�j ;h)jz�i ]� ��(h)],

W �(z�i ; z
�
j ;h) = U(z

�
i ; z

�
j ;h)�

1

2

�
L�(z�i ;h) + L

�(z�j ;h)
�
� ��(h).

Part (a) of Lemma 2 is obtained by noting that

V�[�̂
�
m] = m

�1V�[L�(z�i ;hm)] +
�
m

2

��1
V�[W �(z�i ; z

�
j ;hm)],

where

V�[L�(z�i ;h)] � �̂n(h) � � + 2
m2

n

�
m

2

��1
h�(d+2)�,

and

V�[W �(z�i ; z
�
j ;h)] � h�(d+2)m �̂n(h) � h�(d+2)m �.

The fact that V�[W �(z�i ; z
�
j ;h)] � h

�(d+2)
m � implies that the bootstrap consistently estimates

the variability of the �quadratic�term in the Hoe¤ding decomposition. On the other hand,

the fact that V�[�̂
�
n] > n�1V�[L�(z�i ;hn)] � n�1�̂n(hn) = V̂0;n implies that the bootstrap

variance estimator exhibits an upward bias even greater than that of V̂0;n, so the bootstrap

variance estimator is inconsistent whenever PSS�s estimator is. In their example of bootstrap

failure for a nearest-neighbor matching estimator, Abadie and Imbens (2008) found that

the (average) bootstrap variance can overestimate as well as underestimate the asymptotic

variance of interest. No such ambiguity occurs here, as Lemma 2(a) shows that in the present

case the bootstrap variance systematically exceeds the asymptotic variance (when Condition

AL fails).



Bootstrapping Density-Weighted Average Derivatives 11

The proof of Lemma 2(b) shows that

�̂�m � �̂n(hm) + 2m
�
m

2

��1
h�(d+2)m �̂n(hm),

implying that the asymptotic behavior of �̂�m di¤ers from that of �̂n (hm) whenever Condition

AL fails.

By continuity of the d-variate standard normal cdf �d (�) and Polya�s theorem for weak

convergence in probability (e.g., Xiong and Li (2008, Theorem 3.5)), Lemma 2(c) is equivalent

to the statement that

sup
t2Rd

���P� hV ��1=2m(n) (�̂
�
m(n) � ��m(n)) � t

i
� �d (t)

���!p 0. (3)

By arguing along subsequences, it can be shown that a su¢ cient condition for (3) is given

by the following (uniform) Cramér-Wold-type condition:

sup
�2�d

sup
t2Rd

������P�
24�0(�̂�m(n) � ��m(n))q

�0V �m(n)�
� t

35� �1 (t)
������!p 0, (4)

where �d = f� 2 Rd : �0� = 1g denotes the unit sphere in Rd.4 The proof of Lemma 2(c)
uses the theorem of Heyde and Brown (1970) to verify (4).

3.3. Bootstrapping PSS. Theorem 1 below is concerned with the ability of the boot-

strap to approximate the distributional properties of PSS�s test statistic. To anticipate the

main �ndings, notice that Lemma 1 gives

V[�̂n] � n�1� +
�
n

2

��1
h�(d+2)n � and V̂0;n = n

�1�̂n � n�1� + 2
�
n

2

��1
h�(d+2)n �,

4In contrast to the case of unconditional joint weak convergence, it would appear to be an open question
whether a pointwise Cramér-Wold condition such as

sup
t2Rd

������P�
24�0(�̂�m(n) � ��m(n))q

�0V �m(n)�
� t

35� �1 (t)
������!p 0, 8� 2 �d,

implies weak convergence in probability of V �
�1=2

m(n) (�̂
�
m(n) � ��m(n)).
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while, in contrast, in the case of the standard nonparametric bootstrap (when m (n) = n)

Lemma 2 gives

V�[�̂
�
n] � n�1� + 3

�
n

2

��1
h�(d+2)n � and V̂ �0;n = n

�1�̂�n � n�1� + 4
�
n

2

��1
h�(d+2)n �,

strongly indicating that Condition AL is crucial for consistency of the bootstrap. On the

other hand, in the case of subsampling (when m (n) =n! 0), Lemma 2 gives

V�[�̂
�
m] � m�1�+

�
m

2

��1
h�(d+2)m � and V̂ �0;m = m

�1�̂�m � m�1�+2

�
m

2

��1
h�(d+2)m �,

suggesting that consistency of subsampling might hold even if Condition AL fails, at least

in those cases where V̂
�1=2
0;n (�̂n � �) converges in distribution. (By Lemma 1(b), convergence

in distribution of V̂
�1=2
0;n (�̂n � �) occurs when nhd+2n is convergent in �R+.)

