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ABSTRACT

The optimal prepayment model asserts that rational homeowners would re¯nance if they
can reduce the current value of their liabilities by an amount greater than the re¯nancing
threshold, de¯ned as the cost of carrying the transaction plus the time value of the embed-
ded call option. To compute the notional value of the re¯nancing threshold, researchers
have traditionally relied on a discrete option-pricing model. Using a unique loan level
dataset that links homeowner attributes with property and loan characteristics, this study
proposes an alternative approach of estimating the implied value of the re¯nancing thresh-
old. This empirical method enables us to measure the minimum interest rate di®erential
needed to justify re¯nancing conditional on the borrower's creditworthiness, remaining
maturity, and other observable characteristics.
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1. INTRODUCTION

When options are bundled with debt instruments { as in call options on bonds or

prepayment options on mortgages { the decision to exercise is often bundled with other

¯nancing decisions. Calling existing debt typically involves issuing new debt as well, and

so the cost-bene¯t calculus will encompass several related steps rather than an isolated

transaction. Accordingly, the value of a mortgage option and the likelihood of its exercise

may depend not only on option-theoretic considerations (e.g., strike and market prices,

expected price volatility, discount rate, and time-to-expiration) but also on factors speci¯c

to the individual debtor's availability and cost of replacement funding, including transac-

tion costs. One way of quantifying the importance of these factors is by their impact on

the required threshold values of gains to be reaped by re¯nancing. At one extreme, with

zero transactions costs and no change in the terms and availability of replacement funding,

a pure options-theoretic model of exercise may be appropriate, with only time-value con-

siderations limiting the exercise of in-the-money re¯nancing options. Toward the opposite

extreme, credit downgrade, collateral deterioration, or high transactions cost could raise

the required threshold gain from re¯nancing, impeding such activity.

This paper develops a way to compute re¯nancing thresholds for ¯xed-rate home mort-

gage loans, based on actual homeowner re¯nancing behavior and conditional on individual

characteristics and market conditions. Our approach is to estimate a model of conditional

re¯nancing probabilities, and then, consistent with option-theoretic considerations, to lo-

cate thresholds based on where the impact of market volatility on re¯nancing probabilities

is optimized.
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One type of approach to understanding re¯nancing thresholds is to simulate optimizing

behavior under various assumptions. At the simplest level, some ¯nancial advisors may

compute re¯nancing costs and develop rules of thumb about how many basis points a

homeowner should save to justify re¯nancing. At the other extreme of complexity, some

studies have used carefully detailed binomial techniques to compute re¯nancing rules,

which for example may be sensitive to factors such as market volatility conditions (e.g.,

see Follain, Scott, and Yang 1992; Chen and Ling 1989; Yang and Maris 1996).

Such rules are \normative" in that they provide thresholds that would be optimal given

a set of debtor objectives and constraints. A drawback is that such a methodology may miss

unobserved transactions costs or other idiosyncratic factors a®ecting re¯nancing decisions {

a particularly important consideration for home mortgages. Thus, while highly instructive,

normative simulation results must be viewed with a degree of caution by investors, bankers,

loan servicers, and others concerned with predicting how re¯nancings or prepayments will

actually develop.

As a \positive" approach, our study estimates thresholds implied by actual observed

household behavior. Our technique is to take advantage of the expectation that a change

in mortgage rate volatility will have its greatest impact on re¯nancing decisions of indi-

viduals whose costs and bene¯ts of re¯nancing are nearly balanced { e.g., who are \at

their thresholds". These vega thresholds are computed from a su±ciently well-speci¯ed

statistical model that the size of the thresholds can be made conditional on individual

characteristics and mortgage market conditions.

In the next section, we formalize the theory of the option vega. We illustrate that

fundamentally the vega of any option (including that of a mortgage option) attains a

maximum when it is near the money. In section 3, we demonstrate how this property of

the mortgage option can be applied in a statistical context. In particular, we illustrate that
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there is a direct relationship between the vega of the mortgage option and the probability

of re¯nancing. In section 4, we use this methodology to estimate the re¯nancing threshold

needed to justify re¯nancing for di®erent values of volatility, maturity, and household

creditworthiness.

2. THE VEGA THRESHOLD

The right to prepay a mortgage is equivalent to a call option that allows a homeowner

to re¯nance all future obligations of the mortgage loan at the outstanding balance of the

loan. Like any other call option, the mortgage option depends on several factors: the

contract interest rate, which determines the intrinsic value of the loan; the volatility of

the risk-free interest rate process; the remaining maturity of the loan, etc. An important

problem in the mortgage re¯nance literature is ¯nding the e®ective interest rate di®eren-

tial between contract rates that can justify re¯nancing. This interest rate di®erential is

essentially equivalent to the point at which the mortgage option goes in the money.

For most typical option contracts (e.g., calls or puts on stock or bond assets), money-

ness is easily established because the strike price and current asset price are transparent.

