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Abstract

The recent nonexperimental literature on social learning focuses on showing that

observational learning exists, that is, individuals do indeed draw inferences by observing

the actions of others. We take this literature a step further by analyzing whether

individuals are Bayesian social learners. We use data from the Associated Press (AP) 

U.S. College Football Poll, a weekly subjective ranking of the top twenty-five teams. 

The voters’ aggregate rankings are available each week prior to when voters have to

update their individual rankings, so voters can potentially learn from their peers. We find

that peer rankings: 1) are informative, as conditioning on them improves the accuracy of

our estimated Bayesian posterior rankings in a nontrivial way, and 2) influence the way

voters adjust their rankings, but the influence is less than the Bayesian amount. Voters’

revisions are closer to Bayesian when the ranked team loses as compared to when it wins,

which we attribute to losses being less ambiguous and more salient signals. We find

evidence of significant voter heterogeneity, and that voters are less responsive to peer

rankings after they have been on the poll a few years. We interpret the data to imply that

reputation motives cause voters to “conform,” but not enough to overcome the overall

tendency to underreact to social information, that is, to be “stubborn.” 
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1 Introduction

It has become widely recognized that observational learning–individuals drawing inferences on

the private information of others by observing their actions–affect a large class of economic

phenomena.1 To give just a few examples, there is evidence voters learn about politicians,

farmers learn technologies, and homeowners learn about mortgage defaults from their peers.2

Two recent papers that discuss especially clear results are Cai, Chen, and Fang (2009) and

Moretti (2008). The former analyze a field experiment in which restaurant consumers are

randomly given information on top-selling items. The authors find that this information has a

considerable effect on purchase decisions.3 Moretti (2008) analyzes non-experimental data on

movie box office sales, finding several results consistent with consumers learning about movie

qualities by observing whether box office sales were above or below expectations.4

This research provides convincing evidence on the existence and importance of social learn-

ing, which is non-trivial, as cleanly distinguishing social learning from other factors that cause

similar observed behavior is usually difficult. However, the empirical literature on social learning

is agnostic on the normative degree of social learning–that is, whether individuals are influenced

by others excessively, insufficiently, or just the right amount. We take this literature a step

further by analyzing whether individuals are rational, i.e., Bayesian–social learners. To do this

we use a rich, real-world data source: the voter ballots of the AP Top 25 U.S. college football

poll for the 2006-08 seasons. The poll is a subjective, weekly ranking of the top 25 (out of

more than 100) teams, voted on by over 60 experienced sports journalists, giving us over 30,000

observations. The data source is particularly well-suited for the analysis of how individuals’

beliefs respond to social information for several reasons. First, it allows us to observe the evolu-

tion of beliefs of individuals over time in response to observable signals (game scores). Second,

1We use the terms social learning and observational learning interchangeably in this paper. In other contexts, observational
learning is a strict subset of social learning, as the latter may also include direct communication. In our context the terms are
equivalent.

2See Knight and Schiff (2007), Conley and Udry (2010) and Cohen-Cole and Duygan-Bump (2008).
3The authors analyze the effects of providing a display on restaurant tables with information on the most popular dishes.

They distinguish information effects from saliency effects by comparing outcomes when the display says the dishes are popular
as compared to conditions in which the display simply names selected dishes. The authors caution that they cannot distinguish
between learning and conformity, which they imply is simply the desire to be similar to others, but argue that conformity is unlikely
to drive their results due to the nature of the restaurant context.

4The author uses the number of theaters a movie is showing in to proxy expectations of movie “quality”, and shows that when
sales are relatively high in the first week of release, given the number of theaters, sales decline at a relatively slow rate (and sales
decline relatively quickly when sales are initially below expectations). This indicates that some consumers who attend movies in
later weeks drew inferences from the initial weeks’ sales results. When initial week sales are high or low for reasons that do not
provide information on movie quality, such as weather shocks, the patterns do not hold, so the results are unlikely to all be explained
by factors other than social learning, such as the possibility that movie-goers simply have correlated private information.
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aggregated poll results are widely available each week of each season, so voters can observe

their peers’ rankings before updating their rankings. Third, the data source allows us to iden-

tify deviations from Bayesian social learning–a task that is all but impossible in most empirical

settings–by using each voter’s final rankings, for each season, to proxy her/his true rankings for

that season. This assumption is questionable, but we believe it is quite natural and holds up

under scrutiny. Intuitively, the final rankings reflect all information that will ever be available

on team qualities and performances for that season, and idiosyncratic voter preferences and

biases. So it makes sense to think of the voters as trying to “match” their current rankings to

final rankings each week throughout the season. We discuss this assumption in detail in section

3.

Section 3 also discusses our empirical approach, which is an adaptation of that used by Stone

(2009). It involves multiple steps but is conceptually straightforward. We first directly estimate

each voter’s Bayesian posterior rankings, by week and season, using empirical distributions to

estimate voters’ prior and game score distributions. The estimated posteriors are conditioned

both on game scores and the aggregate rankings (i.e., the rankings of other voters), which we

refer to as the social information. If voters had completely idiosyncratic tastes regarding true

rankings, the aggregate rankings would be uninformative (with respect to the voters updating

their individual ballots) and the social information would not affect our estimated posteriors;

if voters had similar tastes and heterogeneous information, the aggregate rankings would be

informative. In other words, to be clear, our empirical method allows for the possibility of the

aggregate rankings being informative, but does not assume they are–we let the data speak for

itself on this issue, indirectly via our estimated posteriors.5

Our next step is to assess the validity of our estimates. We find that our estimated posteriors

match the voters’ own final rankings better than their own posteriors do. This is evidence that

our estimates are “more Bayesian” than the observed posteriors, providing support for the

validity of our estimates. This allows us to use our estimates to test for systematic non-

Bayesian behavior, despite the fact that our estimates are clearly based on a limited subset of

the relevant information actually available to voters. We also find strong evidence that taking

5We do expect a priori that the voters have similar tastes in rankings. To illustrate with an extreme example, it is natural to
think all voters would rank an undefeated team better than a winless team. Consequently, assuming that voters have heterogeneous
information on the characteristics of the various teams, it is natural to think voters can learn from other each other about how best
to rank the teams.
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account of social information does in fact make our estimated posterior rankings more accurate,

implying voters’ tastes are correlated and information is heterogeneous, so voters indeed can

learn from their peers.

We then use straightforward regressions to test the null hypothesis that the voters are

Bayesian social learners. We find considerable evidence supporting rejection of the null. In

particular, voters underreact to winning teams having a better aggregate rank: this should

cause the ranks for these teams to improve by around 3 spots, but voters only improve them

by around 1.5 spots (as compared to winning teams with similar aggregate ranks). Also, voters

underreact to winning top 15 teams having a worse aggregate rank: this should cause rank im-

provements to be reduced by around 2 spots, but voters only worsen them by less than 1 spot.

Voters do a better job of responding to social information for losing teams; the only evidence

of significant underreaction occurs when top 15 teams have a better aggregate rank. We do not

find any evidence that voters overreact to social information. The fact that voters are more

Bayesian in response to losses is consistent with previous research showing individuals are more

responsive to less ambiguous information (Sloman, Fernbach, and Hagmayer (2010), Rabin and

Schrag (1999)), as losses are relatively salient and unambiguous signals (as compared to wins)

for top 25 teams.

Because underreaction to social information is the predominant result, we introduce the term

“stubbornness” to describe the voters’ behavior. This term captures the idea that voters do

not heed the information of others as much as they should. It can be thought of as describing a

specific type of conservatism, a term commonly used in the belief updating literature to refer to

underreaction to new information in general (Edwards (1968)).6 However, we cannot conclude

voters are stubborn purely due to information processing limitations, as voter behavior is likely

also affected by reputation concerns. The theoretical effects of reputation concerns on responses

to social information are ambiguous, as we discuss in section 2; when individuals care about

reputation they may want to blend in with the crowd, or stand out from it, depending on the

context.

We do not have a silver bullet for identifying reputation effects separately from information

effects. However, we do have a few pieces of suggestive evidence, indicating that reputation

6We are unaware of an existing term in the literature equivalent to stubbornness. This may be because the behavior
stubbornness–learning from others, but less than the Bayesian amount–is one that is rarely studied.
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concerns cause “conformity”, or excessive similarity to others.7 First, when we compare voter

reactions to social information to their reactions to other types of new information, such as

whether a game occurred at home or on the road, which should be less affected by reputation

concerns, we find voters are more responsive to social information. Second, voters with very

little poll experience, and thus relatively weak and uncertain reputations (causing strong repu-

tation motives), are more responsive to social information. Third, voters are more responsive to

social information in the later seasons of the sample, when analysis and criticism of individual

voter rankings on the Internet was more intense, making reputation concerns likely stronger.8

Regardless of the composition of reputation and information processing effects, our main

result, which seems quite robust, is that voters do learn from their peers, but less so than the

Bayesian amount. We briefly discuss external validity and implications for future research in

our concluding remarks.