The following result, which is an immediate consequence of Lemmas 1�2 and the con-

tinuous mapping theorem for weak convergence in probability (e.g., Xiong and Li (2008,

Theorem 3.1)), makes the preceding heuristics precise.

Theorem 1. Suppose the assumptions of Lemma 1 hold.

(a) The following are equivalent:

i. Condition AL is satis�ed.

ii. V �1n V�[�̂
�
n]!p Id.

iii. supt2Rd
���P�[V �1=2

n (�̂
�
n � ��n) � t]� P[V

�1=2
n (�̂n � �) � t]

���!p 0.

iv. supt2Rd
���P�[V̂ ��1=20;n (�̂

�
n � ��n) � t]� P[V̂

�1=2
0;n (�̂n � �) � t]

���!p 0.

(b) If nhd+2n is convergent in �R+, then V̂ �
�1=2

0;n (�̂
�
n � ��n) p N (0;
�0), where


�0 = limn!1(nh
d+2
n � + 8�)�1=2(nhd+2n � + 6�)(nhd+2n � + 8�)�1=2.

(c) If m(n)!1 and m(n)=n! 0 and if nhd+2n is convergent in �R+, then

V̂ �
�1=2

0;m(n)(�̂
�
m(n) � ��m(n)) p N (0;
0).
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In an obvious way, Theorem 1(a)-(b) can be viewed as a standard nonparametric boot-

strap analogue of Lemma 1(a)-(b). In particular, Theorem 1(a) shows that Condition AL is

necessary and su¢ cient for consistency of the bootstrap. This result shows that the nonpara-

metric bootstrap is inconsistent whenever the estimator is not asymptotically linear (when

limn!1nh
d+2
n < 1), including in particular the knife-edge case nhd+2n ! � 2 (0;1) where

the estimator is
p
n-consistent and asymptotically normal. The implication (i) ) (iv) in

Theorem 1(a) is essentially due to NR.5 On the other hand, the result that Condition AL is

necessary for bootstrap consistency would appear to be new. In Section 4, the �nite sample

relevance of this sensitivity with respect to bandwidth choice suggested by Theorem 1(a)

will be explored in a Monte Carlo experiment.

Theorem 1(b) can be used to quantify the severity of the bootstrap inconsistency under

departures from Condition AL. The extent of the failure of the bootstrap to approximate

the asymptotic distribution of the test statistic is captured by the variance matrix 
�0, which

satis�es 3Id=4 � 
�0 � Id and takes on the limiting values 3Id=4 and Id when limn!1 nh
d+2
n

equals 0 and1, respectively. Interestingly, comparing Theorem 1(b) with Lemma 1(b), the

nonparametric bootstrap approximation to the distribution of V̂
�1=2
0;n (�̂n � �) is seen to be

superior to the standard normal approximation because 
0 � 
�0 � Id. As a consequence,

there is a sense in which the bootstrap o¤ers �re�nements�even when Condition AL fails.

Theorem 1(c) shows that a su¢ cient condition for consistency of subsampling is con-

vergence of nhd+2n in �R+. To illustrate what can happen when the latter condition fails,
suppose nhd+2n is �large�when n is even and �small�when n is odd. Speci�cally, suppose

that nhd+22n !1 and nhd+22n+1 ! 0. Then, if m(n) is even for every n, it follows from Theorem

1(c) that

V̂ �
�1=2

0;m(n)(�̂
�
m(n) � ��m(n)) p N (0; Id),

whereas, by Lemma 1(b),

V̂
�1=2

0;2n+1(�̂2n+1 � �) N (0; Id=2) .

