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Abstract

We consider a simple variant of the standard real business cycle model in which share-
holders hire a self-interested executive to manage the fi rm on their behalf. A generic 
family of compensation contracts similar to those employed in practice is studied. When 
compensation is convex in the fi rm’s own dividend (or share price), a given increase in 
the fi rm’s output generated by an additional unit of physical investment results in a more 
than proportional increase in the manager’s income. Incentive contracts of suffi cient yet 
modest convexity are shown to result in an indeterminate general equilibrium, one in 
which business cycles are driven by self-fulfi lling fl uctuations in the manager’s expecta-
tions that are unrelated to the economy’s fundamentals. Arbitrarily large fl uctuations in 
macroeconomic variables may result. We also provide a theoretical justifi cation for the 
proposed family of contracts by demonstrating that they yield fi rst-best outcomes for 
specifi c parameter choices.
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1 Introduction

Executive compensation in public companies typically is provided in the form of three components, a

cash salary (the wage and pension contributions), a bonus related to the firm’s short term operating

profit, and stock options (or other related forms of compensation based on the firm’s share price).

In seeking to create stronger links between pay and performance, the use of stock options, in

particular, has emerged as the single largest ingredient of U.S. executive compensation. According

to Hall and Murphy (2002), “in fiscal 1999, 94% of S&P 500 companies granted options to their

top executives. Moreover, the grant-date value of stock options accounted for 47% of total pay

for S&P 500 CEOs in 1999.”CEOs of the largest U.S. companies frequently receive annual stock

option awards that are on average larger than their salaries and bonuses combined.1 ,2 Frydman

and Jenter (2010) report that for the period 2000-2005, options and other long term incentive pay

averaged 60% of total executive compensation; in 2008 the salary component had fallen to only

17% of average total pay.

Executive options contracts represent a particular instance of a highly non-linear convex style

contract.3 In this paper we demonstrate that convex executive pay practices, within the context

of the separation of ownership and control in the modern corporation, may have dramatic, adverse

business cycle consequences. In particular, we show that convex compensation contracts may give

rise to generic sunspot equilibria in otherwise standard dynamic stochastic general equilibrium

models. Sunspot equilibria (indeterminacy) formalize the notion that expectations not grounded

1See also Jensen and Murphy (1990); also, Shleifer and Vishny (1997) and Murphy (1999).
2 In the past few years, restricted stock grants have begun to supplant strict call options as the largest category of

executive compensation. Restricted stock grants are awards of stock to managers that cannot be sold until the end
of a prespecified vesting period and/or until certain performance goals are met. The purchase price of the stock is
preset at the grant date, and the executive typically receives the difference between the purchase price and the sale
price of the stock at the conclusion of the vesting period. At the level of abstraction of this paper, such grants are
nothing more than long term options with a time to maturity equal to the required vesting period. In actual practice,
however, the executive incurs no tax liability in the vesting period (until he cashes out) whereas the value of options
grants are immediately taxable as ordinary income at the initial grant date. Such favored tax treatment encourages
the use of stock grants over pure options.

3To clarify the sense of an options contract being convex, consider a single call option with a payoff, cT , at
expiration of cT = max {0, qeT − E} where T is the expiration date, qeT is the price of the underlying stock at
expiration, and E is the exercise price. The payoff is piecewise linear and convex in the sense that if qeT ≤ E, cT = 0,
and if qeT > E, cT = (qeT − E), the latter being representable as a line with unit slope over its region of definition.
A portfolio of N call options would have a diagonal payoff line that is much steeper (the slope would, in fact, be

"N"). In this sense the payoff to N options is "more convex" than the payoff to one option: increases in qeT above E
have a much greater monetary benefit to the owner of the calls. When a CEO is given a grant of 1,000,000 options
the diagonal line becomes nearly vertical and convexity in the above sense becomes enormous.
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in fundamentals may lead to behavior by which they are fulfilled. These equilibria may involve

arbitrarily large fluctuations in macroeconomic variables even though production is characterized

by constant returns to scale at the social as well as private level. As such, convex managerial

compensation contracts provide an entirely new mechanism by which indeterminacy may arise in

real (non-monetary) economies. An even more disturbing observation is that convex contracts may

lead, under certain parameter configurations, to non-stationary behavior. Practically speaking this

means that convex contracts may induce the self-interested manager to adopt investment policies

that drive his firm’s equilibrium capital stock to zero.4

Our focus on convex contracts derives from the fact that these contracts will also be shown

to arise endogenously in our model context: the optimal contract, optimal in the sense of gener-

ating the first best allocation, is convex in the firms’aggregate free cash flow (dividends). This

feature is necessary to align the incentives of managers and shareholders who are assumed to have

different elasticities of intertermporal substitution and thus different preferences for intertemporal

consumption allocations.5 The optimal contract in this model does not, per se, generate equilib-

rium indeterminacy. We show, however, that the equilibrium indeterminacy discussed above can

easily arise in the face of small deviations from the optimal contract. By small deviations we mean

that the contract involves a slightly higher degree of convexity than is required to perfectly align

incentives, or involves a fixed salary component that is added to the manager’s incentive compen-

sation, features that characterize actual compensation contracts. Nevertheless, while we derive the

optimal contract in the model ultimately to justify our interest in convex compensation contracts

in general, the focus of the analysis remains on the equilibrium consequences of a general class of

convex compensation contracts which resemble contracts actually observed in practice.

To keep the analysis as simple as possible and to isolate the key source of equilibrium indeter-

minacy in the model, we assume that both consumer-worker-shareholders and managers have the

4Financial firms seem especially prone to lavishly convex compensation practices. We are reminded of the financial
crises surrounding the collapse of LTCM. In the year preceding its bankruptcy, the partners took the deliberate deci-
sion to reduce the firm’s capital, as a device for maximizing returns. More recently (2008) highly convex managerial
compensation at various investment banks was observed in parallel with their bankruptcy. We view these compen-
sation contracts as highly convex to either the firm’s stock price or its free cash flow (or distributions to investors in
the case of hedge funds).

5To say it differently, such a feature helps to align the stochastic discount factors of the managers and consumer-
worker-shareholders.
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same information. This assumption stands in contrast with standard principal-agent theory that

focuses either on the effects of hidden information as to the manager’s type or on the manager’s

hidden actions (effort). Our results apply more broadly, however, to contexts where consumer-

shareholder-workers and managers have differing information regarding the economy’s state vari-

ables.6 We eschew this added generality for two reasons: First, it allows us to focus exclusively on

the indeterminacy generating mechanism which is the same in either context. Second, for the model

presented here, the presence or absence of indeterminacy is related only to the manager’s elasticity

of intertemporal substitution, and the terms of the contract given to him. Nothing else is relevant.

Further augmenting the model to allow for hidden information regarding the manager’s "type" or

actions, while likely providing additional justifications for offering a convex contract, would not,

per se, affect the presence or absence of indeterminacy.7

The earlier literature on equilibrium indeterminacy in dynamic models relies on a variety of other

mechanisms; e.g., aggregate increasing returns, a difference between social and private returns to

scale, a variable degree of competition, or monetary phenomena to generate multiple equilibria.8 In

our economy with delegated management and a convex executive compensation contract, the wedge

between the actual return on capital and the return on capital as experienced by the manager is at

the heart of the indeterminacy result. The power (degree of convexity) of the performance portion

of the executive compensation contract tends to magnify the effective rate of return on capital

from the manager’s perspective. As a result, the expectation of a high return on capital may

increase the income of the manager next period to such an extent that consumption smoothing

considerations dictate a diminished level of investment today, thereby fulfilling the high return

expectation. Nevertheless, our analytical and numerical results reveal that the degree of contract

convexity required for indeterminacy is very low, especially so relative to a standard call options

6This particular information asymmetry is accommodated in Danthine and Donaldson (2010). From a macroeco-
nomic perspective it is most relevant asymmetry.

7There is no unobservable effort decision on the manager’s part in our model and there is no issue as to his concealed
"type." The "Revelation Principle" thus does not pertain to our model. Rather, the information asymmetry, should
we have elected to include it, concerns the inability of the shareholder-workers to infer the economy’s state variables,
in particular, its productivity shock. These are known only to the manager. If the manager is given the optimal
contract, a first-best allocation will also be achieved under the information asymmetry. This contract is identical to
the one presented in the full information equilibrium we emphasize.

8See, for example, the works of Benhabib and Farmer (1996), Wen (1998), Perli (1998), Benhabib, Meng and
Nishimura (2000), Clarida, Galí and Gertler (2000), Woodford (2003), Jaimovich (2007) and Bilbiie (2008).
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style incentive contract.

An outline of the paper is as follows: Section 2 describes the model and presents the family of

compensation contracts we propose to study. It also details the precise circumstances under which

equilibrium indeterminacy and instability arise. Section 3 provides an overview of the methodology

by which an indeterminate equilibrium may be computed numerically and applies it to the study

of the economy’s business cycle characteristics. Section 4 provides a theoretical justification for the

analysis of the proposed family of contracts by demonstrating that they yield first best outcomes

for specific parameter choices. Section 5 concludes.

2 Convex Contracting in a General Equilibrium Model of Dele-

gated Management

We focus on the context of a self-interested manager and the consumer-shareholder-workers on

whose behalf he undertakes the firm’s investment and hiring decisions in light of his compensation

contract. We assume that there exists a continuum of measure 1 of identical consumer-worker-

shareholders who consume a single good and supply homogenous labor services to a continuum of

measure 1 of identical firms.9 The consumer-shareholder-workers delegate the firm’s management

to a measure µ ∈ [0, 1] of managers who receive suffi cient compensation to be willing to oversee the

firm. We assume that once the manager agrees to operate the firm, he commits to it for the indefinite

future. We further assume full information in the sense that both the consumer-worker-shareholder

(principal) and the manager (agent) know the realization of all present and past variables.10 Since

there is no distortion in this economy, the first best can potentially be achieved. In the benchmark

model, we suppose that the managers have no access to financial markets. With no opportunity

to borrow or lend, they consume all of their income in each period. Guided by their compensation

contract, they seek to smooth their consumption over time by undertaking the firm’s investment

9We suppose that an equal number of workers participate in each firm.
10Delegating to the managers the firm’s investment and hiring decisions makes sense even in an environment of

full information if, say, there is a cost to shareholders of gathering and voting on the preferred investment and hiring
plans (there would be unanimity). This cost could also be associated with information acquisition and borne either
by a small measure of delegated managers or all the shareholder-workers. Under the optimal contract, whether the
shareholders make the decision themselves or the managers behave in a self-directed way in light of their contract,
the equilibrium allocation is the same.
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and hiring decisions. In Appendix F, we extend the model to allow managers to buy or sell riskless

bonds. This is done to show that the results to be presented here are not sensitive to the assumption

that managers are excluded from financial markets.

We start by describing the environment surrounding the consumer-shareholder-worker, the firm

and the manager and introduce the family of compensation contracts we propose to consider.11 We

then characterize the economy’s equilibrium allocation and characterize the nature of equilibrium

indeterminacy and instability. In Section 4, we then demonstrate that the same equilibrium is

Pareto optimal when the contract parameters assume specific values.