Mortgages, however, are more complex options that are in°uenced by other esoteric fac-

tors. An alternative way to infer the moneyness of the option is to look at how the value

of option responds to changes in the underlying factors. In particular, in this study we

consider the sensitivity of the value of the option to changes in volatility | the vega of

the option. From hedging analysis, we know that shifts in market volatility have their

strongest e®ect on option values when options are near the money (for more details, see

Hull 1993). In the appendix, we show analytically that this property holds for a variety of

European option contracts. More speci¯cally, we demonstrate that the vega of a European

call option reaches a maximum at

S¤ = X e¡r(T¡t) e0:5(T¡t)¾
2

: (1)
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Here, S¤ represents the vega threshold (that is, the asset price at which the vega attains a

maximum), (X) denotes the strike price of the option, (r) is the risk-free rate, and (T ¡ t)
is the time-to-expiration. For the seller of the option, this value represents essentially the

future value of the proceeds, adjusted for the risk of uncertainty.

2.1 The Vega of the Mortgage Option

The option-pricing theory of a ¯xed-rate mortgage has been extensively studied in the

mortgage ¯nance literature (see Archer, Ling, and McGill 1996; Follain, Scott and Yang

1992. For a graphical illustration of the mortgage option see also Quigley and Van Order

1990). Let P (T; t; r0) represent the face value of a callable mortgage loan at period (t)

with an original contract rate (r0) and maturity (T) months. Similarly, P (T; t; rm) denotes

the value of the same loan but discounted at the prevailing market rate (rm). The debtor

maximizing his or her net worth would re¯nance when the following inequality holds:

P (T; t; r0)¡ P (T; t; rm) > TC; (2)

where (TC) stands for the total cost of the re¯nancing transaction. However, we also

need to recognize the value of the embedded option. Because a mortgage is callable, its

value can be expressed as the sum of a noncallable amortizing bond, or annuity, minus the

value of the mortgage call, that is, P (T; t; r) = PNC(T; t; r) ¡ V (T; t; ¾; r). Transactions
costs conceptually include all economic costs associated with carrying out the re¯nancing,

both the repayment of outstanding debt and issuance of new debt. In the case of a home

mortgage, there may be time and money costs associated with paying back the loan,

particularly if there were prepayment fees or legal expenses. Most of the total transaction

cost, however, is typically associated with securing the replacement ¯nancing. This will

include points and fees, legal expenses, transaction taxes, plus the \shoe leather" and time

of the debtor. To account for this broad range of re¯nancing costs and the embedded value
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of the call option, we modify the right hand side of equation (2):

PNC(T; t; r0)¡ PNC(T; t; rm) > TC(p; c; `) + º(T; t; ¾); (3)

where the variable (p) represents points and fees, (c) de¯nes the credit quality of the

borrower, and (`) the loan-to-value ratio. The term º(T; t; ¾) equals the net value of the

call option, i.e., V (T; t; ¾; r0)¡V (T; t; ¾; rm). The expression on the left side of inequality,
de¯ned by the di®erence of the noncallable present values evaluated at the two alternative

rates, represents the \intrinsic" bene¯t of re¯nancing. The intrinsic gains are available to

homeowners if the option is exercised immediately. The right hand side of the inequality

represents the re¯nancing threshold faced by a homeowner. This threshold consists of the

transaction costs and the net value of the call option.

In comparison to European Black-Scholes model, the mortgage option is a more com-

plex American-type contingent claim. Most American options (especially those with time-

varying volatility or path-dependent parameters) do not have an easy closed-form solution.

In the absence of a simple analytical solution for the mortgage option, one can employ the

binomial tree model to price the mortgage option (Cox, Ross and Rubinstein 1979; Rendle-

man and Bartter 1980; Hall 1985). In the binomial world, the vega can be approximated

numerically by computing values of the mortgage option on trees with volatilities ¾ and

¾ +¢¾ (where ¢¾ is small). Mathematically,

vega =
V¾+¢¾ ¡ V¾

¢¾
:

Figure 1 presents the vega of the mortgage option for three di®erent mortgage con-

tracts (2-year, 5-year, and 10-year). Besides maturity, the remaining characteristics of

the three mortgage contracts are identical.1 The vega threshold, plotted on the x-axis,

represents the di®erence present value of the mortgage and the book value of the original

1 We computed the value of the mortgage call by adapting the Rendleman and Bartter
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balance (measured as a percent). The relationship between the mortgage option vega and

the intrinsic value is concave and is fundamentally similar to that of the European stock

option discussed in the appendix. Note that the vega of the 10-year mortgage option at-

tains a maximum at a higher threshold, re°ecting the fact that value of the mortgage call

increases with maturity.

As seen from equation (3), an important element in mortgage options is transaction

cost, not a factor in simple options pricing models but central in mortgage re¯nancings.

Consider for a moment the notion of a mortgage re¯nancing option in the absence of

transaction costs. Any movement of market rates below the mortgage coupon rate could

trigger instantaneous re¯nancing. The debtor's own uncertainty or forecast about future

mortgage rates would not matter to his re¯nancing decision, given the level of market rates.

Transactions costs, however, cause the debtor to limit the frequency of his re¯nancing.