This example is intentionally extreme, but the qualitative message that consistency of sub-

sampling can fail when limn!1 nh
d+2
n does not exist is valid more generally. Indeed, Theorem

1(c) admits the following partial converse: If nhd+2n is not convergent in �R+, then there exists
5The results of NR are obtained under slightly stronger assumptions than those of Lemma 1 and require

nhd+3n =(log n)9 !1:
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a sequence m(n) such that (m(n)!1, m(n)=n! 0, and)

supt2Rd
���P�[V̂ ��1=20;m(n)(�̂

�
m(n) � ��m(n)) � t]� P[V̂

�1=2

0;n (�̂n � �) � t]
���9p 0.

In other words, employing critical values obtained by means of subsampling does not auto-

matically �robustify�an inference procedure based on PSS�s statistic.

3.4. Bootstrapping CCJ. Because both V̂ �1=21;n (�̂n � �) and V̂ �1=22;n (�̂n � �) are asymp-
totically standard normal under the assumptions of Lemma 1, folklore suggests that the

bootstrap should be capable of consistently estimating their distributions. In the case of

the statistic studentized by means of V̂1;n, this conjecture turns out to be correct, essentially

because it follows from Lemma 2 that

V̂ �1;m = m
�1�̂�m �

�
m

2

��1
h�(d+2)m �̂�

m � m�1� +
�
1 + 2

m

n

��m
2

��1
h�(d+2)m � � V�[�̂�m].

More precisely, an application of Lemma 2 and the continuous mapping theorem for weak

convergence in probability yields the following result.

Theorem 2. If the assumptions of Lemma 1 hold,m (n)!1, and if limn!1m (n) =n <1,
then V̂ �

�1=2

1;m(n)(�̂
�
m(n) � ��m(n)) p N (0; Id).

Theorem 2 demonstrates by example that even if Condition AL fails it is possible, by

proper choice of variance estimator, to achieve consistency of the nonparametric bootstrap

estimator of the distribution of a studentized version of PSS�s estimator. The theory pre-

sented here does not allow to determine whether the bootstrap approximation enjoys any

advantages over the standard normal approximation, but Monte Carlo evidence reported in

Section 4 suggests that bootstrap-based inference does have attractive small sample proper-

ties.

In the case of subsampling, consistency of the approximation to the distribution of

V̂
�1=2
1;n (�̂n� �) is unsurprising in light of its asymptotic pivotality, and it is natural to expect
an analogous result holds for V̂ �1=22;n (�̂n � �). On the other hand, it follows from Lemma 2

that

V̂ �2;n = n
�1�̂�n

�
21=(d+2)hn

�
� n�1� + 2

�
n

2

��1
h�(d+2)n � � V�[�̂�n]�

�
n

2

��1
h�(d+2)n �,
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suggesting that Condition AL will be of crucial importance for bootstrap consistency in the

case of V̂ �1=22;n (�̂n � �).

Theorem 3. Suppose the assumptions of Lemma 1 hold.

(a) If nhd+2n is convergent in �R+, then V̂ �
�1=2

2;n (�̂
�
n � ��n) p N (0;
�2), where


�2 = limn!1(nh
d+2
n � + 4�)�1=2(nhd+2n � + 6�)(nhd+2n � + 4�)�1=2.

In particular, V̂ �
�1=2

2;n (�̂
�
n � ��n) p N (0; Id) if and only if Condition AL is satis�ed.

(b) If m(n)!1 and m(n)=n! 0, then V̂ �
�1=2

2;m(n)(�̂
�
m(n) � ��m(n)) p N (0; Id).

Theorem 3 and the arguments on which it is based is of interest for at least two reasons.

First, while there is no shortage of examples of bootstrap failure in the literature, it seems

surprising that the bootstrap fails to approximate the distribution of the asymptotically

pivotal statistic V̂ �1=22;n (�̂n � �) whenever Condition AL is violated.6 Second, a variation on
the idea underlying the construction of V̂2;n can be used to construct a test statistic whose

bootstrap distribution validly approximates the distribution of PSS�s statistic under the

assumptions of Lemma 1. Speci�cally, because it follows from Lemmas 1�2 that

V�[�̂
�
n(3

1=(d+2)hn)] � n�1� +
�
n

2

��1
h�(d+2)n � � V[�̂n] and V̂ �2;n � V̂0;n,

it can be shown that if the assumptions of Lemma 1 hold, then

sup
t2Rd

���P�[V̂ ��1=22;n (�̂
�
n(3

1=(d+2)hn)� ��n(31=(d+2)hn)) � t]� P[V̂
�1=2

0;n (�̂n � �) � t]
���!p 0,

even if nhd+2n does not converge. Admittedly, this construction is mainly of theoretical

interest, but it does seem noteworthy that this resampling procedure works even in the case

where subsampling might fail.