2.1 The Model

2.1.1 The Representative Consumer-Worker-Shareholder

The representative consumer-worker-shareholder chooses processes for per-capita consumption cst ,

the fraction of the time endowment, nst , he wishes to work, his next period’s investment in one

period risk-free discount bonds, bst+1, and his equity holdings z
e
t+1 (f) in firm f, to maximize his

expected life-time utility

E0

[ ∞∑
t=0

βt

(
(cst )

1−ηs

1− ηs
−B (nst )

1+ζ

1 + ζ

)]
(1)

subject to his budget constraint

cst +

∫ 1

0
qet (f) zet+1 (f) df + qbt b

s
t+1 =

∫ 1

0
(qet (f) + dt (f)) zet (f) df + wtn

s
t + bst , (2)

in all periods. The subjective discount factor β satisfies 0 < β < 1, the parameter ηs denotes the

representative shareholder’s relative risk aversion coeffi cient (0 < ηs <∞) and ζ is the inverse of

the Frisch elasticity of labor supply (0 ≤ ζ <∞) . Note that in the case of ζ = 0, the utility function

in (1) reduces to the indivisible labor utility specification of Hansen (1985), while we obtain the

case of fixed labor supply when ζ → ∞. Each consumer-worker-shareholder is endowed with one
11The model generalizes and refines the one found in Danthine and Donaldson (2008 a,b). The latter papers consider

only optimal contracts and only the form they assume at equilibrium. Non-optimal contracts are not considered.
In addition, the focus of these papers is to provide an explanation for the ‘relative performance evaluation’ and
‘one-sided relative performance evaluation’puzzles discussed in the executive compensation literature. The present
paper does not address these phenomena but focuses on the implications of a general class of contracts, and derives
in Section 4 an optimal contract under more general conditions.

5



unit of time; the parameter B > 0 determines, in part, the fraction of that time endowment

devoted to work. In (2), wt denotes the competitive wage rate, qbt is the bond price, q
e
t (f) is the

share price of firm f , and dt (f) its associated dividend. We assume that each household holds

a fully diversified portfolio of shares of each firm in equal proportions. We furthermore assume

non-negativity constraints on all of the above variables.

The consumer-worker-shareholder chooses {cst , nst , zet+1 (f) , bst+1} to maximize his welfare (1)

subject to the budget constraint (2). This yields the standard first-order necessary conditions:

(cst )
−ηs wt = B (nst )

ζ (3)

qet (f) = Et

[
β

(
cst+1

)−ηs
(cst )

−ηs

(
qet+1 (f) + dt+1 (f)

)]
, and (4)

qbt = Et

[
β

(
cst+1

)−ηs
(cst )

−ηs

]
. (5)

2.1.2 Firms

On the production side, there is a continuum of measure one of identical, competitive firms. Firm

f ∈ [0, 1] produces output via a standard constant returns to scale Cobb-Douglas production

function:

yt (f) = (kt (f))α (nt (f))1−α eλt (6)

with two inputs — capital, kt (f), and labor, nt (f) —and the current level of technology λt; the

latter is assumed to be common to all firms and to follow a stationary process which we denote by

λt+1 ∼ dG (λt+1;λt) . The evolution of the firm’s capital stock, kt (f), follows:

kt+1 (f) = (1− Ω) kt (f) + it (f) , k0 (f) = k0 given, (7)
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where it (f) is the period t investment of firm f and Ω, 0 < Ω < 1 is the depreciation rate. The

firm’s dividend, dt (f), is in turn given by the free cash flows of the firm

dt (f) = yt (f)− wtnt (f)− it (f)− µgmt (f) (8)

which amounts to the firm’s income minus its wage bill, its investment expenditures and the man-

agers’compensation µgmt (f). Here, gmt (f) denotes the per-capita compensation of the managers

of firm f, and µ ∈ (0, 1] denotes the measure of such managers working in firm f . In what fol-

lows we view managers as acting collegially, and thus use the words "manager" and "managers"

interchangeably.

2.1.3 The Manager

At date 0, the representative manager of firm f decides whether or not to manage the firm. If

he elects not to manage the firm, he receives a constant stream of reservation utility ūm in each

period. If he does decide to manage the firm, he chooses processes for his consumption cmt (f) ,

hiring decisions nt (f) , investment, it(f), in the physical capital stock kt (f) , and dividends dt (f)

to maximize his expected utility

E0

[ ∞∑
t=0

βt
(cmt (f))1−ηm

1− ηm

]
(9)

subject to the production function (6), the capital accumulation equation (7), the dividend equation

(8), and the constraints

cmt (f) ≤ gmt (f) (10)

cmt (f) , nt (f) , kt (f) , yt (f) ≥ 0.

The manager thus chooses to operate the firm provided that his participation constraint

E0

[ ∞∑
t=0

βt
(cmt (f))1−ηm

1− ηm

]
≥ ūm

1− β (11)
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is also satisfied.

Managers need not be risk neutral nor have the same degree of relative risk aversion, ηm, as the

consumer-worker-shareholders. For simplicity, we assume managers do not confront a labor-leisure

trade-off.

The manager’s budget constraint (10) states that his consumption can be no larger than his

compensation, gmt (f). As noted earlier, we assume that the manager does not participate in the

capital markets. It is realistic to presume the manager is banned from trading the equity issued by

the firm he manages. Not only does this rule protect shareholders from insider trading, but it also

prevents the manager from using financial markets to mitigate the force of his contract. Restrictions

on the ability of the executives to assume short positions in the stock of their own firms, or to

adjust their long positions, are commonplace. It is more controversial however to assume that the

manager cannot take a position in the risk free asset, although this assumption is common in the

partial equilibrium contracting literature. We maintain this assumption here, though we relax it in

Appendix F, where we demonstrate that our main results are, in fact, reinforced when managers

are allowed to trade a risk-free bond.12

We consider the general family of contracts

gm (wtnt, dt, dt (f)) = A+ ϕ [(δwtnt + dt)
γ + dt (f)− dt]θ (12)

with constant coeffi cients A ≥ 0, ϕ ≥ 0, 0 ≤ δ ≤ 1, and constant exponents γ > 0 and θ > 0. The

expression wtnt denotes the equilibrium aggregate wage bill; and dt the equilibrium aggregate div-

idend; δ represents the relative compensation weight applied to the wage bill vis-a-vis the dividend

and ϕ the overall compensation scale parameter. Parameters γ and θ determine the degree of the

convexity of the compensation contract.13

Contracts of the form (12) have the flavor of the three component contracts mentioned in the

12Appendix F is available online from the authors’websites.
13Contracts of the form (12) are also optimal within our model context, provided appropriate restrictions on the

values of the parameters A, δ, ϕ, γ, θ are imposed. This is the subject of Section 4.
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introduction. For instance, if θ = 2, contract (12) can be rewritten as

gm (wtnt, dt, dt (f)) = A+ ϕ
[
(δwtnt + dt)

2γ + 2 (δwtnt + dt)
γ (dt (f)− dt) + (dt (f)− dt)2

]

where A+ϕ (δwtnt + dt)
2γ denotes a constant wage payment, 2ϕ (δwtnt + dt)

γ (dt (f)− dt) denotes

a variable ‘bonus’component, that is proportional to the firm’s current dividend (or free cash flow),

and ϕ (dt (f)− dt)2 approximates an ‘option’component.14 , 15

Note that when focusing on first-order approximations, as we do in the next section, the equity

price qet can be substituted for the dividend without loss of optimality (although the coeffi cient ϕ

may need to be modified accordingly). To a first-order approximation, we may then express the

incentive component in terms of the manager’s own firm stock price instead of the dividend.

How large is the degree of convexity in the typical compensation contract? Gabaix and Landier

(2008) carefully study the link between firms’ total market value (debt plus equity) and total

compensation for the 1,000 highest paid CEOs in the U.S., over the period from 1992 to 2004.

Their compensation measure includes the following components: salary, bonus, restricted stock

grants and Black-Scholes values of stock options granted. Using panel regressions, they find that

the elasticity of CEO compensation to the firms’total market value is slightly above 1 (see their

Table 2). While they do not formally reject an elasticity of 1 at the 5% confidence level, the point

estimates lie above 1 in all specifications and are in some cases significantly larger than 1, at the 10%

confidence level. Using the more aggregated compensation index of Jensen, Murphy, and Wruck

(2004), which is based on all CEOs included in the S&P 500, they estimate that an increase of 1%

in the mean of the largest 500 firms’asset market values increases CEO compensation by 1.14% on

average in the 1970-2003 sample (see their Table 3).16 Their Figure 1 suggests that this elasticity

is significantly larger in the 1990-2000 period. While we will focus our analysis on moderate levels

of contract convexity, it is important to note that this convexity can easily be very large when the

14The third term appears more akin to an option’s payoff when we recognize that within this model class, dt (f) is
roughly proportional to qet (f) and dt is roughly proportional to qet , the value of the market portfolio. Accordingly,
the manager’s long term incentive pay is proportional to how well his own firm’s stock performs relative to the market
if dt (f) > dt.
15By a constant wage payment we mean a salary component that is independent of the firm’s own operating income.
16We will use this latter estimate to determine a reasonable value of θ in our simulation work to follow.

9



compensation involves many call options.17

The measure µ of managers who work in firm f choose {kt+1 (f) , nt (f) , cmt (f) , dt (f)} to

maximize their utility (9) subject to the restrictions (6)—(8), (10), (11) and the compensation

contract (12). We will assume that ϕ is suffi ciently large for each manager’s participation constraint

(11) to be satisfied.18 The Lagrangian for the problem of the representative manager in firm f can

be expressed as

L = E0

{ ∞∑
t=0

βt

(
(cmt (f))1−ηm

1− ηm

+Λ1t (f)
[
(kt (f))α (nt (f))1−α eλt − wtnt (f)− kt+1 (f) + (1− Ω) kt (f)

−µ
(
A+ ϕ [(δwtnt + dt)

γ + dt (f)− dt]θ
)
− dt (f)

]
+Λ2t (f)

[
A+ ϕ [(δwtnt + dt)

γ + dt (f)− dt]θ − cmt (f)
])}

.

The necessary first-order conditions with respect to cmt (f) , nt (f) , kt+1 (f) , dt (f) imply

Λ2t (f) = (cmt (f))−ηm (13)

wt = (1− α) yt (f) /nt (f) (14)

Λ1t (f) = Et {βΛ1t+1 (f) [1− Ω + αyt+1 (f) /kt+1 (f)]} (15)

Λ1t (f) = Λ2t (f)
xt (f)

1 + µxt (f)
(16)

for all f, where

xt (f) ≡ ∂gm (wtnt, dt, dt (f))

∂dt (f)
= θϕ [(δwtnt + dt)

γ + dt (f)− dt]θ−1 . (17)

The variable xt (f) will turn out to be critical. It denotes the marginal contribution to the manager’s

compensation of increasing the firm’s dividend by one unit.

17To put our claim in perspective, consider a standard call options clarify contract where the degree of convexity is
measured, using the Black-Scholes call valuation formulae, by gamma (Γ) . To award a manager a call option on his
firm’s stock is directly analogous to granting him a compensation contract of the form (12) with θ > 1. Typically, the
strike price of an options award is set equal to the then-prevailing stock price. The gamma of a long position in a call
option is always positive and reaches a maximum under this circumstance (for given volatility, time to expiration,
etc.).
18See the discussion in Appendix C available online from the authors’websites.
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Using (13) and (16) to solve for the Lagrange multipliers Λ1t (f) and Λ2t (f) , we can rewrite

(15) as:

(cmt (f))−ηm
xt (f)

1 + µxt (f)
= Et

[
β
(
cmt+1 (f)

)−ηm xt+1 (f)

1 + µxt+1 (f)
rt+1

]
(18)

where rt, the real return to physical capital, is defined by

rt ≡ (1− Ω) + αyt/kt, and

xt (f) = θϕ1/θ (cmt (f)−A)
θ−1
θ . (19)

Equality (19) is derived using (17), contract (12) and the fact that cmt (f) = gmt (f).

