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I. Introduction

There is increasing evidence that the last 25 years has witnessed a dramatic change in
the way goods are produced. During this period firms began to replace relatively unskilled
workers by skilled workers and equipment at an unprecedented rate. This was not due
merely to the increased availability of skilled labor, since the relative wages of skilled
workers increased dramatically along with their employment. Rather, the patterns of wages
and employment suggest technical change resulting in increased demand for skilled labor.
This process of skill-biased technical change is regarded by many as a primary force behind
the increased dispersion of the distribution of income during the same time period.!

The focus of much of this evidence has been on patterns of wages and employment across
industries and demographic groups. In this paper we examine the phenomenon of technical
change from another angle by looking directly at total factor productivity (TFP) growth.
What we will call skilled labor—augmenting technical progress—an increase in the effective
labor input of skilled workers—attaches itself more readily to educated or experienced
workers, and consequently to those industries that are more skilled labor—intensive.
Improvements in electronics and computers, for example, presumably have a larger impact
on the effective labor input of engineers and statisticians than of farm workers and janitors,
which implies that productivity growth will be greater in industries that make intensive
use of engineers and statisticians. Furthermore, since skilled labor-augmenting technical
progress can induce skill-biased technical change (SBTC)—under conditions that we suggest
are present in U.S. manufacturing—a finding of skilled labor-augmenting technical progress
could “explain” the acceleration of SBTC. In any case, it offers additional independent
evidence of unusual structural change during this time period.

Specifically, we examine the relationship between productivity growth and skill intensity

1 Competing explanations include sector bias (e.g. Haskel and Slaughter [1998]) or outsourcing (e.g.
Feenstra and Hanson [1997]). The latter find ambiguous evidence on the relative importance of technology

and trade.



in manufacturing industries over the period 1958-1991. We find strong evidence that
productivity growth was increasingly concentrated in the more skill-intensive manufacturing
industries during a unique period of approximately ten years beginning in the early 1970s.
This skilled labor effect, which we identify as skilled labor-augmenting technical progress,
accounted for essentially all of productivity growth in manufacturing during that period.
Surprisingly, we find no evidence of any similar effects from capital, capital equipment, or
new investment in capital or equipment. Though more work is necessary, this would seem
to cast doubt on stories that stress plant retooling or new computer technology as the sine
qua non of technical change.

The results in this paper thus contribute to a large empirical literature on technical
change and its impact on employment and wage patterns. Berman, Bound, and Griliches
[1994] document a sustained increase in the share of non—-production workers in the wage
bill of U.S. manufacturing during the period from 1959-1989, with an acceleration after
1979. They also show that much of this increase occurred within industries, and therefore
does not represent the effect of shifts in product demands. Autor, Katz, and Krueger [1997]
make the same claim based on decomposition of college—educated employment and wage
bill data into between and within-industry effects. Dunn, Haltiwanger, and Troske [1996]
carry this point one step further and provide evidence that the bulk of the increases in
non-production workers’ share is within plants. They conclude that “individual plants have
fundamentally changed the way they produce goods in terms of the mix of workers. . . .”

On the wage front, Katz and Murphy [1992] document large increases in the relative
wages of more educated workers, particularly those with relatively low experience, over the
period from 1963 to 1987. Breaking down this time period into shorter intervals, they note
that between 1963 and 1971 the relative wages stayed fairly even. From 1971-1979 the
college education premium actually declined (by 12.8 percent for the low experience group),

a fact they attribute to a large supply increase. But from 1979-1987, the premium jumped



dramatically, by 26.6 percent for the low experience group.? Bound and Johnson [1992] use
microeconomic data on wages to quantify the relative importance of various explanations
for changes in the structure of wages, and argue that biased technical change is the major
cause.

With all of these findings regarding wages and employment as background, then, it seems
natural to examine productivity as a more direct measure of the technical change that is
allegedly responsible. The next section develops the analytical framework, which is based
on a straightforward extension of standard growth accounting. Section III introduces the

data and empirical results. Section IV concludes.

II. The Model

A. Technology

For convenience we follow common practice and divide workers into two broad categories:
“skilled” and “unskilled,” though obviously the analysis generalizes to more than two types.
We define skilled labor-augmenting technical progress as an advance in knowledge that
increases the effective labor input of skilled workers by more than that of unskilled workers.
For example, new computer software that enables skilled labor to increase the amount of
work they can do, but that is not used by unskilled labor, would fit into this category.
General (e.g. Hicks—neutral) technological progress, in contrast, adds to the effective labor
of both skilled and unskilled alike.

Consider a set of industries indexed by i. Each of the industries uses physical capital
(plant and equipment), unskilled labor, and skilled labor, to produce its output. Depending
on the data requirements, we will specify production either in terms of value added or gross

output. In the first case, a representative firm in industry ¢ at date ¢ has a differentiable,

2 Murphy and Welch [1992] also document drmatic increases in the wage premium of college relative to

high school graduates.



constant returns to scale production technology that in its most general form we specify as:

(1) Yi = AL Fi(KG, KR A7, NG AY, NiAY),

where Y, is value added, K%, is structures (“plant”), K¢ is equipment, N} is the employment
of unskilled workers at the firm, and NV;; the employment of skilled workers. In the second

case, the production function is

(2> Y;j = A:tFi(KZa KietAzfa NzStA;:sv N;;A?v MitAT)ﬂ

where Y is gross output, and My is a vector of material inputs. For the sake of exposition
we will proceed using (1), as the extension to (2) is straightforward.

The various terms multiplying the inputs represent increases in the effective input per
physical unit. Thus, for example, A7 represents the effective input per skilled worker. As
will be clear below, identification requires that they be independent of ¢ and that there be no
augmentation of at least one of the factors (in this case K?, though in the empirical work we
will consider a variety of alternatives). We will discuss these and other issues surrounding
the interpretation of these variables as we go along. Note also that the production function
differs by industry, and that the Hicks-neutral technology shifter A}, has both an aggregate
and industry—specific component. We assume that the firm is competitive, and faces market
wages W and W}, rental prices of plant and equipment QF and Qf, and output prices
{P;+}. We require no other assumptions about the form of the production function.