3.5. Summary of Results. The main results of this paper are summarized in Table

1. This table describes the limiting distributions of the test statistics proposed by PSS and

CCJ, as well as the limiting distributions (in probability) of their bootstrap analogues. (CCJk
6The severity of the bootstrap failure is characterized in Theorem 3(a) and measured by the variance

matrix 
�2, which satis�es Id � 
�2 � 3Id=2, implying that inference based on the bootstrap approximation
to the distribution of V̂ �1=22;n (�̂n � �) will be asymptotically conservative.
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with k 2 f1; 2g refers to the test statistics in Lemma 1(c).) Each panel corresponds to one
test statistic, and includes 3 rows corresponding to each approximation used (large sample

distribution, standard bootstrap, and replacement subsampling, respectively). Each column

analyzes a subset of possible bandwidth sequences, which leads to di¤erent approximations

in general.

As shown in the table, the �robust�studentized test statistic using V̂1;n, denoted CCJ1, is

the only statistic that remains valid in all cases. For the studentized test statistic of PSS (�rst

panel), both the standard bootstrap and replacement subsampling are invalid in general,

while for the �robust�studentized test statistic using V̂2;n, denoted CCJ2, only replacement

subsampling is valid. As discussed above, the extent of the failure of the bootstrap and

the �direction� of its �bias� are described in the extreme case of � = 0. Table 1 also

highlights that when nhd+2n is not convergent in �R+, weak convergence (in probability) of any
asymptotically non-pivotal test statistic (under the bootstrap distribution) is not guaranteed

in general.

4. Simulations

In an attempt to explore whether the theory-based predictions presented above are borne

out in samples of moderate size, this section reports the main results from a Monte Carlo

experiment. The simulation study uses a Tobit model yi = ~yi1 (~yi > 0) with ~yi = x0i� + "i,

"i s N (0; 1) independent of the vector of regressors xi 2 Rd, and 1 (�) representing the
indicator function. The dimension of the covariates is set to d = 2 and both components

of � are set equal to unity. The vector of regressors is generated using independent random

variables with the second component set to x2i s N (0; 1). Two data generating processes

are considered for the �rst component of xi: Model 1 imposes x1i s N (0; 1) and Model

2 imposes x1i s (�4 � 4)=
p
8, with �p a chi-squared random variable with p degrees of

freedom. For simplicity only results for the �rst component of � = (�1; �2)
0 are reported.

The population parameters of interest are �1 = 1=8� and �1 � 0:03906 for Model 1 and

Model 2, respectively. Note that Model 1 corresponds to the one analyzed in Nishiyama

and Robinson (2000, 2005), while both models were also considered in CCJ and Cattaneo,

Crump, and Jansson (2010).

The number of simulations is set to S = 3; 000, the sample size for each simulation is

set to n = 1; 000, and the number of bootstrap replications for each simulation is set to

B = 2; 000. (See Andrews and Buchinsky (2000) for a discussion of the latter choice.) The

Monte Carlo experiment is very computationally demanding: each design, with a grid of 15
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bandwidths, requires approximately 6 days to complete, when using a C code (with wrapper

in R) parallelized in 150 CPUs (2:33 Ghz). The computer code is available upon request.

The simulation study presents evidence on the performance of the standard nonparamet-

ric bootstrap across an appropriate grid of possible bandwidth choices. Three test statistics

are considered for the bootstrap procedure:

PSS� =
�0(�̂

�
n � ��n)q
�0V̂ �0;n�

, NR� =
�0(�̂

�
n � ��n � B̂n)q
�0V̂ �0;n�

, CCJ� =
�0(�̂

�
n � ��n)q
�0V̂ �1;n�

,

with � = (1; 0)0, and where B̂n is a bias-correction estimate. The �rst test statistic (PSS�)
corresponds to the bootstrap analogue of the classical, asymptotically linear, test statistic

proposed by PSS. The second test statistic (NR�) corresponds to the bias-corrected statistic

proposed by NR. The third test statistic (CCJ�) corresponds to the bootstrap analogue of

the robust, asymptotically normal, test statistic proposed by CCJ. For implementation, a

standard Gaussian product kernel is used for P = 2, and a Gaussian density-based multi-

plicative kernel is used for P = 4. The bias-correction estimate B̂n is constructed using a
plug-in estimator for the population bias with an initial bandwidth choice of bn = 1:2hn, as

discussed in Nishiyama and Robinson (2000, 2005)..