Interest rate uncertainty becomes important within this framework, since, for example,

it provides more expected return to waiting before incurring the ¯xed transaction cost.2

Figure 2 illustrates the importance of transaction costs. The ¯gure shows again the vega

model. The face value of the amortizing bond (the mortgage) is $100. The model asserts

that interest rates follow a geometric Brownian motion with constant expected growth ¹

and constant volatility ¾. In our binomial simulations, the contract rate on the mortgage

is 0:08, ¹ is constant at 0:05, and the time step is one year (that is, ¢t = 1). Moreover,

the initial value of the interest rate and volatility are changed by the increment of 0:001

(with the average volatility equaling to 0:15).
2 At the same time, more actual rate movement is expected to increase the intrinsic

value gains from re¯nancing. In retrospect, therefore, a period of market volatility should

correlate with high re¯nancing activity. But, looking forward at a point in time with a

given spread between coupon and market rates, a higher expected volatility should reduce

the current likelihood of re¯nancing rather than waiting.
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of the 2-year mortgage with a face value of $100 and zero transaction costs (the solid curve

in Figure 1) and the vega of a 2-year mortgage option with a transaction costs of $0.60.

As expected, higher transaction costs lower the value of the mortgage call. At the same

time, the vega threshold rises, re°ecting the additional cost of re¯nancing.

For at-the-money mortgage options, it must hold that the intrinsic value is equal

to the re¯nancing threshold. To illustrate this property in mortgages consider again the

numerical example presented in Figure 2. From the binomial tree simulations, we can

calculate the actual at-the-money value of the call to be $0.195 when transaction costs are

zero. An alternative way to approximate the value of call option is to ¯nd the maximum of

the vega, which identi¯es the point at which the call is at the money. From the ¯gure, we

observe that the vega peaks around $0.210. Since transaction costs are zero, this number

can serve as an alternative estimate for the actual value of the option.3

When transaction costs are set equal to 60 cents, the binomial estimate of the at-the-

money value of the call is $0.051. Looking at the ¯gure again, we ¯nd that in this case

the vega reaches a maximum around $0.655 (the estimate of the re¯nancing threshold).

The vega estimate for the value of the option is therefore $0.655-$0.6=$0.055. In short,

we have demonstrated that a simple approach to locating the re¯nancing threshold would

be to ¯nd where the mortgage vega peaks in absolute value. These peaks should depend

in part on the individual household's characteristics that a®ect its transaction costs. In

the following discussion, we will develop an approach to empirically identifying these vega

threshold values.

3 Of course, one can improve the precision of the binomial and vega estimates by choos-

ing smaller time steps. As noted previously, the vega estimate will become slightly more

biased for higher maturities. However, we found that the vega approximation continues to

be fairly accurate even at higher expected holding periods.
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We have illustrated above that the (negative) e®ect of interest rate volatility on re¯-

nancing probability will be strongest for loans where the costs and bene¯ts of re¯nancing

are close to balance (or, more precisely, where they are just tipped in favor of re¯nanc-

ing). At that point, the downside risk of postponing the transaction is very limited and

little a®ected by increased volatility. At that same point, however, the expected gain

from waiting is clearly increased by heighten volatility. Further away from the re¯nancing

threshold, where the net bene¯t of re¯nancing is greater, the asymmetry of the upside and

downside volatility e®ects becomes diluted. Away from the threshold, the expected loss

from scenarios in which rates go back up is greater. Indeed, if rates stand su±ciently far

below the current coupon, re¯nancing will be overwhelmingly attractive, and the in°uence

of volatility will be correspondingly trivial.

In the next section, we will show that this logic is complicated only slightly by the

fact that higher volatility will also increase the attractiveness of the prepayment option on

the replacement ¯nancing. The (positive) e®ect of market volatility on this replacement

option will be re°ected as an increase in the option-adjusted spread charged in the market.

The option on the pre-existing loan, in contrast, also increases in value to the debtor, but

its cost is locked in as long as he does not re¯nance. Since it is well out of the money, the

e®ect of volatility on the value of the replacement option should be considerably smaller

than the e®ect of volatility on the fair value of the existing option. On balance, after

controlling for the partial e®ect of volatility on the di®erence between existing and current

market mortgage rates, the remaining independent e®ect of volatility on the re¯nancing

probability will be negative and strongest for loans very near their re¯nancing thresholds.

3. A STATISTICAL MODEL OF MORTGAGE PREPAYMENT

The theoretical mortgage option model considered above can be modi¯ed into an

econometric speci¯cation. The net bene¯t from re¯nancing is in°uenced by a broad range
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of factors: the intrinsic value of the mortgage, the time value of the call, and a variety

of frictional costs that may stem from the borrower's credit quality or available equity in

the property. Let B¤ti represent the net bene¯t from re¯nancing for the i-th individual in

month (t). Consistent with equation (3), we can de¯ne the net bene¯t from re¯nancing

as:

B¤ti = P
NC(T; t; r0i)¡ PNC(T; t; rmti)¡ TC(pti; cti; `ti)¡ º(T; t; ¾t): (4)

Although B¤ti is not directly observable, we observe a vector xti¢ that includes the factors

that determine the net bene¯t of re¯nancing (e.g., the volatility, remaining maturity, orig-

inal and prevailing mortgage rates, creditworthiness, etc.). We can therefore express the

net bene¯t from re¯nancing as a function of these explanatory variables, of the general

form

B¤ti = g(xti¢¯) + ²ti; (5:1)

where g(¢) allows for the possibility that the e®ect of xti¢ may be nonlinear, and the random
error ²ti measures unobserved idiosyncratic net costs or bene¯ts to individual homeowners.