2 Related Literature

There are several literatures that are especially relevant to this paper, in particular, the the-

ory literatures on herding and reputation, and the empirical and experimental literatures on

information processing and social learning. Banerjee (1992) and Bikhchandani, Hirshleifer, and

Welch (1992) are seminal theory papers. They both show that a sequence of rational decision-

makers often herds, i.e., individuals copy the decisions of those who acted before them, due

to social learning. As discussed in the introduction, there is substantial empirical evidence

that individuals do learn by observing the actions of others, but there is a lack of evidence

on whether this learning is Bayesian. The experimental literature on social learning addresses

this issue more directly than other literatures, but as far as we are aware results tend to be

highly context-dependent. In some studies the Bayesian model seems to be a good description

of behavior, while in others subjects imitate others excessively (e.g., Anderson and Holt (1997)

and Offerman and Schotter (2009)), while in others still, subjects ignore their peers excessively

(e.g., Çelen and Kariv (2005)). Similarly, it is still unclear to what extent individuals are ratio-

7The term conformity is used in different ways in existing literature. The term is generally used to refer to individuals acting
to comply with a social norm or fit in with others; e.g., Bernheim (1994) or Corazzini and Greiner (2007). These papers do not
take a stand on whether conformity is good or bad, with respect to the conformist. We use the term to refer to the opposite of
stubbornness, which is excess reaction to social information. This usage is consistent with the term’s vernacular usage, implying
excess compliance.

8Of particular note is the website pollspeak.com, which was founded in 2007 and calls itself “a watchdog organization dedicated
to keeping college sports polls (and computer-rankings) honest”.
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nal belief updaters to new information in general. Psychological theories and the experimental

evidence are somewhat mixed. Salience and vividness seem to make individuals more respon-

sive to new information and use, e.g., the availability or representativeness heuristics, both

of which tend to cause overreaction. There is also substantial evidence of individuals being

insufficiently responsive to new information; this is attributed to, e.g., the conservatism and

anchoring biases, and is more likely when information is more ambiguous. See Holt and Smith

(2009) for a recent lab study. Finally, since these studies involve stylized settings, it’s not clear

how the results would generalize to real world applications.

The theory literature has shown rational individuals may be either more or less likely to

imitate their peers’ actions when they have career concerns and are motivated by reputation.

For example, Zwiebel (1995) shows that managers may herd because doing so reduces relative

risk; when a manager takes the same action as her peers, she ensures that she will neither

do much better nor worse than the pack. This may be relevant to AP voter behavior–if the

voters’ main objective is to continue to serve on the poll rather than rank teams in a risky way,

this may cause voters to avoid unconventional rankings. On the other hand, the anti-herding

literature (Levy (2004)) predicts individuals will excessively ignore or even contradict public

information to signal confidence in the accuracy of their private information. This theory would

predict voters respond insufficiently to the aggregate rankings. The empirical literature in this

area focuses on the behavior of financial analysts and generally supports herding rather than

anti-herding (Hirshleifer and Teoh (2003)), but there is evidence that individuals exaggerate

their differences from peers (Zitzewitz (2001)).

Both theory and evidence indicate that reputation-motivated imitation becomes less likely

as individuals gain experience. A natural explanation is that as experience is gained, reputation

becomes more secure, and so the marginal effect of actions on reputation declines. This implies

actions should be less driven by reputation concerns for those who are more experienced. See

also Avery and Chevalier (1999), who provide a slightly different rationale for the prediction

that herding declines with experience. Hong, Kubik, and Solomon (2000) provides empirical

evidence in support of this idea, showing that less experienced stock analysts are both less likely

to deviate from consensus forecasts, and more likely to lose their jobs if they do deviate.

There are several other strands of research on psycho-social reasons individuals may imitate

5



each other more than the Bayesian amount, including the desire to attain status or esteem,

social pressure, or simply because they gain utility from being similar to others (Bernheim

(1994), Garicano, Palacios-Huerta, and Prendergast (2005), Zafar (2009)). We think that these

are not likely to be major factors in our context for several reasons.9 However, we note that

if we do find evidence of conformity, we cannot rule these factors out as possible explanations.

Finally, this paper relates to the other economics studies that also use college football rankings

data, see, e.g., Mirabile and Witte (2009), Coleman, Gallo, Mason, and Steagall (2009) and

Paul, Weinbach, and Coate (2007). None of them but none of them focus on social learning.

3 Empirical Strategy

Since our empirical method is an adaptation of Stone (2009), we have only included the most

important points here, and refer the reader to that paper for additional detail.

3.1 The Data

The AP college football poll is conducted once per week during the college football season and

teams usually play one game per week and sometimes have the week off. The season runs 16

or 17 weeks, and the first poll is conducted before the season starts, and the final poll after

the season ends. The poll is voted on by 60-65 leading college football journalists (the number

varies year to year), most of whom work for newspapers throughout the U.S. A small percentage

work for television stations and other forms of media.

Each poll member votes by submitting a ranking of the top 25 teams, and the aggregate

ranking is determined by assigning teams 25 points for each first place vote, 24 for second,

etc., and summing points by team (a Borda ranking). During the season, the current week’s

aggregate rankings are published in most newspapers and the current and historical aggregate

rankings are available on many websites.10 Consequently, prior to updating rankings each week,

each voter is able to easily observe the Borda sum of her/his peers’ rankings from the current

and previous weeks.11

9For example, the AP voters do not interact with each other in person on a regular basis, and these factors are more likely to
be relevant in situations involving personal interactions.

10See, e.g., appollarchive.com.
11The vast majority of games are played on Saturdays, throughout the day and evening, and the rankings are submitted to the

AP the following day by 11:00 AM EST. Voters could consult with one another before submitting their updated rankings, but
they would only have time to have extensive discussions with at most a few other voters, so we think it is safe to assume that the
aggregate rankings potentially reflect a great deal of new information for all voters. The data indeed bear this assumption out, as
we show the aggregate information has substantial effects on estimated Bayesian ranking responses.
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The individual voter rankings are not confidential, but not widely available. Most of the data

used for this study are the same as those used by Stone (2009), which describes how the data

were obtained.12 We obtained additional data on voter experience by directly communicating

with the voters via email.

One notable weakness of the data is that the voters do not have direct incentives relating to

the quality of their rankings. We do not believe this is too serious a concern for several reasons.

First, discussions with voters indicate that they put substantial effort into producing their best

possible rankings. Second, voters do have indirect career-related incentives based on the quality

of their rankings. It is considered prestigious to be part of the poll, and voters are invited to

be on the poll for multiple seasons in part based on their performances in previous polls.13 In

addition, voters’ weekly ballots are scrutinized increasingly carefully by bloggers and websites,

giving voters stronger incentives to be thoughtful about their rankings to avoid criticism.

3.2 The True Rankings and Identification

In order to identify systematic differences, or lack of difference, between observed voter responses

and the Bayesian responses to social information, we need to first estimate the Bayesian re-

sponses to social information. In order to do this, we need a measure of the true rankings. We

assume the true rankings for each voter-season are her or his final rankings for that season.

We need to make this assumption because the true rankings are not clearly defined.14 The

logic behind the assumption can be described informally as follows. We think of the voters as

taking their best guess at what their own final rankings will turn out to be when they submit

their weekly rankings. The voters are doing this not necessarily to forecast the future of the

season. Rather, the voters are effectively guessing their final rankings because they know their

own final rankings are the most accurate rankings that will ever be available, by the voters’

own standards, for that season. This is because the final rankings reflect the maximal amount

of information that will ever be available on the qualities of the teams that season, the qualities

12The only website that maintains an archive of historical individual voter rankings that we are aware of is pollspeak.com.
13An extreme example of a voter’s performance affecting his participation in the poll occurred in 2006, when a voter was removed

from the poll in mid-season after mistaking a win for a loss (http://sports.espn.go.com/ncf/news/story?id=2663882).
14Montella said in a discussion in the summer of 2009 that the rankings criteria are ambiguous. The voters are given the

following guidelines, intentionally left open to interpretation, before each season: “Base your vote on performance, not reputation
or preseason speculation. Avoid regional bias, for or against. Your local team does not deserve any special handling when it comes
to your ballot. Pay attention to head-to-head results. Don’t hesitate to make significant changes in your ballot from week to week.
There’s no rule against jumping the 16th-ranked team over the eighth-ranked team, if No. 16 is coming off a big victory and No.
8 just lost 52-6 to a so-so team.” The first sentence was added for the 2008 season, and Montella said it was not indicative of a
policy change, but just meant to encourage the voters to be responsive to game results.
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of their performances, and the voters’ own possibly idiosyncratic tastes in evaluating these

qualities. It is worth noting that regardless of the assumption’s validity, our estimates of voter

over/underreaction (sections 4.2 through 4.5) can be interpreted as deviations from the goal of

matching a voter’s own final ranks for that season.