The firms face the following static optimization problem:

(3) Max Py Aj Fi (K, K AL NG AT, N AY) — QUEG — Q7RG — Wi N — Wi Nig

g s s u
Kit’Kit’Nit’Nit

Firms’ optimality conditions yield that the payment to each input factor must be equal to
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its marginal revenue products. Thus we have,

P Ay Fi(Kh, K¢, N Ay, NYAY) = QF

" P Po (B KA NAL NEAY) = Q545
P A5, P (K, K A7, NSAT, NSAY) = W A}
P A, Fu (K, K A7, NSA], NYAY) = Wy /A

The factor shares at each point in time are denoted af, where h = p, e, s,u. Competition

and constant returns to scale imply, for example,

QrKL  Fu()Kq

it

PuYy  F()

() ajy =

and similarly for the other factors. It is the variation in these factor shares across industries
that will allow us to decompose productivity growth into skilled labor-augmenting and
other components. Taking a first—order approximation of the production function at ¢

relative to t — 1, we have

(6) AlnY, = AlnAj;+ao, | AlnKj +af, (Aln K}, + A7)
a1 (Aln N+ Aln A7) + o, (Aln Njy + Aln A}).

Redefining Aln A}, = Aln A} + ¢, with E(e;;) = 0, this implies that TFP growth satisfies
the following;:

(7) AITFP; = Aln A} + o, (Aln A7 + af, Aln A7 + af,_Aln A} + €.

Here €;; has the interpretation of an industry—specific Hicks—neutral technology shock,
while Aln Af (no industry subscript) represents an aggregate Hicks—neutral shift in the
production function.

Thus an industry’s value-added TFP growth will depend in general on its equipment
and skilled labor factor intensities, as well as the extent to which technical progress takes

the form of growth in A*, A°, ASor A*. Our empirical strategy is essentially to turn this

5



idea on its head and estimate the relative importance of these components in any time
period by the extent to which TFP growth cross—sectionally during that time is associated
with these factor shares. We have in mind that factor intensity (as measured by factor
shares) is a more or less fixed characteristic of an industry—mnot that it cannot change
over time, but that it is pre-determined as far as an equation like (7) is concerned. (This
would be the case if each industry had Cobb-Douglas production with different factor
share parameters, provided technical progress is of the factor-augmenting variety.) Even
though firms continue to choose factor proportions optimally, growth in A® (for example) is
in our approach essentially an exogenous event that has differential effects on TFP across
industries depending on their skilled labor shares.

It should be noted that this approach might not distinguish between factor-augmenting
technical progress and improvements in the quality of factors or inputs. For capital this may
not be an important distinction (presumably most changes in A¢ are changes in the quality
of capital, though one can imagine increasing the productivity of a given piece of equipment).
For labor, though, there is arguably a significant difference between the two—Klenow [1996]
refers to the two phenomena as “ideas” and “human capital.” For example, A° could grow
because workers themselves are better—educated, or because advances in knowledge increase
their effective input relative to that of other factors. Nonetheless, we will stick with the
“ideas” interpretation, in part on the basis of evidence from education—based definitions of
skill (which arguably control at least to some extent for human capital), and in part on the
finding that A® jumped rather sharply relative to any plausible measure of human capital in
the skilled work force. Although in principle both knowledge and human capital are stocks,
we would argue that a rapid increase in knowledge is more plausible than a rapid increase in
overall human capital. The former could, for example, come from the inspiration of a single
genius, while the latter would require educating or training the industry’s entire labor force

sufficiently to change its average human capital.



B. Skill-Biased Change versus Skill-Augmenting Change

A common approach in the technical change literature has been to define skill-biased
technical change as an increase in skilled labor’s cost share (ideally after controlling
for the effects of changes in relative factor prices: see, for example, Binswanger [1974]).
This phenomenon in itself is a “black box”—that is, it does not convey much about the
underlying cause of the change. It also, of course, is consistent with a variety of changes
in relative factor prices and quantities. The SBTC observed in U.S. labor market data
has been associated with an increase in the relative price of skilled labor, and has been
interpreted by a number of researchers as an outward shift in the demand for skilled labor.

Skilled labor-augmenting technical change as defined here is arguably a “deeper”
phenomenon, but it is not uniquely related to changes in factor shares. This is obvious
in the case of a Cobb—Douglas production function, which by definition has factor shares
that are constant with respect to factor-augmenting technical change.® If, however, the
elasticity of substitution between skilled and unskilled labor exceeds one (for which we will
argue there is favorable evidence), then skilled labor-augmenting technical change will be
associated with increased demand for skilled labor (that is, SBTC).

To illustrate this, consider a CES industry production function, with factor augmentation
in equipment, skilled, and unskilled labor. Letting o denote the elasticity of substitution,

and defining § = 1/0, we have

* — e e e — S S S — u u u — ;
(8) Yit = Ait[a];(KZ)l v Q; (KitAt)l *+ ai(NitAt>1 T+ o (N Af )1 9] =0,

where ¥af = 1 and 6 > 0. From the first-order conditions we have

3 Indeed, the concept of factor-augmentation in the Cobb-Douglas case with a single time-series is not
meaningful. It is only the cross—sectional dimension (with variation in factor shares across industries) that

makes identification possible.



B+ 05 — Np) + (1 - 0)(A* + A*) =W
P+ 0(j; — N*) + (1 — 0)(A* + A%) =W,

)

(9)

(13002

where a over a variable denotes a growth rate. Cobb-Douglas production is of course
the special case in which 0 =6 = 1.
From the system (9) we can isolate the relationship between skilled labor-augmenting

technical progress and SBTC. From the equations for skilled and unskilled labor we have

~

(10) Nf — N¥ = (0 — 1)(A° — A%) — (I — W)

for within—industry changes in relative labor demand. For the relative change in skilled

labor’s share we get
(11) NS — NY 4 WS — WY = (00— 1)[(WY — AY) — (W* — 4%)].

Analogous equations obtain for other relative shares (e.g. skilled labor relative to
equipment). The term on the right-hand side should have the same sign as ¢ — 1 in
response to A®, since an augmentation of skilled labor must (ceteris paribus) reduce its
wage per effective unit W?*/A®. Thus growth in A® corresponds to SBTC (in the sense of a
change in relative factor shares) provided that o > 1. This result extends to more general
production functions, at least locally. Although there is considerable uncertainty regarding
the appropriate choice of ¢ in this context, recent work has centered on values that exceed

one (e.g. Katz and Murphy [1992], Bound and Johnson [1992]).

III. Empirical Implementation

A. Data
We limit the scope of our study to manufacturing primarily because of data availability,
and because we suspect that productivity in particular is better measured in manufacturing

than in other sectors. Our data come from two main sources: The Annual Survey of
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Manufacturers (ASM) and Current Population Survey (CPS). We will make most extensive
use of the National Bureau of Economic Research’s manufacturing productivity (MP)
database, which is based on the ASM but includes a measure of gross output—based total
factor productivity (TFP) growth annually by industry. As a check of the results, we will
also compare findings based on merging the MP dataset with the CPS outgoing rotation
data set, which contains information on workers’ education levels, earnings, and industry of
employment. Appendix 2 provides additional details about data sources and construction.

