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Abstract

We examine the behavior of trade inventories using both industry-level and
high frequency firm-level data. The cost structure underlying the firm’s opti-
mization problem—convex delivery costs vs. fixed costs of ordering—provides
the two competing hypothesis. In the presence of fixed costs (S, s) inventory
policies are optimal, and steady-state reduced-form predictions regarding the
dynamies of inventories and sales can be used to test the model. The alterna-
tive of convex delivery costs is provided by structural estimation of a linear-
quadratic (L-Q) model. At the industry-level, the results are consistent with
the reduced-form predictions of the (S, s) model, and structural parameter es-
timates obtained from Euler equation estimation indicate that the L-Q model
does not fit the data. At the firm-level, however, estimates of the structural
cost parameters are economically plausible, statistically significant, and gener-
ate observationally equivalent dynamics of inventories and deliveries as those
predicted by the steady-state reduced-form probability relationships derived
from the (S, s) model.
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1 Introduction

Following a period of dormancy during the 1960s and 1970s, empirical research on
inventories has undergone a veritable renaissance during the last two decades. The
impetus for this renewed effort came from a well-known, but periodically forgotten,
empirical observation that inventory fluctuations seem to contain valuable information
about the business cycle.! This observation have led macroeconomists to examine
inventories as a possibly effective way to identify both business cycle shocks and the
propagation mechanism of such shocks.

The vast majority of the recent empirical research effort on inventories has focussed
on the behavior of manufacturing inventories—see Ramey and West (1997) for a recent
comprehensive review of the literature. In one respect, this focus is very surprising.
As can be seen in Figure I, trade (retail plus wholesale) inventories have accounted for
more than one-half of total business inventory stocks in the US over the last decade—
consistent with the secular shift from manufacturing to services, the share of trade
inventories has also been trending upward.

Furthermore, the trade sector contains some of the most volatile components of
aggregate inventory investment. Figure II plots the growth rates of inventories for the
three components (manufacturing, retail, and wholesale trade) of the U.S. business
sector.? As can be seen in the figure, movements in trade inventories, in partic-
ular retail inventories, contribute significantly to aggregate inventory fluctuations.?
Despite the significance of trade inventories, empirical research has produced little
evidence on the behavior of trade inventories and their role in aggregate fluctuations;
the exceptions include Trivedi (1973), Irvine (1981b, 1981a), and Zakrajsek (1997).

In another respect, however, the focus on manufacturing inventories is not sur-
prising. The traditional workhorse model of applied inventory research, the linear-
quadratic (L-Q) model (Holt et al. (1960)), appears to describe more naturally the
behavior of manufacturers than the behavior of retailers and wholesalers. The pro-
totypical L-Q model assumes that firms face convex adjustment costs of produc-
tion/deliveries, which implies that firms will smooth production/deliveries in the face
of randomly fluctuating sales. Although some argue that the larger aggregate will

behave as if firms are solving such an optimization problem—even if individual trans-

1Nearly half a century ago, Abramowitz (1950) provided the first statistical evidence, showing that
a typical U.S. recession prior to World War II was characterized by intense inventory disinvestment.
More recently, Blinder and Maccini (1991) have shown that this regularity continues to hold in the
postwar data.

2The data are quarterly, end-of-period, and in billions of 1992 chain-weighted dollars. Inventory
growth rates have been demeaned and smoothed by a nonparametric Splus filter; the filter smoothes
the data by means of running medians and is designed to pick up broad trends in the data.

3Using the variance of inventory investment as a measure of volatility, Blinder and Maccini (1991)
find that nearly 25 percent of the aggregate variance comes from movements in retail inventories
alone.



actions are not precisely the same as those in the model (see, for example, Blanchard
(1983) and Section 3.4 of Ramey and West (1997))—the primary advantage of the
L-Q model for macroeconomists is that it is relatively easy to aggregate.

In contrast to the convex costs structure of the L-Q model, operations research
literature and business manuals suggest that firms in the trade sector are likely to
face fixed costs of ordering. Blinder (1981), Caplin (1983, 1985), Mosser (1988, 1991),
Blinder and Maccini (1991), and Fisher and Hornstein (1995) provide compelling ar-
guments that these fixed costs are crucial for understanding the dynamics of trade
inventory investment. Such costs lead to (S, s) inventory policies, which induce deliv-
ery “bunching” rather than delivery smoothing. The inherent nonlinearities in these
models, however, make aggregation and estimation harder and thus less appealing to
empirical macroeconomists.*

Despite these problems, the (S, s) model has the potential to explain many inter-
esting features of the macroeconomic inventory data. The bunching of deliveries im-
plied by the (S, s) model, for example, suggests that small shocks could be magnified
into larger fluctuations of inventories and deliveries, with implications for production
in the rest of the economy. In addition, as discussed in reference to consumer durable
goods expenditures by Caballero (1993), (S, s)-type policies are consistent with slug-
gish aggregate adjustment. Such policies, therefore, could provide an explanation for
the slow adjustment speeds that are typically estimated in stock-adjustment models,
or equivalently, the persistence of the “inventory-sales relationship” observed in the
data (see Ramey and West (1997)).2

In light of the relative significance of trade inventories and the implications of
(S, s) inventory policies, we believe that it is important to conduct more research into
the behavior of trade inventories. This paper is one small step in this process as we
examine the behavior of trade inventories using both aggregate industry- and high-
frequency firm-level data. Given the microeconomic foundations of the (S, s) model
and the difficulties in aggregating the model, an examination of the micro data is
an important first step before expending more effort in determining macroeconomic
implications of trade inventories. Our firm-level data are especially useful in this
context because our panel has a fairly long time dimension.

In the first part of the paper, we investigate whether the data are consistent with
the steady-state distribution predictions of Caplin’s (1983, 1985) (S, s) model. Like
Mosser (1988, 1991), we find that the industry-level wholesale and retail data are

4 Although there has been some progress in recent years to examine the macroeconomics of models
similar to (S, s). For example, see Bertola and Caballero (1990), Grossman and Larogue (1990),
Caballero and Engel (1991, 1993), Caballero (1993), and Eberly (1994).

5The “inventory-sales” relationship in Ramey-West (1997) terminology is & (linear) generaliza-
tion of the inventory-sales ratio. Letting H, denote inventories in period t and X, sales in period
t, the inventory-sales relationship is defined as a stationary linear combination Hy — AXq, where
the parameter A (i-e., cointegration parameter) determines the “long-run” equilibrium relationship
between inventories and sales.



largely consistent with Caplin’s model. We then extend her results by examining the
firm-level data and find that these data are also consistent with the Caplin model.

We further extend the analysis of Mosser in another direction. While her work
discussed the “delivery smoothing” model as an alternative to the (S, s) model, no
true alternative model is presented. In this paper, we estimate and test an inventory
model with convex adjustment costs—the L-Q model—as an alternative to the (S5, $)
model. Our results indicate that the L-Q model cannot adequately describe inventory
investment at the industry level. At the firm-level, however, the structural estimates
of the L-Q model are economically sensible and imply observationally equivalent pat-
terns of inventories, sales, and deliveries as those predicted by the (S,s) model in the
steady state.

The rest of this paper proceeds as follows. The next section provides a brief
summary of the steady-state distribution predictions of the Caplin (1983, 1985) (S, s)
model that were used by Mosser (1988, 1991). In this section, we also present the
alternative L-Q model and derive a testable specification of the associated Euler
equation. Section 3 discusses econometric issues. Section 4 describes the industry-
and firm-level data used in the analysis. Section 5 presents some preliminary evidence
in the form of variance ratios and simple correlations. Section 6 presents the results
from regressions similar to those in Mosser (1988, 1991). Section 7 presents the results
from estimating the L-Q model. Section 8 concludes and discusses the implications
for future research.

2 Theoretical Framework

In this section, we derive the empirical specifications that will be used to test various
inventory models. Section 2.1 uses theoretical results due to Caplin (1985) on the
reduced-form probability rules governing the dynamics of both individual and aggre-
gate inventories when fixed costs of ordering are present and firms use (S, s) policies
to manage their inventory stocks. Section 2.2 presents a version of the 1-Q model
and derives an estimable specification of the associated Euler equation characterizing
the optimal sequence of inventory decisions.

2.1 The (S,s) Model

Copsider a firm facing an exogenous demand process that is independently distributed
over time and must purchase its goods from a downstream supplier. The cost function
of the firm consists of two parts: a fixed cost per order and a constant marginal cost

per unit. Formally,
c(1r) o+aly, if¥r >0 (1)

= 0,ifY;=0
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where Y, are real orders in period t, c; is the constant marginal cost of placing an
order, and co is the fixed cost of placing an order. Scarf (1960) proves that under
these assumptions an (S, s) inventory policy is optimal—that is, (S, s) inventory policy
minimizes the expected, discounted present value of costs.

If the (S, s) targets are constant over time, an observer who examines data from
the firm at regular intervals will see it behaving according to the following rules:

D, = mQ, my > 0 an integer (2a)
and

S<H¢=Hg_1+Dt—XtSS. (2b)

In equations (2a) and (2b), H, denotes real end-of-period inventories, X, real final
sales, Q = S — s the order size, D, real deliveries, and mn, the number of orders during
period t.