De¯ne yti to be a binary variable:

yti = 1 if B¤ti > 0 (homeowner re¯nances); (5:2)

yti = 0 if otherwise (no re¯nancing occurs): (5:3)

Together equations (5.1)-(5.3) represent an econometric model of binary choice. The pa-

rameter vector of the binary choice model ¯ can be estimated by the method of maximum

likelihood. We will use maximum likelihood logit analysis to estimate the e®ect of di®er-

ent explanatory variables on the willingness to re¯nance (for more details, see Maddala

(1983) and Green (1993)). The discrete-choice model has been applied extensively in the

estimating factor in°uencing prepayments (Cunningham and Capone 1990; Archer, Ling,

and McGill 1996; Peristiani, Bennett, Monsen, Peach, and Rai® 1997). Alternatively, one
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can use hazard analysis to investigate the decision to prepay (Caplin, Freeman, and Tracy

1997; Follain, Ondrich, and Sinha 1997; Bennett, Peach, and Peristiani 1998). Hazard

models are sometimes preferred to discrete-choice Logit or Probit models because they

estimate the rate at which an event will occur given that it has not occurred until that

point in time. In the current framework, however, we use a discrete-choice model because,

as will be shown in the next section, the marginal e®ects of this speci¯cation are more

consistent with option theory.

The probability of prepayment in a given month can be de¯ned as:

SMMti = P (i¡ th homeowner prepays in month (t)) = P (yti = 1) = ¤(xti¢¯) (6)

where ¤(¢) represents the logistic cumulative distribution function. This monthly prepay-
ment measure is usually referred to in the mortgage ¯nance literature as the single monthly

mortality rate (SMM).

3.1 Inferring the Vega from a Prepayment Probability

The logistic regression estimates the e®ect of the call option indirectly through the

relationship between volatility and the probability of re¯nancing. We will argue, however,

that the marginal e®ect of volatility on the probability of re¯nancing relates to the under-

lying vega of the call option. It is worth noting that within this framework the prepayment

vega | where the e®ects of volatility on the probability of re¯nancing is greatest | can be

understood as corresponding to the point where the e®ects of volatility on the net bene¯ts

of re¯nancing are greatest. To see how, consider the probability of prepayment, measured

as a single monthly mortality

SMM = F (x; º(T; t; ¾));

where (x) includes all exogenous variables a®ecting the probability of re¯nancing besides

the net value of the call. We assume that F (¢) is a continuous di®erentiable function.
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Applying the chain rule, we can show that ceteris paribus

@SMM

@¾
= À(T; t; ¾) = F¾

@º(T; t; ¾)

@¾
/ ¡@º(T; t; ¾)

@¾
: (7)

such that F¾ is the derivative of F (¢) with respect to ¾. Here, we expect that F¾ is negative.
Equation (7) shows that the sensitivity of the monthly prepayment to changes in volatility

(hereafter, referred to as prepayment vega) is proportional to the vega of the call option.4

In turn, this result suggests that the prepayment vega (now a convex function) should

achieve a minimum when the option to re¯nance is roughly at the money. Consequently,

one can view a prepayment vega in the same way as an option vega.

In the logit model, the marginal e®ect of volatility is

@SMM

@¾
= À(xti¢¯) = g¾¤(xti¢¯)(1¡ ¤(xti¢¯)); (8)

where g¾ denotes the partial derivative of g(¢) with respect to ¾ and ¤(¢) represents the
logistic cumulative distribution. A property of the binary choice models (logit or probit)

is that the marginal e®ect of volatility takes a functional form that is consistent with the

properties of the option vega. An interesting special case is the linear logit model, that is,

g(xti¢¯) = xti¢¯. We can show in this case that the prepayment vega attains a minimum

when the probability of prepayment is 0.5 (e.g., ¤(xti¢¯) = 0:5).5 Therefore, in the linear

4 Although º(T; t; ¾) represents the net value between the existing and new option, the

vega is approximately equal to the vega of the existing option. Mathematically, we can

show that

@º(T; t; ¾)

@¾
=
@V (T; t; ¾; r0 j rm)

@¾
¡ @V (T; t; ¾; rm j rm)

@¾
¼ @V (T; t; ¾; r0 j rm)

@¾
:

The vega of the new option is very small because the new option is basically deep out of

the money.
5 In the linear case, equation (8) reduces to À = ¯¾¤(1 ¡ ¤), where ¯¾ represents the

13



case, a mortgage holder is considered to be at the money when the likelihood of re¯nancing

equals 0:5. While this simple case is appealing, we prefer the more general nonlinear speci-

¯cation, which allows the threshold location and the corresponding re¯nancing probability

at that turning point to be determined more °exibly.

3.2 Estimating the Re¯nancing Threshold: Some Adjustments

Since the prepayment vega is expected to be greatest near the point where the costs

and bene¯ts of re¯nancing are balanced, we should be able to approximate this threshold

by observing where volatility has its largest impact on the re¯nancing probability. Using an

appropriately speci¯ed statistical model, we can estimate the vega threshold as a function

of the variables that determine re¯nancings.

The intrinsic value of the mortgage plays a key role in determining the vega threshold.