The results are summarized in Figure 1 (P = 2) and Figure 2 (P = 4). These �gures

plot the empirical coverage for the three competing 95% con�dence intervals as a function

of the choice of bandwidth. To facilitate the analysis two additional horizontal lines at 0:90

and at the nominal coverage rate 0:95 are included for reference. In each �gure, the �rst

and second rows correspond to Models 1 and 2, respectively. Also, for each �gure, the �rst

column depicts the results for the competing con�dence intervals using the standard non-

parametric bootstrap to approximate the quantiles of interest, while the second column does

the same but using the large sample distribution quantiles (e.g., ��11 (0:975) � 1:96). Finally,
each plot also includes three population bandwidth selectors available in the literature for

density-weighted average derivatives as vertical lines. Speci�cally, hPS, hNR and hCCJ de-

note the population �optimal�bandwidth choices described in Powell and Stoker (1996), NR

and Cattaneo, Crump, and Jansson (2010), respectively. The bandwidths di¤er in general,

although hPS = hNR when d = 2 and P = 2. (For a detailed discussion and comparison of

these bandwidth selectors, see Cattaneo, Crump, and Jansson (2010).)

The main results are consistent across all designs considered. First, it is seen that boot-

strapping PSS induces a �bias� in the distributional approximation for small bandwidths,
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as predicted in Theorem 1. Second, bootstrapping CCJ (which uses V̂1;n) provides a close-

to-correct approximation for a range of small bandwidth choices, as predicted by Theorem

2. Third, by comparing these results across columns (bootstrapping vs. Gaussian approx-

imations), it is seen that the �bias� in the distributional approximation of PSS for small

bandwidths is smaller (leading to shorter con�dence intervals) than the corresponding �bias�

introduced from using the Gaussian approximation (longer con�dence intervals), as predicted

by Theorem 1.

In addition, it is found that the range of bandwidths with close-to-correct coverage has

been enlarged for both PSS and CCJ when using the bootstrap approximation instead of

the Gaussian approximation. The bias correction proposed by Nishiyama and Robinson

(2000, 2005) does not seem to work well when P = 2 (Figure 1), but works somewhat better

when P = 4 (Figure 2).7

Based on the theoretical results developed in this paper, and the simulation evidence

presented, it appears that con�dence intervals based on the bootstrap distribution of CCJ

perform the best, as they are valid under quite weak conditions. In terms of bandwidth

selection, the Monte Carlo experiment shows that hCCJ falls clearly inside the �robust�

range of bandwidths in all cases. Interestingly, and because bootstrapping CCJ seems to

enlarge the �robust�range of bandwidths, the bandwidth selectors hPS and hNR also appear

to be �valid�when coupled with the bootstrapped con�dence intervals based on CCJ�.

5. Conclusion

Employing the �small bandwidth�asymptotic framework of CCJ, this paper has developed

theory-based predictions of �nite sample behavior of a variety of bootstrap-based inference

procedures associated with the kernel-based density-weighted averaged derivative estimator

proposed by PSS. In important respects, the predictions and methodological prescriptions

emerging from the analysis presented here di¤er from those obtained using Edgeworth expan-

sions by NR. The results of a small-scale Monte Carlo experiment were found to be consistent

with the theory developed here, indicating in particular that while the properties of inference

procedures employing the variance estimator of PSS are very sensitive to bandwidth choice,

this sensitivity can be ameliorated by using a �robust�variance estimator proposed in CCJ.