As demonstrated by Caplin (1985), this model implies that a firm’s inventory
level is a stationary Markov process with a uniform ergodic distribution between s
and S. In addition, these distributions are independent across firms, which greatly
simplifies aggregation. The aggregate distribution is unimodal and symmetric about
the aggregate (s, S] interval. Consequently, inventories in any period have the same
unconditional distribution:

E(H;) = E(Hy-1) = ... = E(H,) = E(H), Vk. ©)

Using similar reasoning, Caplin (1985) shows that the expected value of inventories
conditional on sales, X;, is the same as the unconditional expectation:

E(H,| X,) = E(H,_,) = E(H,). 4)

Taking conditional expectations of the inventory accounting identity, H; — H;~y =
D, — X, and using equation (4), the expectation of deliveries conditional on sales is
given by

E(D:| X:) = X, (5)

implying that
Dt = Xg + &, where E(Et ng) =0. (6)

From equation (6), it follows immediately that
Var(D;) > Var(X;). (7

This is the first prediction of the (S, s) model that we will test. Because the (S, s)
rule is assumed to be monitored continuously, but observed at discrete intervals only,



equation (7) is true for any frequency of data. This prediction is the opposite of that
expected from simple delivery-smoothing models.
Equation (6) also implies that inventory investment is uncorrelated with sales,

Cov(X,, AH,) =0, (8)

where AH, = H; — H,_, denotes inventory investment. This is in direct contrast with
a delivery-smoothing model which would predict that Cov(X,,AH,) < 0. Equation
(8) is a stronger condition than the variance condition (7), because the variance
condition may hold when the correlation is positive or negative. Some L-Q models,
for example, would predict the variance condition, but they predict zero correlation
between sales and inventory investment only under special conditions.® In contrast,
equation (8) is a general prediction of the (S, s) model and holds both for individual
firms and for aggregate inventories.

Using equation (6) and the inventory accounting identity, we can derive the fol-
lowing regression that is the basis for most of our tests of the (S, s) model:

AH: =a+ ﬂXt + €. (9)

If firms are using constant (S, s) inventory policies to manage their inventory stocks,
we would expect that o = 0 and 8 = 0. If, on the other hand, the delivery costs are
convex and relatively large so as to induce delivery smoothing, then we would expect
B<0anda>0.

2.1.1 Delivery Lags and Serial Correlation in Sales

The predictions of the (S, s) model so far are based on several unrealistic assumptions:
iid. sales and no delivery lags. In this section, we consider some complications of
the basic (5, s) model. First, we relax the assumption of no delivery lags. Suppose
we extend our basic regression (9) to include lags of sales. If there are no delivery
lags, then the regression

AHg =oa+ ﬂng + ﬁxXg_l + ...+ BkXt—k + € (10)
will have @ = By = By = ... = Bx = 0. However, if there is a one-month lag
between orders and deliveries, then regression (10) would predict Bo=-1,6,=1,
and B, = ... = B = 0. Under more complicated delivery lag structures, the model

would predict a nonpositive coefficient on current sales and nonnegative coefficients
on lagged sales with the sum totalling zero. Depending on their structure, L-Q

6The L-Q model with quadratic delivery costs and an accelerator term that is sufficiently strong to
offset the delivery-smoothing motive can generate the variance condition. Under those conditions,
the L-Q model will also generate procyclical inventory movement, implying positive correlation
between sales and inventory investment (see Blinder (1986) and Kahn (1987)).
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models can also predict nonzero values for the coefficients on lagged sales, but these
coefficients may be either positive or negative.

Another potential complication is serially correlated sales. With serially correlated
demand, the current realization of sales provides a signal about future sales. Suppose
firms periodically change their (S, s) targets based on the recent behavior of sales.”
Under such policies, Blinder (1981) shows that deliveries should be positively related
to the change in the state of demand, provided that state changes occur relatively
infrequently. Caplin (1985) provides similar results for aggregate inventories across
steady states, proving that

E(D.| X, good state) > Xi;
E(Dg ‘ Xg, bad State) < Xg.

This implies that firms that adjust their (S, s) targets down in a recession will under-
replace sales and those that adjust their targets up in an expansion will overreplace
sales. This exaggerates the variance condition (7), and so in regression (9), we wouid
expect 3 > 0.

Finally, as discussed section 4.1, time-series evidence indicates that industry level
and aggregate sales have unit roots. If sales are I (1) and firms do not continuously
update their (S, s) targets, the steady state distribution of inventories conditional on
sales may not be uniform, which is crucial for Caplin’s aggregation results. Caballero
and Engel (1991), however, prove that even if inventories are not at their steady state
(uniform) distribution, changes in aggregate demand will on average be uncorrelated
with aggregate inventory investment. This suggests that in the following regression,

AHg =a-+ ﬂAXt + €, (11)

we would expect that § = 0 if firms are using (S, s) inventory policies.

2.2 The L-Q Model

The empirical predictions of the (S,s) model developed in the previous section are
not true structural economic relationships. Rather they are a set of reduced-form
steady-state relationships, with parameters that, unfortunately, cannot be mapped
back to an underlying optimization problem. In addition, alternative models with

7This type of behavior appears to be used in practice (see Ehrhardt (1979)). Periodic updating
of the (S, s) targets is not the optimal policy when sales are serially correlated, because ideally, firms
would adjust their targets after each realization of the demand process. This type of continually
optimizing behavior, however, is not readily observed—the complexity of continually calculating
new targets probably entails greater costs than maintaining constant targets over slightly longer
periods. Because the steady-state predictions of the (S, s) model do not depend on the optimality
of (S, s) policies, but only on the use of such policies, the steady-state predictions remain valid if
firms continue to use constant (S, s) targets.



convex adjustment costs—the 1-Q model in particular—can rationalize and generate
most of the reduced-form predictions implied by the (S, s) model in the steady state.
Thus it is important to examine whether inventory dynamics in the trade sector are
consistent with alternative cost structures.

In this section, we examine the most obvious alternative hypothesis, the L-Q model
with convex delivery costs. A simple variant of the L-Q model can be described as
follows. A representative retailer chooses an inventory policy that maximizes the
expected present discounted value of future cash flows, subject to the inventory ac-
counting identity and a cost function that includes linear and quadratic costs of
purchasing goods from manufacturers (i.e., delivery costs) and of holding inventories.
The problem is stated formally as follows:

T
max Il = Tli_{eoE: S P [periXews — C(Diyj Xeaj Herj1)]

=0
subject to

Hypj = Hevja + Dy = Xetjs
a1 az

C(Desss Xtajr Hewj—1) = E_Dt2+j + ‘E(ij—l — a3Xe45)? + eri Deass

{Do+5> Xejs Uts } =0 €XOgENOUS stochastic processes;

H,_y > 0 given;

where p; is the market price in period t at which the retailer can sell the goods to his
customers, 0 < p < 1 is the one-period discount factor, and E; is the mathematical
expectations operator conditional on information known at time ¢, which is assumed
to be equivalent to linear projections.

The scalar u, is an unobservable cost shock with zero mean (possibly serially cor-
related), which captures any stochastic variation in the cost structure of the firm. For
simplicity, we assume that revenues are exogenous, implying that profit maximization
is equivalent to cost minimization.

The model with convex delivery costs imposes the following restrictions on the
parameters: a,,a2 > 0 and a3 > 0. The parameter a; captures the increasing mar-
ginal costs of purchases and is interpreted as the second-order term in a quadratic
approximation to an arbitrary convex cost function.® The parameters a; and a3 are
related to inventory holding and stockout or backlog costs. The accelerator term,
2(Hpyj—1 — a3 Xs45)?, captures a trade-off between inventory holding costs on the

8A generic version of the L-Q model would also include quadratic delivery adjustment costs of
the form '-‘éﬂ(AD,)z, where the parameter ag captures increasing costs of changing deliveries. This
form of cost structure seems far more relevant for the manufacturing sector, where increasing costs of
changing production have economic meaning. In the trade sector, however, convex costs associated
with the change in deliveries do not seem economically plausible.
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one hand and stockout costs on the other. Maintaining a high inventory level implies
large holding costs but lower probability of stocking out. The firm’s optimal inventory
policy balances the two competing costs, with the optimal inventory level increasing
in the level of expected sales, hence, the accelerator effect.

The problem is solved in the usual manner. The Euler equation characterizing
the optimal sequence of inventory decisions is given by

Elay(Dy — pDer1) + paa(He — asXenr) + tr — pursa] = 0. (12)

Following West (1995), the Euler equation (12) is transformed into an estimable
specification by the Legendre-Clebsch normalization (i.e., choice of the left-hand-side

variable). Substituting the inventory accounting identity into equation (11), we can
define,

cH, = —(8*11,/0H})H, = [a1(1 + p) + pag) H,. (13)

Because the optimization problem is well-behaved, ¢ > 0, hence we can put cH; on
the left side of equation (12), divide through by ¢ and rearrange to obtain

H,

a axa
(—cl) Wign + (p Z 3) Xep1 + Vig2 (14)
= Wv+ v,

where

Wigh = —Xe+ Hia+ p(Xesr + Henr);
1
Veyo = (Z) (ue — pEues1) + €t42;
) a
€42 = — (';1) Whe — Eth,t+1] e (paz 3) [Xee1 — EXen);
W, = (Wit Xen)'s
7 = (1,7) = (ai/c pazaz/c).