As shown above, this measure computes the noncallable value of the loan using the contract

rate on the existing loan (r0) and the prevailing market rate (rm). Richard and Roll (1989)

propose a simple measure of the intrinsic value. The authors note that, since a mortgage

obligation is an annuity, the intrinsic worth of a mortgage is given by the ratio of the two

annuities, that is,

®ti =
d(rmti; T; t)

d(r0i; T; t)
= (

r0i
rmi

)(
1¡ (1 + rmti)t¡T
1¡ (1 + r0i)t¡T

);

where d(r; T; t) = [1¡ (1 + r)t¡T ]=r. For all observations in our sample, the original rate
for the i-th owner (r0i) is measured by the national average commitment (contract) rate

on ¯xed rate loans for the month the loan was closed. This is the so-called A paper rate

or the rate available to the best credit risks. Similarly, the prevailing market rate for the

i-th mortgage holder at month (t) (rmti) is also the national average A paper contract rate

at month (t).

marginal of g(xti¢¯) with respect to ¾. Since ¯¾ is a negative constant, the prepayment

vega À is minimized when ¤ = 0:5.
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Using the Richard-Roll measure, we rearrange (3) above, such that all variables that

are directly observable are on the left hand side of the decision rule:6

d(rmti; T; t)¡ d(r0i; T; t)¡ TC(pti) > TC(cti; `ti) + º(T; t; ¾); (9)

where TC(pti) represents the points and fees paid by the borrower. Dividing both sides of

the equation by d(r0i; T; t), we obtain

®ti ¡ 1¡ TC(pti)

d(r0i; T; t)
>
TC(cti; `ti) + º(T; t; ¾t)

d(r0i; T; t)
; (10)

or

Iti > hti: (11)

The re¯nancing hurdle hti depends on credit, collateral, option replacement cost, and

other variables, and Iti denotes the intrinsic value of re¯nancing, net of points and fees.

A borrower is at the money when Iti equals hti. A simple estimate of this at-the-money

threshold hti is given by:

ĥti = min À(xti¢ ^̄); (12)

where À(xti¢¯) is de¯ned by equation (8). In turn, the actual re¯nancing hurdle can be

estimated by

Ĥti = TC(cti; `ti) + V (T; t; ¾ti) = d(r0i; T; t)ĥti: (13)

Note that the estimator Ĥti does not distinguish the di®erent parts of the re¯nancing

hurdle. However, one can separate out the value of the call option from the transaction cost

6 In our case, we fully observe the intrinsic value of the mortgage ®ti and the transaction

cost of points and fees pti. Although we have information on credit ratings and home equity,

we cannot directly determine the related transaction costs. Of course, if these costs (e.g.,

TC(cti) and TC(`ti)) were also well-de¯ned, they can be subtracted from the intrinsic

value as well.
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by choosing certain convenient simulation scenarios. We know for instance that borrowers

who are not credit- or collateral-constrained are not likely to pay a transaction premium

(other than customary points and fees), meaning that the transaction costs TC(cti; `ti)

would be small. As a result, Ĥti would measure primarily the option replacement cost.

Similarly, we expect the value of the option replacement cost to be negligible if volatility

is small. Thus, Ĥti would most likely represent the cost of inadequate collateral or credit

when volatility is small.

The process of estimating the implicit re¯nancing hurdled faced by any holder of a

mortgage option can summarized in four key steps:

Step 1: Calculate the net intrinsic value of the mortgage Iti from equation (10).

Step 2: Use Iti along with a measure of volatility and other explanatory variables to

estimate a nonlinear version of the logit model for re¯nancing (equation (5)). Although

the functional form of g(xti¢¯) is arbitrary, it should be °exible enough to capture the

interaction of volatility with all other independent variables.

Step 3: Given the maximum likelihood estimate of the parameter vector ¯, generate

simulated values of the prepayment vega À(xti¢¯) (equation (8)) for di®erent scenarios of

volatility, loan maturity, credit quality, and home equity.

Step 4: Identify the minimum value of the prepayment vega and solve for the implicit

value of the re¯nancing hurdle (equations (12) and (13)).

4. RESULTS

4.1 Data and Model Speci¯cation

The data was provided by the Mortgage Research Group (MRG) of Jersey City, New

Jersey, which entered into a strategic alliance with TRW a large national credit bureau.

Our ¯nal sample includes about 13,000 transactions from these four geographic regions
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(New York /New Jersey, Central Florida, Chicago, and Los Angeles). The sample consists

of ¯xed-rate loans in which the property was purchased after 1984 and was subsequently

re¯nanced or the status of the loan remained unchanged as of the end 1994. In the ¯nal

step, the snapshots of credit histories were linked to a random sample of these proper-

ties by MRG. Using this cross-sectional sample, we constructed an unbalanced panel by

adding a time dimension to the data. The resulting panel represents the experience of

individual mortgage loans from the time of purchase to the time of re¯nancing or the

end of 1994 for mortgages that did not prepay. Each monthly episode for this individual

was matched with to an array of time-varying characteristics: prevailing mortgage rate,

volatility, current loan-to-value of the property, and transactions cost. The resulting panel

consists of approximately 560,000 observations, of which about 4,400 resulted eventually

in a re¯nancing.