A natural question to ask is if the voters are, or should be, trying to guess their final rankings

each week, why does the AP not instruct them to do this explicitly. The answer is that this

would give the voters greater incentives to vote strategically–to adjust their final rankings so

they are similar to their mid-season rankings, to make their mid-season rankings look more

accurate. This would raise suspicion and reduce the legitimacy of the rankings in general.

When it is unspoken that the final rankings are proxies for true rankings, these strategic issues

are much less severe.

We briefly and informally discuss alternative possibilities for the true rankings. One plausible

alternative criterion for the rankings is year-to-date (YTD) performance. This would be, after

week 1, just week 1’s performance, after week 2, week 1 and 2 performance, etc. If this were

the criterion, the true rankings would change throughout the season. One reason it is unlikely

the voters actually use this criterion is simply that there exists a preseason poll. Since this

poll could not be based on YTD performance, it would be inconsistent for other polls to be

based entirely on YTD performance. Another reason it is unlikely YTD performance is the

only criterion is that if it were, voters would change their rankings drastically after games in

the early weeks of the season. Simple inspection reveals this is not the case.15

It is possible the true rankings change throughout the season if voters rank teams based on

current quality, and quality changes substantially throughout the season. This would imply

the final rankings are not the true rankings for each week of the season. Stone (2009) provides

evidence against this possibility. The paper shows that historically, teams that finish ranked

1-12 do not improve during the season more than teams that finish ranked 13-25. (If team

qualities did change throughout the season substantially, and voters ranked teams on current

quality, teams that finish ranked 1-12 should have shown more within-season improvement than

lower ranked teams.)

15For example, Clemson lost its first game of the 2008 season by 24 points, but still received 143 points in the subsequent
aggregate poll, more than that of over 90 other teams, most of which had won their first game or lost by fewer points.
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Another plausible alternative definition of the true rankings is the aggregate final rankings.

Given the premise of this paper–that individuals have heterogeneous information, and thus may

learn from each other–the aggregate final rankings may be thought to be the best estimate of

the true rankings by a law of large numbers-type argument. It is also possible that voters have

incentives to conform to the aggregate rankings for reputational reasons, as discussed in section

2. If the voters considered the aggregate final rankings the true rankings, then clearly social

information would be more important than if the voters simply considered their individual final

rankings to be the true rankings. Thus, by assuming that individual final rankings are the true

rankings in our analysis, our results should be biased towards finding overreaction to social

information. Since, as discussed in section 1, our main finding is underreaction, we think we

are on safe ground. We also discuss robustness to this issue in section 4.5.

We note that defining truth as the voters’ own final rankings implies truth is endogenous:

each voter determines his/her own truth. To address this, we restrict the sample we use for

hypothesis testing to the first half of the seasons (weeks 1-7). This causes truth to be exogenous

for practical purposes, as the rankings change considerably over the season’s second half. We

also note that this issue only potentially biases our analysis against rejecting the null of Bayesian

updating, and so it does not seem to threaten the validity of our evidence against non-Bayesian

social learning.

3.3 Formal Framework

In this subsection we specify the voters’ objective functions and Bayesian updating process in

a way that allows us to estimate the benchmark Bayesian posterior rankings that conditions

on aggregate rank as a measure of social information.

Let ri denote the true rank of team i (in a particular season and for a particular voter; those

indexes are suppressed), i ∈ {1, ..., N} and ri ∈ {1, ..., N}, with N denoting the total number

of teams. Let
∼
ri,t be the actual (observed) rank that the voter assigns to team i in week t, in

which
∼
ri,t ∈ {1, ..., 25, unranked}, since the voters can only rank 25 teams. We assume each

voter’s objective in week t, for all t ∈ {1, ..., T − 1} with T denoting the number of weeks

in the season, is to minimize the expectation of a standard quadratic loss function of current

and true ranks: Et[
∑

i=1:N

(
∼
ri,t − ri)

2], with
∼
ri,t equal to any number greater than 25 if in fact
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∼
ri,t = unranked. It can be shown this loss function is minimized only if teams are ranked in

order of expected rank, with teams that do not have one of the 25 best expected ranks simply

unranked. It is assumed voters are not forward-looking (they do not consider adjusting future

ranks to reduce previous losses).

Voters update their beliefs about the true rankings throughout the season by observing the

aggregate rankings and game scores. Let at be the vector of aggregate rankings in week t and

sij be the score difference for the game in which home team i plays team j: the points scored

by i minus points by j (if sij > 0, i wins).16 In accordance with the timing of the rankings

submissions discussed above, we can think of each week as starting Sunday evening and ending

the following Sunday morning. Voters submit their week t+1 rankings at the very end of week

t, and the week t+1 rankings of all voters are aggregated and made public at the very start of

week t+1. Consequently, in each week t, voters observe at at the very start of the week. Since

games are Saturdays, voters observe st, the vector of scores from week t, towards the end of the

week and just before submitting their week t+ 1 rankings. Let It denote information available

at the start of week t, when the aggregate rankings for that week are made public. The timing

of the set-up implies at ∈ It and st /∈ It, and that the week t rankings are conditioned on all

information from week t− 1 (It−1 and st−1).

Let fi(ri|It) be the (subjective) probability that team i has true rank ri conditional on

information set It. fi(ri|It) is the week t “prior” for i in that it is the probability prior to

the game result signals of week t. Let g(sij|ri, rj) denote the conditional probability that the

game between teams with true ranks ri and rj results in score sij, with i being the home team.

Assuming voters know the f() and g() distributions from their knowledge of the sport, they can

use Bayes’ rule to update beliefs (their subjective true rank probabilities) after team i plays j

and sij is observed, from fi(ri|It) to fi(ri|sij, It).

Specifically, assuming for simplicity fij(ri, rj|It) = fj(rj|It)fi(ri|It), the formula for a Bayesian

posterior is:

fi(ri|sij, It) =
g(sij|ri, It)fi(ri|It)

g(sij|It)
=

[∑
rj

g(sij|ri, rj)fj(rj|It)
]
fi(ri|It)

∑
ri

[∑
rj

g(sij|ri, rj)fj(rj|It)
]
fi(ri|It)

. (1)

16This variable has no time subscript because teams almost never play each other more than once.
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We can use this formula to estimate the voters’ Bayesian posterior beliefs, given the avail-

ability of estimates of the prior and signal distributions. We can then translate these estimated

posterior beliefs into rankings, by ordering them by posterior expectation given the quadratic

loss function assumption, to obtain the estimated Bayesian posterior rankings.

One aspect of this extended framework worth noting is that we are assuming voters actually

update beliefs in two stages in each week t–once at the start of the week after observing at, and

once at the end after observing st. However, we only explicitly apply the Bayesian updating

formula to estimate the voters’ posterior beliefs once, to update beliefs based on scores. The

priors used for this estimation are conditional on at, which makes them implicitly Bayesian.

This is without loss of generality and makes the computation simpler.

3.4 Estimation Methodology

We use empirical frequencies to estimate the f ’s and g’s in order to apply (1) to obtain the

Bayesian posteriors. To estimate the f ’s–the true rank distributions–we use the final rank

frequencies, separately for each current rank, week and relative aggregate rank. To estimate

the g’s–the conditional score distributions–we use the frequencies with which opposing teams

with various final ranks had different scores. See the supplementary appendix for details. A few

adjustments forced by data and sample size limitations that should be noted are the following.

We coarsen some of the variables and only estimate posterior rankings for teams that are

currently in each voter’s top 25 (there are over 100 teams).17 Also, the score distributions are

conditioned on aggregate final rank and the 2006-08 data are used to estimate the priors. The

former assumption could cause our estimated posteriors to be invalid (biased in a way that

is theoretically unclear); we show evidence that this is not a problem in section 4.1. We test

robustness to the second issue (using 06–08 data) by also conducting the analysis using priors

estimated from the 2006-07 data only on a sample of 2008 only data. We get similar results,

discussed in section 4.5, though they are much less precise due to the lost sample.