Given a vector of instruments that is uncorrelated with vy, but correlated with W,
the parameter vector -y can be estimated by one of the family of instrumental variable
(IV) estimators developed in the Generalized Method of Moments (GMM) literature
initiated by Hansen (1982). From the estimate of v, the structural parameter a;/c
can be recovered directly and of a;/c and a3 using

a2 _1-mQ+p) T
1

e , *= (as/0) (15)



The estimates of the model’s structural parameters a,/c,az/c, and a3 determine
the relative variability of deliveries and sales in the model.? The sign of parameter a,
determines the sign of the marginal cost of deliveries, and hence the extent to which
there is delivery smoothing motive because of convex costs. If a3 = 0 and a;,e7 > 0,
the firm’s optimal inventory policy will lead to delivery smoothing, implying that the
variance of deliveries should be less than the variance of sales. If a3 > 0, as advo-
cated by Kahn (1987), the stockout avoidance motive may dominate, and the optimal
inventory policy may lead to delivery bunching, implying a variance relationship in
equation (7). As shown by Krane (1994), given a3 > 0, the smoothing or bunching of
deliveries will depend on the relative magnitudes of a; and a;.

3 Econometric Methodology

In this section, we briefly discuss various econometric issues behind the estimation of
both the reduced-form implications of the (S, s) model and structural parameters of
the L-Q model derived from Euler equations.

3.1 Reduced-Form (S, s) Regression
3.1.1 Industry-Level Estimation

Because the (S, s) predictions can be expressed as simple reduced-form regressions,
the estimation and testing of this model uses a standard OLS framework.!® The
primary complication is the treatment of upward trending sales in the industry-level
data. If sales are stationary about a deterministic trend, then the (S, s) band increases
deterministically. The targets in (S, s) models usually are a function of the square
root of demand (i.e., sales). In this case, by including trend terms in the regression, we
can estimate the (S, s) regressions in levels. In particular, we estimate the generalized
model with delivery lags (equation (10)) including linear and quadratic trend terms
in the regression.

Unit roots tests at the industry-level, however, indicate that industry-level sales
and inventories are I(1). Consequently, inference from the model estimated in levels
is invalid.1! In this case, sales must be first differenced, and as discussed in Section
2.1.1, we should estimate equation (11). Because the evidence clearly indicates unit

9Note that the parameters a; and az are identified only up to a scale. Thus from the Euler
equation we can only estimate ratios of these parameters.

10G¢andard errors in all OLS regressions are calculated using the Newey-West (1987) variance-
covariance matrix robust to heteroskedasticity and serial correlation (of up to 12 lags) in the residuals.

11 Gjven this evidence in favor of unit roots in the industry-level data, the reader may wonder why
we bothered to estimate the (S, s) regressions in levels. Our response is that the levels regression
can still be a useful check of the robustness of our results as well as providing a comparison with
the previous literature, in particular, Mosser (1988, 1991).
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roots in the industry-level data, we consider this specification as providing the most
reliable results concerning the validity of the (S, s) predictions at the industry level.!?

3.1.2 Firm-Level Estimation

The basic reduced-form prediction of the (S, s) model that we test at the firm-level
involves two modifications of equation (9). The first modification follows heteroge-
neous panel literature, which assumes parameter heterogeneity across firms and is
given by

AHy = a; + B, X + dme + €4, (16)
where ¢ = 1,..., N indexes firms and ¢t = 1,...,T indexes time. We assume that
the linear regression coefficients, 8;, i = 1,..., N, are constant over time but differ

randomly across firms in the sense that the distribution of coefficients is independent
of the exogenous regressors and disturbances; «; denotes a fixed firm effect, which
controls for any (time-invariant) unobservable heterogeneity in the conditional mean
among firms; dn; denotes an industry-specific time effect, which controls for shocks
common to all firms in a given industry in any given time period, and €; is iid.
(0, 0?) disturbance, assumed to be distributed independently of 8; and Xa.

We assume that the parameter f; is random and can be characterized by

ﬂi=ﬁ+ni7

where 7, is assumed to have zero mean and constant variance w?. The parameter of
interest is the average of coefficients f; across firms, which should equal zero under the
null hypothesis that firms use (S, s) inventory policies. The above assumptions yield a
standard heterogeneous panel formulation, and the average effect 8 can be estimated
consistently by the Mean-Group (MG) approach outlined by Pesaran, Smith, and Im
(1996).

The MG procedure first estimates equation (16) for each firm separately—after
nullifying fixed firm and industry-specific time effects—and the resulting estimates of
the slope coefficients §; are then averaged. This average yields a consistent estimate
of 3, as both N and T go to infinity. The variance of the MG estimator ﬁm is
computed directly from the individual estimates f,,...,8y as

-~ N -~ -
Var(Byg) = N—(Nl_'_l)‘ ;(ﬁi - Buc)?s

12We also estimated a generalized model which included six lagged first differences in sales in
equation (11). This had negligible effect on the coefficient on the contemporaneous first difference.
Because the interpretation of the coefficients on lagged first differences is not clear to us, we do not
include these results in the text.
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which can be proven to be a consistent estimator of Var(f8,) under fairly general
conditions.

The second modification of equation (9)—instead of allowing random variation
in the sales coefficient across firms—restricts the parameter 3 to be common to all
firms in a specific industry, but allows a different coefficient on sales for each industry.
Specifically, let Ii denote an indicator function that equals one if firm ¢ is industry
m and zero otherwise. The second specification is given by

AHig = o; + IimBX,'g + dmg + €51, (17)

After eliminating fixed firm and fixed industry-specific time effects with appropriate
transformations, equation (17) is estimated with OLS.

3.2 Euler Equation Estimation
3.2.1 Industry-Level Estimation

The presence of unit roots in sales and inventories has important implications for
the estimation of Euler equations at the industry level. Furthermore, the possibility
of cointegration between sales and inventories affects estimation of the intertemporal
first-order conditions. If both sales and inventories are [ (0), then equation (14) can
be estimated in levels (including a trend term). Even if sales and inventories are I(1)
but cointegrated, equation (14) can be estimated in levels, as the parameter estimates
will remain asymptotically normal (see West (1986, 1995)).

However, if sales and inventories are not cointegrated, then equation (14) must
first be differenced for estimation to proceed along standard lines. Although initially
surprising, the lack of cointegration can be rationalized in the L-Q model by assuming
that the cost shock u, follows a nonstationary process. Given that we find very scant
evidence of cointegration across trade industries—a result also found by Granger and
Lee (1989)—we decided to estimate equation (14) in first differences.

We estimate the differenced equation (14) using standard GMM techniques. Under
the assumption that the cost shock u: is a random walk, the residual term in the
differenced version of (14) will follow an MA(1) process. Valid instruments, therefore,
would be first differences of inventories and sales lagged at least one period. We allow
for the possibility of additional serial correlation by using first differences of sales and
inventories lagged at least two periods.

The variance-covariance matrix of the parameters is estimated using the quadratic
spectral (QS) kernel with the “plug-in” bandwidth parameter (see Andrews (1991)).
The structural cost parameters associated with the estimated parameter vector 4 are
then calculated as in equation (15) and their asymptotic standard errors are calculated
using the delta method.
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3.2.2 Firm-Level Estimation

To ensure consistency with the specifications used to test predictions of the (S,s)
model, the estimable Euler equation (14) is augmented with fixed firm and fixed
industry-specific time effects. It is well known that the standard technique of elim-
inating individual-specific effects—by transforming all variables to deviations from
their respective individual means—is inappropriate in a context of a dynamic model
with unobservable individual effects (see Nickell (1981), for example).* The theo-
retically correct way to estimate a dynamic model with individual effects is first to
difference the data—to eliminate the individual-specific effect—and then to estimate
the differenced equation using an instrumental variables procedure like GMM (see
Holtz-Eakin, Newey, and Rosen (1988), for example).

An alternative to first differencing that is very useful in the context of dynamic
panel data models is the orthogonal deviations transformation proposed by Arellano
and Bover (1995). The advantage of the orthogonal deviations transformation is that
it gives an equivalent to a within-group estimator while preserving the orthogonality
among the transformed errors. That is, individual effects are eliminated by subtract-
ing the mean of all available future observation from the first T — 1 observations in
the sample:

[ T-¢ 1 '
Th = [T_:'a_-i]x[Iit—(T_T)($u+l+"'+ziT)]; t=1,....T -1,

where z?, denotes the transformed variable, and (T —t)/(T — t + 1) is the weighting
factor that equalizes the variances.!?

We use the orthogonal deviations transformation to eliminate the unobservable
firm-specific effects from the firm-level Euler equation. Because the error term, Vi
in the Euler equation is, by construction, serially correlated, orthogonal deviations
transformation, consequently, induces higher-order serial correlation in the error term.
Under the assumption that the original error term v follows an MA(1) process,
a valid set of moment restrictions for period t in the transformed equation is given
by E[zqv}) = 0, where zi; = (Ha, .- -, Hie-3, X1, - - -, Xut-3, D) is a vector of valid
instruments for period t, v}, is the transformed error term, and D,, denotes the
relevant industry-specific time dummies. A complete set of moment restrictions for
firm i is given by E[Z;v}] = 0, where

Zl'=diag[Hily---1HinXi11-~-1XiaaD‘ml]; S=1,...,T’,‘ —3y

1350 OLS or an IV estimator obtained from data that have been transformed in this manner is
inconsistent, for finite 7', because of the asymptotic correlation that exists between the transformed
lagged endogenous variables and the transformed error term.