2.1.4 Equilibrium

Since all firms are identical, all managers face the same constraints, solve the same problem, and

thus make the same decisions. It follows that cmt (f) = cmt ≡
∫ 1

0 c
m
t (f) df, yt (f) = yt ≡

∫ 1
0 yt (f) df

and so on for all f . As a consequence, the same constraints and first-order conditions hold without

the index f. Equilibrium is then a set of processes {cst , cmt , nst , n
f
t , b

s
t , z

e
t , it, yt, kt, rt, wt, q

b
t , q

e
t , dt, xt}

such that:

1. The first-order conditions (3)—(5), (14), and (18) are satisfied together with constraints (2),

(6)—(8), (10), and (11) all holding with equality, and the transversality condition is satisfied,

limt→∞ β
t (cmt )−ηm kt+1 = 0, for any given initial k0.

2. The labor, goods and capital markets clear: nst = nt; yt = cst + µcmt + it; investors hold all

outstanding equity shares, zet = 1, and all other assets (one period bonds) are in zero net

supply, bst = 0.
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These equilibrium conditions can be summarized as follows. Consumption of the manager and

of the consumer-worker-shareholders depends on labor income and dividends19

cmt = A+ ϕ (δwtnt + dt)
γθ (20)

cst = wtnt + dt, (21)

where dividends, in turn, relate to income and investment according to

dt = yt − wtnt − it − µ
(
A+ ϕ (δwtnt + dt)

γθ
)
. (22)

The production function yields

yt = kαt n
1−α
t eλt , (23)

so that the real wage and the return on capital, rt, are given, respectively, by

wt = (1− α) (yt/nt) , and (24)

rt ≡ α (yt/kt) + 1− Ω. (25)

The intratemporal first-order condition for the shareholder-worker’s optimal consumption-leisure

decision is

(cst )
−ηs wt = Bnζt . (26)

While the above equations are all a-temporal, the equations determining the model’s intertemporal

dynamics are the capital accumulation equation

kt+1 = (1− Ω) kt + it (27)

and the Euler equation for the optimal intertemporal allocation of the manager’s consumption

(cmt )−ηm
xt

1 + µxt
= Et

[
β
(
cmt+1

)−ηm xt+1

1 + µxt+1
rt+1

]
(28)

19Expression (20) is obtained from (10) and contract (12), recognizing that in equilibrium dt (f) = dt, while
expression (21) follows from (2), noting that bst = 0 and zet = 1 in equilibrium.
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where xt is given in (19).20

We continue to assume that ϕ is large enough for the manager’s participation constraint (11) to

be satisfied, a restriction that does not affect the results to follow in any way. Equations (19)—(28),

and their log-linearized counterparts, given below, form the basis of the analysis to follow.21

2.2 Approximating the Decentralized Equilibrium around the Deterministic

Steady State

As we now show, the degree of convexity of the manager’s contract has first order effects on the

equilibrium dynamics. In particular, the convexity of the contract is crucial to determining whether

the general equilibrium is unique or whether it exists at all. A global analysis of the existence and

uniqueness of the general equilibrium of this model is beyond the scope of this paper. Instead, we

focus here on the local analysis of the equilibrium dynamics around the deterministic steady state in

the face of small enough exogenous disturbances.22 Assuming the exogenous variable λt is bounded,

and denoting the steady-state value of a variable with an overhead bar and the log-deviations from

that steady-state value with a ˆ, we can characterize the model’s approximate dynamics by the

following log-linearized equilibrium conditions:

ĉmt = Ξ
[
δωŷt + (1− ω) d̂t

]
, where ω ≡ w̄n̄

w̄n̄+ d̄
, Ξ ≡ γθ (1−A/c̄m)

δω + 1− ω > 0 (29)

ĉst = ωŷt + (1− ω) d̂t (30)

Ω
k̄

ȳ
ı̂t =

(
α− µc̄

m

ȳ
Ξδω

)
ŷt −

(
d̄

ȳ
+ µ

c̄m

ȳ
Ξ (1− ω)

)
d̂t (31)

ŷt = λ̂t + αk̂t + (1− α) n̂t (32)

ŵt = ŷt − n̂t (33)

r̂t = (1− β (1− Ω))
(
ŷt − k̂t

)
(34)

ŵt = ηsĉ
s
t + ζn̂t (35)

20This equation determines the optimal intertemporal allocation of the manager’s consumption even though man-
agers do not have access to financial markets.
21Note that equations (4) and (5) determine asset prices qet and q

b
t . We omit these equations here as asset prices

are residual (non-state) variables for our class of models.
22The steady state in this economy is defined as the solution to the following set of equations: c̄m = A +

ϕ
(
δw̄n̄+ d̄

)γθ
; w̄n̄ = (1− α) ȳ; ȳ = k̄αn̄1−α; Ωk̄ = ı̄; x̄ = θϕ1/θ (c̄m −A)(θ−1)/θ ; r̄ = αȳ/k̄ + 1 − Ω; β−1 = r̄;

c̄s = w̄n̄+ d̄ and (c̄s)−ηs w̄ = Bn̄ζ and y = cs + i+ µcm. It follows that k = y/
(
β−1 − 1 + Ω

)
.
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k̂t+1 = (1− Ω) k̂t + Ωı̂t, (36)

and the log-linearized Euler equation for the manager’s consumption23

ĉmt = Etĉ
m
t+1 − ψ−1Etr̂t+1 (37)

where

ψ ≡ ηm −
θ − 1

θ

1

(1−A/c̄m) (1 + µx̄)
(38)

corresponds to the manager’s coeffi cient of relative risk aversion adjusted for features of the incentive

contract, such as its degree of convexity θ, and the fraction A/c̄m of the manager’s compensation

that is fixed (0 ≤ A/c̄m < 1).24 As we will see below, ψ will turn out to be a key coeffi cient for the

model’s dynamics.

2.3 Indeterminacy: The Intuition

To understand how self-fulfilling fluctuations may arise in this economy, it is important to note

that in equation (37), the coeffi cient ψ−1 represents the elasticity of intertemporal substitution for

the manager’s consumption in response to changes in the manager’s personal rate of return on

investment, i.e., the effective rate of return from the manager’s point of view. That rate of return

represents not only the additional output generated by another unit of investment in physical cap-

ital, but also the additional compensation distributed to the manager as a result of that additional

unit of output. As indicated in (38), the degree of convexity of the incentive contract, θ, is a

key determinant of the manager’s effective intertemporal elasticity of substitution, and that for θ

suffi ciently larger than 1, ψ−1 may even be negative. As argued below, a negative ψ can imply an

indeterminate equilibrium, so that economic fluctuations may result from self-fulfilling manager’s

expectations.

For comparison purposes, let us first explore the case where θ = 1, a linear contract, so that

ψ = ηm. For these circumstances, equation (37) reduces to the same log-linearized consumption

23Equation (37) is obtained after linearizing (19), and substituting for x̂t =
(
θ−1
θ

)
c̄m

c̄m−A ĉ
m
t .

24Equations (29) through (37) omit approximation error terms of second order or smaller.
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Euler equation as would be obtained for the standard representative agent problem: ĉmt = Etĉ
m
t+1−

η−1
m Etr̂t+1. Here date t consumption responds negatively to increases in the expected rate of

return (for given expected future consumption), and the response coeffi cient is the elasticity of

intertemporal substitution. Assume that the manager suddenly expects a higher rate of return on

capital next period, r̂t+1, than would be justified by fundamentals. In this case
(
Etĉ

m
t+1 − ĉmt

)
must

increase or ĉmt must get smaller, which can occur only if the agent saves more and so simultaneously

ĉmt+1 must increase. This can only happen by having the manager invest in future capital stock so

that k̂t+1 also increases. The increase in the capital stock causes the marginal product of capital

to drop (so that r̂t+1 declines). As a result, expectations of a higher return on capital cannot be

fulfilled and there is no supportable equilibrium indeterminacy.

In the case of a convex compensation function (θ > 1) , a given increase in the firm’s output

generated by an additional unit of physical investment results in a more than proportional increase

in the manager’s income. Let us consider the manager’s contract with convexity suffi ciently larger

than 1 to guarantee that ψ is negative. In that case, suppose that the manager has the belief

(unrelated to fundamentals) that his own personal return will be “high”next period. The perception

of a high income next period will lead him —in the interest of consumption smoothing —to consume

more today, and thus to reduce his investment today. The lower investment leads to a higher rate

of return on capital which confirms the manager’s belief of a high personal rate of return.

In general, the larger the convexity of the compensation contract, the more likely ψ−1 is to be

negative, and hence the more likely the manager will increase his consumption and lower investment

in the firm in response to his belief of an increase in the rate of return. It follows that the more

convex the executive contract, the more likely the general equilibrium to be indeterminate, so

that business cycles can be driven by self-fulfilling fluctuations in the manager’s expectations. In

contrast, with low convexity in the manager’s contract (θ ≤ 1) , the increase in the return on capital

is smaller from the manager’s perspective. In this case, the contract works against the manager’s

“personal return expectations”being fulfilled.

An inspection of (38) also reveals that the lower the manager’s risk aversion, ηm, the more likely

ψ is to be negative and hence the more likely equilibrium indeterminacy will arise (∂ψ/∂ηm = 1 > 0) .

In the extreme case of a risk-neutral manager (ηm = 0) , any convexity of the incentive contract
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(θ > 1) , no matter how small, implies a negative coeffi cient ψ, and hence can result in an inde-

terminate equilibrium. Similarly, for any convex contract (θ > 1) , the larger the constant salary

component of the executive contract, A, the more likely ψ will be negative, and, again, the more

likely equilibrium indeterminacy can arise. By making the manager’s compensation less volatile,

the higher fixed salary component reduces the magnitude of the incentives part of the contract

necessary to generate indeterminacy. This intuition is formalized below.

2.4 Indeterminacy and Instability in the Case of Fixed Labor Supply: An An-

alytical Characterization

We now determine the regions of the parameter space in which the model dynamics around the

deterministic steady state yields (i) a unique bounded equilibrium, (ii) an indeterminate equilibrium

so that an infinite number of bounded equilibria are consistent with the model’s equations, or (iii)

no bounded equilibrium so that the model’s dynamics can only result in explosive paths. To derive

analytical results, we consider a specification of (1) with a fixed labor supply (ζ → ∞). It can be

demonstrated numerically that none of the results presented here are affected by this assumption.

In particular, the region of equilibrium indeterminacy is independent of the value of ζ.

After combining the linearized equilibrium conditions (29)—(38), the model’s local dynamics can

be summarized by the following two equations:

Etĉ
m
t+1 = ĉmt − ψ−1 (1− α) (1− β (1− Ω)) k̂t+1 + exogt (39)

k̂t+1 = B21ĉ
m
t +B22k̂t + exogt (40)

where exogt denotes exogenous terms that depend on current and on expected future realizations

of the productivity shock λt, and25

B21 = −
(

1

(1− ω) Ξ

d̄

k̄
+ µ

c̄m

k̄

)
< 0 (41)

B22 =
(
β−1 − (1− Ω)

)
(1− α) δ + (1− Ω) (1− α) + αβ−1 > 0. (42)

25Equation (39) is obtained by combining (37) and (34), using (32) to substitute for ŷt, and noting from (35) that
n̂t = 0 in the case that ζ →∞. To obtain (40), we first use (31) to express ı̂t as a function of ĉmt , k̂t, and λt exploiting
(29) to solve for d̂t, and (32) to eliminate ŷt, and then combine the resulting expression with (36).
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Since B22 is increasing in δ, there exists a threshold

δ∗ ≡ 1− β−1 − 1(
β−1 − 1 + Ω

)
(1− α)

< 1 (43)

such that26

B22 < 1 if and only if δ < δ∗.