7It seems plausible that these conclusions are sensitive to the choice of initial bandwidth bn for the
construction of the estimator B̂n, but we have made no attempt to improve on the initial bandwidth choice
advocated by Nishiyama and Robinson (2000, 2005).
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6. Appendix

For any � 2 Rd; let ~Uij;n (�) = �0[U (zi; zj;hn)� � (hn)] and de�ne the n-varying U -statistics

T1;n(�) =

�
n

2

��1 X
1�i<j�n

~Uij;n(�), T2;n(�) =

�
n

2

��1 X
1�i<j�n

~Uij;n(�)
2,

T3;n(�) =

�
n

3

��1 X
1�i<j<k�n

~Uij;n(�) ~Uik;n(�) + ~Uij;n(�) ~Ujk;n(�) + ~Uik;n(�) ~Ujk;n(�)

3
,

T4;n(�) =

�
n

4

��1 X
1�i<j<k<l�n

~Uij;n(�) ~Ukl;n(�) + ~Uik;n(�) ~Ujl;n(�) + ~Uil;n(�) ~Ujk;n(�)

3
,

as well as their bootstrap analogues

T �1;m(�) =

�
m

2

��1 X
1�i<j�m

~U�ij;m(�), T �2;m(�) =

�
m

2

��1 X
1�i<j�m

~U�ij;m(�)
2,

T �3;m(�) =

�
m

3

��1 X
1�i<j<k�m

~U�ij;m(�) ~U
�
ik;m(�) +

~U�ij;m(�) ~U
�
jk;m(�) +

~U�ik;m(�)
~U�jk;m(�)

3
,

T �4;m(�) =

�
m

4

��1 X
1�i<j<k<l�m

~U�ij;m(�)
~U�kl;m(�) +

~U�ik;m(�)
~U�jl;m(�) +

~U�il;m(�)
~U�jk;m(�)

3
,

where ~U�ij;m(�) = �0[U(z�i ; z
�
j ;hm) � �� (hm)]. (Here, and elsewhere in the Appendix, the

dependence of m(n) on n has been suppressed.)

The proof of Lemma 2 uses four technical lemmas, proofs of which are available upon

request. The �rst lemma is a simple algebraic result relating �̂n and �̂n (and their bootstrap

analogues) to T1;n; T2;n; T3;n; and T4;n (and their bootstrap analogues).

Lemma A-1. If the assumptions of Lemma 2 hold and if � 2 Rd, then

(a) �0�̂n(hn)� = 4 [1 + o (1)]n�1T2;n(�) + 4[1 + o (1)]T3;n(�)� 4T1;n(�)2,
(b) h�(d+2)n �0�̂n(hn)� = [1+ o (1)]T2;n(�)�T1;n(�)2� 2[1+ o (1)]T3;n(�)+ 2[1+ o (1)]T4;n(�),
(c) �0�̂�m(hm)� = 4 [1 + o (1)]m

�1T �2;m(�) + 4[1 + o (1)]T
�
3;m(�)� 4T �1;m(�)2,

(d) h�(d+2)m �0�̂�
m(hm)� = [1+o (1)]T

�
2;m(�)�T �1;m(�)2�2[1+o (1)]T �3;m(�)+2[1+o (1)]T �4;m(�).

The next lemma, which follows by standard properties of (n-varying) U -statistics (e.g.,

NR and CCJ), gives some asymptotic properties of T1;n; T2;n; T3;n; and T4;n (and their boot-
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strap analogues). Let �n = 1=min
�
1; nhd+2n

�
.

Lemma A-2. If the assumptions of Lemma 2 hold and if � 2 Rd, then

(a) T1;n(�) = op(
p
�n),

(b) T2;n(�) = E[ ~Uij;n(�)2] + op(h�(d+2)n ),

(c) T3;n(�) = E[(E[ ~Uij;n(�)jzi])2] + op(�n),
(d) T4;n(�) = op (�n),

(e) hd+2n E[ ~Uij;n(�)2]! �0�� and E[(E[ ~Uij;n(�)jzi])2]! �0��=4,

(f) T �1;m(�) = op(
p
�m),

(g) T �2;m(�) = E�[ ~U�ij;m(�)2] + op(h
�(d+2)
m ),

(h) T �3;m(�) = E�[(E[ ~U�ij;m(�)jZn; z�i ])2] + op(�m),
(i) T �4;m(�) = op(�m),

(j) hd+2m E�[ ~U�ij;m(�)2]!p �
0�� and E�[(E[ ~U�ij;m (�) jZn; z�i ])2]� �0�̂n(hm)�=4!p 0.