14This transformation can be regarded as first differencing the equation to eliminate individual-
specific effects, followed by a GLS transformation to remove the serial correlation induced by
differencing.
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and diag[-] represents a block-diagonal IV matrix of the type discussed in Arellano
and Bond (1991); and v} is a (T; x 1) vector of transformed errors for firm i.

Because the panel is unbalanced, dim(Z;) = dim(Z;) if and only if firm ¢ and
firm j are in the sample the same number of periods. An IV matrix for the com-
plete transformed system is obtained by stacking up the relevant firm-specific IV
matrices, Z = (Z},...,2Zy)', and adding columns of zeros where necessary to ensure
conformability. The resulting transformed equation is estimated with an asymptoti-
cally efficient two-step GMM estimator of the type presented in Arellano and Bond
(1991)."* As in the case of industry-level data, the structural parameters of the L-
Q model are obtained from equation (15), and their asymptotic standard errors are
computed by the delta method.

4 Data
4.1 Industry-Level Data

The source for the industry-level data on sales, end-of-period inventories, and inven-
tory investment is the Bureau of Economic Analysis, U.S. Department of Commerce.
These monthly, seasonally adjusted data are in billions of 1992 chained-weighted dol-
lars. Deliveries are calculated using the accounting identity D, = X, + AH,.

The data are available from January 1959 through August 1997 for nine categories
of retail establishments, as well as for the aggregate retail trade and the durable and
nondurable sectors. For the aggregate wholesale sector—as well as total nondurable
goods and total durable goods—the data also are available from January 1959 through
August 1997. For the 18 three-digit SIC wholesale categories,the data are available
from January 1967 through August 1997.'° '

15 An asymptotically efficient GMM estimator would exploit all (linear) moment restrictions. Given
that our panel has a long time series dimension, using all moment restrictions would result in an
IV matrix Z with several thousands columns. For computational reasons it is clearly impractical
to use all of the available instruments. In addition, given the actual sample size, the finite-sample
properties of the estimator are likely to be affected by the use of an excessive number of instruments.
Consequently, only lags 3 to 5 were used as instruments. As a robustness check, we extended the
lag length to 6 without affecting any of the results.

The estimation was carried out by DPD.sas—a set of general panel data estimation routines
written in SAS by the Egon Zakrajsek—that are based on the GAUSS version of a similar program
written by Arellano and Bond (1988).

16)\fuch of the industry-level analysis was repeated using data from January 1976 through Decem-
ber 1996, which matches the time period of the firm-level data. This had little substantive effect on
our results.
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4.1.1 Unit Root and Cointegration Issues

As discussed in the industry-level econometric methodology section, unit roots in
sales and inventories and the fact that inventory levels and sales may be cointegrated
could have a significant effect on the estimation and inference of our models. In this
section, we briefly discuss these issues. For the sake of brevity, we do not report any
of these results, which are available upon request.

We test for the presence of unit roots at the industry-level using the general-
ized augmented Dickey-Fuller (ADF) procedure developed by Im, Pesaran, and Shin
(1995).17 This allows us to examine the univariate time series properties of the indus-
try panel in a compact and relatively simple manner, while allowing us to exploit the
advantages of the panel structure of the data. Using this procedure, we find that we
cannot reject the null hypothesis of an unit root for the log-level of inventories and
sales, but we can reject the unit root hypothesis for the growth rates of inventories
and sales and for inventory investment. We thus conclude that inventories and sales
in the industry-level data are I(1), while inventory investment is 1(0).18

The presence of cointegration between sales and inventories has a significant effect
on Euler equation estimation. Given the very preliminary state of testing for cointe-
gration in panels (see Pedroni (1997)), we have decided to be inconsistent with our
panel data unit root tests, and examine cointegration for each trade industry and the
aggregates separately, using the Johansen (1991) methodology.!®

The test statistics indicate that in most industries and in the aggregate sales and
inventories are not cointegrated—in addition, there is no discernible pattern across
industries for which we find the evidence of cointegration.?’ The fact that sales and
inventories in so many industries are not cointegrated led us to decide to estimate the
Euler equation of the L-Q model in first differences.

17The tests were performed on separate panels for retail and wholesale trade, because the time
dimensions of the series in the two sectors differ. The data are in logs with the exception of inventory
investment. The panel version of the ADF regression for an arbitrary variable g;; is Agi; = a; +
?:Gie—1 + Z’;‘:, 0;Agi—j +6it +de + 4t where i indexes industries and ¢ indexes time. Unobservable
common shock, dy, is eliminated by transforming all variables as deviations from their time-specific
means; we set p; = 12, Vi. The null hypothesis of a unit root is Hy : ¢, = 0,Vi, against the alternative
of trend stationarity, Ha : ¢; < 0,Vi.

18Examination of the separate ADF regressions for each trade industry and aggregate largely
confirms these results. Only for sales of retail pondurables and the metals and minerals industry in
the wholesale sector is the unit root hypothesis rejected at a conventional significance level.

19The number of lags included in the underlying VAR model for the test is six.

20The results here are similar to those of Granger and Lee (1989) for trade industries. The one
major difference is in retail automotive category—Granger and Lee (1989) find no cointegration for
this industry, but we find cointegration.
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4.2 Firm-Level Data

The firm-level data used in this paper come from the Compustat quarterly P/S/T, Full
Coverage and Research data files. The data set used in the analysis is an unbalanced
panel of 824 trade firms covering the time period 1976:Q1 to 1996:Q4 (84 quarters);
the minimum tenure in the panel is 12 quarters and the longest is 84 quarters, yielding
a total of 24,995 observations. The exact selection procedure and the construction of
all variables are described in the Data Appendix.

In Table 1, we provide surnmary statistics for some of the relevant variables.
Measured by assets, the median firm size in our sample is almost $150 million, which
by trade sector standards is a fairly large firm—the distribution of firm size is also
heavily skewed as indicated by the difference between the mean and the median.
Investment in inventories—measured in arithmetic changes or in growth rates—is on
average positive and extremely volatile, with standard deviation exceeding the mean
by several orders of magnitude. The median firm quarterly inventory-sales ratio is
about 0.50, which is only slightly above the average quarterly inventory-sales ratio
for the aggregate trade sector.

5 The Relative Variability of Deliveries and Sales

We begin our analysis by examining whether our data are consistent with elementary
predictions of the (S, s) model—that the variance of deliveries is greater than the
variance of sales and that the correlation between inventory investment and sales is
Z€ro.

5.1 Industry-Level Results

Because deliveries and sales at the industry-level are J (1), we examine a number of
alternative versions of the variance ratio to be sure that the results are robust to the
presence of unit roots. The three versions which are presented in the tables are: (1)

z—:‘;&%, where the levels of deliveries and sales are detrended using linear and quadratic

time trends as in Mosser (1988, 1991).2' (2) %%;—%’-, where the first differences were
detrended using a linear trend to be consistent with the detrending used in the first
ratio.? (3) 1+ %%2—;—3‘(—:1 ~ %:—:{%, a ratio calculated by Ramey and West (1997),
which is robust to the presence of unit roots. In the tables, we also present the
correlation between detrended inventory investment and detrended level of sales.

71We also examined detrending the industry-level data using a broken linear trend as in Ramey
and West (1997). The results were not affected in any substantial way.

22We also examined some alternatives to the above detrending choices: first differences of the raw
data with no detrending and first differences of the detrended data (using linear and quadratic time
trends as in (1)). The results were not substantially different from those presented in the paper.
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These variance ratios and correlations using industry-level data are presented in
Table 2A for the retail sector and Table 2B for the wholesale sector. Uniformly across
trade industries and aggregates, each version of the ratio indicates that deliveries are
more volatile than sales, which consistent with the predictions of the (S, s) model. In
addition, the correlation between inventory investment and sales presented in the last
column is small (and mostly positive) for almost all categories. These results may not
be surprising given those of Mosser (1988, 1991) and the results using aggregate data
from the US and other countries (see Ramey and West (1997)), but they do indicate
that further examination of the (S, s) model for trade industries is warranted.

5.2 Firm-Level Results

Although unit roots are not an issue at the firm level, we computed the three versions
of the variance ratio, as well as the correlation between inventory investment and sales,
for each of the 824 firms in our panel. Each variable was demeaned firm-by-firm prior
to computing these statistics, which is consistent with the statistics reported for the
industry-level data.

In Table 3, we present measures of the sample distribution—mean, variance, me-
dian, and quantiles—across firms for each of these statistics.?® Given the consistent
pattern of the relative variability of sales and deliveries in the aggregate and industry-
level data, there is considerable cross-sectional heterogeneity for each of the measures
of the variance ratio. Still, by any measure of the ratio, the variance of deliveries
exceeds or is close to the variance of sales for a significant fraction—more than 50
percent—of firms in the sample.2! Furthermore, the correlation between inventory
investment and sales is not significantly different from zero for most firms.?® This is
consistent with many firms in the sample following (S, s) inventory policies.

For both the industry- and the firm-level data, the variance ratios are largely
consistent with the predictions of the (S,s) model. Armed with this preliminary
evidence, we turn to a more thorough analysis of whether trade sector inventory
behavior is consistent with the (S, s) model.