From the MP dataset we obtain 4—digit industry data on TFP growth, factor payments
to production and non—production workers, value added, employment, and stocks of capital
equipment and structures annually over the period 1958-1991. We measure skilled labor’s
share based on the earnings share of non—production workers. In computing labor’s share
for each industry, we multiplied the earnings in the MP data, which do not include fringe
benefits and other non—wage compensation, by the corresponding 2—digit industry ratio of
total compensation to wages for each year as computed from National Income and Product
Accounts (NIPA) data. (The results are not sensitive to this adjustment.)

To construct equipment’s share we first obtain capital’s share as a residual from labor’s

and material’s shares of gross output. We then multiply that by
(12) (r+ &) KGQ1/[(r + 6)) Ki@Qf + (r + 67) KRQ7)]

for industry ¢ in year ¢, where 6! and 6§ are industry—specific depreciation rates for plant
and equipment. We simply set r to be a constant 0.04, as the results are not sensitive to
specifications of variables that do not vary cross—sectionally. Figure I plots the behavior of
the key factor shares over the sample period. Production labor’s share appears to have a
steady slight decline throughout (though accelerating slightly beginning in the late 1970s),
while the shares of equipment and non-production labor begin to rise in the mid—1970s.
Note that equipment’s share begins to increase somewhat before non—production workers’

share.



Using these factor shares and TFP growth rates, we can estimate equations such as (7)
for the entire 1958-1991 sample period with a panel of 449 4-digit industries. The only skill
distinction for this dataset, however, is between non—production and production workers.
As a check on the validity of this distinction, we merge the above with data culled from the
CPS outgoing rotation survey, which has data on individual workers’ industry, education
level, and earnings, over the period 1979-1991. From these we construct industry profiles
of workers. For example, to get earnings—based shares of college—educated workers in a
particular industry, we sum the earnings of college—educated and non—college—educated
workers in that industry and compute the ratio. We use this to compute, for each industry
represented in the survey and for each year, the share of skilled worker earnings to total
worker earnings, where “skilled” is defined by education level. Our base case cutoff for
skilled workers is a college education (i.e. 16 years or higher), but we consider other
thresholds as well.

Merging the CPS data with MP dataset (in order to get TFP growth and other factor
shares) presents two difficulties. First, the industry classifications in the CPS do not line up
with the standard SIC numbers. There are CPS industries that include more than one SIC
industry and vice—versa. As a consequence, for the work that involves merging the two data
sets it was necessary to construct the “finest common coarsening” of industry classifications.
After eliminating industries in which data are not available for the entire 1979-91 period,
we were left with 66 industries. These were mainly three-digit level industries but there
were several two— and four—digit industries as well, the latter notably including SIC 3573,
“Electronic Computing Equipment.”

The second difficulty is that one cannot aggregate gross output, or gross output—based
TFP without a great deal more information about input—output flows between 4—digit
industries. Consequently for the merged data we construct value added-based TFP (see
Appendix 1), so the factor shares for that portion of the empirical work are shares of value

added rather than gross output.
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One benefit from examining the CPS data is being able to compare different definitions
of skilled labor. Researchers have commonly used the production worker/non—production
worker distinction (e.g. Klenow [1996], Kremer and Maskin [1995]). This definition could
actually be better than the education-based one, since it incorporates skills based on
unobservables. On the other hand, the category does include some unskilled workers, and
if the extent of this varied systematically with our explanatory variables there could be a
problem. Moreover, the non—production worker definition arguably does not control for
human capital as well as the education—based definitions. For the merged data set we are
able to examine the correlation between this proxy and the education level. Since it turns
out that we find a high correlation and similar econometric results, in the end we stress the

MP data, which have the advantages of greater disaggregation and a longer sample period.

B. Identification and Estimation

The focus of the paper will be on the patterns of growth in A°. To that end, we will
first proceed under the assumption that A = Ay = A =1 V¢, i.e. that all inputs except
skilled labor are measured accurately in efficiency units. This is just to establish a simple

benchmark case, which we will generalize in various directions to see how the initial results

hold up. Thus (7) becomes
(13) AITFP; = AlnAf 4+ o, _{AIn A + €.

If skilled labor’s share o, is uncorrelated with €; in the cross-sections, then a period-by—
period regression of TFP growth on «f, will yield estimates of Aln Ay and Aln A} for each
t. Thus Aln A} has the interpretation of the increase in TFP in year ¢ for the hypothetical
industry with zero skilled labor share.*

Note that by assuming that €; is uncorrelated with «j,, we are essentially labeling as

“skilled labor-augmenting” any growth in TFP that is systematically related in the data to

4 One strength of this approach is that even if TFP growth is not measured very accurately, since it is

the dependent variable in the regression, classical measurement error is not a problem.

11



skilled labor’s share. (Below we will control for other factor shares as well.) It therefore
lumps together true skilled labor-augmenting technical progress (growth in A®) with
sector—biased Hicks—neutral technical progress (growth in A%, that is correlated with af,).
This suggests an alternative—Iless structural—interpretation of this exercise: The estimated
values of Aln A7 can be thought of as the combined effects of skilled labor-augmenting and
sector-biased technical progress. Thus even if the estimates of Aln A; are contaminated by
the presence of sector—biased technical change, they will still be informative about changes
in the patterns of TFP growth across industry and over time. While bearing in mind this
more agnostic interpretation, we will continue (except as noted) to refer to the estimates of
Aln A7 as skilled labor-augmenting technical progress.

Part of our strategy will therefore be to use the annual regression results as a guide to
direct us toward trends or structural breaks in the data, as opposed to interpreting them
literally as year—by—year estimates of these effects. After presenting a range of results
based on these regressions, we will use them to indicate a break point in the sample (which
conveniently will fall near the middle for the 1958-1991 data set). Thus whether or not one
accepts the structural interpretation of the statistics, the evidence for such a break in the
association between skill-intensity and TFP growth stands on its own. We will then rely
more on lower frequency results based on industry averages over the subperiods to draw
more conclusive results.

For skilled labor’s share we first computed total labor share for each industry yearly
from the ratio of wage payments to workers to value added, multiplied by the 2—digit level
ratio of total compensation to wage payments from the NIPA as described earlier, and
computed each industry’s time average. We then multiplied that by the ratio of skilled
wages to unskilled wages for each year. Thus we assume that total labor’s share varies
across industries but is constant over time within any one industry (the results were not
sensitive to this assumption), whereas skilled labor’s share varies across both industries and

time. There is in fact considerable growth over time in our measures of skilled labor’s share,
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as we saw in Figure I.