The next lemma, which can be established by expanding sums and using simple bounding

arguments, is used to establish a pointwise version of (4).

Lemma A-3. If the assumptions of Lemma 2 hold and if � 2 Rd, then

(a) E[(E[ ~U�ij;m(�)jZn; z�i ])4] = O(�2m + h2m�3m),
(b) E[ ~U�ij;m(�)4] = O(h

�(3d+4)
m ),

(c) E[(E[ ~U�ij;m(�)2jZn; z�i ])2] = O(m�1h
�(3d+4)
m + h

�(2d+4)
m ),

(d) E[(E[ ~U�ij;m(�) ~U�ik;m(�)jZn; z�j ; z�k])2] = O(h
�(d+4)
m +m�2h

�(3d+4)
m ),

(e) E[(E[E[ ~U�ij;m(�)jZn; z�i ] ~U�ij;m(�)jZn; z�j ])2] = O(1 +m�1h
�(d+4)
m +m�3h

�(3d+4)
m ).

Finally, the following lemma about quadratic forms is used to deduce (4) from its point-

wise counterpart.

Lemma A-4. There exist constants C and J (only dependent on d) and a collection

l1; : : : ; lJ 2 �d such that, for every d� d matrix M ,

sup
�2�d

(�0M�)
2 � C

JX
j=1

�
l0jMlj

�2
.

Proof of Lemma 2. By the properties of the (conditional on Zn) Hoe¤ding decompo-
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sition, E[L�(z�i ;h)jZn] = 0 and E[W �(z�i ; z
�
j ;h)jZn; z�i ] = 0, so

V�[�̂
�
m] = m

�1V�[L� (z�i ;hm)] +
�
m

2

��1
V�[W �(z�i ; z

�
j ;hm)],

where, using Lemmas A-1 and A-2,

V�[L�(z�i ;hm)] =
�
n� 1
n

�2
�̂n(hm) = � + 2

m2

n

�
m

2

��1
h�(d+2)m �+ op (�m) .

Also, for any � 2 Rd; it can be shown that

�0V�[W �(z�i ; z
�
j ;hm)]� = h

�(d+2)
m

�
n� 1
n

�h
�0�̂n(hm)�+ op (1)

i
� 3
2

�
n� 1
n

�2
�0�̂n(hm)�.

Therefore, using Lemmas A-1 and A-2,

V�[W �(z�i ; z
�
j ;hm)] = h

�(d+2)
m �+ op (m�m) ,

completing the proof of part (a).

Next, using Lemmas A-1 and A-2,

�0�̂�m(hm)� = 4[1 + o (1)]m�1T �2;m(�) + 4[1 + o (1)]T
�
3;m(�)� 4T �1;m(�)2

= �0�̂n(hm)�+ 4m
�1h�(d+2)m �0��+ op(�m)

= �0��m�+ op (�m) ,

establishing part (b).

Finally, to establish part (c), the theorem of Heyde and Brown (1970) is employed to

prove the following condition, which is equivalent to (4) in view of part (a):

sup
�2�d

sup
t2Rd

������P�
24�0(�̂�m � ��m)q

�0V�[�̂
�
m]�

� t

35� �1 (t)
������!p 0.

For any � 2 �d,
�0�̂

�
m � �0��mq
�0V�[�̂

�
m]�

=

mX
i=1

Y �i;m (�) ,
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where, de�ning L�i;m (�) = �
0L�(z�i ;hm) and W

�
ij;m (�) = �

0W �(z�j ; z
�
i ;hm);

Y �i;m (�) =
1q

�0V�[�̂
�
m]�

"
m�1L�i;m (�) +

i�1X
j=1

�
m

2

��1
W �
ij;m (�)

#
.

For any n;
�
Y �i;m (�) ;F�

i;n

�
is a martingale di¤erence sequence, whereF�

i;n = � (Zn; z�1 ; : : : ; z�i ) :
Therefore, by the theorem of Heyde and Brown (1970), there exists a constant C such that

sup
�2�d

sup
t2Rd

������P�
24�0(�̂�m � ��m)q

�0V�[�̂
�
m]�

� t

35� �1 (t)
������

� C sup
�2�d

8<:
mX
i=1

E�
�
Y �i;m (�)

4�+ E�
24 mX

i=1

E
�
Y �i;m (�)

2
��F�

i�1;n
�
� 1
!2359=;

1=5

.