23These statistics computed across the cross-section of firms are not weighted. Weighting by the
tenure of the firm in the sample does not have any material effect on the resuits.

24 A cursory examination of the variance ratios by industry indicated that the distribution of the
statistics did not differ much across 2-digit SICs.

25]f the calculated firm-specific sample correlation was not significantly different from zero at the
10 percent significance level, the correlation was recorded as zero.

17



6 The (S,s) Regressions

6.1 Industry-Level Results

As discussed in Section 3, we estimate two different specifications of the (S, s) regres-
sion model using industry-level data. The first specification is the generalized model
with delivery lags estimated in levels, equation (10). The number of lags of sales
included in the model is six.2% The results of estimating this regression are presented
in Table 4A (retail trade) and in Table 4B (wholesale trade).

The first thing to note is that exclusion tests indicate that the coefficients on
lagged sales are not jointly zero in many industries, which is consistent with the
presence of delivery lags in the (8, s) model. This is especially true for durable goods
retailers and wholesalers, where the null hypothesis that B; = ... = Bg =0 can be
rejected at the 5 percent significance level in 3 out of 4 retail categories and in 7 out of
0 wholesale industries. For nondurable goods retailers and wholesalers, the rejections
of the exclusion restrictions are less frequent.?’

The estimated coefficients are largely consistent with the predictions of the gen-
eralized (S, s) model. For almost all categories in Tables 4A and 4B, the coefficient
on contemporaneous sales is statistically not different from zero or is negative; the
sum of the coefficients on contemporaneous and lagged sales—even when statistically
significant—is very close to zero. The major exceptions are lumber and building
materials and furniture and home furnishings in the retail sector, and furniture and
hardware in the wholesale sector. In these categories, the evidence—in particular, the
positive coefficient on contemporaneous sales and the quantitatively small sum of all
the sales coefficients—poirits to significantly negative coefficients on lagged sales.?®
This is contrary to the prediction that the coefficients on lagged sales should be non-
negative. It is not clear to us why this is so, but the strongly positive coefficient on
contemporaneous sales would be difficult to explain in a simple delivery smoothing
model also.

The second specification we estimated, equation (11), takes into account that sales
are nonstationary. The results presented in Tables 5A (retail trade) and 5B (wholesale
trade) are largely in line with the predictions of the (S,s) model. For most trade
industries, the coefficient on the first difference of sales is zero or even positive.?

26Gix lags were chosen in order to be comparable to Mosser (1988, 1991); the regressions also
include linear and quadratic time trends.

27The exclusion restrictions can be rejected in 2 out of 5 nondurable goods retail categories and
in 2 out of 9 nondurable goods wholesale industries (6 out of 9 at the 10 percent significance level).

2 For two other wholesale industries, groceries and petroleum products, there are similar indica-
tions, but the exclusion restrictions on lagged sales coefficients can only be rejected at the 10 percent
significance level.

29The latter include retail lumber and furniture and wholesale furniture and hardware, where we
had observed a positive coefficient on contemporaneous sales in the levels regression.
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The one exception to this pattern is an admittedly large one, the retail automotive
group, where the coefficient on the first difference of sales is significantly negative.*
Given the close relationship between automobile dealers and manufacturers, it is not
surprising that this industry could provide results which differs from other trade
industries; for example, see Blanchard’s (1983) study of inventories in the automotive
industry.

Nevertheless, our overall results using the industry-level data largely confirm the
results of Mosser (1988, 1991). We next turn to a more thorough analysis of the
firm-level data to examine whether the behavior of these firms is consistent with the
predictions of the (S, s) model.

6.2 Firm-Level Results

Because firm heterogeneity induces heteroskedasticity in the error term, we divide
both sides of every regression by a lag of (real) total assets. Table 6 presents estimates
of a random coefficients model given in equation (16). The estimated mean of the sales
coefficients across firms is 0.04, and is highly statistically significant. This estimate is
consistent with the (S, s) model where firms change their targets periodically based
on recent sales behavior. In addition, this estimate is quantitatively larger than most
of the industry-level estimates from the differenced specification in Tables 5A and 5B.

The second model we estimate allows the slope coefficient to vary across industries.
The results of estimating this specification are presented in Table 7. For most indus-
tries, the sales coefficient is nonnegative, which is consistent with the (S, s) model.
Although the estimates of the sales coefficient are more tightly bunched across in-
dustries and have smaller magnitudes in this regression than they do at the industry
level, there remain some noticeable differences across industries. For example, the
slope coefficients for the two wholesale categories are positive, statistically highly sig-
nificant, and larger than those in the retail categories. In addition, the coefficient on
sales for the furniture and home furnishings category is significantly positive, as was
the case in the industry-level regression.

There is one industry were the estimated sales coefficient is not consistent with
the simple predictions of the (S,s) model. The department stores category has a
negative and a statistically significant slope coefficient of -0.05, which is consistent
with delivery smoothing. From an economic perspective, we find this result surprising,
because department stores commonly are not thought to be smoothing deliveries.
Moreover, the industry-level regressions do not suggest that data from this industry
should be inconsistent with the steady-state predictions of the (S, s) model.

Contrast the results of this industry with those of the automotive group retail
sector—an industry where the industry-level regressions indicate possible delivery

30The effect of the retail automotive group is large enough so that the coefficient on sales difference
for total retail sector as well as for total durable goods retail sector is negative.
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smoothing and one which is thought to have unique characteristics conducive to
delivery smoothing. The coefficient for the automotive group, however, is essentially
zero, and so it surprisingly does not provide evidence of delivery smoothing at the
firm level.

The reasons for these surprising results for department stores and the automotive
group will require further study. Nevertheless, the preliminary conclusion we derive
from both the industry-level and firm-level (S, s) regressions is that both the industry-
and firm-level data are consistent with the steady-state predictions of the (5, 5) model.
These predictions, however, are simple reduced-form relationships which, although
not compatible with simple delivery smoothing models, could be compatible with
more complicated L-Q models. To examine this possibility, we now turn to the Euler
equation estimation of the L-Q model.

7 The L-Q Model Estimates

7.1 Industry-Level Results

In this section, we examine how well does the L-Q model fits the industry-level trade
data. As discussed in Section 3, the Euler equation (14) is estimated in first differ-
ences. Because the residual in the differenced form of equation (14) follows at least
an MA(1) process, we use a constant, lags two through four of the first difference in
sales and lags two through four of the first difference in inventories as instruments in
the GMM estimation. The results from this estimation are presented in Tables 8A
(retail trade) and 8B (wholesale trade).

Although there are few outright rejections of the over-identifying restrictions, the
estimates of the structural parameters indicate that the L-Q model with convex ad-
justment costs does not fit the data very well.3! The parameter a;/c, which measures
the increasing marginal costs of deliveries, is positive and statistically significant for
only three retail categories and three wholesale industries. For most of the other
industries, the parameter is statistically not different from zero, suggesting that mar-
ginal costs are linear in deliveries—consistent with the cost structure of the (S, s)
model.%?

The coefficient ag/c, which measures the strength of inventory holding costs, is the
most precisely estimated parameter of the L-Q model using the industry-level data.
It is positive—its theoretical sign—and statistically significant in 6 retail categories

31We can reject the overidentifying restrictions for only 2 out of 9 retail categories and 6 out of
18 wholesale industries.

321y one retail category (other durable goods stores) and three wholesale industries, the estimate
of this coefficient is negative, which also suggests nonconvex costs and delivery bunching. Since the
estimated |a| is small relative to the estimated a2 in these industries, the linear-quadratic problem
would stilt be well-posed; see Ramey (1991) for more on nonconvex costs in these models.
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and 13 wholesale industries; in remaining industries, the parameter estimates are
not significantly different from zero. This suggests that inventory holding costs are
important for these industries. In addition, note that for most of those industries
where the parameter a,/c is positive, the ratio a;/a; tends to be relatively large,
indicating that the model is trying to capture the persistence of the inventory-sales
relationship. On the other hand, the ratio @,/a; tends to be relatively small in those
industries where the parameter estimates point to a nonconvex costs structure—for
these industries, the model appears to be trying to capture the procyclical behavior
of inventories.

The parameter az, which measures the relative strength of the stockout motive
to hold inventories, is imprecisely estimated. It is positive—its theoretical sign—
and statistically significant in only 4 retail categories and 2 wholesale industries. It
is statistically not different from zero in the rest of the industries, although there
are several industries with negative point estimates. The fact that the parameter
capturing the stockout avoidance motive is not strongly positive in most industries
implies that it would be difficult to explain procyclical movements in inventories at
the industry-level by appealing to stockout costs—an argument advanced by Blinder
(1986) and Kahn (1987) to explain procyclical behavior of inventories in L-Q models.

We take the fact that the estimates of the Euler equation across industries are
diverse with many “nonsensical” parameters to indicate that the L~Q model is having
a hard time matching the industry-level trade data. This suggests that such a model
with convex costs, which implies delivery smoothing, is a poor representation of trade
inventories, at least at the industry level. We next turn to the firm-level data to see
whether the model can have more success at the firm level.

7.2 Firm-Level Results

Estimates of the structural cost parameters obtained from the firm-level Euler equa-
tion estimation are presented in Table 9. In contrast to the industry-level results,
estimates of the cost parameters from the firm-level data are consistent with a slightly
convex delivery cost function, significant inventory holding costs, and a strong accel-
erator motive.