The characterization of the regions of determinacy, indeterminacy and instability of the equi-

librium resulting from the dynamic system (39)-(40) can be summarized as follows:

Theorem 1 In the case of a fixed labor supply (ζ →∞), the linearized model admits:

(i) an indeterminate equilibrium (i.e., a continuum of bounded solutions) if and only if the following

conditions are jointly satisfied:

ψ < ψ∗ ≡ (1− α) (1− β (1− Ω))B21

2 (B22 + 1)
< 0 (44)

δ < δ∗,

(ii) an unstable equilibrium (i.e., no bounded solutions) if and only if (44) holds and δ > δ∗,

(iii) a determinate equilibrium (i.e., a unique bounded solution) if and only if ψ ≥ ψ∗.

Proof. See Appendix A.

A suffi cient condition for a unique bounded equilibrium is ψ > 0. This theorem states that

indeterminacy or instability (i.e., no bounded solution) arises provided that ψ is suffi ciently nega-

tive. As we show below, this can easily occur with convex compensation contracts for the manager,

and even for moderate degrees of convexity. In this case, the equilibrium is indeterminate for δ

suffi ciently small (δ < δ∗) and unstable for δ > δ∗.

To have some sense of the relevance of these conditions, we calibrate the quarterly subjective

discount factor, β, at 0.99, the capital share of output, α, at 0.36 and the quarterly capital depreci-

ation rate, Ω, at 0.025. These are values commonly used in the literature (see Section 3.1 for more

details on the model calibration). The implied critical value δ∗ = 0.55. In addition, we assume that

26Note in particular that when δ = 1, B22 = β−1 > 1.
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consumer-worker-shareholders have log utility in consumption, so that ηs = 1, and set the measure

of managers, µ, at 0.05. While the percentage of executive, administrative, and managerial occu-

pations in the labor force amounts to 17%, we assume that less than a third of that makes actual

hiring and investment decisions for the firm. (In any case, the particular value of µ is not critical

for the results discussed below). If we furthermore assume that consumer-shareholder-workers and

managers have the same consumption to income ratio in steady state, the above calibration implies

that ω = 0.90, which corresponds very closely to the average ratio obtained in U.S. national income

data over the period 1947-2009.27

Figure 1 represents the regions of determinacy, indeterminacy and instability for various values

of ηm and the parameters characterizing the incentive contract, i.e., the degree of overall convexity

θ, the relative magnitude of the aggregate wage bill δ and the size of the fixed payment A as

a fraction of the managers’ steady-state consumption. We set γ, the degree of convexity in the

aggregate wage bill and aggregate dividends equal to 1. Different values for this parameter would

however not change any of our results in regards to the region of equilibrium determinacy. The

boundary for the region of determinacy in the (A/c̄m, θ) space remains largely the same for the

different values of δ represented in the two columns of Figure 1. With δ suffi ciently low, the model

exhibits local indeterminacy when the convexity of the contract θ rises. For δ = 1, even a mildly

convex managerial contract (θ > 1) can lead to an explosive general equilibrium in the economy.

To get some intuition for this result, suppose that we start at the steady state and that there

is no fundamental shock, i.e., λt = 0 for all t. Three possible scenarios may ensue:

Case 1: determinacy (ψ > ψ∗)

Suppose that the manager’s compensation contract is linear or concave (θ ≤ 1) and that agents

observe an unexpected sunspot ν0 shock at date 0, which leads managers to consume more than

in steady state (ĉm0 > 0). Since the initial capital stock is fixed at k̄, the linearized equation for

the capital stock, (40), implies that the capital stock in the next period will need to decrease

(k̂1 < 0) because managers now consume more and invest less in physical capital. According to

27The ratio of employees’ compensation over the sum of employees’ compensation and corporate profits (after
corporate tax, with IVA (investment valuation adjustment) and CCAdj (capital consumption adjustment) amounts
to 0.91.
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(39), high consumption by managers at date 0 and lower capital stock at date 1, leads to even higher

managerial consumption in period 1 if ψ is large enough. This, in turn, causes a further drop in

the capital stock and an increase in consumption by managers in period 2: Etĉm2 > Etĉ
m
1 > c0, and

so on. In the case of ψ > ψ∗ the presence of a sunspot is inconsistent with a bounded equilibrium.

Therefore, if a bounded equilibrium exists, it must be unique.

Case 2: indeterminacy (ψ < ψ∗ < 0 and δ < δ∗)

Suppose instead that ψ < ψ∗ < 0 (which occurs with a suffi ciently convex compensation con-

tract) and agents again observe an unexpected sunspot ν0 at date 0, which leads managers to

consume more at that time. Again, since the initial capital stock is fixed at its steady state value,

equation (40) implies that the capital stock must decrease.

But with ψ < ψ∗ equations (39) and (40) imply that the increase in managerial consumption at

date 0 combined with the lower capital stock at date 1, leads the manager to eventually consume

less and accumulate more capital so that the economy reverts back to the steady state. This process

leads to a stationary path for the manager’s consumption and for the capital stock. If ψ < ψ∗,

sunspot shocks are therefore consistent with a bounded equilibrium and there exists an infinite

number of such bounded equilibria satisfying the model’s restrictions, including some equilibria

with arbitrary large fluctuations, as νt itself can be arbitrarily large.

Case 3: instability (ψ < ψ∗ and δ > δ∗)

Suppose again that ψ < ψ∗ and that δ exceeds its critical value so that B22 > 1. Consider a

productivity or sunspot shock at date 0, which leads managers to invest less. Again, the capital

stock at date 1 must fall below its steady state value. According to equation (39), if ψ < ψ∗ the

manager’s consumption in period 1 tends to be lower than in period 0, which according to equation

(40), tends to bring the future capital closer to its steady state value. However, with B22 > 1, the

date 1 deviation of the capital stock is amplified. It follows that the capital stock embarks on an

explosive (or implosive) trajectory, eventually exiting any neighborhood of the steady state. This,

in turn, results in an explosive evolution of the manager’s consumption. Hence the model admits

no bounded solution.
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2.5 Indeterminacy and Instability for General Labor Supply

We use a numerical solution to show that the regions of determinacy remain the same when the labor

supply is elastic although the split between indeterminacy and instability regions depends on the

value of the Frisch elasticity of labor supply ζ−1 as well as the fraction δ of executive compensation

related to aggregate labor income. Figures 2 and 3 show determinacy, indeterminacy, and instability

regions in the (A/c̄m, θ) space, for different values of ζ.28 In Figure 2, we set ζ−1 = 0.5 to match the

Frisch elasticity of labor supply often found in microeconomic studies, while in Figure 3, ζ−1 →∞

consistently with the labor supply found in Hansen (1985). Once again, with suffi ciently low δ, the

convex executive compensation contract can easily generate an indeterminate equilibrium. Instead

when δ is suffi ciently large, the convex contract results in an explosive equilibrium dynamics.

3 Computing Equilibria

Here, we further explore the economy of Section 2 to see if it possesses reasonable business cycle

characteristics.29 Our numerical work is guided by three questions: (1) Are sunspot shocks fully

harmonious with a productivity shock in the sense of the addition of the former not compromising

the overall model’s performance with regard to replicating the basic stylized facts of the business

cycle? (2) In conjunction with a standard technology shock, does the addition of a sunspot shock

enhance the explanatory power of the model along any specific dimensions? Lastly, (3) is it possible

to generate a business cycle with the observed properties on the basis of sunspot shocks alone? If

this is the case it becomes diffi cult to separate out the sources of business cycle fluctuations. For

those skeptical of the notion of a productivity disturbance, affi rmative answers to these questions

would justify the model’s reduced reliance on technology shocks as the sole economic driver. It has

the less attractive implication, however, of suggesting that future macroeconomic volatility may not

be forecastable since it may in part be determined by pure belief shocks. Our numerical strategy,

as detailed in Appendix D, follows Sims (2000) and Lubik and Schorfheide (2003).30

28The interpretation of the experiments being undertaken in Figures 2 and 3 is exactly the same as for Figure 1.
29While proving nothing, a reasonable replication of the business cycle stylized facts nevertheless lends support for

our overall modeling of sunspot equilibria.
30Appendix D is available online from the authors’websites.
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3.1 Calibration

We divide the model’s parameters into two groups. Values for the first group are obtained using

standard calibrations, while the second set of values are estimated using GMM techniques. What-

ever methodology is used, the resulting parameter values are chosen consistent with the model

being simulated at quarterly frequencies. We first discuss the calibrated parameters.

The quarterly subjective discount factor, β is fixed at 0.99, yielding a steady state risk free

rate of return of 4% per year. Capital’s share of output, α, is chosen to be 0.36 (see Cooley and

Prescott (1995) for a discussion) and the quarterly capital depreciation rate, Ω, is fixed at 0.025.

All three values are in line with empirical macro estimates and represent values commonly used

in the literature (see for instance Christiano and Eichenbaum (1992), Campbell (1994), Jermann

(1998), King and Rebelo (1999), and Boldrin, Christiano and Fisher (2001)). Following earlier

justification, the measure of managers, µ, is established at µ = .05.

The remaining calibrated parameters principally concern the consumer-worker-shareholder’s

utility representation. In particular, following Hansen (1985) and many others, we choose his

coeffi cient of the intertemporal elasticity of substitution in consumption to be ηs = 1 and the

inverse of the Frisch elasticity of labor supply to be ζ = 0. Time allocation studies (e.g., Ghez and

Becker (1975) and Juster and Stafford (1991)) estimate that the average time devoted to market

activities in the U.S. is equal to one third of discretionary time. Consequently, we choose B = 2.85

so that the steady state value of labor, n, is equal to one-third of the time endowment. With these

parameter choices, our model is directly analogous to the representative agent construct of Hansen

(1985) —a long standing benchmark in the real business cycle literature.

Following standard practice, the log of the technology shock is assumed governed by the AR(1)

process:

λt = ρλt−1 + εt

Several studies have found that this process is highly persistent (see Prescott (1986) for details).

Accordingly, we choose the value of the persistence parameter, ρ, equal to 0.95. When the model

economy is driven by the technology shocks alone, we select the volatility, σε, to match the empirical

standard deviation of departures from trend output in the U.S. data (1.81%). The i.i.d. sunspot
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shock, if present, is distributed N(0; σv). As with the shock to productivity, we choose the standard

deviation σv to match the volatility of output, σy, observed in the data, a common practice in the

literature on indeterminacy when the model’s fluctuations result from sunspots shocks only.

Our focus is exclusively on executive incentive contracts of the form (12) in equilibrium. Fol-

lowing Jensen, Murphy and Wruck (2004), the salary component A/cm is fixed equal to one half

of the overall steady state managerial compensation. In Section 3.3 we present some sensitivity

analysis with respect to changes in this parameter.

Commonly accepted values for the second group of parameters are unavailable in the literature.