The main modification of the existing framework is that the information set the estimated

priors are conditioned on is expanded to account for aggregate rank. As discussed above,

17We coarsen final rank into four groups, 1-6, 7-12, 13-18 and 19-25, and scores into bins of width seven. To illustrate how
the f()′s are estimated by example, the estimated probability a team with current rank 25 in week 1 with AggW = 1 (defined
below) has true rank 1-6 (f1−6|I1), we simply use the frequency (fraction) of the teams ranked 25 in week 1 with AggW = 1 that
indeed finished the season with rank 1-6 by the same voter who originally ranked the team 25. We account for the fact that teams
enter/exit voters’ rankings in most weeks by only ranking teams up to the number of teams that stay in each voter’s rankings, for
each week. We use the same method for comparing estimated to actual final rankings in section 4.1.
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voters can easily observe the aggregate rankings for the current week before submitting their

rankings for the following week. We account for aggregate rank in a simple way, adding two

dummy variables to It: AggB and AggW. AggB = 1 implies the aggregate rank is “better”

than the voter’s own rank for that team, AggW = 1 implies the team’s aggregate rank is

“worse”. When AggW = AggB = 0, the aggregate rank is the “same”. Since there is no

clear theoretical framework for defining better, worse and same, we experiment with a few ad-

hoc but straightforward definitions. Naturally AggB (AggW ) equals one only if the aggregate

rank is at least one rank better (worse) than the individual rank. We conducted our analysis

with numerous definitions, and report results for four that are especially straightforward: AggB

(AggW ) equal 1 if aggregate rank is at least two, three, four or five spots better (worse)

than the voter’s individual rank.18 The trade-off among definitions is that the greater the

difference between the individual rank and the aggregate rank, the more informative it is for

AggB or AggW to equal one, but the less informative it is when AggB=AggW = 0. Moreover,

conditioning on a larger difference between the aggregate rank and the individual rank means

that we have fewer observations in the sample to estimate priors for teams with AggB and

AggW equal to one, making the estimates less precise.

4 Empirical Analysis

4.1 Validity of the Estimated Bayesian Posteriors

Before testing whether the estimated Bayesian posteriors (henceforth the Bayesian posteriors or

estimated posteriors) are systematically different from the observed voter posterior rankings (the

observed posteriors), we first examine the validity of the Bayesian posteriors. If our estimates

are not valid–if they are not reasonably unbiased and precise measures of Bayesian reactions to

social information–it would be difficult to use the estimates to draw conclusions on whether or

not the voters are Bayesian social learners.

We examine validity by comparing the distances between the Bayesian posteriors and the

final rankings, to the analogous distance between the observed posteriors and final rankings.

The true Bayesian posterior rankings, which are of course unobserved, will on average be closer

to the true rankings, as compared to the distance between any other posterior rankings and

18We also used definitions in which the cut-offs varied depending on the team’s rank; we found these yielded similar results so
we only report results for the most straightforward definitions. Results for other definitions are available upon request.
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the true rankings. Thus, since we assume the final rankings are the true rankings, if our

estimated posteriors “match” the final rankings better than the observed posteriors, this would

be evidence of the validity of the estimates. It is worth noting that this is quite a strong

condition for validity, since it requires both that the estimates use the information they are

conditioned on in a more rational way than the voters use that same information, and that the

information available to the voters, but not incorporated in the estimates, is not too important

to outweigh the gains from the improvement in rationality.

We also compare the distances from truth for the “non-social” Bayesian posteriors (estimated

posteriors that are only conditioned on game scores and not aggregate rankings), observed priors

and flat priors. It is important to see whether the Bayesian posteriors that are conditioned on

social information are closer to the final rankings than the non-social posteriors, to determine

whether the aggregate rankings are actually informative with respect to the voters updating

towards their individual final rankings. If the aggregate ranks were uninformative, the social

and non-social Bayesian posteriors would be equally close in distance to the true rankings. We

include the observed and flat priors as benchmarks to see how informative game scores and the

priors are in general.

We measure the distance from the final rankings by mean absolute deviation (MAD):

1
n
Σi,t,s,v|r̂vi,t+1,s − rvi,s|, with n being the total number of observations, and i, t, s and v in-

dexing team, week, season and voter, respectively. r̂ is the estimated or observed posterior, or

prior; rvi,s is voter v’s true rank for team i in season s, which is not indexed by t as true rank is

constant by season. We could use other similar metrics and obtain similar results; this method

is less susceptible to influence by outliers.

Table 1 presents the MADs, split out by game result type and rank group. In general–for

almost all game types and rank groups–the Bayesian posteriors are closer to the final rankings

than the observed posteriors. The overall (“Total”) MADs for Bayesian posteriors range from

3.33 to 3.40 for the four AggB/AggW definitions; for the observed posteriors the overall MAD

is 3.68. Moreover, the Bayesian posteriors that are conditional on social information are always

closer to the true rankings than the non-social Bayesian posteriors (overall MAD of 3.49). This

implies the aggregate rankings are informative for the voters updating towards their subjective

true rankings. This is a non-trivial result–it is not, say, analogous to increasing a multiple
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regression R2 by adding variables–as conditioning on more information is costly in that it

decreases the sample sizes for prior estimation. While these comparisons are informal, the fact

that the MADs of Bayesian estimates conditional on social information are consistently and

substantially lowest is strong evidence of the validity of the Bayesian posteriors.19

The MADs also provide a criterion for selecting the preferred AggB/AggW definitions to use

for the subsequent formal testing analysis. We wish to use the definitions that yield the “most

Bayesian” posteriors. This is the definition that yields lowest MADs on average. Table 1 shows

that, according to this criterion, the first two definitions (henceforth, Definitions 1 and 2) are

superior. In the remainder of the paper, we only report results for these two definitions; results

using other definitions are qualitatively similar.

Table 2 provides a preview of the formal analysis, reporting summary statistics on rank

improvement, categorized by the signal type (wins; losses) and broken out by prior rank cate-

gories, and by AggB, AggW, and AggS = 1−AggB−AggW . The mean estimated and observed

rank changes are similar in the overall sample. However, in the overall sample, the observed

rank improvements are smaller (larger) in the case of wins (losses) when AggB equals one, as

compared to the estimated Bayesian improvements. There are also a few notable discrepancies

within some of the specific rank groups. For losing teams ranked in the top 15 with AggB=1,

the estimated and observed responses are very different: the observed rank decline is much

larger than the estimated Bayesian rank decline. For winning top 15 teams with AggW=1,

observed rank decline is smaller than the estimated decline. In the case of winning teams with

prior rank 16-25, observed rank improvements are smaller (larger) than the estimated rank

improvements when AggB (AggW ) equals 1. All of these numbers suggest a pattern of voters

not incorporating social information in their ranking updates as much as they should.

4.2 Hypothesis Testing

To conduct formal hypothesis tests, we first construct a simple measure of overreaction, denoted

Over, intended to measure excess rank improvement (decline) following a win (loss). It is defined

19We do not conduct formal tests of these differences because the observations are correlated across voters for games involving
the same teams. If we did not account for this correlation, the differences would easily all be significant due to the large sample sizes.
We could conduct the tests of differences separately for each voter to account for this issue, but this would make the presentation of
results even more unwieldy. The Bayesian posterior MADs for all AggB/AggW definitions are significantly lower than the observed
posteriors for a substantial percentage of voters.
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as follows:

Over it =

 ∆rOit −∆rBit = rBit − rOit if team i wins in week t,

∆rBit −∆rOit = rOit − rBit if i loses in t,

in which ∆rjit = rit−1− rjit (j ∈ {O, B}, O = observed; B = Bayesian) is the rank improvement

for team i in week t.20

We then use Over to test whether voters are Bayesian social learners by estimating linear

models of the form:

Overivts = β1AggBivts + β2AggWivts +Xivtsλ+ δv + γs + ηt + ϵivts. (2)

δv, γs, and ηt are voter, season and week fixed effects (FEs), respectively. The voter FEs are

used as controls to account for voter-specific variation in priors causing them to appear to over

or underreact. We use bootstrap standard errors since the dependent variable is constructed,

and the standard errors are clustered by game to account for repetition of games in the sample

and correlation in the error term by game. X is a vector of controls, and includes the following

in all of our specifications:

1) Home: dummy for team i playing a home game in week-season t-s;

2) ScoreMargin: team i-t-s’s points minus its opponent’s points;

3) OppRank: dummy for whether i-t-s’s opponent is ranked in v’s top 25 in t-s;

4) ScoreMargin×OppRank.

The parameters of interest are β1 and β2. The null hypothesis is that voters are Bayesian

social learners and that both of these parameters equal zero. The alternatives are the following.