The estimate of a;/c, which captures the curvature and the slope of the delivery
cost function, is 0.04, statistically highly significant, and indicates that the marginal
delivery cost function is upward sloping. Coupled with the statistically significant
estimate of 0.98 for the parameter a;/c—which measures the relative strength of
inventory holding costs—the estimated ratio of delivery-to-holding costs, a;/as, is
approximately 0.04, indicating that the accelerator term in the cost function will
dominate the overall dynamics of inventory investment.

The relative size of these two parameters and the economically and statistically
significant estimate of the stockout parameter, as, is consistent with the variance
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condition given in equation (7) and procyclical movements in inventories, both of
which we observe at the firm level. The point estimate of the stockout parameter,
as, is 0.17, implying a target-level of 17 percent of quarterly sales for the stockout
avoidance motive, which to us seems like a sensible estimate.?

Despite what seem like economically plausible estimates of the structural cost
parameters, the over-identifying restrictions imposed on the model can be rejected
at a two percent significance level, casting some doubt on the validity of the L-Q
model. While tests of the first-order (m,) and second-order {m;) serial correlation
indicate residual serial correlation of at least order two, both sales and inventories
lagged at least three periods were used as instruments. We re-estimated the model
with instrument lagged four periods and more, which had no appreciable affect on
the parameter estimates, although we can now reject the over-identifying restrictions
only at a (marginal) seven percent significance level. This result is consistent with a
cost shock process that is highly autocorrelated and which induces higher-order MA
process in the Euler equation error term.

8 Concluding Remarks

In this paper, we have examined the (S, 5) and linear-quadratic (L-Q) models of trade
inventory behavior using both industry- and high-frequency firm-level data. For both
of our data sets, we could not reject the steady-state reduced-form predictions of
Caplin for the (S, s) model. In addition, estimates of the structural cost parameters of
the L-Q model at the industry level are mostly of the “wrong” sign and are imprecisely
estimated.

At the firm level, however, the estimates of the underlying cost parameters of
the L-Q model are economically meaningful and statistically highly significant. The
estimated cost parameters are consistent with a slightly convex delivery cost func-
tion, economically significant inventory holding costs, and a strong stockout avoidance
motive. The relative magnitude of the estimated cost parameters implies that inven-
tory holding costs will dominate the overall inventory dynamics, which coupled with
the strong stockout avoidance motive will generate procyclical inventory movements,
highly persistent inventory-sales ratio, and the variance of deliveries exceeding the
variance of sales.

The dynamics implied by the estimated cost parameters at the firm level are
observationally equivalent to the steady-state probability relationships of inventories,
sales, and deliveries derived from the (S,s) model. The economically meaningful
estimates of the structural cost parameters obtained from the firm-level data suggest
that aggregation may be in part responsible for the failure of the L-Q model at the

33\We also estimated the Euler equation for the retail and wholesale trade firm separately and
obtained virtually identical parameter estirnates.
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industry level.

To provide a more definitive answer about which model may best explain the
behavior of trade inventories will require further refinement of both models. In par-
ticular, future research will have to examine structural estimates of the (S, s) model
and the dynamics implied by it. High-frequency firm-level data may prove particu-
larly useful in this exercise, because it allows us, for example, to examine the evolution
of the cross-sectional distribution of inventories over time.
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A Data Appendix

This section describes the construction of variables and the selection rules used to
construct of the firm-level panel data set for our analysis.

A.1 Construction of Variables

o Inventories: The Compustat data report the book value of total inventories.
In the trade sector, inventories consist almost entirely of finished goods invento-
ries (see Blinder and Maccini (1991)). Many retailers are thought to follow first
in, first out (FIFO) pricing practices; namely, once a finished good is placed
on shelves, it is given a price tag that remains on the item regardless of what
subsequently happens to the price of newly produced goods (see Okun (1981),
pp. 155-60). Although the firm-level Compustat data does provide limited in-
formation on the inventory accounting practices, we assumed that all inventory
stocks are evaluated using the FIFO method, so that the replacement value of
inventory stocks equals their book value. To convert nominal reported value of
inventories to real terms, inventory stocks were deflated by the chain-weighted
sectoral (i.e., retail and wholesale) inventory deflator; real inventory investment
was define as the first difference in real inventories.

e Sales: To construct a real measure of sales, the reported nominal value of sales
was deflated by the industry-specific (2-digit SIC) chain-weighted sales deflator
for the retail trade sector.

e Deliveries: Using real sales and real inventory investment, deliveries were con-
structed from the accounting identity D = X + AH; any remaining variables
used in the analysis (e.g., total assets) were deflated by the chain-weighted 1992
GDP price deflator.

A.2 Selection Rules

From the P/S/T, Full Coverage, and Research Compustat data files, we selected all
firms with at least 12 continuous quarters of data between 1976:Q1-94:Q4. This
procedure yielded a sample of 1,054 firms. To avoid results that are driven by a
small number of extreme observations, three criteria were used to eliminate firms
with substantial outliers or obvious errors:

1. If a firm’s estimate of deliveries from the accounting identity D = X +AH

was negative at any point during a firm’s tenure in the sample, a firm was
eliminated in its entirety.
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2. If a firm’s growth rate of (real) inventories was below the 0.50th or above
the 99.50th percentile of the distribution at any point during a firm’s tenure
in the sample, a firm was eliminated in its entirety.

3. If a firm’s growth rate of (real) sales was below the 0.50th or above the

99.50th percentile of the distribution at any point during a firm’s tenure
in the sample, a firm was eliminated in its entirety.

As a consequence of these selection rules, 230 firms were eliminated, leaving 824
firms in the final data set.* By sector, 293 firms belong to the wholesale trade sector,
and 531 firms belong to the retail trade sector.

34Gubsequent analysis of firms that were deleted from the sample revealed severe anomalies in
their data (e.g., quarterly growth rates of sales and inventories in excess of 200%.
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Table 1

Firm-Level Data
Summary Statistics

" Variable Mean Std. Dev. Median
Inventories 160.1 489.6 39.9
Net Sales 351.2 1017.4 81.8
Deliveries 360.0 1030.7 85.0
Total Assets 729.0 4048.3 1474
Inv/Sales Ratio 0.59 0.44 0.52
Inv. Investment 2.48 73.3 0.12
Inv. Growth Rate (%) 1.79 15.9 1.68
Sales Growth Rate (%) 1.76 21.2 2.02
No. of Firms 824
Max. Tenure 84
Min. Tenure 12
Avg. Tenure 30.3
Observations 24,995

Notes: Sample period: 1976:Q1-96:Q4. All variables are in
millions of 1992 chain-weighted dollars.
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Table 2A

Retail Trade
Relative Variability of Deliveries and Sales
. E e 12 2_ y2i€

Industry Classification %%% %ﬁ%— 1+ %’;—ra’%l)— Corr(AH, X)?
Retail Trade 1.09 1.57 2.91 0.05
Durable Goods 1.15 1.49 2.54 0.06
Automotive Group 1.21 1.50 2.00 0.01
Lumber & Building Materials 1.27 5.71 4.61 0.11
Furniture & Home Furnishings  1.03 6.43 4.94 -0.07
Other Durables 1.58 10.9 7.50 0.06
Nondurable Goods 1.05 1.88 2.41 -0.05
Food Stores 1.07 1.26 1.95 0.05
Apparel Stores 1.27 3.44 2.74 -0.02
Department Stores 1.11 4.42 3.29 -0.06
General Merch. Stores 1.16 5.11 4.31 0.01
Miscellaneous Retail 1.03 2.32 2.55 -0.04

Notes: Sample Period: 1959:01-97:08. The data are seasonally adjusted in millions of 1992 chain-
weighted dollars; D denotes deliveries, X denotes sales, and AH denotes inventory investment. All variables
are linked by the identity D = X + AH.

%Detrended levels.

*Detrended first-differences.

This term is essentially Var(D)/Var(X), computed under the assumption that both D and X are non-
stationary; see Ramey and West (1997) for details

9Detrended first-difference and detrended level.
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Table 2B

Wholesale Trade
Relative Variability of Deliveries and Sales

A N a b 2_ y21€
Industry Classification V‘;g{) %%(—i—lj’())— 1+ %l?gr—(:_xl)' Corr(AH, X)?

Wholesale Trade 1.08 1.64 2.66 0.12
Durable Goods 1.12 2.16 2.17 0.18
Motor Vehicles 1.27 3.06 2.60 0.11
Furniture 1.46 3.46 2.38 0.09
Lumber 1.11 2.00 2.06 0.09
Professional Equip. 1.01 3.62 2.22 -0.04
Metals, Minerals (ex. Petroleum) 1.23 2.32 2.97 0.25
Electrical Goods 1.17 3.75 4.66 0.14
Hardware 1.37 3.94 3.67 0.18
Machinery 1.29 4.50 4.99 0.20
Other Durables 1.07 1.66 1.52 -0.06
Nondurable Goods 1.08 1.68 1.45 0.02
Paper Products 1.18 2.53 2.31 0.05
Drugs & Sundries 1.25 6.32 4.04 0.06
Apparel 1.47 2.86 2.56 0.13
Groceries 1.13 1.63 1.43 0.12
Farm products 1.14 1.61 1.35 0.02
Chemical & Allied Products 1.10 1.94 1.67 -0.00
Petroleum Products 1.08 1.29 1.28 0.09
Alcoholic Beverages 1.43 1.80 1.64 0.05
Other Nondurables 1.13 1.92 1.35 -0.04

Notes: For the wholesale trade and durable and nondurable categories the sample period is 1959:01-97:08;

for the 2-digit SICs, the sample period is 1967:01-97:08. The data are seasonally adjusted in billions of 1992
chain-weighted dollars; D denotes deliveries, X denotes sales, and AH denotes inventory investment. All
variables are linked by the identity D = X + AH.