This subset of parameters includes the manager’s elasticity of intertemporal substitution in con-

sumption, ηm, the share of the aggregate wage bill in the manager’s contract, δ, and the contract

convexity parameter, θ. When the model economy incorporates technology shocks and the sunspot

shocks simultaneously, there is no obvious way to estimate the individual variances of these shocks

or their correlation. This parameter vector thus includes σε, σv, and ρεv.
31

Following Jermann (1998) and others, we choose the parameter values for the second group

in a way that maximizes the model’s ability to replicate certain business cycle moments. Let ϑ

denote the vector of remaining model parameters to calibrate, ϑ = [ηm, δ, θ, σε, σv, ρεv]
′, and

gT denote the set of data moments to match. In our case, gT includes the standard deviations

of detrended output, total consumption, investment, and labor, and contemporaneous correlations

of consumption and labor with output characteristic of the U.S. economy. We calibrate ϑ as the

solution that minimizes the following criterion:

J (ϑ) = [gT − f(ϑ)]′Σ−1[gT − f(ϑ)]

where f(ϑ) is the vector of moments implied by the model for a given realization of ϑ, Σ is a

weighting matrix and gT the vector of the point estimates of the target moments, computed using

the data. The matrix Σ is a diagonal matrix with the standard errors of the estimates in gT on

31To our knowledge, there is no reliable procedure to estimate the properties of the sunspot shock process from the
data. Farmer and Guo (1995) and Salyer and Sheffrin (1998) try to identify sunspot shocks from rational expectations
residuals that are left unexplained by exogenous shocks to fundamentals. But this technique is sensitive to model’s
misspecification and cannot distinguish between actual sunspots and missing fundamentals. Lubik and Schorfheide
(2004) develop an econometric technique to assess the quantitative importance of equilibrium indeterminacy in
dynamic stochastic general equilibrium models, such as ours.
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the main diagonal. This calibration procedure thus minimizes a weighted average of the moment

deviations.

Using the full set of parameters chosen as per above, the model’s optimal policy functions were

computed in the manner described in Appendix D, and artificial time series generated accordingly.

These series were then detrended using the Hodrick-Prescott filter, and the model’s business cycle

statistics computed from their detrended components. We evaluated the criterion J (ϑ) for the

following regions of parameter values: ηm ∈ [0.00, 1.00], δ ∈[0.01, 1.00], θ ∈ [0.5, 10], σε ∈[0.005,

0.05], σv ∈ [0.005, 0.1], and ρεv ∈ [−1, 1] with a partition norm equal to .01. The choice of regions

for the first three parameters guarantees that the Baseline Model supports multiple equilibria.32

Table 1 summarizes the results of the full calibration procedure.

[Insert Table 1 about here]

Given the other parameterized and estimated values in Table 1, the GMM estimate of θ = 3

is conservative as compared to the elasticity of the manager’s compensation with respect to firm

value as estimated by Gabaix and Landier (2008). In particular, for the baseline parameterization

of Table 1, we need to raise the overall contract convexity to θ = 5.47 to obtain a steady-state

elasticity of 1.14, the Gabaix and Landier (2008) estimate.33

3.2 Quantitative Results of the Baseline Model

To calculate business cycle statistics, we computed averages of the relevant statistical quantities

for 500 sample paths each of 200 periods length. Summarizing model performance in this way is

customary in the business cycle literature. This procedure does, however, tend to mask the sort of

extreme behavior that might be associated with sunspot equilibria.

32Note also that these regions include the parameter values that identify the optimal contract.
33The steady-state elasticity of the manager’s compensation with respect to the firm’s stock price, ξ =

(
∂gm

∂qe

)
· qe
gm
,

relates to the contract convexity as follows. Since qe = d
1−β , and

(
∂gm

∂qe

)
=
(
∂gm

∂d

)(
∂d
∂qe

)
= x (1− β), we can express

ξ = x (1− β) d
(1−β)gm

= xd
gm
. Using the steady-state relationships detailed in footnote 22, we have d = y−wn−i−µgm

= αy − Ωk − µgm =

(
α(β−1−1)

(β−1−1+Ω)

)
y − µgm, where gm = A + ϕ

(
δwn+ d

)γθ
. Also, x = θϕ

(
δwn+ d

)γ(θ−1)
. As a

result, ξ = xd
gm

=
ϕθ(δwn+d)γ(θ−1)· d
A+ϕ(δwn+d)γθ

.
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Table 2 considers several fundamental cases. In Panel B, we present business cycle statistics

obtained from the version of the model parameterized as in Table 1 with technology shocks being

the single source of exogenous uncertainty. Nevertheless, the response of macro aggregates to

this fundamental shock is indeterminate since the model, as parameterized, results in multiple

equilibrium solutions. Panel C summarizes the model in which technology and sunspot shocks are

both present with the indicated volatilities. In Panel D only the i.i.d. sunspot shock drives business

cycle fluctuations. Panel A contains statistics estimated from the U.S. data, where available, and

Panel E shows business cycle statistics from the Hansen (1985) indivisible labor model —a long-

standing benchmark in the real business cycle literature. It also describes the analogous delegated

management economy under the optimal contract for the indicated parameter values.

[Insert Table 2 about here]

Panel B (technology shock alone) easily respects the most basic stylized facts of the business

cycle: investment is more volatile than output which is in turn more volatile than shareholder

(and aggregate) consumption. Hours and investment are somewhat too smooth, however. Their

relative standard deviations in the model are 0.24 and 1.91 respectively compared to 0.95 and 2.93

in the data. The Hansen (1985) model is more successful in replicating these particular statistics,

but the model with the delegated manager is able to match the relative standard deviation of

consumer-worker-shareholder’s (and total) consumption more successfully. In the Hansen (1985)

model, consumption does not vary enough. This happens because the equilibrium wage rate is

more variable in our model than in Hansen’s. When fluctuations in the model result from the

technology shock alone, the manager’s consumption is very smooth, more so than the consumption

of shareholders. The manager changes investment and hiring policies in response to these shocks

very moderately because in this case he does not expect any extra return on capital (no sunspots).

This version of the model also replicates contemporaneous correlations with output as well as the

Hansen (1985) model.

In Panel C, we incorporate sunspot shocks in addition to technology shocks into the model. This

is the Baseline case. Comparison of results from Panels B and C shows that with two shocks, the

model with the delegated manager and the convex executive incentive contract is able to match the
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empirical relative standard deviations of employment, investment and shareholders’consumption

reasonably closely. For all the major aggregates the same can be said of the cross-correlations with

output. Being a convex function of the dividend, which is itself a highly variable residual series

in this version of the model, managerial consumption volatility appropriately exceeds that of the

consumer-worker-shareholders.

Comparing the volatilities presented in Panel C with those obtained from U.S. data (Panel A),

it would appear that sunspot shocks, when introduced into this production model setting, are fully

harmonious with technology shocks (question 1). With the addition of sunspot shocks the model is

also largely consistent with the stylized business cycle facts (question 2). In fact, the case with two

shocks arguably does a better job of replicating the data than does the seminal paradigm of Hansen

(1985) (Panel E). In particular, consumption volatility much more closely matches the data. The

negative correlation of managerial consumption with output simply reflects the like correlation of

its dividend base. Thus the answer to the second question, posed in the beginning of this section is

also in the affi rmative: sunspots can enhance the ability of the model to replicate salient business

cycle facts.

Sunspot shocks alone (Panel D), however, give rise to a number of data inconsistencies. First,

hours and investment are excessively volatile. Note that the volatility of the sunspot shock must

more than double in order to compensate for the absence of technological uncertainty (Panel C vs.

Panel D), if the required output volatility is to be maintained. This fact is not entirely surprising

since sunspot shocks do not affect output directly, and thus must induce large responses in hours

and investment in order to replicate σy at the empirically observed σy = 1.81%. As a result, σi and

σn are high relative to their empirical counterparts. Dividends give rise to most of the variation

in managerial compensation and these are countercyclical. As a result, managerial consumption is

countercyclical as well. Being a residual after the wage bill and investment, the dividend, and thus

managerial consumption, is also highly volatile.

The other major inconsistency is reflected in the negative correlation of consumer-worker-

shareholder consumption with output. By implication, total consumption is negatively correlated

with output as well. Sunspot equilibria, per se, seem to have manifestations that violate the notion

of consumption as a normal good, at least in this case. Recall that a sunspot shock is essentially a
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rate of return on capital stock, and that a favorable sunspot shock induces very large procyclical

responses in investment without output being itself simultaneously increased. In equilibrium, con-

sumption must therefore be countercyclical. Note that for all three of the considered cases contract

convexity is a relatively modest θ = 3.

3.3 Robustness Checks with Respect to Changes in Key Parameters

Table 3 explores the consequences of greater contract convexity, a larger salary component, and

higher managerial risk aversion in the context of the Baseline case of Table 2, Panel C. We leave

all other parameters (including standard deviations of shocks) unchanged (relative to the baseline

case) to illustrate better the effect of changes in the three key parameters for indeterminacy on the

ability of the model to replicate basic business cycle facts. The Table 3 cases illustrate indeterminate

equilibria all of which provide reasonable replications of the statistical summary of the U.S. business

cycle. It reflects the fact that indeterminacy is robust to a wide class of contract parameters and

risk aversion levels for the manager.

[Insert Table 3 about here]

In Panel B (higher contract convexity with θ = 5), the relative volatilities of hours and in-

vestment are lower than in the baseline case (Panel A) while managerial consumption volatility is

higher. The latter phenomenon goes hand in hand, ceteris paribus, with greater contract convexity.

Since the only tools the manager has for dealing with this greater uncertainty are his firm’s in-

vestment and hiring decisions, he alters them to reduce their reaction to shocks. Accordingly, this

action leads to lower investment and hours volatility relative to the baseline case. Had the manager

employed the same investment and hours policies as in the baseline case, his consumption volatility

under the higher contract convexity would have substantially exceeded the value reported.

Panel C of Table 3 explores the consequences of altering the level of the salary component. For

the underlying parameters of ηm = 0.25 and θ = 3, sensitivity analysis reveals that a minimum

value for the salary component share in the manager’s compensation of A/cm = 0.15 appears

to be necessary for indeterminate equilibria to arise. Relative to the baseline case, increasing

the magnitude of the fixed salary component increases the overall volatility in the economy once
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indeterminate equilibria are achieved. The effect is more pronounced in the case of the relative

standard deviations of hours and investment. The reason is as follows: increasing the weight of the

fixed salary in the overall compensation package of the manager makes him effectively more risk

tolerant and more willing to alter production plans in response to shocks, hence the increases in

investment and hours volatility. It simultaneously reduces his own relative consumption volatility,

since a higher fraction of his mean consumption is fixed relative to the baseline.34

Panel D in Table 3 concerns the consequences of the enhanced managerial elasticity of intertem-

poral substitution in consumption (i.e. managerial risk aversion in case of the utility function (1)).

Sensitivity analysis shows that the model economy exhibits local indeterminacy if the manager’s

risk aversion coeffi cient does not exceed 0.49 with other parameters held at their baseline values.

As is evident, the influence of the increase in managerial risk aversion is very modest provided

the equilibria are indeterminate. Indeed, for Panel D, not only are the stylized business cycle

facts quite well replicated but the results seem relatively unaffected (relative to the benchmark)

by the degree of managerial risk aversion (provided ηm < 0.49). Furthermore, in none of the cases

presented in Table 3 is managerial consumption volatility particularly excessive, ranging only to

roughly four times that of shareholder-workers.