Alternative Hypotheses to Bayesian Social Learning

Wins Losses

Conformity β1 > 0, β2 < 0 β1 < 0, β2 > 0

Stubbornness β1 < 0, β2 > 0 β1 > 0, β2 < 0

Conformity and stubbornness are blanket terms we use to refer to overreaction and underre-

action to the aggregate rankings, respectively.21 Hirshleifer and Teoh (2003) define a taxonomy

in which the term “herding” refers to individuals taking similar actions as their peers, and “dis-

20Note that all r variables are adjusted to account for the number of teams which enter/exist the top 25 for each voter in each
week; see section 3.4.

21They are blanket terms in that they describe broad types of behavior; neither term is meant to describe the cause of behavior.
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persing” refers to individuals taking opposite actions from their peers. We use herding with

the same meaning, and anti-herding as they use dispersing, but these terms are not adequate

for describing our hypotheses. This is because we are not interested in the relatively simple

question of whether voters imitate each other or not; we are interested in whether voters herd

excessively, or insufficiently, with respect to a Bayesian benchmark.

We say voters conform when they herd excessively.22 We say that voters are stubborn when

they do the opposite–herd insufficiently. We are agnostic a priori as to whether to expect

conformity or stubbornness. Both may result from either non-Bayesian belief updating and/or

reputational motives, as discussed in section 2.

Our main objective is simply to identify whether voters are Bayesian social learners on

net, and if not, in what direction they deviate. We cannot cleanly distinguish information

processing from other factors that may influence voter behavior. However, we can shed some

light on the importance of reputation concerns in two ways. First, we compare the effects of

aggregate rank (social information) to the effects of other types of new information, such as score

and home status, on voter ranking updates. We do this to exploit the natural assumption that

reputation concerns would have a relatively large effect on voter responses to social information,

as compared to their effect on voter responses to other information. If we find voters are

indeed relatively highly responsive to social information, this would be evidence that reputation

motives cause herding (even if the net response to social information is less than the Bayesian

amount). If voters respond even less to social information than to other information, this would

be evidence that reputation causes anti-herding.

We cannot simply compare the estimates of β1 and β2 to our other estimates (λ) for this

purpose, because they have different units. We create a unitless metric for these comparisons by

estimating auxiliary regressions of the same form as (equation 2), but using the Bayesian rank

improvement (decline) ∆rBi,t (-∆rBi,t) in the case of wins (losses) as the dependent variable, and

then dividing our original coefficient estimates (from (2)) by the auxiliary estimates. The coef-

ficient estimates from the auxiliary regressions are estimated effects on Bayesian rank change.

The estimates of (2) are estimated effects on the difference between Bayesian and observed rank

change. Thus, the ratio of estimates for a particular variable provides a unitless measure of the

22This occurs when they improve rankings too much after wins by teams with better aggregate rankings, improve rankings
insufficiently after wins by teams with worse aggregate rankings, and worsen rankings excessively (insufficiently) after losses by
teams with worse (better) aggregate ranks.
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degree of non-Bayesian reaction, to that variable (a ratio of zero implies Bayesian updating).

We refer to the absolute values of these ratios as reaction ratios.23 For example, if for the wins

sample we estimated β1 to be -0.6 and 1.2 for the original and auxiliary regressions, the reaction

ratio would be 0.5. If we obtained estimates of λHome of 0.9 and 1, this would yield a reaction

ratio of 0.9.24 These results would suggest that while voters do not respond to AggB the full

Bayesian amount, as the -0.6 estimate implies voters improve AggB = 1 teams’ ranks by 0.6

spots less than they should after wins, voters respond to social information more strongly than

they do to home status, since 0.5 is closer to zero than 0.9 is. To be clear, we fully acknowledge

that these comparisons are not apples-to-apples and are merely suggestive, and we are cautious

with the conclusions we draw from them.25

We can also gain insight into the effects of reputation by estimating the effects of several

interaction terms. The effects of voter experience on the effects of AggB and AggW are of

particular interest. In the absence of reputation effects, we would expect voters to become

more Bayesian with experience simply due to improvement in understanding the prior and

signal probabilities, which would imply a decrease in the magnitudes of the estimates for β1 and

β2. But as discussed in section 2, both theory and evidence suggest that reputation-motivated

herding declines with experience. Thus, if we find voters are stubborn (conformist) in general,

and weakly more so as they gain experience, this would be suggestive that reputation concerns

cause herding (anti-herding).26 Other variables that may provide insight into the importance of

reputation via interaction terms are year of season (as voter scrutiny on the Internet increased

over the sample time-frame) and voter news organization affiliation (as reputation concerns

may be larger for voters who work for national organizations).

4.3 Main Results

Table 3 reports estimates of several variants of equation (2), with reaction ratios reported in

square brackets. Columns (1) and (4) report estimates of equation (2) for the wins sample for

AggB/AggW definitions 1 and 2, respectively. The estimates of β1 are negative and β2 are

23We use absolute value because we are interested in the relative magnitude of overreaction/underreation, as compared to
Bayesian reaction. This comparison is only appropriate for two variables that the voters either (weakly) underreacted, or overreacted
to.

24This implies underreaction to home status, since being the home team makes a win a less positive signal; see Stone (2009).
25We do not even formally test whether the ratios are significantly different from one another as estimating their standard errors

would be difficult. We believe they provide useful suggestive evidence regardless.
26If voters became either less stubborn or conformist as they gained experience, we would not be able to say whether the change

in behavior was due to a change in reputation concerns or improved (more Bayesian) information processing.
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positive, and three of four are significant at either 5% or 1%. Columns (7) and (10) report the

corresponding estimates for the losses sample. The β1 estimate is significantly positive at the

5% level, while β2 is negative but insignificant. According to the hypotheses described above,

these estimates all indicate stubbornness, especially when AggB = 1.

To interpret the magnitudes of these coefficients, we look at the reaction ratios. For AggB ,

in the case of a win, the ratio is around 0.5; this means that voters respond only half as much

to AggB relative to what Bayesian updating would have implied. Since the reported coefficient

on AggB is around -1.78, the effect AggB has on Bayesian improvement must be around 3.5.

The ratios for AggW for the wins models are 0.83 and 0.74. The ratios for Home and Score

Margin variables are around 1 and 0.69, respectively.27 Since the magnitudes of these ratios are

generally greater than the ratios for AggB , and for AggW , this suggests that, although voters

react to social information less than the Bayesian amount, they still react more strongly to

social information than they do to other information.

Table 3 also reports results from specifications involving interactions of AggB/AggW with

dummies for whether or not the opponent is ranked, and prior rank group. Games against

ranked opponents receive much more attention as they occur relatively infrequently and are

more informative regarding team qualities,28 so it is possible voters pay more attention to these

games and adjust their rankings differently, and perhaps in a more Bayesian way, in response to

them. These results are reported in columns (2) and (5) for the wins sample. Voters underreact

to AggB and AggW whether the opponent was ranked or not. The magnitude of the coefficient

for AggB is larger for unranked opposition, while the magnitude of the coefficient for AggW

is greater for ranked teams. This suggests that voters underreact to AggB more when the

opponent is unranked, and underreact more to AggW when the opponent is ranked. However,

these differences are not statistically significant. None of the estimates for the AggB/AggW

interaction terms for ranked and unranked opponents are significant at 5% for the losses sample

(columns (8) and (11)). Overall, these results suggest that voters pay similar attention to social

information when teams play ranked opponents or unranked opponents.

The specifications with interactions of AggB and AggW with the rank subgroups (1-5, 6-15,

and 16-25) allow us to dig somewhat deeper into the results, and in particular, check to see that

27We focus on the ratios for Home and ScoreMargin since they are consistently highly significant; OppRank and OppRank ×
Score tend to be insignificant.

28This can be seen in Tables 1 and 2 as the MADs are lower and rank changes are larger, after losses as compared to wins.
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the results hold for the mid-ranked teams, which are least affected by the censored nature of

the rankings data. The ranks of teams ranked 6-15 can both improve and worsen substantially,

despite the fact that there are upper and lower bounds to observed ranks. The interaction

results indeed confirm that the overall trends hold for teams ranked 6-15, as both AggB and

AggW are significant at 1% for wins samples (columns (3) and (6)), with reaction ratios less

than 0.7. Also, AggB is positive and significant at 1% for losses for these teams (columns (9)

and (12)), again indicating stubbornness (the other losses estimates are insignificant). It is also

worth noting the reaction ratios indicate that underreaction is smallest for teams with ranks

16-25, implying voters are more responsive to social information for relatively weak teams.