We apply the four-step procedure outlined in the previous section to our sample

of mortgage re¯nancings. The logit model is estimated using a nonlinear speci¯cation,

which consists of higher polynomial powers and cross-product terms of the exogenous

information.7 This speci¯cation is quite useful in capturing the nonlinear aspects of the

call option. In the logit model, the binary dependent variable yti represents the decision

to re¯nance (one if the mortgage is re¯nanced and zero otherwise). The explanatory

vector xti¢ includes: (1) the intrinsic value of the mortgage (®ti); (2) interest rate volatility

7 This speci¯cation is similar to a Taylor expansion approximation. Suppose that the

explanatory vector includes K variables (x1; : : : ; xK). The nonlinear speci¯cation employed

in our analysis is:

B¤ = ¯0 +
KX
i=1

¯1ixi +
KX
i=1

¯2ix
2
i +

KX
i=1

¯3ix
3
i +

X
i;j

X
i 6=j

°ijxixj + ²:
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measured by the implied volatility of the option price of a 10-year Treasury note futures

contract (¾¶t); (3) TRW credit rating measure of the homeowner (cti); (4) post-origination

loan-to-value ratio (`ti); (5) point and fees (as percent of loan value) (6) age of the loan

(¿ti); and (7) size of the mortgage loan (sti).
8

Estimates of the nonlinear model used in simulations are more di±cult to interpret

and are therefore not presented in this paper. Table 1, however, summarizes the linear

logit speci¯cation. The results of the linear speci¯cation strongly support the view that

a homeowner's decision to re¯nanced is in°uenced by the intrinsic value of the mortgage.

In particular, the coe±cient on the annuity ratio ®ti is positive and highly signi¯cant. As

expected, the e®ect of points and fees is negative and strongly signi¯cant, con¯rming that

higher transaction costs raise the re¯nancing hurdle faced by homeowners. The current

loan-to-value ratio coe±cient is negative and very signi¯cant. A strong statistical signi¯-

cance of loan-to-value signi¯es that homeowners with insu±cient collateral are unable to

prepay their mortgage loan even if economic conditions are in their favor. These results

bolster the ¯ndings of Caplin, Freeman, and Tracy (1997) and Archer, Ling, McGill (1996),

8 In computing the net intrinsic value of the mortgage, we assume an existing mortgage

rate r0i and a current market rate rmti at which the borrower can re¯nance. In practice,

households can choose from a menu of mortgage rates and points. This creates a problem

in comparing the coupon rate on the existing loan the currently prevailing market rate.

To deal with this potential inconsistency, we estimated r0i by the average Fredie Mac

commitment rate on a 30-year ¯xed-rate mortgages for the month that the loan was initially

closed. Similarly, we estimated rmti by the commitment rate for the month that the

loan was re¯nanced. Finally, transaction costs are measured by points and fees charges

on conventional ¯xed-rate loans closed. This monthly series is compiled by the Federal

Housing Finance Board.
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who also ¯nd evidence that home equity is a critical factor in the decision to re¯nance.

Finally, to a lesser extent, the linear model suggests that a borrower's creditworthiness has

also an adverse e®ect on the probability of re¯nancing.

An important ¯nding of our analysis is that the marginal e®ect of volatility on the

likelihood of prepayment is negative. The negative relationship is key to our empirical

analysis because without it the prepayment vegas would not be convex. This result a±rms

that the value of the call increases when the volatility of the noncallable asset is expected

to rise. Higher expected volatility encourages borrowers to postpone re¯nancing because

the bene¯t from waiting to re¯nance would be greater in the future.

4.2 Estimates of the Re¯nancing Threshold

The logit model is estimated for three di®erent expected holding period scenarios: 15

years, 20 years, and 30 years. Using the maximum likelihood estimates of ¯, we estimate

the prepayment vega À(xti¢¯) by simulating the exogenous variables xti¢ over a wide range

of values. Figure 3 illustrates graphically the search process for determining the strike

price of the prepayment vega. The curves in the graph represent the prepayment vega

for three di®erent holding period scenarios. In all three cases, borrowers are assumed

to have unblemished credit histories and a loan-to-value ratio of 70 percent. The grid

search for ¯nding the minimum of À(xti¢¯) is done at increments of 0.01 of the value of

Iti. As seen in the ¯gure, the prepayment vega curve for the 15-year scenario (solid curve)

is minimized around Ĥti = 2:3 percent. The re¯nancing hurdle is higher for a lengthier

expected holding horizon (Ĥti equals 3.8 percent and 6.3 percent for the 20-year and 30-

year periods, respectively).

Table 2 summarizes the estimates of the re¯nancing threshold hti (as a percent of the

original loan value) for a broad range of simulations. Our numerical simulations assume:

(a) mortgage holders have either unblemished or poor credit rating; (b) the current loan-
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to-value ratio `ti takes the values of 40 percent, 70 percent, or 100 percent; and (c) the

implied volatility varies from 4 basis points to 8 basis points. The remaining explanatory

variables are evaluated at their mean.

The simulation results are consistent with reasonable behavior by homeowners. The

re¯nancing thresholds rise with the expected life of the mortgage and the value of the call

option increases with volatility. Typically, a homeowner in our sample has a spotless credit

history and a loan-to-value ratio around 70 percent. At the average volatility of 6 basis

points, the ¯nancing threshold for this mortgage holder is 4.44 percent. Because borrowers

in our sample paid on average an additional 2 percentage points in fees (as a percent of the

loan value), the intrinsic gain from re¯nancing would have to be greater than 6.44 percent

of the value of mortgage loan to warrant re¯nancing.