%Detrended levels.

bDetrended first-differences.

This term is essentially Var{D)/Var(X), computed under the assumption that both D and X are nonsta-
tionary; see Ramey and West (1997) for details

4Detrended first-difference and detrended level.
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Table 3

Firm-Level Trade Data
Relative Variability of Deliveries and Sales

-t Var(p) Varap ED*-Xx2° b
Statistic VErJ&% WE%A—Xi 1+ {2 Corr(AH, X)

Mean 1.03 1.48 1.43 -0.08
Std. Dev.  0.49 1.75 1.71 0.29
Maximum  7.23 30.9 34.7 0.75
75% Q3 1.11 1.65 1.38 0.00
Median 1.00 1.08 1.04 0.00
25% Q1 0.87 0.79 0.92 0.00
Minimum  0.25 0.06 -0.20 -0.92
N =824

Notes: Sample Period: 1976:Q1-96:Q4. The data are in millions of 1992
chain-weighted dollars and have been demeaned firm-by-firm; D denotes deliv-
eries, X denotes sales, and AH denotes inventory investment. The variables are
linked by the identity D = X + AH.

aThis term is essentially Var(D)/Var(X), computed under the assumption
that both D and X are nonstationary; see Ramey and West (1997) for details

b1f the firm-specific correlation coefficient was not different from zero at a 10
percent significance level, the correlation was set to zero.
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Table 4A
Estimated Equation for Retail Trade:

6
AHy=a+ )Y BiXex+6t+ 6 + ¢

k=0
Industry Classification o Bo Y8 obk Ezcl® Adj. R* D-W
Retail Trade -0.39 -0.10 0.01 0.00 0.08 1.71
(0.61) (0.05) (0.01)
Durable Goods -0.44 -0.16 0.03 0.00 0.08 1.57
(0.24) (0.08) (0.02)
Automotive Group -0.33 -0.19 0.04 0.00 0.06 1.58

(0.19) (0.10) (0.02)

Lumber & Building Materials -0.08 0.17 0.02 0.00 0.04 2.51
(0.06) (0.06) (0.02)

Furniture & Home Furnishings 007 0.18 -0.04 0.00 0.11 2.06
(0.04) (0.11) (0.02)

Other Durables -0.03 -0.02 0.04 0.14 0.00 2.13
(0.04) (0.11) (0.03)

Nondurable Goods 0.76 -0.06 -0.02 0.00 0.04 1.99
(0.62) (0.04) (0.02)

Food Stores -0.16 0.01 0.01 0.75 -0.01 1.91
(0.18) (0.03) (0.01)

Apparel Stores 0.04 -0.09 -0.01 0.01 0.01 2.01
(0.08) (0.08) (0.03)

Department Stores 016 -0.17 -0.04 0.00 0.07 1.99
(0.06) (0.10) (0.02)

General Merch. Stores 0.01 -0.03 0.00 0.27 0.00 1.92
(0.05) (0.08) (0.02)

Miscellaneous Retail 0.29 0.03 -0.01 0.13 0.02 2.21

(0.17) (0.04) (0.01)

Notes: Estimation Period: 1959:07-97:08. The data are seasonally adjusted in billions of 1992 chain-
weighted dollars. All regression include linear and quadratic time trends (not reported) and are estimated
with OLS, with heteroscedasticity and autocorrelation consistent asymptotic standard errors reported in

parenthesis.
2Probability value for the Wald test of the null hypothesis that lagged sales coefficients are jointly zero:

Ho:,@l=...=ﬂs=0.
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6
AHi=a+) BiXi-k+6t+ 68 +

Table 4B
Estimated Equation for Wholesale Trade:

k=0

Industry Classification o Bo %.0Bc Ezc Adj. R® D-W

Wholesale Trade -0.33 0.05 0.01 0.24 0.04 2.02
(0.45) (0.03) (0.01)

able Goods -0.40 -0.03 0.03 0.01 0.06 2.23
(0.23) (0.04) (0.01)

Motor Vehicles 0.16 -0.02 0.05 0.01 0.03 2.15
(0.13) (0.07) (0.03)

Furniture -0.02 0.16 0.02 0.01 0.04 2.37
(0.02) (0.05) (0.02)

Lumber -0.01 0.06 0.01 0.12 0.01 2.29
(0.04) (0.04) (0.01)

Professional Equip. 0.16 -0.03 -0.01 0.24 0.06 2.63
(0.06) (0.10) (0.01)

Metals & Minerals -0.13 0.01 0.07 0.01 0.03 2.07
(0.09) (0.05) (0.02)

Electrical Goods -0.06 0.09 0.03 0.01 0.09 2.36
(0.05) (0.06) (0.02)

Hardware -0.06 0.23 0.03 0.00 0.15 2.31
(0.05) (0.06) (0.02)

Machinery 0.06 0.23 0.06 0.01 0.06 2.29
(0.12) (0.16) (0.02)

Other Durables 0.22 -0.02 -0.04 0.01 0.01 2.16
(0.08) (0.04) (0.02)
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Table 4B (Continued)

“Industry Classification o Bo e oBx Ezcd® Adj R D-W

Nondurable Goods 024 0.01 -0.01 0.00 0.03 1.96
(0.27) (0.03) (0.01)

Paper Products 0.02 0.03 0.00 0.06 0.09 2.24
(0.07) (0.06) (0.03)

Drugs & Sundries -0.00 0.11 0.01 0.01 0.10 2.41
(0.08) (0.08) (0.02)

Apparel -0.12 0.15 0.06 0.13 0.02 2.24
(0.08) (0.09) (0.04)

Groceries -0.17  0.10 0.02 0.06 0.03 2.33
(0.10) (0.03) (0.02)

Farm Products 0.01 0.02 0.01 0.31 -0.00 1.60

(0.12) (0.03) (0.02)
Chemical & Allied Products 0.02 -001 -0.01 001 000 249
(0.19) (0.05) (0.01)

Petroleum Products 0.03 0.06 0.00 0.06 0.02 2.09
(0.05) (0.03) (0.01)

Alcoholic Beverages 0.01 0.03 0.00 0.08 0.03 2.33
(0.03) (0.04) (0.03)

Other Nondurables 0.01 0.01 -0.01 0.31 0.02 2.22

(0.13) (0.03) (0.02)

Notes: For the wholesale trade and durable and nondurable categories the estimation period is
1959:07-97:08; for the 2-digit SICs, the estimation period is 1967:07-97:08. The data are seasonally
adjusted in billions of 1992 chain-weighted dollars. All regression include linear and quadratic time
trends (not reported) and are estimated with OLS, with heteroscedasticity and autocorrelation consistent

asymptotic standard errors reported in parenthesis.
3Probability value for the Wald test of the null hypothesis that lagged sales coefficients are jointly

zero: Ho: 0y = ... = fg=0.
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Table 5A
Estimated Equation for Retail Trade:

AH[ =qa+ 60AXt + Uy

Industry Classification o G  Adj. R® D-W

Retail Trade 0.53 -0.09 0.01 1.56
(0.09) (0.04)

Durable Goods 0.30 -0.17 0.04 1.52
(0.07) (0.06)

Automotive Group 0.17 -0.18 0.04 1.57

(0.05) (0.07)

Lumber & Building Materials  0.02  0.15 0.01 2.43
(0.01) (0.07)

Furniture & Home Furnishings 0.04  0.19 0.01 1.98
(0.01) (0.09)

Other Durables 0.06 -0.01 -0.00 2.09
(0.01) (0.11)

Nondurable Goods 0.24 -0.04 0.00 1.86
(0.03) (0.03)

Food Stores 0.05 0.00 -0.00 1.90
(0.01) (0.00)

Apparel Stores 003 -0.12 0.01 1.99
(0.01) (0.07)

Department Stores 0.10 -0.15 0.01 1.83
(0.02) (0.08)

General Merch. Stores 0.01 -0.05 -0.00 1.89
(0.01) (0.08)

Miscellaneous Retail 0.04 0.01 -0.00 2.19

(0.01) (0.04)

Notes: Estimation Period: 1959:02-97:08. The data are seasonally adjusted in
billions of 1992 chain-weighted dollars. All regressions are estimated with OLS, with
heteroscedasticity and autocorrelation consistent asymptotic standard errors reported
in parenthesis.
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Table 5B

Estimated Equation for Wholesale Trade:

AH: =a+ ﬂuAXg + €

“Industry Classification o Bo  Adj. RZ D-W

Wholesale Trade 0.45 0.05 0.00 1.95
(0.06) (0.03)

Durable Goods 0.30 0.00 -0.00 2.10
(0.04) (0.04)

Motor Vehicles 0.05 0.01 -0.00 2.11
(0.02) (0.06)

Furniture 001 0.14 0.02 2.36
(0.00) (0.06)