In summary, the preceding cases inform us along a number of dimensions with regard to the

three questions posed at the start of this section. First, the results from not only the baseline

case with technology and sunspot shocks (Table 2, Panel C) but also many of the other cases

suggest that these sources of uncertainty are fully compatible with one another, at least for this

model framework. Our quantitative results suggest that one source of uncertainty can effectively

be traded off against the other (with regard to the relative magnitudes of σε and σv), a direct

consequence being that a large increase in future sunspot volatility would not be inconsistent with

past business cycle history as it is currently understood and measured.

With regard to our second question, standard business cycle models (e.g., Hansen, 1985) have

diffi culty replicating the relative volatility of hours. The addition of sunspot shocks appears to

resolve this shortcoming.

34 In the base case A
cm

= .5; in the case of Panel C, A
cm

= .7.

27



Finally, within the realm of the simple construct we provide, it does not appear that convex-

contract-induced sunspot equilibria, alone, can replicate the stylized facts of the business cycle.

Shareholder consumption in these cases is negatively correlated with output and hours and invest-

ment exhibit excessive volatility. Such is the response to the third question posed.

4 Optimal Incentive Contracts

While the family of contracts (12) is both plausible and conforms, broadly speaking, to observed ex-

ecutive compensation practice, its origin is ad hoc. The following Theorem however establishes that

contracts of the form (12) lead to a first-best allocation between managers and shareholder-workers

in our model, for particular (and plausible) parameter choices, thereby providing an ultimate jus-

tification for their consideration.

Theorem 2 A compensation contract of the form (12) with A = 0, a particular value ϕ > 0,

δ = 1, γ = ηs/ηm > 0 and θ = 1 is optimal, in the sense that it results in the optimal plan. If,

in addition, the consumer-worker-shareholders are more risk-averse than the managers, ηs > ηm,

then γ > 1 and this optimal contract provides managerial compensation that is convex in the sum

of the aggregate wage bill and aggregate dividends.

Proof. See Appendix B

This theorem states that a contract of the form

gm (wtnt, dt, dt (f)) = ϕ (wtnt + dt)
ηs/ηm + (dt (f)− dt) (45)

satisfies all constraints and is consistent with the optimal equilibrium. Such a compensation func-

tion gm( ) for each manager implies an equilibrium outcome that aligns the manager’s interests

with those of the consumer-worker-shareholders who hire him, i.e., the manager chooses the same

investment and labor functions as the shareholder-workers would choose if they themselves man-

aged the firm. Since all firms are identical, dt (f) = dt for all f , in equilibrium each manager’s
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compensation reduces to

gm (wtnt, dt, dt (f)) = ϕ (wtnt + dt)
ηs/ηm .

Recall that in this economy, the consumer-worker-shareholders do not confront any moral-

hazard problem vis-à-vis the manager, as they both have the same (full) information set. Yet, even

in this context, a convex contract (where ηs > ηm) may be required to align, properly, the marginal

utilities of the consumer-worker-shareholders and of managers in all states of the world:

(cst )
−ηs = Λ4 (cmt )−ηm . (46)

As shown in Appendix B, Λ4 > 0 is the Lagrange multiplier on the manager’s participation con-

straint (11). The particular value ϕ entering the optimal contract is chosen to satisfy the manager’s

participation constraint and is determined by the welfare weights assigned to the two agents in the

Pareto formulation; it is given by ϕ = Λ
1/ηm
4 . Using the agents’budget constraints (2) and (10),

we note that in equilibrium cst = wtnt + dt and cmt = gmt , which combined with (46) yields

gmt = cmt = Λ
1/ηm
4 (cst )

ηs/ηm = Λ
1/ηm
4 (wtnt + dt)

ηs/ηm .

The proposed compensation contract is thus socially optimal in equilibrium.

The basic intuition underlying Theorem 2 may be summarized as follows: in order for the

delegated manager to select the investment and hiring plans preferred by the consumer-worker-

shareholders, he must (i) be given an income stream with the same stochastic characteristics and

(ii) he must be equally sensitive to these same income variations.35 By making equilibrium com-

pensation depend on wtnt + dt, the first of these requirements is satisfied. By raising this quantity

to the power ηs/ηm, the marginal utility of the manager is made proportional to that of the

consumer-shareholder-worker.

For instance, if 0 ≤ ηm < ηs, then the consumer-worker-shareholders ideally offer a convex

compensation contract to the relatively risk-loving manager, in order to counteract the manager’s
35With homogeneous utility and constant return to scale production, the manager will make the same investment

decisions irrespective of the scale of his income stream.
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weak concavity in preferences. In contrast, if 0 ≤ ηs < ηm, contract concavity effectively induces

the manager to behave in a more risk-averse fashion. The last term in (45) in turn guarantees that

the manager makes the optimal intertemporal decisions, with physical capital investment the same

as in the optimal plan.

More generally, in dynamic stochastic general equilibrium models such as the one considered

here, dividends (i.e., free cash flows) are countercyclical. This fact induces the risk-averse manager

to smooth out the firm’s investment series much more than the consumer-worker-shareholders find

optimal. To do otherwise would force the manager into a circumstance of very low consumption

during cyclical upturns when investment is typically high. The convexity of the contract overcomes

the aforementioned disincentive and induces the manager to adopt a much more strongly pro-cyclical

investment plan.

In the limiting case that the manager is of measure µ = 0, another optimal contract belonging

to the family of contracts (12) exists, in addition to the contract derived in Theorem 2. It is

characterized by δ = 1, γ = 1, A = 0, ϕ = Λ
1/ηm
4 but θ = 1−ηs

1−ηm
with either 0 < ηm, ηs < 1 or ηm >

1, and ηs > 1, so that the compensation takes the form gm (wtnt, dt, dt (f)) = ϕ (wtnt + dt (f))
1−ηs
1−ηm

(see Appendix E).36 Such an optimal contract is convex also in the firm’s own dividend (θ > 1)

provided that 0 < ηs < ηm < 1 or 1 < ηm < ηs. While such a compensation contract induces the

manager to undertake that hiring and investment decisions that the consumer-shareholder-worker

would have chosen, it does not require that managers and consumer-shareholder-workers equate

their marginal utilities given that the measure of managers is zero.

4.1 Deviations from Optimal Contract and Indeterminacy/Instability

The discussions in Section 2 refer to the general family of incentive contracts of the form (12),

and argue that the general equilibrium can be indeterminate or explosive if the contract convexity,

θ, is excessive or if the fixed payment, A, is suffi ciently large. A natural question is how “close”

an optimal contract would be to these regions of equilibrium indeterminacy or instability. As we

now show, while the optimal incentive contract would result in a unique stable equilibrium, slightly

more generous incentive contracts could easily result in undesirable outcomes.

36Appendix E is available online from the authors’websites.
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As stated in Theorem 2, the optimal contract requires that A = 0, δ = 1, γ = ηs/ηm, and θ = 1.

It is convex in the sum of the aggregate wage bill and aggregate dividends if ηs > ηm. While this

optimal contract, indicated by a ∗ in Figures 1, 2, and 3 lies in the region of determinacy, we can

easily obtain equilibrium indeterminacy or instability if the contract specifies larger values of the

fixed payment A, or a higher convexity θ in the sum of aggregate wages and the individual firm’s

dividend, or a lower weight δ on the aggregate wage bill. The risk of obtaining such undesirable

equilibria is especially pronounced if ηm is low, i.e., if the manager’s elasticity of intertemporal

substitution is high.

Similarly, the shaded regions in Figure 4 present the parameter combinations for which inde-

terminacy or instability will arise in the case that µ = 0.37 The boldfaced curves representing the

optimal contracts discussed above, for the case µ = 0. Notice that the indeterminacy/instability

region does not intersect with either of the boldfaced curves representing the optimal contracts, nor

would it for any other choice of ηs. While the optimal contract does not per se lead to equilibrium

indeterminacy or instability, a slightly more generous compensation in the form of higher contract

convexity could easily result in such bad outcomes.

Since we assume full information in this model, these outcomes could also arise in an extension of

the model where consumer-worker-shareholders, who determine the contract form and its parame-

ters, know their own coeffi cient of relative risk aversion but mistakenly over-estimate the manager’s

true degree of risk aversion. For example, suppose that the true ηs and ηm satisfy ηs = ηm = 0.5,

so that the optimal contract parameters are A = 0 and θ = 1. If the shareholders counterfactually

estimate ηm = 0.8, then they will choose contract parameters A = 0 and θ = 1−ηs
1−ηm

= 2.5. Rela-

tive to the true ηm which guides the manager’s actions, this choice of θ leads to indeterminacy or

explosive equilibria as ψ = ηm − θ−1
θ = 0.5− 1.5

2.5 < 0.

The larger shaded region (comprising the dark and light gray regions) similarly represents the

region of indeterminacy or instability, but assuming a positive fraction of the manager’s compen-

sation in the form of a fixed payment. Specifically, it assumes A/c̄m = 0.5. As Figure 4 makes

clear, for any ηm, the minimal magnitude of θ necessary for indeterminacy is strictly less than

in the A/c̄m = 0 case. Note also that for a wide range of managers’ elasticity of intertemporal

37The dark region shows the parameter configurations which satisfy ψ < ψ∗, for A = 0, µ = 0.
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substitution, the choice of convexity θ in the optimal contract leads to indeterminacy or instability

when A/c̄m = 0.5. A larger positive fixed payment thus allows indeterminacy to arise for a much

larger set of parameter configurations. We are also reminded that the presence or absence of in-

determinacy is related only to the manager and the terms of his contract: nowhere does ηs enter

into the definition of the region of indeterminacy. This observation follows from the fact that the

manager alone determines the firm’s investment decision in the delegated management economy.

5 Conclusion

The message of this paper is clear and direct: when confronted with compensation contracts which

are mildly convex to the firm’s stock price or free cash flow, CEOs may well find it in their self-

interest to adopt investment policies that lead to equilibrium indeterminacy or instability. As

a result, the time path of the economy’s macroeconomic aggregates, as well as the executives’

compensation, at least with respect to volatility, may bear little association to fundamentals. In

this sense, highly convex CEO compensation contracts may substitute for technological increasing

returns, a typical requirement of the earlier indeterminacy literature. Within a standard dynamic

macroeconomic setup, these results appear to hold for a wide class of model parameters, at least

for the compensation contracts studied here.

These results suggest that the early twenty-first century explosion in the incentive compensation

among financial firms may have unforeseen consequences. We are only now beginning to see what

these consequences are.
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A Appendix A: Proof of Theorem 1

To characterize the regions of determinacy, indeterminacy and instability, we rewrite the dynamic
equations (39)—(40) in matrix form:

A

[
Etĉ

m
t+1

k̂t+1

]
= B

[
ĉmt
k̂t

]
+ Cλt

where

A ≡
[

1 A12

0 1

]
, B ≡

[
1 0
B21 B22

]
,

A12 = ψ−1 (1− α) (1− β (1− Ω)) ,

and B21 and B22 are given in (41)—(42). Note that sign(A12) = sign(ψ).
Given that k̂t is a predetermined variable and ĉmt is a nonpredetermined variable, the system

admits a single bounded solution if and only if the eigenvalues φ1 and φ2 of the matrix M ≡ A−1B
satisfy 0 ≤ |φ1| < 1 < |φ2| . The equilibrium is indeterminate if 0 ≤ |φ1| < 1 and 0 ≤ |φ2| < 1. There
exists no bounded solution (and so there exist only explosive solutions) if 1 < |φ1| and 1 < |φ2| .