The re¯nancing threshold also depends on credit quality and collateral value. Note

that the e®ect of collateral is magni¯ed at higher holding periods. At a 15-years holding

horizon, a homeowner with a loan-to-value ratio of 100 percent has to pay 50 basis points

more in re¯nancing costs than the typical homeowner. This \surcharge" further rises to 80

basis points for a loan maturing in 30 years. This big jump in costs, however, should not

be construed that a homeowner with a 30-year loan is at a handicap. Table 3 recalculates

the re¯nancing threshold in terms of the coupon spread between the original mortgage rate

r0 and the prevailing market rate rm.
9 As seen from the table, the coupon rate di®erential

9 At this coupon spread, the net present value of the mortgage is equal to the re¯-

nancing threshold (see equation (9)). This point represents the minimum interest rate

di®erential that can justify re¯nancing. In our calculations, we assume: the average age

of the mortgage loan is t = 4 years; the average cost of points and fees pti is 2 percent (as

a percent of loan value); and the original coupon rate is 10 percent, which is the average

contract rate of the sample.
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needed to trigger a prepayment is larger for shorter maturities. Our ¯ndings also a±rm the

importance of interest rate uncertainty as the coupon spread needed to justify re¯nancing

rises with the level of implied volatility. Overall, we ¯nd that a delinquency would add

about 6 basis points to the homeowner's mortgage rate.10 Furthermore, a collateral-

constrained borrower would have to pay about 10 basis points more for re¯nancing than

the average homeowner.

5. SUMMARY AND CONCLUSION

This paper develops a method of computing the thresholds at which individuals will

re¯nance mortgage loan. In e®ect, we measure how large a change in the present value

of the debt is required to make it worth the expense of carrying out the transaction,

conditional not only on market conditions but on individual borrower characteristics as

well. Since re¯nancing has considerable transactions costs, including the cost of securing

new funding, the exercise of the re¯nancing option will depend on a variety of factors

outside the standard option valuation theory. How large the threshold is for a particular

household, for instance, will depend on its credit rating and its available collateral. Similar

principles would apply for businesses.

To compute these conditional thresholds, we take advantage of the prediction from

option theory that volatility will have its largest e®ect when an option is near the money.

Furthermore, we show that this point of the largest e®ect corresponds to a state where

the conditional probability of re¯nancing exceeds a critical value. We estimate logit equa-

10 On the surface, the e®ect of credit appears to be small. We should note, however,

that the credit variable used in our analysis represents the worst ever rating across all

credit lines some of which (for example, retail derogatories) are deemed as less °agrant.

Although the worst ever snap shot is a conservative measure that may underestimate the

importance of credit, it is nevertheless more reliable than other reported measures.
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tions using a panel data set on house re¯nancings, market volatility and interest rates,

credit ratings, collateral values, ¯nancing points and fees, and other household and market

data. We locate the re¯nancing spreads at which the e®ect of volatility on re¯nancing

probabilities is optimized. These are the re¯nancing thresholds, and they vary in size as

expected conditional on the credit, collateral, remaining maturity, and other measurable

characteristics. In short, we are able to compute in a positive (as opposed to normative)

manner how large a spread it takes to precipitate re¯nancings for di®erent categories of

homeowners.
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APPENDIX

The Vega of a European Call

Consider a simple European call option on a zero-coupon bond or stock. In the

Black-Scholes framework, the value of the call depends on the current asset price (S),

the maturity date (T), the strike price (X), the underlying risk-free interest rate (r), and

the volatility of the price of bond (¾). Mathematically, VE(S; T; t; r; ¾). Although the

strike price X may not be observable, we can determine the moneyness of an option by

considering its sensitivity to changes in volatility. This approach is applied extensively in

designing optimally hedged portfolios. The value of an option is positively related to the

volatility of the underlying asset. The e®ect of volatility, however, is strongest when the

option is near the money. In the Black-Scholes case, the partial derivative of the value of

the call with respect to volatility (the vega) is equal to

ÀE(z; ¾) =
@VE
@¾

= S
p
T ¡ t Á(z; ¾);

where Á(¢) represents the standard normal density function and z is a vector of other factors
other than volatility a®ecting the call value (see Hull (1993)). Figure A1 presents the vega

of the European call option for di®erent values of the bond price S. As seen, the vega is

always positive, although small for deeply away from the money positions. The vega of

the European call option reaches a maximum at the point where

S¤E = Xe
¡r(T¡t)e0:5(T¡t)¾

2

: (A:1)

Since e0:5(T¡t)¾
2

would roughly equal to 1 for reasonable values of (T-t) and ¾, the vega of

a European call is maximized approximately at the forward price of the strike price. This

result holds also for more general models. For instance, in Merton's European Call model

with a continuous dividend ±, the vega is

ÀE(z; ¾) = S
p
T ¡ t e¡±(T¡t)Á(z; ¾):
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Once again, one can show that the vega attains a maximum at

S¤E = Xe
¡r(T¡t)e0:5¾

2(T¡t)e¡±(T¡t): (A:2)
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TABLE 1. LOGIT ESTIMATES FOR THE DECISION TO REFINANCE