C. Results

Our first exercise is to estimate (13) on the MP dataset, using non—production workers as
a proxy for skilled labor. For this we have, as mentioned earlier, gross output—based TFP,
so the factor shares are relative to gross output. The results we present are Weighted Least
Squares estimates using industry employment as the weight. There are several reasons to
weight by some measure of industry size. First, it is natural to give more weight to larger
industries, since in effect they represent aggregates of smaller industries. Second, since this
is primarily a history paper, i.e. we want to know what forces shaped the economy over a
particular historical episode, it makes sense to give more weight to larger industries. Third,
there appears to be heteroscedasticity in the data, with the residual variance inversely
related to size, as one might expect if the data from the smallest industries are noisier.

The results of this exercise are in Table I, using the non—production labor definition of
skilled labor. The results indicate a surge in skilled labor-augmenting technical progress
unique to the period from approximately 1972 to 1981. Since the regression results are a
lot to absorb, we also provide a time plot related to the estimated coefficients. Figure II
is a plot of the contribution of A® to total TFP. This was computed by multiplying the
estimated growth in A® for each year by that year’s mean of o}, and accumulating over
time. Total TFP is represented by adding to the contribution of A® the estimated growth
in A. There is essentially no growth in A® until 1972. It then grows dramatically from then
until 1981 (contributing a remarkable 1.44 percent annually to TFP growth for these nine
years), and then levels off. Thus the relatively steady growth of overall productivity (the
dashed line in the figure) conceals dramatic underlying shifts in the relationship between it
and labor force composition. It is interesting to note that the onset of the growth in A° is
close to when equipment’s share began to grow (see Figure I), and actually preceded overall

growth in skilled labor’s share. This suggests a potential role for equipment in the story,
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but we will investigate that separately below.

To verify that the results are not too sensitive to outliers, regressions were also run
alternately omitting industry 3573 (electronic computing) and 2711 (newspaper printing and
publishing). The former has extremely high TFP growth during most of the sample, and an
above-average skilled labor share, while the latter experienced negative TFP growth with
an above—average skilled labor share. It turns out that the results are qualitatively robust.
For example, omitting industry 3573 reduces the size of the large positive coefficients by
about 1/3, but they remain strongly significant. Omitting industry 2711, on the other hand,
makes the results stronger.’

Figure III illustrates this further with weighted scatter diagrams of TFP growth and
non—production worker shares for the years 1977-1980, together with the regression line
from Table I, in order to show that the results are not driven by one or two outliers. For
example, the computer industry (SIC 3573, indicated in the figures) is an outlier in terms of
TFP growth, but is close enough to the middle in its skilled labor share that it has only a
modest influence on the regression results. The figure also indicates industry 2711, which
more than offsets the influence of the computer industry.

We then examine results from 1979-1991 annual regressions on the merged data set, using
the education level of 16 years or more as the cutoff for “skilled labor.” The regression
results are provided in Table II for four different skill definitions. The first two columns
give the “base case” specification: Skilled workers are defined as those with 16 or more
years of schooling. The column labeled Aln A® provides the coefficients on skilled labor’s
share of,, while the column labeled Aln A* has the coeflicients on a constant and 12 year
dummies. Consistent with the results from the MP data, there appears to be dramatic
growth in A® for the first two years of the sample, after which it levels off, while there is

a decline in A* over those same first years, after which it grows back roughly to where it

5 We have also experimented with some corrections for serial correlation in the residuals, but the results

were very similar.
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began. The t—statistics from the regression show that the initial growth in A® is statistically
significant. The results say, for example, that an industry with a skilled labor share of 0.09
in 1979 (approximately the 80th percentile) would have seen its TFP increase by a factor of
—0.037+0.09-0.601 = .017 or about 1.7 percent that year. On the other hand, an industry
with a 0.035 share of skilled labor (approximately the 20th percentile) would have seen a
decline in TFP growth of about 1.6 percent.

The remaining results in Table II examine alternative skill definitions. The results were
actually stronger using 14 years of schooling as the cutoff for the definition of “skilled,” as
well as for the definition of skilled as non-production workers. (The coeflicients are smaller
only because the average values of skilled labor’s share under these alternative definitions
are much larger). Note, however, that the effects are insignificant for the 12—-year cutoff.
This is not surprising, since the evidence of skill-biased technical change has been based on
the market for college—educated relative to high school-educated workers. Thus lumping
both groups together would muddle the distinction. Indeed, the fact the result is weaker for
this broader definition strengthens the link between these findings and the other literature
on skill-biased technical change.

Table III shows the correlations of four different measures of skilled labor’s share.
These are correlations from the cross—section of industry averages, weighted by industry
employment. Here the main thing to notice is that the share of non—production worker
earnings is strongly correlated to the two higher education—based measures. Thus for
the purposes of this investigation, at least, defining skilled labor as non—production labor

appears to be reasonable.

D. The Role of Other Inputs
Next we extend the analysis to incorporate analogous effects through other inputs. There
are several possibilities here, depending on the treatment of capital: Technical change can

be tied to equipment and/or structures, and can be embodied or disembodied. The simplest
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specification has capital-augmenting technical progress:

(14) AInTFP; = AlnAf +af, Aln A +a% [ Aln AY +af  Aln AS + ¢y,

where af = of, + af,. The material share effect Aln X; is normalized to zero.

Capital augmentation can be interpreted as allowing for mismeasurement of quality
improvements in capital, but it does not distinguish between vintages or between plant
and equipment. If technical progress were only embodied in new capital, and industry
investment were not proportional to its capital share, then we would possibly miss some
growth in A¢ by using af. For example, suppose some technological development induces
low af industries to undertake large purchases of new equipment that takes advantage of
the new technology, but the new technology happens to be not particularly useful for high
af industries. TFP growth would consequently occur only in the low a® industries, and we
could mistakenly obtain a negative estimate of Aln A¢.

Alternatively, we can replace capital’s share by equipment’s share to allow for the
possibility that technical change is primarily associated with equipment rather than total
capital. Perhaps more realistically still, we can allow for technical change that is embodied
only in new capital. Most stories about SBTC center around plant retooling or expansion.
Dunne, Haltiwanger, and Troske [1996], for example, provide evidence that changes in
non—production workers’ shares in plant level data are associated with changes in the scale of
operation of the plants. We therefore also consider a specification that is designed to capture
technical progress that is embodied only in new capital. In deriving this specification we
will lump plant and equipment together into total capital (that is, K = K? + K¢), for the
sake of exposition.