4.4 Voter Heterogeneity and Additional Interactions

To get a sense of heterogeneity across voters in responsiveness to social information, we estimate

the model in equation (2) with AggB and AggW interacted with voter fixed effects. This gives

us estimates of β1 and β2 for each voter. As expected, these estimates are not very precise

but an F-test rejects the null that these coefficients are jointly zero at the 1% level, suggesting

substantial heterogeneity. This can be seen in Figure 1, which shows a scatterplot of voter

AggB and AggW for wins (losses) in the left (right) panel. In the case of wins, there’s a

weak negative relationship between AggB and AggW, suggesting that voters have a tendency to

either underreact or overreact to social information in the case of wins irrespective of whether

the social information is better or worse than the voter’s rank. That, however, is not the case

for losses.

We next examine if voter observables can explain this heterogeneity and provide insight into

the importance of reputation concerns. Columns (1) and (7) of Table 4 present the estimates of

equation (2) for wins involving our first (of two) Experience variable interacted with AggB and

AggW, for Definition 1 and Definition 2, respectively. This variable is defined as the number of

years the voter has voted on the AP polls since 1998; its sample mean is 2.66. Both interactions

with AggW are positive and significant at the 5% level. There are no significant effects in the

case of losses, as shown in Table 5. Columns (2) and (8) of both tables report the estimates

for an alternative experience interaction term: years in sports journalism.29 In our sample, this

measure of experience varies from 3 to 42 years with a mean of 21.39 years. The magnitudes of

29This information was collected by emailing each of the voters. We received replies and thus have data for 82 of the 122 voters.
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these estimates are small, and none of them are statistically significant at the 5% level. These

results indicate that while voters become more stubborn as they gain poll experience, their

reaction to social information does not change with journalism experience.

About 5% of the voters in our sample are affiliated with national news sources, such as

ESPN and Sports Illustrated. These voters likely have stronger reputational concerns, and their

rankings may be scrutinized by fans and other media more closely, so we test for systematic

differences in their social learning. Columns (3) and (9) present the estimation of equation (2)

with the inclusion of Nat (a dummy that equals one if the voter is affiliated with a national news

source) interacted with AggB and AggW for the wins and losses samples, respectively. Separate

coefficients are estimated for voters with national and local (defined as 1-Nat) affiliations. There

are no consistent differences between Nat = 0 and Nat = 1 voters, and the null that the

coefficients are different for national and local voters cannot be rejected at the 10% level.

Most newspapers devote a large fraction of their sports coverage to local teams. We define a

dummy Follow that equals one for the game-voter observation if the game includes a team that

the voter’s news source has a dedicated section for on its website; this is the case for 3.66% of

the observations. Voters may have more precise priors on these teams, in which case they should

be less responsive to social information. Estimates of the model that include this dummy are

shown in columns (4) and (10). We do not find any systematic difference in response to social

information; the null that the coefficients are different for games including a team that is closely

followed and for games that do not include a team that is closely followed (i.e., 1-Follow) cannot

be rejected at the 10% level. As before, the estimates are overall consistent with underreaction

to social information.

Our sample includes some voters who voted on the poll in more than one year. We next

analyze how response to social information changes over time for this group of voters. For

this purpose, we restrict our sample to those voters who appear in at least two years in our

sample period 2006-2008. We are left with 48 of the 121 voters for this analysis. It should

be pointed out that the average years of experience (defined as number of years the voter has

voted on the AP polls) is higher for this subgroup relative to the entire sample. We define a

dummy Repeat that equals one if the observation comes from the second or third year of the

voter’s participation in the polls. Estimates of the model that includes this dummy variable
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are reported in columns (5) and (11). The estimates show that voters’ response is similar

(underreaction) to AggB irrespective of whether Repeat equals 1 or 0. The interaction effects for

Repeat = 0/1 are statistically indistinguishable from each other for the losses sample (columns

(5) and (11) of Table 5), and for the wins sample using definition 1 (i.e., column (5) in Table 4).

However, for the wins sample, Definition 2, the coefficients on AggW are statistically different:

relative to response in later years, voters underreact more to social information in their first

year (during the sample period). This particular behavior is consistent with voters conforming

more with experience. Since these voters on average have more poll experience than voters in

the full sample, this indicates experience may have non-linear effects; voters may become more

stubborn as they first gain experience, but less so after they have served on the poll a sufficient

amount of time.

Finally, we examine year effects in columns (6) and (12). We control for poll experience, since

this is also increasing with year for many of the voters, and we know it may have significant

effects. For wins, the AggW estimate is highest in 2006, and for losses, the AggB estimate is

highest then. Both of these results indicate voters are more responsive to social information in

2007-08 than 2006.

4.5 Robustness

We have shown our results are robust to using different definitions of AggB/AggW and spec-

ifications of the regression model, but in this subsection we discuss two additional robustness

checks. In the first, we only use the 2006 and 2007 seasons to estimate the priors, and only

construct posteriors and conduct analysis using data from the 2008 season. This approach is

preferable in that it allows us to check that aggregate information is not under-valued for just

one particular season and prevents us from incorporating information in our estimates of priors

not available to the voters; the downside to this approach is it reduces the sample sizes for

all aspects of the estimation procedure. In the second robustness check, we use the aggregate

final ranks, rather than individual final ranks, as the true rankings to estimate the priors. As

discussed above, given that information is heterogeneous, it may be reasonable for voters to

think that the aggregate rankings are more accurate than any individual’s rankings, and thus

to treat the aggregate final rankings as the best rankings for a given season. Table 6 reports

the main results for these checks (coefficients on AggB/AggW for basic regressions). It shows
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that results are very similar to those reported in Table 3, indicating robustness to these issues.

The estimates are slightly smaller in magnitude for the first check, and slightly larger for the

second, but they are directionally the same and still often significant at the 1% and 5% levels.

5 Conclusion

We have found strong evidence that AP college football poll voters are underreactive social

learners. While the voters’ peer rankings are informative with respect to individual voters

determining their own final rankings, and the voters do adjust their individual rankings towards

their peers’ rankings to some extent, they do so less than the Bayesian amount. We refer to this

behavior as stubbornness, since voters essentially are not listening to their peers as much as they

should. Voters are more responsive to peer rankings of losing teams, as compared to winning

teams. Since wins are more ambiguous (i.e., less informative) and less salient signals than

losses, this behavior is consistent with existing research showing individuals are more likely to

“stick to their guns” when it is easier to deny the contradictory evidence. Reputation concerns

appear to cause voters to conform, though not enough to overcome the overall tendency to be

stubborn, as voters react more strongly to social information than other information, and less

experienced voters, and voters in 2007 and 2008 (when media scrutiny increased), respond more

strongly to social information.

We hope this paper will enhance understanding of social learning, informing future theo-

retical work and policy discussion, along the lines of Cipriani and Guarino (2008), Golub and

Jackson (2010) and Glaeser and Sunstein (2009). We note that there likely are limitations to

the external validity of our findings. Our main result–that individuals do not listen to their

peers as much as they should–may depend on a number of factors, perhaps in particular the

fact that the subjects of our study are experts in their field. Individuals with less experience

in an area may fail to be so confident, and so could be susceptible to the opposite mistake

of being unduly persuaded by their peers. Furthermore, the incentives provided by reputation

concerns may be relatively weak in the context we study, due to the lack of direct career-related

incentives relating to quality of rankings. In other contexts with stronger reputation effects,

individuals may conform even if they under-appreciate the information value of their peers’

actions. Understanding the aspects of context that influence social learning is an important
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avenue for future research.
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Table 1: Mean Absolute Deviations (MADs) from Final Ranks (Standard Deviations in Parentheses)

Number of |Cond. Est. Bayes. Post - Obs Final| |Non-Social |Obs Post - |Obs Prior - |Flat Prior
Observations Defn 1 Defn 2 Defn 3 Defn 4 Post - Obs Final| Final| Final| - Final|

All Teams

Wins 21,811 3.69 3.73 3.76 3.79 3.90 4.03 3.89 4.88

(3.33) (3.34) (3.39) (3.40) (3.48) (3.63) (3.42) (3.43)

Losses 6,680 2.07 2.10 2.12 2.12 2.13 2.38 3.27 3.75

(3.14) (3.24) (3.26) (3.27) (3.28) (3.40) (3.24) (2.80)

Byes 2,887 3.30 3.38 3.41 3.42 3.51 4.05 3.99 4.35

(3.57) (3.64) (3.62) (3.62) (3.72) (3.89) (3.67) (3.30)