It will be useful to appeal to the following proposition:

Proposition 3 (Proposition C1 of Woodford (2003, p. 670)). Both eigenvalues of a 2× 2 matrix
N lie outside the unit circle if and only if:
either (Case I):

det (N) > 1 (A.1)

det (N)− tr (N) + 1 > 0 (A.2)

det (N) + tr (N) + 1 > 0 (A.3)

or (Case II):

det (N)− tr (N) + 1 < 0 (A.4)

det (N) + tr (N) + 1 < 0. (A.5)

A.1 Indeterminacy

The system has an indeterminate equilibrium if and only if 1 < |1/φ1| and 1 < |1/φ2| , or equiva-
lently if both eigenvalues of

M−1 =

[
1 A12

−B21
B22

1
B22

(1−A12B21)

]
lie outside the unit circle. Note that det

(
M−1

)
= 1/B22 and tr

(
M−1

)
= 1 + (1−A12B21) /B22.

First suppose that det
(
M−1

)
− tr

(
M−1

)
+ 1 = A12

B21
B22

< 0. Since B22 > 0, we must have

det
(
M−1

)
+ tr

(
M−1

)
+ 1 = 2

(
B22+1
B22

)
− A12

B21
B22

> 0. So we cannot simultaneously satisfy both

conditions (A.4)—(A.5) of Case II.
We thus have an indeterminate equilibrium if and only if all three conditions (A.1)—(A.3) of
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Case I are satisfied, i.e., if and only if

0 < B22 < 1

A12
B21

B22
> 0

2

(
B22 + 1

B22

)
−A12

B21

B22
> 0.

Given that B22 is positive and increasing in δ, the first condition is satisfied for δ suffi ciently small(
β−1 − (1− Ω)

)
(1− α) δ + (1− Ω) (1− α) + αβ−1 < 1

or equivalently

δ < δ∗ ≡ 1− (1− Ω) (1− α)− αβ−1(
β−1 − (1− Ω)

)
(1− α)

. (A.6)

Given B22 > 0 and B21 < 0, the second condition is satisfied if and only if A12 < 0, or equivalently
if and only if

ψ < 0. (A.7)

The third condition is in turn satisfied if and only if 2 (B22 + 1) > ψ−1 (1− α) (1− β (1− Ω))B21

or equivalently if and only if
ψ−1ψ∗ < 1 (A.8)

where

ψ∗ ≡ (1− α) (1− β (1− Ω))B21

2 (B22 + 1)
< 0.

If (A.7) holds, then (A.8) can be rewritten as ψ < ψ∗. It follows that conditions (A.7) and (A.8)
jointly hold if and only if

ψ < ψ∗ < 0. (A.9)

To summarize, the model admits an indeterminate equilibrium if and only if (A.6) and (A.9) are
jointly satisfied.

A.2 Instability

The system admits no bounded solution if and only if both eigenvalues of M lie outside the unit
circle. Note that det (M) = B22 and tr (M) = 1 +B22 −A12B21.

First suppose that det (M)− tr (M) + 1 = A12B21 < 0. Since B22 > 0, we must have det (M) +
tr (M) + 1 = 2 (B22 + 1)−A12B21 > 0. So we cannot simultaneously satisfy both conditions (A.4)—
(A.5) of Case II. Thus we have explosive solutions if and only if all three conditions (A.1)—(A.3) of
Case I are satisfied, that is:

B22 > 1

A12B21 > 0

2 (B22 + 1)−A12B21 > 0.
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The first condition is satisfied for δ suffi ciently large

δ > δ∗. (A.10)

Given B21 < 0, the second condition is satisfied if and only if A12 < 0, or equivalently if and only
if (A.7) holds. The third condition is in turn satisfied if and only if (A.8) holds. The second and
third conditions thus jointly hold if and only if (A.9) is satisfied. To summarize, the model admits
no bounded solution if and only if (A.9) and (A.10) are jointly satisfied.

A.3 Determinacy

The system admits a unique bounded solution if and only if the equilibrium is neither indeterminate
nor unstable, that is, if and only if ψ ≥ ψ∗. �

B Appendix B: Proof of Theorem 2

To prove Theorem 2 we need to show that in the case that the coeffi cients of a contract (12) take the
values stated in the Theorem 2, the resulting equilibrium conditions – given by (4)—(5), (19)—(28),
and (11) holding with equality – imply the same equilibrium as the optimal plan which specifies
the optimal allocation of consumption, employment, investment, and payments at all dates and in
all states of the world. We proceed with the characterization of the optimal plan.

B.1 Optimal Plan

The optimal plan can be characterized by maximizing the consumer-shareholder-worker’s utility
(1) subject to the constraints (2), (6)—(8), (10) at all dates and in all states, and the manager’s
participation constraint (11) in all states. Noting that (10) and (11) must hold with equality in an
optimal equilibrium, and combining (6) and (7) with (8), we can write the Lagrangian

L = E0

{ ∞∑
t=0

βt

(
(cst )

1−ηs

1− ηs
−B (nst )

1+ζ

1 + ζ

+Λ1t

[∫ 1

0
(qet (f) + dt (f)) zet (f) df + wtn

s
t + bst − cst −

∫ 1

0
qet (f) zet+1 (f) df − qbt bst+1

]
+

∫ 1

0
Λ2t (f)

[
(kt (f))α (nt (f))1−α eλt − wtnt (f)− kt+1 (f) + (1− Ω) kt (f)− µgmt (f)− dt (f)

]
df

+

∫ 1

0
µΛ3t (f) [gmt (f)− cmt (f)] df

+

∫ 1

0
µΛ4 (f)

[
(cmt (f))1−ηm

1− ηm
− ūm

]
df

)}
, (B.1)

where {Λ1t,Λ2t (f) , µΛ3t (f)}∞t=0 are the Lagrange multipliers associated, respectively, to the con-
straints (2), (8), and (10), and µΛ4 (f) ≥ 0 is the multiplier associated with constraint (11).

The necessary and suffi cient first-order conditions with respect to cst , n
s
t , z

e
t+1 (f) , bst+1, kt+1 (f) ,
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nt (f) , cmt (f) , dt (f) and the optimal compensation gmt (f) imply

Λ1t = (cst )
−ηs (B.2)

Λ1twt = B (nst )
ζ (B.3)

qet (f) = Et

[
β

Λ1t+1

Λ1t

(
qet+1 (f) + dt+1 (f)

)]
(B.4)

qbt = Et

[
β

Λ1t+1

Λ1t

]
(B.5)

Λ2t (f) = Et {βΛ2t+1 (f) [1− Ω + αyt+1 (f) /kt+1 (f)]} (B.6)

wt = (1− α) yt (f) /nt (f) (B.7)

(cmt (f))−ηm =
Λ3t (f)

Λ4 (f)
(B.8)

Λ2t (f) = Λ1tz
e
t (f) (B.9)

Λ2t (f) = Λ3t (f) . (B.10)

The optimal equilibrium is a set of processes {cst , cmt (f) , nst , nt (f) , bst , z
e
t (f) , it (f) , yt (f) , kt (f) ,

wt, q
b
t , q

e
t (f) , dt (f) , gmt (f)} and Lagrange multipliers {Λ1t,Λ2t (f) ,Λ3t (f)}, and Λ4(f) such that:

1. The first-order conditions (B.2)—(B.10) are satisfied together with the constraints (2), (6)—(8),
(10)—(11), all holding with equality, and the transversality conditions:
limt→∞ β

t (cmt (f))−ηm kt+1 (f) = 0, for any given initial k0 common to all firms.

2. The labor, goods and capital markets clear: nst = nt; yt = cst + µcmt + it where, as before, we
denote by nt, yt, cmt , it the aggregates over all firms, i.e., nt ≡

∫ 1
0 nt (f) df, and so on; investors

hold all outstanding equity shares normalized to one for each firm, zet (f) = 1, and all other
assets (one period bonds) are in zero net supply, bst = 0.

Since all firms and hence all managers face the same constraints and solve the same problem,
they all make the same decisions. We may thus without loss of generality characterize the optimal
equilibrium in terms of aggregate variables only, replacing all variables indexed by f with their
aggregate counterpart (e.g., yt (f) = yt ≡

∫ 1
0 yt (f) df and so on for all f). It is noteworthy that the

equilibrium just described is the Pareto-effi cient or first-best equilibrium.
It follows from (B.2), (B.9) and (B.10) that in equilibrium

Λ1t = Λ2t = Λ3t = (cst )
−ηs .

This “multiple equality,” together with (B.8), implies, furthermore, that the marginal utilities of
consumption of the consumer-shareholder-worker and of the manager must be proportional in the
optimal equilibrium, i.e.,

(cmt )−ηm = Λ−1
4 (cst )

−ηs (B.11)

at all dates and in all states, where Λ4 depends, among other factors, on the manager’s reservation
utility ūm. Note that Λ4 > 0 since the constraint (11) holds with equality in equilibrium. Equation
(B.11) guarantees perfect risk sharing between the consumer-worker-shareholder and the manager.
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The remaining equilibrium conditions can be written as follows:

(cst )
−ηs wt = Bnζt (B.12)

qet = Et

[
β
(
cst+1/c

s
t

)−ηs (qet+1 + dt+1

)]
(B.13)

qbt = Et

[
β
(
cst+1/c

s
t

)−ηs] (B.14)

(cst )
−ηs = Et

[
β
(
cst+1

)−ηs rt+1

]
(B.15)

rt ≡ α (yt/kt) + 1− Ω (B.16)

wt = (1− α) yt/nt (B.17)

cst = wtnt + dt (B.18)

cmt = gmt (B.19)

dt = yt − wtnt − it − µgmt (B.20)

yt = kαt n
1−α
t eλt (B.21)

kt+1 = (1− Ω) kt + it, k0 given (B.22)

ūm

1− β = E0

[ ∞∑
t=0

βt
(cmt )1−ηm

1− ηm

]
. (B.23)

B.2 Equivalence of Decentralized Equilibrium and Optimal Plan

We now show that when the contract coeffi cients satisfy the restrictions stated in Theorem 2 and
ϕ is set equal to Λ

1/ηm
4 = c̄m/ (c̄s)ηs/ηm , the equilibrium implied by conditions (4)—(5), (19)—(28),

and (11) holding with equality is equivalent to the optimal equilibrium implied by (B.11)—(B.23).
Under such parameter restrictions, equation (20) reduces to

cmt = gmt = Λ
1/ηm
4 (wtnt + dt)

ηs/ηm (B.24)

so that the consumption of the shareholder and the manager, (21), (B.24), satisfy the optimal risk
sharing condition (B.11), as well as (B.18) and (B.19). The variable xt, given in (19), reduces to
the constant xt = ϕ = Λ

1/ηm
4 so that (28) reduces to

(cmt )−ηm = βEt

[(
cmt+1

)−ηm rt+1

]
. (B.25)

This, together with (B.11) just established, yields the shareholder’s optimal intertemporal alloca-
tion of consumption (B.15). All remaining conditions (4)—(5), (11), (22)—(27) are identical to the
remaining equations characterizing the optimal plan, (B.12)—(B.14), (B.16), (B.17), (B.20)—(B.23).

Conversely, combining (B.11) and (B.18) implies (B.24), which is equivalent to (20) under the
restrictions stated in Theorem 2. Combining (B.11), (B.15) and (B.24) yields in turn (B.25), which
is equivalent to (28) under the restrictions considered. All remaining conditions characterizing the
optimal plan (B.12)—(B.14), (B.16), (B.17), (B.20)—(B.23) are equivalent to (4)—(5), (11), (21)—(27).