Moreover, by Lemma A-4,

sup
�2�d

8<:
mX
i=1

E�
�
Y �i;m (�)

4�+ E�
24 mX

i=1

E
�
Y �i;m (�)

2
��F�

i�1;n
�
� 1
!2359=;!p 0

if (and only if) the following hold for every � 2 �d:

mX
i=1

E�
�
Y �i;m (�)

4�!p 0 (5)

and

E�
24 mX

i=1

E
�
Y �i;m (�)

2
��F�

i�1;n
�
� 1
!235!p 0. (6)

The proof of part (c) will be completed by �xing � 2 �d and verifying (5)�(6) : First,
using (�0V�[�̂

�
m]�)

�1 = Op(m�
�1
m ) and basic inequalities, it can be shown that (5) holds if

R1;m = m
�2��2m

mX
i=1

E
�
L�i;m (�)

4�! 0
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and

R2;m = m
�6��2m

mX
i=1

E

24 i�1X
j=1

W �
ij;m (�)

!435! 0.

Both conditions are satis�ed because, using Lemma A-3,

R1;m = O
�
m�1��2m E[(E[ ~U�ij;m (�) jZn; z�i ])4]

�
= O

�
m�1 +m�1h2m�m

�
= O

�
m�1 +m�2h�dm

�
! 0

and

R2;m = O
�
m�4��2m E

h
~U�ij;m (�)

4
i
+m�3��2m E[(E[ ~U�ij;m (�)

2 jZn; z�i ])2]
�

= O
�
m�4��2m h

�(3d+4)
m +m�3��2m h

�(2d+4)
m

�
= O

�
m�2h�dm +m�1�! 0.

Next, consider (6). Because

(�0V�[�̂
�
m]�)

"
mX
i=1

E
�
Y �i;m (�)

2
��F�

i�1;n
�
� 1
#

=

�
m

2

��2 mX
i=1

0@E
24 i�1X

j=1

W �
ij;m (�)

!2������F�
i�1;n

35� i�1X
j=1

E�
�
W �
ij;m (�)

2�1A
+ 2m�1

�
m

2

��1 mX
i=1

i�1X
j=1

E
�
L�i;m (�)W

�
ij;m (�) jF�

i�1;n
�
,

it su¢ ces to show that

R3;m = m
�6��2m E

24 mX
i=1

i�1X
j=1

�
E
�
W �
ij;m (�)

2
��F�

i�1;n
�
� E�

�
W �
ij;m (�)

2�	!235! 0,

R4;m = m
�6��2m E

24 mX
i=1

i�1X
j=1

j�1X
k=1

E
�
W �
ij;m (�)W

�
ik;m (�)

��F�
i�1;n

�!235! 0,

R5;m = m
�4��2m E

24 mX
i=1

i�1X
j=1

E
�
L�i;m (�)W

�
ij;m (�) jZn; z�j

�!235! 0.
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By simple calculations and Lemma A-3,

R3;m = O
�
m�4��2m E[W �

ij;m (�)
4]
�
= O

�
m�4��2m E[ ~U�ij;m (�)

4]
�

= O
�
m�4��2m h

�(3d+4)
m

�
= O

�
m�2h�dm

�
! 0,

R4;m = O
�
m�2��2m E

h�
E[W �

ij;m (�)W
�
ik;m (�) jZn; z�j ; z�k]

�2i�
= O

�
m�2��2m E

��
E[ ~U�ij;m (�) ~U�ik;m (�) jZn; z�j ; z�k]

�2��
= O

�
m�2��2m h

�(d+4)
m +m�4��2m h

�(3d+4)
m

�
= O

�
hdm +m

�2h�dm
�
! 0,

R5;m = O
�
m�1��2m E

h�
E
�
L�i;m (�)W

�
ij;m (�) jZn; z�j

��2i�
= O

�
m�1��2m E

��
E
h
E[ ~U�ij;m (�) jZn; z�i ] ~U�ij;m (�) jZn; z�j

i�2��
= O

�
m�1��2m +m�2��2m h

�(d+4)
m +m�4��2m h

�(3d+4)
m

�
= O

�
m�1 + hdm +m

�2hdm
�
! 0,

as was to be shown. �
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