Total 31,378 3.31 3.35 3.38 3.40 3.49 3.68 3.77 4.59

(3.37) (3.41) (3.45) (3.46) (3.53) (3.67) (3.42) (3.33)

Rank 1-5

Wins 4,609 3.59 3.67 3.73 3.72 3.80 3.78 3.75 7.30

(3.02) (3.12) (3.18) (3.22) (3.29) (3.33) (3.28) (3.52)

Losses 1,605 3.85 3.92 3.89 3.82 3.81 4.88 5.83 5.89

(3.34) (3.57) (3.57) (3.54) (3.54) (3.37) (4.66) (4.12)

Byes 632 3.05 3.24 3.28 3.36 3.41 5.04 4.85 7.25

(2.97) (3.18) (3.35) (3.41) (3.41) (4.71) (4.64) (3.54)

Total 6,306 3.58 3.67 3.71 3.70 3.76 4.09 4.21 7.06

(3.08) (3.21) (3.27) (3.30) (3.35) (3.53) (3.79) (3.67)

Rank 6-15

Wins 8,974 4.15 4.17 4.20 4.26 4.37 4.60 4.36 4.74

(3.23) (3.17) (3.21) (3.21) (3.25) (3.25) (3.06) (3.35)

Losses 2,436 2.43 2.48 2.56 2.59 2.62 2.80 4.31 3.64

(3.47) (3.57) (3.62) (3.67) (3.68) (3.73) (2.76) (2.65)

Byes 1,035 4.12 4.25 4.21 4.20 4.36 5.00 4.69 4.10

(3.48) (3.49) (3.30) (3.24) (3.29) (2.94) (2.78) (3.05)

Total 12,445 3.81 3.85 3.88 3.93 4.03 4.28 4.38 4.47

(3.37) (3.35) (3.37) (3.37) (3.41) (3.40) (2.98) (3.23)

Rank 16-25

Wins 8,228 3.24 3.27 3.30 3.32 3.43 3.55 3.45 3.67

(3.52) (3.57) (3.62) (3.62) (3.75) (4.07) (3.78) (2.69)

Losses 3,179 1.19 1.19 1.20 1.19 1.19 1.21 1.63 3.12

(2.42) (2.44) (2.44) (2.43) (2.45) (2.49) (1.81) (1.86)

Byes 1,220 2.73 2.72 2.80 2.79 2.85 2.73 2.94 3.06

(3.79) (3.83) (3.87) (3.90) (4.07) (3.74) (3.51) (2.30)

Total 12,627 2.67 2.69 2.72 2.73 2.81 2.88 2.94 3.48

(3.42) (3.46) (3.50) (3.51) (3.63) (3.83) (3.45) (2.49)

Defn. 1, 2, 3, and 4 are AggB (AggW ) = 1 if aggregate rank is strictly greater than 1, 2, 3, and 4 ranks better (worse)

than individual rank, respectively.

Non-social post is the estimated Bayesian posterior that only conditions on game scores (and not aggregates rank)
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Table 2: Mean Rank Improvement (Prior Rank - Posterior Rank) by Prior Rank Group

Definition 1 Definition 2

Wins Losses Wins Losses

Prior Rank Group Observed Estimated Observed Estimated Observed Estimated Observed Estimated

All Ranks
Total 1.39 1.49 -4.89 -4.58 1.39 1.53 -4.89 -4.71

(2.49) (4.47) (4.12) (4.81) (2.49) (4.25) (4.12) (4.71)

[21811] [21811] [6680] [6680] [21811] [21811] [6680] [6680]

AggB 2.60 4.07 -3.35 -2.34 2.95 4.63 -2.67 -1.75

(2.79) (4.17) (3.66) (3.79) (2.94) (4.09) (3.42) (3.51)

[4758] [4758] [1382] [1382] [2967] [2967] [838] [838]

AggW 0.92 0.45 -4.73 -4.92 0.88 0.36 -4.36 -4.61

(2.58) (4.51) (4.31) (4.78) (2.70) (4.63) (4.26) (4.72)

[6099] [6099] [2279] [2279] [4124] [4124] [1623] [1623]

AggS 1.12 0.94 -5.71 -5.34 1.22 1.23 -5.53 -5.34

(2.09) (4.13) (3.95) (4.94) (2.19) (3.87) (4.01) (4.69)

[10954] [10954] [3019] [3019] [14720] [14720] [4219] [4219]

Ranks 1-5
Total 0.06 -0.48 -7.65 -5.53 0.06 -0.29 -7.65 -5.88

(1.29) (2.03) (3.60) (5.71) (1.29) (1.85) (3.60) (5.74)

[4609] [4609] [1065] [1065] [4609] [4609] [1065] [1065]

AggB 0.55 0.81 -5.74 -0.94 0.78 0.91 -4.38 -0.15

(1.50) (1.57) (2.45) (3.16) (1.74) (1.50) (2.57) (3.21)

[281] [281] [78] [78] [68] [68] [13] [13]

AggW -0.53 -2.29 -10.42 -7.86 -0.77 -2.89 -10.31 -10.38

(1.84) (2.27) (5.11) (4.89) (2.22) (2.90) (5.23) (5.16)

[797] [797] [113] [113] [365] [365] [48] [48]

AggS 0.16 -0.17 -7.46 -5.64 0.12 -0.08 -7.57 -5.74

(1.06) (1.74) (3.25) (5.76) (1.14) (1.53) (3.45) (5.67)

[3531] [3531] [874] [874] [4176] [4176] [1004] [1004]

Ranks 6-15
Total 1.08 0.09 -7.29 -7.76 1.08 0.20 -7.29 -7.81

(2.30) (4.12) (3.77) (4.43) (2.30) (3.86) (3.77) (4.17)

[8974] [8974] [2436] [2436] [8974] [8974] [2436] [2436]

AggB 1.90 2.45 -5.87 -4.31 2.05 2.94 -5.49 -2.95

(2.38) (3.99) (4.02) (4.75) (2.49) (3.96) (4.02) (5.11)

[1877] [1877] [488] [488] [1076] [1076] [244] [244]

AggW 0.48 -1.42 -8.28 -9.51 0.38 -1.95 -8.52 -9.55

(2.55) (4.18) (3.27) (3.71) (2.68) (4.28) (3.28) (3.62)

[2468] [2468] [813] [813] [1651] [1651] [527] [527]

AggS 1.06 -0.05 -7.19 -7.99 1.10 0.29 -7.16 -7.97

(2.01) (3.69) (3.79) (3.89) (2.08) (3.36) (3.75) (3.62)

[4629] [4629] [1135] [1135] [6247] [6247] [1665] [1665]

Ranks 16-25
Total 2.47 4.11 -2.12 -1.82 2.47 4.00 -2.12 -1.94

(2.72) (4.57) (2.40) (2.64) (2.72) (4.46) (2.40) (2.62)

[8228] [8228] [3179] [3179] [8228] [8228] [3179] [3179]

AggB 3.33 5.60 -1.61 -1.31 3.57 5.76 -1.45 -1.28

(2.94) (3.83) (2.24) (2.53) (3.04) (3.80) (2.26) (2.40)

[2600] [2600] [816] [816] [1823] [1823] [581] [581]

AggW 1.72 2.85 -2.12 -1.92 1.56 2.73 -2.00 -1.87

(2.53) (4.03) (2.36) (2.42) (2.57) (3.81) (2.35) (2.34)

[2834] [2834] [1353] [1353] [2108] [2108] [1048] [1048]

AggS 2.44 4.00 -2.54 -2.09 2.45 3.87 -2.45 -2.24

(2.46) (5.28) (2.51) (2.94) (2.48) (4.77) (2.43) (2.82)

[2794] [2794] [1010] [1010] [4297] [4297] [1550] [1550]

Standard Deviations in Parentheses; No of Observations in square brackets27
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Table 6: Robustness Checks
Robustness Check 1 Robustness Check 2

Definition 1 Definition 2 Definition 1 Definition 2
Wins Losses Wins Losses Wins Losses Wins Losses
(1) (2) (3) (4) (5) (6) (7) (8)

AggB -1.74*** 0.53 -1.36*** 1.01* -1.97*** 1.09*** -2.05*** 1.29***
(0.28) (0.76) (0.39) (0.59) (0.13) (0.40) (0.16) (0.40)

AggW -0.45 -0.81 0.13 0.022 0.25* -0.45 0.61*** -0.42
(0.33) (0.61) (0.29) (0.47) (0.15) (0.42) (0.15) (0.38)

N 7170 2010 7170 2010 21811 6680 21811 6680
R-sq 0.055 0.233 0.036 0.194 0.116 0.100 0.117 0.109

Bootstrap standard errors clustered by game in parentheses.