Suppose we call K = K, A7, where K* is the capital stock measured in efficiency units.
Suppose further that
(15) K=K {(1-0)+15L-1Zi1

where Z; measures investment goods in efficiency units, while I; is the measured quantity of
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investment (i.e. K;1 — (1 —6)K;). Now Aln Af = Aln K — Aln K; by definition. And we

have
(16) AlnK, = —6+1,_1/K,_,
I 17—
(17) Aln K] = _5+IthZt—1/Kt*,1:—5+Ltel7
Ky 1A

which implies that Aln A = (L;—1/K;-1)(Zi-1/A7_; — 1). Consequently, an alternative

specification of (14) that treats new technology as embodied in new capital is
(18) AInTFP;=AlnA; +af AlnAS + b (L1 /Ky 1) (Zi 1A, — 1) + e,

where oF is capital’s share. (Note that from (15) we have K} = >°°,(1—6)"1;_.Z;_,, which
implies that

(19 o SR8
-

(L =0) 1,

which is a weighted average of current and lagged Zs and hence will always be smaller

than Z; if Z monotonically increases over time.) This is the same equation as (14) except
that of | (I;;_1/Ki_1) replaces af,_, on the right-hand side. Since in general one would
expect I 1/Ky 1 to be correlated with €; (presumably part of ¢; is observable by those
who are choosing I;;1), it would be necessary to use instrumental variables. By the same
argument that made factor shares reasonable exogenous variables, we can use factor shares
as instruments for of | (I;_1/Ky_1).

Finally, given the timing of the estimated skilled labor augmentation, one might suspect
that energy prices might have played some role. For example, suppose industries that have
relatively high energy cost shares reduce their capital utilization (and hence their TFP) in
response to an increase in the price of energy. If energy cost shares are positively correlated
with production labor shares, then the estimates of Af could be strongly upward-biased in
years with big energy price increases. It turns out, however, that the year-to—year estimates
of flf are very similar when energy’s share is included, even though energy’s share does

enter significantly in the years in question.
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It turns out that for all of these various specifications, the basic pattern in Table I and
Figure II for skilled labor augmentation remains, while no evidence of comparable effects
for other factors emerges. If anything the other factor-augmentation effects show up as
negative, particularly the unskilled labor effect. The results reported in Table IV using
embodied improvement in total capital (equation (18)) are representative. They show little
evidence of a substantial role for such equipment effects, while the skilled labor effects are
quite similar to those from Table I—if anything they persist later into the 1980s. One
interpretation of this is that even if capital improves in quality, productivity improves
only to the extent that skilled labor is present. In fact, the results go further than that,
suggesting that new equipment in the absence of skilled labor has an adverse impact on
productivity. This could be a consequence of learning effects or adjustment costs (as in
Hornstein and Krusell [1996]), though clearly more work is needed to understand this puzzle.

One striking aspect of Figure II is that by and large, overall TFP growth appears
unaffected by the massive underlying shifts in the relative importance of skilled labor versus
other factors. In other words, the breakdown of TFP growth into factor-augmentation
components is virtually a zero-sum game: During the period of high skilled labor—
augmenting change there is relatively less Hicks—neutral technological progress and/or
progress via augmentation of other factors, so TFP growth does not accelerate. Even
with the more agnostic interpretation of this episode as some combination of skilled—labor
augmenting and sector—biased Hicks—neutral technical progress, it is still surprising that
there is no apparent aggregate effect.

Why should this be? One explanation is that whatever the underlying structural changes
in the economy, the overall resources devoted to technological progress do not change very
much, at least in the short run. How and where those resources are allocated, on the other
hand, may respond to short—run changes in economic conditions. For example, a large influx
of unskilled labor might induce firms to focus their innovation energies on improvements

in the capital that unskilled labor works with. This would include organizational changes
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such as the assembly line. The early 1970s did witness a large increase in the supply of
skilled labor due to factors that were arguably exogenous: the Vietnam War and the baby
boom. So it is at least possible that firms shifted resources away from general technological
progress in the direction of innovations specifically geared toward the new plentiful supply
of college—educated workers. Modelling and empirical investigation of this are beyond the

scope of this paper, but could be useful topics for further research.®

E. Low Frequency Implications and Evidence

To summarize the results thus far: We find robust evidence of a surge in skilled labor—
augmenting technical progress from the early 1970s to the early 1980s, as measured by the
extent to which TFP growth is associated with skilled labor’s share across industries—even
after controlling for other factors such as new investment, human capital, and energy costs.
Somewhat surprisingly, we fail to find evidence that capital—whether defined as total plant
and equipment, just equipment, or just new plant and/or equipment—plays a significant
role.

It is worth pointing out that the presence of skilled labor-augmenting technical progress
is not immediately apparent in the MP data. As Klenow [1996] points out (in a study that
uses essentially the same MP data as this study), there is no correlation between average
industry TFP growth and skilled labor’s share. How can this be so? Even though the results
suggest that this phenomenon was to some extent a historical aberration, it should still be
evident in a cross—section study such as Klenow’s if the data include that period, since
although skilled labor’s share varies, the high—skill industries tend to be the same over time.
It turns out that there are two explanations. First, as mentioned earlier, our results not as
strong without the weighting by industry size. The data from small industries appear to be
noisier, so a simple cross—sectional correlation that fails to take this into account will tend
toward zero. Second, controlling for equipment’s share actually increases the correlation

between skilled labor’s share and TFP growth.

6 Acemoglu (1997) develops a model along these lines.
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To document this we next provide results based on a cross section of industry averages.

Table V provides regression results based on
(20) TEP, = At + alA; + aAY + acA° + amA™ + ¢

and special cases thereof from the cross—section of 450 industry averages over 1959-1973 and
1974-1991 subsamples, where the “"” refers to the average growth rate of the underlying

w_»

variable, and the over the shares indicate industry averages over the same period. We
take 1973 as the cutoff based on the results embodied in Tables I and IV and Figure II.
Both OLS and WLS results are provided under a variety of specifications. The unweighted
regression univariate regression reproduces Klenow’s negative result, but the others show
that both weighting by industry size and controlling for equipment’s share increases the
estimated effect of skilled labor’s share. The WLS estimates of A® for the 1974-1991 period
range from 0.059 to 0.197, which correspond to a range of contributions to TFP of 0.70
percent up to 2.3 percent annually (the weighted average share of non—production workers
in gross output is 0.119), compared to a weighted average overall TFP growth rate in the
sample of 0.80 percent. The estimates of Ae appear to be sensitive to the specification,
while there are again persistent negative effects from production—workers’ share. But the
main thing to notice is the clear difference between the two subsamples with regard to the

estimates of A

IV. Discussion and Conclusions

This paper has provided evidence of a major structural break in sectoral patterns of
productivity growth within manufacturing during the 1970s and 1980s. Specifically, it
documents a surge in productivity growth favoring industries with high shares of skilled
labor that began around 1972 and continued for approximately ten years. It fails to find
evidence of any similar association of TFP growth with capital intensity or with capital

investment. These findings thus complement earlier studies of wage and employment
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patterns that find that the demand for educated or experienced workers rose sharply during
roughly the same time period. Provided the elasticity of substitution across factors is greater
than one, the interpretation of these patterns in TFP growth as skilled labor-augmenting
technical progress is consistent with other findings of an acceleration of skill-biased technical
progress during roughly the same time period.