Lumber 001 0.04 0.00 2.23
(0.05) (0.04)

Professional Equip. 0.07 0.07 0.00 2.53
(0.01) (0.10)

Metals & Minerals 0.02 0.02 0.00 1.91
(0.01) (0.05)

Electrical Goods 0.05 0.10 0.00 2.26
(0.01) (0.06)

Hardware 002 021 0.04 2.20
(0.01) (0.07)

Machinery 0.05 0.19 0.02 2.18
(0.03) (0.07)

Other Durables 0.03 -0.04 0.00 2.10
(0.01) (0.03)
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Table 5B (Continued)

“Industry Classification a Bo Adj. R D-W

Nondurable Goods 015 0.10 0.03 1.95
(0.02) (0.02)

Paper Products 0.02 0.04 -0.00 2.13
(0.00) (0.06)

Drugs & Sundries 0.03 0.16 0.00 225
(0.00) (0.06)

Apparel 0.03 0.12 0.01 2.21
(0.01) (0.06)

Groceries 0.03 0.08 0.03 2.31
(0.01) (0.03)

Farm Products 0.02 0.01 -0.00 1.59

(0.01) (0.03)
Chemical & Allied Products 0.01  -0.03  -0.00 2.6
(0.00) (0.05)

Petroleum Products 0.01 0.05 0.02 2.06
(0.00) (0.03)

Alcoholic Beverages 0.01 -0.06 0.00 2.27
(0.00) (0.06)

Other Nondurables 0.03 -0.03 0.00 2.19

(0.01) (0.00)

Notes: For the wholesale trade and durable and nondurable categories the
estimation period is 1959:02-97:08; for the 2-digit SICs, the estimation period is
1967:02-97:08. The data are seasonally adjusted in billions of 1992 chain-weighted
dollars. All regressions are estimated with OLS, with heteroscedasticity and au-
tocorrelation consistent asymptotic standard errors reported in parenthesis.
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Table 6

Mean-Group Parameter Estimates
Estimated Equation:

AHy = a; + 0 Xu + dot + Eie

Estimate Std. Error Adj. 2 N T Obs.
B =0.04 0.01 0.24 824 29.3 24,171

Notes: Estimation Period: 1976Q2-96:Q4. The data are in
millions of 1992 chain-weighted dollars. Both sides of the equa-
tion are divided by (real) total assets from period ¢ — 1 to con-
trol for heteroscedasticity. The regression includes fixed firm and
industry-specific time effects (not reported) and is estimated by
the Mean-Group procedure developed by Pesaran, Smith, and Im
(1996).
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Table 7

Industry-Specific Sales Coefficients
Estimated Equation:

AHy = o; + IimBXy + dms + €3t

“Industry Classification Estimate Std. Error
Wholesale Durables 0.09 0.01
Wholesale Nondurables 0.05 0.01
Retail Trade

Automotive Group -0.00 0.03
Lumber & Building Materials 0.01 0.02
Furniture & Home Furnishings 0.05 0.02
Other Durables -0.00 0.02
Food Stores 0.02 0.00
Apparel Stores -0.00 0.02
Department Stores -0.05 0.02
Eating & Drinking Places 0.00 0.00
Other Nondurables 0.01 0.01
Adj. R*=0.24

N =824

T=293

Obs = 24,171

Notes: Estimation Period: 1976Q2-96:Q4. The data are in mil-
lions of 1992 chain-weighted dollars. I; m denotes the indicator function,
which equals 1 if firm ¢ is industry m and 0 otherwise. Both sides of the
equation are divided by (real) total assets from period t —1 to control
for heteroscedasticity. The regression includes fixed firm and industry-
specific time effects (not reported) and is estimated with OLS. Standard
errors have been corrected for heteroscedasticity.
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Table 8A
Euler Equation Estimates for Retail Trade

Industry Classification ai/c  ax/c a3 aifap _Prob>J°
urables
Automotive Group 044 012 -406 3.68 0.71

(0.12) (0.24) (7.18)

Lumber & Building Materials -0.13  1.27 1.49 -0.10 0.04
(0.22) (0.44) (0.59)

Furniture & Home Furnishings -0.23 146 0.73 -0.15 0.02
(0.19) (0.38) (0.31)

Other Durables .03 173 032 -0.21 0.17
(0.15) (0.31) (0.15)

Nondurables

Food Stores 0.01 099 011 0.01 043
(0.08) (0.16) (0.14)

Apparel Stores 040 021 -2.75 1.89 0.11
(0.13) (0.26) (5.41)

Department Stores 064 -027 299 -235 0.72
(0.27) (0.54) (2.52)

General Merch. Stores 0.04 093 -2.55 0.04 0.25
(0.18) (0.36) (2.23)

Miscellaneous Retail -0.36 1.73 0.32 -0.21 0.44

(0.54) (0.31) (0.15)

Notes: Estimation Period: 1959:06-97:06. The data are seasonally adjusted in billions of
1992 chain-weighted dollars. All regressions are in first-differences and include a constant term
(not reported) and are estimated with GMM using AH,-2, AH,_3, AH 4, 8X:-2, AX,.3,and
AX;—4 as instruments. Heteroscedasticity and autocorrelation consistent asymptotic standard
errors of the structural cost parameters are computed according to the delta method and are
reported in parenthesis.

aProbability value for the test of the over-identifying restrictions; the J-statistic is distributed
as x? with four degrees of freedom (see Hansen (1982)).
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Table 8B
Euler Equation Estimates for Wholesale Trade

“Tndustry Classification__ai/c __as/c a3 ai/ay Prob>J
Durables
Motor Vehicles 0.14 0.73 -0.65 0.19 0.12
(0.17) (0.34) (0.78)
Furniture 0.12 0.76 -0.63 0.16 0.31
(0.45) (0.92) (1.13)
Lumber 005 091 -002 005 0.50
(0.14) (0.27) (0.35)
Professional Equip. -0.47 193 040 -0.24 0.20
(0.09) (0.18) (0.16)
Metals & Minerals 029 042 -1.24 069 0.01
(0.09) (0.18) (0.74)
Electrical Goods 030 041 096 0.73 0.00
(0.17) (0.34) (0.74)
Hardware -0.01 1.03 -0.67 -0.01 0.01
(0.12) (0.24) (0.49)
Machinery -0.30 160 013 -0.19 0.00
(0.15) (0.30) (0.30)
Other Durables 0.02 0.96 034 0.02 0.54
(0.15) (0.30) (0.25)
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Table 8B (Continued)

Tndustry Classification a/c  a/c as  ay/ay Prob>J°
Nondurables
Paper Products 0.49 0.03 15.2 16.3 0.75
(0.31) (0.62) (284.9)
Drugs & Sundries -0.02 105 0.14 -0.02 0.04
(0.15) (0.31) (0.33)
Apparel 056 -0.12 035 -4.67 0.94
(0.28) (0.57) (2.58)
Groceries -0.30 1.60 0.28 -0.19 0.61
0.14) (0.27) (0.12)
Farm Products 0.56 -0.12 0.35 -4.67 0.72

(0.28) (0.57) (2.58)
Chemical & Allied Products -0.28 1.58 0.05 -0.18 0.02
(0.19) (0.38) (0.31)

Petroleum Products 0.12 0.77 -0.23 0.16 0.35
(0.17) (0.35) (0.39)

Alcoholic Beverages 017 135 0.05 -0.13 0.66
(0.17) (0.34) (0.44)

Other Nondurables 0.03 0.95 -0.14 0.03 0.39

(0.12) (0.24) (0.30)

Notes: Estimation Period: 1967:06-97:06. The data are seasonally adjusted in billions of
1992 chain-weighted dollars. All regressions are in first-differences and include a constant term
{not reported) and are estimated with GMM using AH;—3, AH;_3, AHy.q, AX¢-2, AXe—3, and
AX;_4 as instruments. Heteroscedasticity and autocorrelation consistent asymptotic standard
errors of the structural cost parameters are computed according to the delta method and are

reported in parenthesis.
aProbability value for the test of the over-identifyin restrictions; the J-statistic is distributed
g

as x2 with four degrees of freedom (see Hansen (1982)).
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Table 9

Firm-Level Euler Equation Estimates

a;/c az/c a3 ay/a; Prob>J* my/mg®
0.04 0.98 0.17 0.04 0.02 9.21/10.83
(0.00) (0.01) (0.00)
N = 824
T=253
Obs = 20,875

Notes: Estimation Period: 1976:Q4-96:Q3. The data in millions of 1992 chain-
weighted dollars. Both sides of the estimable Euler equation specification are divided
by (real) total assets in period t — 1 to control for heteroscedasticity. The regres-
sion equation includes fixed firm effects (eliminated using orthogonal deviations)
and industry-specific time effects (not reported) and is estimated with GMM using
Hiy_3, Hi—g, Hit—s, Xit—3, Xit—4, and Xj;_5 as instruments. Heteroscedasticity and
autocorrelation consistent asymptotic standard errors of the structural cost para-
rmeters are computed according to the delta method and are reported in parenthesis.

¢Probability value for the test of the over-identifying restrictions; the J-statistic
is distributed as x> with 474 degrees of freedom (see Hansen (1982)).

bGeneralized test for the first-order (m,) and second-order {m) serial correlation.
The m;- and my-statistics are distributed asymptotically as N(0,1); see Arellano
and Bond (1991)
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