***,**,* = significant at 1%, 5%, 10%.

Dependent Variable: Overi,t = rOi,t −rBi,t (Observed rank - Bayesian rank)

All regressions include all regressors included in model (1) of Table 3.

Robustness Check 1 = priors estimated with 2006 and 2007 seasons only; analysis conducted on 2008 season only.

Robustness Check 2 = priors estimated using aggregate final ranks as true ranks.

A Supplementary Appendix

Much of this material is drawn directly from Stone (2009).

A.1 Ranked and Unranked Teams

Most games are between ranked and unranked teams, since voters only rank 25 out of approxi-

mately 120 Division I-A teams. Consequently, some method of distinguishing among unranked

teams is needed to account for heterogeneous quality among unranked teams. The method must

rely on information observable to the voters, since we are assuming any information we condi-

tion our estimated posteriors on will also be used by the voters’ to determine their posteriors.

We use three primary variables for this purpose: 1) aggregate rank, if ranked by at least one

other voter, 2) ranked by at least one voter in final AP poll in one of previous two seasons, and

3) ranked by at least one voter in final AP poll in one of previous three to five seasons. For the

first, we categorize aggregate rank in three bins; ≤ 25, 26-30 and 31 ≤. We also condition on

year-to-date number of losses (0 versus >0 in weeks 1-3; 0-1 versus >1 in weeks 4+) for teams

not currently receiving votes from another voter. This expands the cardinality of the set of

elements ri,t is in to 83: three aggregate rank groups for teams ranked (by the particular voter)

2-25 or by at least one other voter and two aggregate rank groups for teams ranked number 1 by

the voter (only two since these teams cannot have a “better” aggregate rank), so 77 rank groups

for teams ranked by at least one voter, and six groups for unranked teams, those ranked in last

two years, last five years, and not in last five years, with and without loss(es). This method
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of distinguishing among unranked teams is not sufficient for accurately estimating posterior

beliefs for unranked teams. Consequently, we only estimate posterior beliefs and rankings for

teams that are currently ranked. This forces a need to account for the fact that several teams

do indeed drop from the rankings for most voters from each week to the next. We do this by

restricting the maximum (worst) estimated posterior rank to be one greater than the number of

teams that are observed to stay in the poll, by voter-week. We also re-rank observed posteriors

among teams that were in the prior poll, and assign the same maximum rank (one greater than

the number of teams that stay in the voter-week’s top 25) to teams that drop from the observed

rankings. This allows comparisons between estimated Bayesian and observed posteriors to be

apples-to-apples, and unconfounded by teams entering the polls at various rank levels. In other

words, it allows the estimated posteriors to potentially exactly match the observed posteriors.

To illustrate this further by example, suppose only 22 of 25 teams in voter X’s week 1 ballot

are ranked by X in week 2. Suppose the teams ranked 19-21 in week 1 dropped out of X’s top

25 and were replaced by new teams (teams unranked by X in week 1), so the ranks of teams

ranked 1-18 and 22-25 did not change. Since we know relatively little about X’s beliefs about

the new teams in the poll (since they were unranked before they entered the poll) we ignore

them and adjust the observed week 2 posteriors for X. We assign ranks 19-22 to teams with

observed posterior ranks 22-25, and assign rank 23 to the teams that dropped out of X’s ballot.

For the Bayesian estimates, we assign rank 23 to all teams with estimated rank 23 or higher.

Hence, the estimated rankings can potentially be exactly the same as the observed posteriors.

Finally, due to the assumption that teams are ranked in order of expected rank, we have to

calculate expected rank (for the estimated posteriors). Thus we have to use some value for

expected rank conditional on being unranked. We use the value 35 for this purpose; results are

similar with different values.

A.2 Score Distributions

The ideal way to estimate the score distributions (the g’s) would be to use the historical

distributions of scores between teams of the various final ranks by individual voters. We do

not have historical individual final rank data, so we need to use the aggregate final rank data

for this purpose. The other issue complicating the estimation of the g’s is that although we

have access to all historical scores, the sample sizes for scores between teams of particular
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ranks is highly limited. We use score data dating back to 1989 because that is when the AP

Top 25 in its current form began.30 In 17 years of data there are very few games between

teams of each rank combination during the regular season since it is so short. For example,

there were exactly two games between teams of final rank 1 and 2 played during the regular

season from 1989-2006. In addition, we condition the distributions on home/away status, to

account for this variable affecting the distributions in different ways for teams of different ranks.

As a result we are forced to use multiple smoothing techniques. First, we divide the top 25

into four categories; 1-6, 7-12, 13-18, and 19-25. This categorization is the finest that yielded

relatively large sample sizes (n > 20) for scores from games between teams in each category.

Then, we divide the score distribution into categories (buckets) of size 7 (with upper and lower

bounds of plus/minus 49+). We construct Bayesian posteriors using both the raw frequencies

of scores in each bucket for games between teams in each rank group, and smoothed frequencies

obtained using essentially a second-order moving average, and the differences are minimal. The

smoothed estimates are referred to by default in the body of the paper, and the smoothing

method is defined formally as follows. There are seven true rank groups (1-6, 7-12, 13-18, 19-

25, ranked in previous two years, ranked in previous three-five years, unranked in previous five

years).31 There are 17 points of support for each score margin distribution (-50-, [-49,-43],...,[-

7,-1],0,[1,7],...,[43,49],50+). Let cij,k denote the historical count of games with score margins in

category i ∈ {1, ..., 17} for games between home team of rank group j and away team of rank k.

j and k are henceforth suppressed. For i ∈ {3, ..., 6, 12, ..., 15} let
∼
c
i
= 1

5Σ
i+2
î=i−2

cî. For i ∈ {1, 2}

let
∼
c
i
= 1

3+I(i=2)Σ
i+2
î=1

cî, in which I(i = 2) = 1 if i = 2, else I(i = 2) = 0. For i ∈ {16, 17} let

∼
c
i
= 1

3+I(i=16)Σ
18
î=i−2

cî.
∼
c
i
= ci if i = 0. Let g(sijk) denote the probability the score margin,

s, is in category i for games between a home team in rank group j and away team in group k.

Then the estimated probability, ĝ(sijk), is equal to
∼
c
i

Σ17
î=1

∼
c
î
.

30We use data from all regular season games but exclude games played at neutral sites. We do not exclude any games due
to injuries. The significance of injuries in the sport is very difficult to determine–many teams have had very good seasons with
multiple seemingly major injuries (e.g. Nebraska 1994, Louisville 2006). Since attempting to clean the data to account for injuries
could create more noise than it would eliminate, we simply ignore the issue.

31We do not use the rank group ‘unranked’ but ranked by at least one other voter because there is no direct analog when using
aggregate rankings. For example, in the aggregate rankings we observe the 26th ranked team (with the 26th most aggregate points).
It is not clear an individual voter would consider a team he/she did not rank with the most votes by other voters as 26th best,
however.
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A.3 Prior Distributions

The prior distributions are estimated using the empirical final rank frequencies. A separate

prior is estimated for each of the 83 prior rank groups or categories (see section A.1), for each

week, but not for each season. For example, the first rank category is: teams ranked number

one with the “same” aggregate rank (an aggregate rank not below three or four). To estimate

the week 1 prior for this category, we look at the empirical frequencies with which teams in

this category in week 1 finished in the various final rank groups (1-6, 7-12, 13-18, 19-25 and

unranked; see section A.2). That is, to estimate the prior probability the team in this category

has final rank 1-6, we take the number of teams in the category, for that week, that finish

ranked 1-6 (by the same voter, in the same season), and divide by the total number of teams

in the category, for that week. We do not need to do additional smoothing since sample sizes

are much larger than for the score distribution estimation.

We estimate different priors for each week because it is natural to think priors become

stronger as the season progresses and information is obtained. We could just estimate priors

for week 1, and then use the posteriors we calculate based on those priors as the priors in

subsequent weeks. We prefer to directly estimate priors for later weeks, because using our

estimated posteriors as priors would introduce substantial noise. Since we have information on

the prior-final rank relations for later weeks, it makes sense to use this information. Of course,

we could condition the priors on other factors besides those described in section A.1, such as

rank in the previous week. We ignore these because we believe any benefits they may offer

would be outweighed by added computational and other costs.

It is important to note the priors are constant across voters in the sense that we assume

that voters have the same priors, for a given (prior) rank and week. In other words, we assume

each voter has the same belief that a team has true rank 1-6 for teams ranked number one with

the same aggregate rank in week 1. This of course still allows for heterogeneity in prior beliefs,

since the voters do in fact rank different teams in the different rank categories.
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