Although part of the motivation of this work is the increased skill premium since the late
1970s, the findings in this paper, while contributing to an overall picture of what happened,
cannot by themselves explain the changes in relative wages. First, our study is confined to
the manufacturing sector, which represents but one—fifth of the economy. We cannot say
whether similar patterns occur in other sectors, and even large increases in the demand
for skilled labor in manufacturing will not necessarily have large effects on the overall
structure of wages unless the increases are present in other sectors as well. Second, even if
manufacturing were representative of the economy, it seems more likely that the findings
reflect some combination of sector—biased (that is, Hicks—neutral progress that is correlated
with industry skill-intensity) and skilled labor-augmenting technical progress—if only
because the effects are too large to be entirely the latter. To the extent the results reflect
sector—biased Hicks—neutral technical change, the implications for relative wages would be
ambiguous.”

To see that the effects are “too large,” note that for the economy as a whole, the effect
of skilled labor-augmenting technical progress on relative wages can be expressed as (see
equation (10)):

(21) W — W = (1 1/0)(A" = A*) — (1) (K" — N,

where N¥ — N* is the change in the relative supplies of skilled and unskilled labor. The
regression results from Table IV (which presume no sector—biased technical progress) imply

that A* — A* grew at a 45 percent annual rate from 1974-1981. This in itself seems

" The effect on the relative wage in this case depends on relative output prices (in a closed or large open

economy ), which in turn depends on output demand elasticities.
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implausibly large, and suggests that these effects in fact do include sector-biased progress.
To further translate this into a relative wage effect (still assuming no sector bias), we need
to say something about the value of o, the elasticity of substitution between skilled and
unskilled labor. Bound and Johnson [1992] arrive at a value of 0 = 1.75 using disaggregated
data. Substituting anything like the estimated values of As — A* from Table IV, together
with historical values for N¥ — N“ (based on BLS aggregate manufacturing employment
of production and non—production workers) and o = 1.75, leads to implied relative wage
growth in excess of 15 percent annually. Even using ¢ = 1.25 would imply 7 percent annual
growth, which is substantially larger than anything suggested by the studies cited in the
introduction.

The onset of skill-related productivity growth in the early 1970s found in this paper also
precedes the growth in the skill premium by at least five years, though it does coincde
with Greenwood and Yorukoglu’s [1996] timing of the “watershed” of 1974 that they argue
initiated both the rise in income inequality and the slowdown of aggregate productivity.
The decline in the skill premium during the 1970s is attributable to the large increase in the
relative supply of skilled (i.e. college—educated) workers at that time. Indeed, some authors
(e.g. Autor, Katz, and Kreuger [1997]) have argued that the increase in the demand for
skilled labor may have begun in the early 1970s, but was masked by the supply increase.

Greenwood and Yorukoglu’s story is that an acceleration of technical progress in
information technology (manifesting itself in lower equipment prices) lead to increased
demand for skilled labor. They suggest that the new technology requires investment in
learning—a task performed only by skilled workers—which causes measured productivity to
fall initially. While more work is needed, it is possible that the negative association of new
equipment and productivity during this time period reflects such learning. Our findings
would then suggest that industries with larger shares of skilled labor can more readily

absorb the technology embodied in new equipment and translate it into higher productivity.
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TABLE 1
Univariate Regression Results with MP Dataset

Year AlnA? AlnA*  Year AlnA? AlnA*
60 -0.0172 -0.0065 76 -0.0308 0.0308
(0.0391) (0.0042) (0.0322) (0.0039)

61 0.0960 -0.0065 77  0.1837  0.0019
(0.0274)  (0.0032) (0.0298)  (0.0036)

62 -0.0066 0.0282 78  0.1076  -0.0011
(0.0206)  (0.0025) (0.0310)  (0.0039)

63 0.0809 0.0180 79  0.2585  -0.0216
(0.0303) (0.0037) (0.0315)  (0.0040)

64 -0.0326 0.0195 80  0.4257 -0.0535
(0.0150)  (0.0017) (0.0422)  (0.0058)

65 -0.0191 0.0265 81  0.1221  -0.0130
(0.0191)  (0.0021) (0.0355) (0.0051)

66 0.0858 -0.0077 82  0.0010  -0.0091
(0.0157)  (0.0019) (0.0329)  (0.0050)

67 0.0675 -0.0073 83 -0.0337  0.0253
(0.0260) (0.0032) (0.0369) (0.0058)

68 -0.0514 0.0231 84 -0.0441  0.0295
(0.0248)  (0.0031) (0.0370)  (0.0058)

69 0.0766 -0.0065 85  0.0228  0.0085
(0.0177)  (0.0022) (0.0317)  (0.0051)

70 -0.0877 -0.0164 86  0.0393  -0.0044
(0.0255) (0.0032) (0.0262) (0.0044)

71 -0.2568 0.0445 87  0.0305  0.0342
(0.0279)  (0.0033) (0.0255)  (0.0042)

72 01278 00037 8  -0.1114  0.0157
(0.0397)  (0.0047) (0.0233)  (0.0039)

73 -0.0121  0.0319 89  -0.0747  0.0059
(0.0338)  (0.0039) (0.0184)  (0.0031)

74 02341 -0.0306 80 -0.0166 -0.0018
(0.0458)  (0.0053) (0.0225)  (0.0038)

75 01818 -0.0596 91  0.0531  -0.0173
(0.0466)  (0.0057) (0.0236)  (0.0039)

Note: Standard errors are in parentheses. The dependent
variable is gross output-based TFP growth. The sample
size for each year is 449.
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Regression Results, Merged CPS{MP Data