Variable Coe±cient Chi-square
Statistic

CONSTANT 1.721¤¤¤ 8.8

DUM-NY -0.750¤¤¤ 178.3

DUM-IL -1.368¤¤¤ 423.3

DUM-FL 0.093 2.7

cti -0.001¤¤¤ 46.3

®ti 0.020¤¤¤ 76.8

`ti -0.024¤¤¤ 1233.1

¾¶t -0.142¤¤¤ 46.3

pti -4.774¤¤¤ 1286.5

¿ti 0.668¤¤¤ 85.7

¿2ti -0.105¤¤¤ 28.4

¿3ti 0.002 0.9

sti 0.155¤¤¤ 30.7

Re¯nancings 4430

Nonre¯nacings 564289

Chi-square of Model 6612.1

Concordant Ratio 77.8

NOTES: DUM-NY, DUM-IL, DUM-FL are dummy variables indicating loans in New York,
Illinois, and Florida, respectively; ®ti = intrinsic value of the mortgage loan; pti = points
and fees (as percent of the loan value); `ti = current loan-to-value ratio (percent); cti is the
worst delinquency ever; ¾¶ represents the implied price volatility on options on the 10-year
treasury note futures (basis points); ¿ti = age of the loan (in months) ; sti = logarithm of
original loan balance. The symbols (¤ ¤ ¤), (¤¤), and (¤) indicate statistical signi¯cance at
the 1-, 5-, and 10-percent level, respectively.



TABLE 2. THE IMPLIED REFINANCING THRESHOLD (PERCENT OF ORIGINAL
LOAN VALUE, hti)

LTV, `ti
40 70 90

15 YEARS

VOLATILITY, ¾¶ CREDIT, cti

4 GOOD 2.12 2.53 3.03
POOR 2.32 2.73 3.23

5 GOOD 3.03 3.54 3.94
POOR 3.33 3.74 4.14

6 GOOD 4.04 4.44 4.95
POOR 4.34 4.75 5.15

7 GOOD 5.15 5.56 6.06
POOR 5.45 5.96 6.36

8 GOOD 6.87 7.27 7.68
POOR 7.26 7.69 8.08

20 YEARS

4 GOOD 2.93 3.54 4.14
POOR 3.23 3.84 4.44

5 GOOD 4.24 4.85 5.45
POOR 4.55 5.15 5.76

6 GOOD 5.56 6.06 6.67
POOR 5.86 6.46 7.07

7 GOOD 6.97 7.47 8.08
POOR 7.37 7.88 8.48

8 GOOD 8.99 9.49 10.10
POOR 9.49 10.01 10.61

30 YEARS

4 GOOD 4.24 5.15 5.96
POOR 4.55 5.45 6.36

5 GOOD 5.96 6.87 7.78
POOR 6.46 7.27 8.18

6 GOOD 7.58 8.48 9.39
POOR 8.08 8.99 9.90

7 GOOD 9.29 10.10 11.01
POOR 9.80 10.71 11.52

8 GOOD 11.31 12.12 12.83
POOR 12.10 12.84 13.54

NOTES: `ti represents the current loan-to-value ratio (percent); cti is the worst delinquency
ever (GOOD=unblemished credit, POOR=homeowner has defaulted); ¾¶ represents the
implied price volatility on options on the 10-year treasury note futures (basis points).



TABLE 3. THE IMPLIED MINIMUM COUPON RATE DIFFERENTIAL (basis points)

LTV, `ti
40 70 90

15 YEARS

VOLATILITY, ¾¶ CREDIT, cti
4 GOOD 108.4 116.4 126.1

POOR 112.4 120.4 130.1

5 GOOD 126.1 136.2 144.1
POOR 132.3 140.1 148.0

6 GOOD 146.2 154.0 163.5
POOR 151.8 159.6 167.3

7 GOOD 167.3 175.0 184.7
POOR 173.3 182.6 190.2

8 GOOD 199.8 207.6 215.1
POOR 207.3 214.7 222.1

20 YEARS

4 GOOD 88.0 97.2 106.5
POOR 92.6 101.8 110.9

5 GOOD 108.0 117.1 126.1
POOR 112.4 121.4 130.7

6 GOOD 127.5 134.9 143.7
POOR 132.0 141.0 149.7

7 GOOD 148.3 155.5 164.1
POOR 153.9 161.1 170.0

8 GOOD 177.0 184.3 193.4
POOR 184.0 191.0 199.3

30 YEARS

4 GOOD 77.6 87.9 97.0
POOR 81.0 91.4 101.4

5 GOOD 97.1 107.0 117.0
POOR 102.6 111.5 121.3

6 GOOD 114.7 124.6 134.2
POOR 120.1 129.9 139.6

7 GOOD 133.2 141.6 151.1
POOR 138.6 148.0 156.3

8 GOOD 154.2 162.8 169.9
POOR 162.6 169.7 176.8

NOTES: The original mortgage rate is set equal to 10 percent, the average coupon rate
of the sample. `ti represents the current loan-to-value ratio (percent); cti is the worst
delinquency ever (GOOD=unblemished credit, POOR=homeowner has defaulted); ¾¶ rep-
resents the implied price volatility on options on the 10-year treasury note futures (basis
points).