TABLE I

Skill De nition

16 years 14 years 12 years Non{prod. labor
Year ¢InAs>  ¢€InA" ¢InA® C¢InA® ¢€InA®  ¢InA"  ¢InAs CInA”
79 0601 -0.037 0434 -0.047 0.135 -0.046 0.388 -0.062
(0.210) (0.017) (0.150) (0.020) (0.106) (0.042) (0.142) (0.026)
80 0.817 -0.097 0.576 -0.107 0.141 -0.087 0.704 -0.164
(0.226) (0.019) (0.160) (0.022) (0.111) (0.045) (0.139) (0.027)
81 0.173 -0.014 0.059 -0.008 -0.132 0.053 0.092 -0.018
(0.202) (0.018) (0.144) (0.021) (0.107) (0.043) (0.137) (0.027)
82 -0.090 -0.011 -0.163 0.005 -0.365 0.130 -0.171 0.016
(0.187) (0.019) (0.139) (0.022) (0.112) (0.047) (0.139) (0.030)
83  0.303 0.000 0.248 -0.009 0.042 0.012 -0.121 0.054
(0.182) (0.020) (0.142) (0.023) (0.119) (0.050) (0.134) (0.029)
84  0.069 0.040 0.054 0.038 -0.073 0.078 -0.077 0.063
(0.165) (0.019) (0.131) (0.022) (0.116) (0.050) (0.130) (0.028)
8 0.168 -0.013 0.130 -0.016 0.087 -0.031 0.182 -0.032
(0.158) (0.020) (0.127) (0.023) (0.120) (0.052) (0.127) (0.028)
86 0.053 -0.004 0.006 0.000 -0.081 0.037 0.025 -0.004
(0.163) (0.020) (0.125) (0.024) (0.125) (0.055) (0.126) (0.028)
87 -0.020 0.076 -0.038 0.080 -0.208 0.164 -0.114 0.098
(0.159) (0.020) (0.126) (0.024) (0.120) (0.053) (0.122) (0.027)
88  0.066 0.013 0.056 0.011 0.108 -0.026 -0.172 0.058
(0.155) (0.019) (0.126) (0.023) (0.118) (0.052) (0.119) (0.027)
8 0.038 -0.010 0.026 -0.010 -0.001 -0.005 -0.131 0.023
(0.152) (0.020) (0.121) (0.024) (0.118) (0.053) (0.118) (0.027)
90 0.270 -0.036 0.192 -0.038 0.083 -0.039 0.244 -0.055
(0.137) (0.019) (0.110) (0.023) (0.116) (0.053) (0.120) (0.028)
91 0341 -0.058 0.285 -0.070 0.155 -0.084 0.155 -0.049
(0.150) (0.021) (0.129) (0.026) (0.126) (0.057) (0.127) (0.029)

R? = 0:182 R? =0:181 R? = 0:169 R? = 0:193

Note: Standard errors are in parentheses. The dependent variable is value added{based

TFP growth. The sample size is 858 (66 observations for 13 years).
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TABLE II1
Sample Statistics on Measures of
Skilled Labor Share and TFP Growth

a(l6) «o(14) «(12) «(NP)

TFP growth(%)

Sample Mean 0.107 0.166  0.419 0.201
Corr. with «(16) 1.000 0.984 0.526 0.869
Corr. with TFP growth  0.238 0.198 -0.033  0.061

1.769
0.238
1.000

a(n) = skilled worker share based on n yrs. of schooling, or
on non—production workers.
Statistics are employment—weighted.
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TABLE IV
Regression Results, Embodied Capital Improvement

AZTLTFPLt = AlnAf + OéitflAlTLAf + Oé;-ftflAlTLAg + O‘i‘itfl([i,t—l/KLt—l)(Zt—l/Ag_l — 1)

Year AlnA* AlnAs AlnAY iﬁfl -1 Year AlnA* AlnAs Aln A% flifl —1
t—1 t—1
60  0.0131 0.0255 -0.1003  -0.3109 76 0.0756  -0.0050 -0.2038 -0.7163
(0.0078) (0.0587) (0.0356) (0.5039) (0.0085) (0.0318) (0.0338) (0.3292)
61 -0.0107  0.1005 0.0359 -0.1923 77 0.0140 0.1868  -0.0656 -0.0406
(0.0069) (0.0325) (0.0271) (0.3757) (0.0090) (0.0314) (0.0338) (0.3676)
62  0.0435 0.0332  -0.0575 -0.6397 78  0.0313 0.1216  -0.1457  -0.4353
(0.0052) (0.0268) (0.0219) (0.3037) (0.0107) (0.0321) (0.0379) (0.3649)
63  0.0346 0.1461  -0.0276  -1.2645 79  0.0470 0.3393  -0.2389 -1.6575
(0.0080) (0.0381) (0.0327) (0.4737) (0.0111) (0.0363) (0.0395) (0.3625)
64 0.0163 -0.0506 -0.0047 0.3909 80 0.0346 0.6039  -0.2842 -2.6952
(0.0042) (0.0187) (0.0167) (0.2228) (0.0153) (0.0578) (0.0544) (0.5461)
65 0.0273 -0.0231 -0.0253 0.2687 81  0.0426 0.2160  -0.2409 -1.1360
(0.0054) (0.0206) (0.0200) (0.2656) (0.0124) (0.0535) (0.0470) (0.4420)
66 -0.0064 0.0868 -0.0003 -0.0737 82 0.0263 0.0253  -0.1677  -0.4257
(0.0045) (0.0159) (0.0172) (0.1750) (0.0131) (0.0510) (0.0456) (0.4863)
67 -0.0350  0.0329 0.0802 0.7580 83  0.1343 0.2133  -0.4816 -2.8478
(0.0077) (0.0284) (0.0290) (0.2759) (0.0138) (0.0706) (0.0532) (0.6134)
68  0.0696 0.0158  -0.1861  -0.9490 84 0.0709 -0.0537 -0.2262 -0.1117
(0.0067) (0.0287) (0.0279) (0.2518) (0.0133) (0.0782) (0.0565) (0.6834)
69  0.0049 0.0735  -0.0725 0.1229 85  0.1220 0.3946  -0.4266 -3.9433
(0.0047) (0.0211) (0.0199) (0.1959) (0.0151) (0.0736) (0.0557)  (0.6489)
70 -0.0234 -0.1208 -0.0287 0.8422 86  0.0297 0.0452 -0.1714 -0.2483
(0.0071) (0.0277) (0.0289) (0.2655) (0.0114) (0.0464) (0.0421) (0.4072)
71 0.0703 -0.2465 -0.1594 0.0873 87  0.0698 0.0062  -0.1957 0.0223
(0.0069) (0.0288) (0.0296) (0.2581) (0.0116) (0.0431) (0.0402) (0.4997)
72 -0.0291 0.0624 -0.0124 2.9196 88  0.0357 -0.0333 -0.0108 -1.3638
(0.0098) (0.0388) (0.0418) (0.3845) (0.0093) (0.0286) (0.0348) (0.3236)
73 0.0672 0.0061  -0.0538 -1.5884 89 0.0303 -0.0348 -0.0838 -0.8083
(0.0089) (0.0318) (0.0342) (0.3037) (0.0076) (0.0231) (0.0298) (0.2388)
74  0.0313 0.2779  -0.2470 -1.1680 90 0.0415 0.0502  -0.1088 -1.5601
(0.0115) (0.0440) (0.0456) (0.3921) (0.0092) (0.0252) (0.0351) (0.2512)
75 -0.0206 0.1983 -0.1821 -0.3984 91 0.0571 0.1450 -0.1817  -2.7301
(0.0130) (0.0470) (0.0491) (0.4252) (0.0096) (0.0252) (0.0356) (0.2788)

Note: Standard errors are in parentheses. The dependent variable is gross output—based TFP growth. The
sample size for each year is 449.
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TABLE V
Cross—Section Results

TEP, = A" + asAs + auA* + ac A + am Am

1959-73
A* As A Ae Am R?
OLS 0.0079 0.0197 0.0030
(0.0016)  (0.0169)
WLS 0.0131 -0.0137 0.4653
(0.0009)  (0.0077)
WLS 0.0209 -0.0100  -0.0444 0.4992
(0.0017) (0.0075)  (0.0081)
WLS 0.0195 -0.0145  -0.0448 0.0160 0.5007
(equip.) (0.0020) (0.0085) (0.0081) (0.0135)
WLS 0.0165 -0.0202  -0.0433 0.0249 0.5100
(total) (0.0021) (0.0081) (0.0080) (0.0079)
WLS 0.1016 -0.0979  -0.1234  -0.1143 -0.0856  0.5254
(equip.) (0.0017) (0.0192) (0.0182) (0.0302) (0.0178)
1974-91
A* As Au Ae Am R2
OLS 0.0037 -0.0165 0.0028
(0.0016)  (0.0148)
WLS -0.0030 0.0690 0.0567
(0.0029) (0.0195)
WLS 0.0266 0.0590 -0.1644 0.1413
(0.0052) (0.0187)  (0.0248)
WLS 0.0461 0.0897 -0.1781  -0.1466 0.1726
(equip.) (0.0070) (0.0198)  (0.0246) (0.0358)
WLS 0.0498 0.0926 -0.1913  -0.1017 0.1793
(total) (0.0072) (0.0081) (0.0250) (0.0224)
WLS -0.0546 0.1969 -0.0872 0.0047 0.1043 0.1793
(equip.) (0.0528) (0.0595) (0.0535) (0.0868)  (0.0546)

Note: “equip.” or “total” indicates whether capital’s share includes
just equipment or equipment plus structures. Standard errors are in
parentheses. The dependent variable is average TFP growth over the
indicated time period. The sample size for each regression is 449.
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Appendix 1: Constructing Value Added TFP

In aggregating to the CPS industry classification, it is necessary to use TFP based on
value added rather than on gross output, because gross output does not aggregate simply,
and there is not enough information in the NBER’s productivity database to aggregate
properly. The main problem in constructing value added TFP on the basis of the available
data is to convert nominal value added to real. Unfortunately the standard “double
deflation” method leads to negative numbers in too many instances, as the computed real
cost of materials exceeds the real value of gross output (at least if one uses the deflator for
nominal shipments to deflate gross output).

Instead we construct value added TFP directly from gross output TFP as follows. For the
sake of exposition, we let gross output Y be a constant returns to scale function of capital
K, labor N, and materials M, and we will suppress the industry and time subscripts.

Nominal gross output is PY, and the nominal cost of materials is QM. We have
TFP; =Y — (axK + ayN + ap M)
where o is j's factor share in gross output and ~ denotes a growth rate. Also we have
TFPy =V — (kK +wN)

where V =Y — M and v; is factor j's share in value added.
Our key assumption will be that M = ¢Y, and we will compute ¢ for each industry from
its average value of M/Y. Since we know that 7v;(1 — an) = «;, we have

1—C¥M

1—¢

TFPy(1 —ay) = (Y — ¢M) — (ax K + axN).

Consequently we have

1—04M

1—¢

TFPy(1— ay) = TFPs — (Y — ayM) + (Y — ¢M)
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or

S ' _1aM) (F = asedt) + T ( — ol)

Here everything varies both over industry and time, except for ¢, which only varies over

TFPy = TFPg —

industries. This was constructed at the 4—digit level and then aggregated weighting by
Y — oM.

We should stress that the results were not sensitive to alternative methods of dealing with
this problem. Various constructs of T'F Py, were all highly correlated with each other, and

with TF Pg. (The correlation of this construct with TF Py is 0.93.)
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Appendix 2: Additional Details on Data Construction

1. MP Dataset: This is the Bartlesman—Gray dataset version dated July 16, 1996,
with data from 1958-1991. Current versions and extensive documentation is available at
http://www.nber.org.

a. To compute real equipment investment, we obtained deflators for equipment and
structures at the 2-digit level from the Commerce Department’s Fized Reproducible Tangible
Wealth yearly, and applied them to the corresponding 4-digit industries directly from
Wayne Gray.

b. To compute plant and equipment shares, we obtained 4—digit depreciation rates for
equipment and capital from Wayne Gray. We added these depreciation rates to a constant
r = 0.4 to get the r + §; used to compute the shares.

2. CPS Dataset: This is the Outgoing Rotation CD-ROM compiled at the NBER,
with data from 1979-91.

a. To construct skilled labor’s share in industry i, we selected all workers in the sample
from that industry, and within that group selected those who met the skill criterion (e.g.
schooling level). Denoting the set of skilled workers by W;, skilled labor’s share in industry 4
is
Yiev,UEj;

%eiU By

oy =
where UE}; is the “usual weekly earnings of worker j in year ¢.
b. Education level was determined by the variable “last year of schooling completed.”
3. NIPA data:
To adjust the labor share variables for fringe benefits (which are not included in the MP
dataset’s “earnings” variables, we obtained annual ratios of total labor compensation to

wages by 2-digit industry from NIPA Tables 6.2C and 6.3C.
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Figure |
Average Gross Output Factor Shares, 1959-1991*
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*The averages are computed annually across 449 industries
in the MP data set for each factor share.



Figure 1l
Contribution of Skilled Labor-Augmenting Technical Progress to TFP
(based on Table | estimates)
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Both series are normalized to zero in 1959



TFP Growth

Figure Il
Employment-Weighted TFP Growth versus Skill Share (Selected Years)
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