It follows that for the contract stated in Theorem 2, the equilibrium implied by conditions
(4)—(5), (19)—(28), and (11) holding with equality is equivalent to the optimal equilibrium.
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Table 1 —Parameter Choices: Baseline Model

Parameter Symbol Value
Capital share of output α 0.36
Subjective discount factor β 0.99
Capital depreciation rate Ω 0.025
Shareholders’elasticity of intertemporal substitution in consumption ηs 1
Disutility of labor parameter B 2.86
Inverse of the Frisch elasticity of labor supply ζ 0
Persistence of the technology process ρ 0.95
Measure of managers µ .05
Fraction of the salary component in the managerial contract A/cm 0.5
Manager’s elasticity of intertemporal substitution in consumption ηm 0.25
Percentage of the aggregate wage in the managerial contract δ 0.2
Convexity of the managerial contract θ 3
Weighting on the variable compensation component ϕ 4.894
Standard deviation of the technology shock σε 0.0107
Standard deviation of the sunspot shock σv 0.0570
Correlation coeffi cient between the technology shock and the sunspot ρεv 0
Relative compensation weight on the wage bill γ 1
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Table 2 – Business Cycle Statistics(i)

Statistic Panel A Panel B(i) Panel C Panel D Panel E

U.S. data(ii)
Technology
shocks
only

Technology
and sunspot
shocks.
(Baseline)

Sunspot
shocks
only

Hansen

I. Standard Deviations (in percent)
σy 1.81 1.81 1.81 1.81 1.81
σk/σy 0.35 0.18 0.30 0.56 0.26
σn/σy .95 0.24 0.77 1.56 0.77
σi/σy 2.93 1.91 3.24 5.83 3.01
σcs/σy 0.75 0.76 0.73 0.61 0.29
σcm/σy NA 0.13 3.98 8.37 NA
σε NA 1.22 1.07 NA 0.0073
σν NA NA 5.70 11.90 NA

II. Contemporaneous Correlations with Output
ρk,y 0.06 0.20 0.24 0.38 0.05
ρn,y 0.88 0.99 0.64 0.98 0.98
ρi,y 0.80 1.00 0.86 0.99 0.99
ρcs,y 0.88 1.00 0.64 -0.86 0.87
ρcm,y NA -0.03 -0.46 -0.97 NA

(i) All parameters, where applicable, are as in Table 1
(ii) Data from Stock and Watson (1999) as reported in King and Rebelo (1999).
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Table 3 – Simulations with Alternative Parameterizations
of the Managerial Contract(i), (ii)

Panel A Panel B Panel C Panel D

Baseline
High contract
convexity
θ = 5

Large salary
component
A/c̄m = 0.7

High manager’s
risk aversion
ηm = 0.45

Standard Deviations
σy 1.81 1.68 2.04 1.82
σk/σy 0.30 0.24 0.37 0.31
σn/σy 0.77 0.54 1.00 0.77
σi/σy 3.24 2.63 3.90 3.23
σcs/σy 0.73 0.77 0.72 0.73
σcm/σy 3.98 4.30 3.55 3.97
σε 1.07 1.07 1.07 1.07
σν 5.70 5.70 5.70 5.70

Contemporaneous Correlations with Output
ρk,y 0.24 0.23 0.27 0.24
ρn,y 0.69 0.68 0.74 0.69
ρi,y 0.86 0.87 0.87 0.86
ρcs,y 0.64 0.85 0.35 0.64
ρcm,y -0.46 -0.30 -0.62 -0.46

(i) Except for those indicated, all parameters are as in Table 1.
(ii) These parameter choices lead to steady states which differ from that of the Benchmark.
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Figure 1: Regions of determinacy (white), indeterminacy (light gray) and instability (dark gray)
in the case of fixed labor supply (Frisch elasticity ζ−1 7→ 0). In all cases β = .99, α = .36, µ = .05,
γ = 1, Ω = .025 (these define a critical value of δ∗ = .55), and ηs = 1. Departures from optimal
contract (Section 4) design include the possibility that δ < 1, A > 0, and θ 6= 1.

Figure 2: Regions of determinacy (white), indeterminacy (light gray) and instability (dark gray)
in the case of variable labor supply (Frisch elasticity ζ−1 = 0.5). All other parameter values are as
in Figure 1, as well as the admissible departures from optimal contract design (Section 4).

43



Figure 3: Regions of determinacy (white), indeterminacy (light gray) and instability (dark gray)
with Hansen (1985) labor supply. (Frisch elasticity ζ−1 → ∞ ). All other parameter values and
admissible departures from optimal contract design are as in Figures 1 and 2.
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Figure 4: Regions of indeterminacy and instability, and optimal contract parameter combinations;
µ = 0 is assumed .
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ADDITIONAL APPENDICES NOT FOR PUBLICATION

Some Unpleasant General Equilibrium Implications of Executive
Incentive Compensation Contracts

John B. Donaldson Natalia Gershun Marc P. Giannoni

December 2011

The appendices contained in this document show the following:

• Appendix C: shows that there exists a set of parameters that satisfy the manager’s partici-
pation constraint in addition to all equilibrium conditions.

• Appendix D: presents the numerical strategy.

• Appendix E: derives an alternative optimal contract in the case that µ = 0.

• Appendix F: derives the generalized model with manager participating on financial markets
and shows that the results reported in the paper are reinforced in this case.

C Appendix C: Satisfaction of Manager’s Participation Constraint

We show that there exists a set of model structural parameters and contract parameters that
satisfy the manager’s participation constraint in addition to all equilibrium conditions. Let the
model structural parameters {α, β,Ω, ηs, ηm, µ,B, ζ} be given, and let P = {A,ϕ, θ, γ, δ} be the set
of contract parameters. We show there exists a set of contract parameters P which, in conjunction
with the structural parameters, satisfy the following criteria:

(a) There exists a steady state
{
k, n, cm, cs

}
that satisfies the model structural equations. That

is, based on steady-state relationships mentioned in footnote 22,
{
k, n, cm, cs

}
satisfy:

k = Γn where Γ =
[(
β−1 − 1 + Ω

)
/α
] 1
α−1 (C.1)

Bnζ = (cs)−ηs (1− α) Γα (C.2)

cs = Γαn− ΩΓn− µcm (C.3)

d̄/k̄ = αΓα−1 − Ω− µḡm/k̄ = β−1 − 1− µḡm/k̄, (C.4)

cm = A+ ϕ
[
δ (1− α) Γαn+ αΓαn− Ωk − µcm

]γθ
(C.5)
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(b) The indeterminacy criterion of Theorem 1 is satisfied; i.e.,

δ < δ∗ ≡ 1− β−1 − 1(
β−1 − 1 + Ω

)
(1− α)

< 1 (C.6)

ψ < ψ∗, (C.7)

where ψ and ψ∗ are defined as in (38) and (44), that is

ψ ≡ ηm −
θ − 1

θ

1

(1−A/c̄m) (1 + µx̄)
, ψ∗ ≡ (1− α) (1− β (1− Ω))B21

2 (B22 + 1)
< 0,

and B21, B22 are defined in (41)—(42), along with ω.
(c) The steady state incentive compatibility constraint is satisfied; i.e.,

(cm)1−ηm

1− ηm
=

(cs)1−ηs

1− ηs
−B n1+ζ

1 + ζ
. (C.8)

Consider first the case where µ = 0. In this case, k, n, cs, d̄ are exclusively determined by (C.1)—
(C.4), and cm is determined by (C.8). For appropriate parameterization of the kind used in any
of our calibrations, k, n, cm, cs, d̄ are all strictly positive and exist. It remains to show that there

exist A, δ, γ, θ and ϕ such that (C.5)—(C.7) are satisfied. Pick
{
α̂, β̂, Ω̂, η̂s, η̂m, B̂, ζ̂

}
and µ = 0

such that (C.1)—(C.4), and (C.8) yield strictly positive values of k, n, cm, cs, d̄ and select some δ̂
satisfying 0 < δ̂ < δ̂

∗
, were δ̂

∗
is defined as in (C.6). It follows from the definition of ω and (C.4)

that ω = 1−α
1−α+(d̄/k̄)Γ1−α = (1−α)(1−β+Ωβ)

1−β+Ωβ(1−α) ∈ (0, 1) . Equation (C.7) can then be rewritten as

ψ = η̂m −
θ − 1

θ

1

1−A/c̄m < −
(1− α̂)

(
1− β̂

(
1− Ω̂

))(
β̂
−1 − 1

)
2 (B22 + 1) (1− ω̂) γθ(1−A/c̄

m)
δω̂+1−ω̂

< 0.

This holds if and only if

η̂mθ (1−A/c̄m)− (θ − 1) < −
(1− α̂)

(
1− β̂

(
1− Ω̂

))(
β̂
−1 − 1

)
2 (B22 + 1) (1− ω̂) γ

δω̂+1−ω̂
< 0

or equivalently if

θ (1− η̂m (1−A/c̄m)) > 1 +
(1− α̂)

(
1− β̂

(
1− Ω̂

))(
β̂
−1 − 1

)
2 (B22 + 1) (1− ω̂) γ

δω̂+1−ω̂
> 0 (C.9)

These last inequalities are satisfied for θ large enough and A close enough to c̄m, provided that γ > 0.

It follows that there exists a non-empty connected set of contract parameters P
(
δ̂; α̂, β̂, Ω̂, η̂s, η̂m, B̂, ζ̂

)
since θ̂ can be chosen large enough and A(θ̂) simultaneously close enough to cm that (C.9) is sat-
isfied with 0 < ϕ̂ subsequently selected so that (C.5) holds. The relevant set of parameters is thus

P =
⋃

0<δ̂<δ∗
P
(
δ̂; α̂, β̂, Ω̂, η̂s, η̂m, B̂, ζ̂

)
for a given

(
α̂, β̂, Ω̂, η̂s, η̂m, B̂, ζ̂

)
.

Now suppose µ > 0, but small. Note that the presence of µ affects only equations (C.3), (C.4)
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and (C.5) and the quantities B21 and ψ (via the 1 + µx̂ term as well as x̂ itself), and does so in a
continuous fashion. By continuity, there exists an open interval (0, µ∗) such that for any µ ∈ (0, µ∗)
the same equations and inequalities (C.1)—(C.8) must be satisfied.

D Appendix D: Numerical Strategy

The linearized rational expectations model presented in Section 3, can be rewritten in the canonical
form:

Γ0 (ϑ) st = Γ1 (ϑ) st−1 + Ψ (ϑ) εt + Π (ϑ) τ t (D.1)

where the model parameters are collected in the vector ϑ = [β, ηs, B, ηm, µ, θ, ϕ, δ, A, α,Ω, ρ, σ] ,
with ρ and σ denoting, respectively, the persistence and the standard deviation of the exogenous
shock, and st representing the vector of the model’s endogenous variables:

st =
[
ĉst , ĉ

m
t , k̂t, n̂t, ı̂t, d̂t, ŷt, ŵt, λt, Etn̂t+1, Etĉ

m
t+1, Etd̂t+1, Etλt+1

]′
.

Finally, τ t denotes the vector of rational expectations forecast errors:

τ t =
[
(n̂t − Et−1n̂t) , (ĉ

m
t − Et−1ĉ

m
t ) ,

(
d̂t − Et−1d̂t

)
, (λt − Et−1λt)

]′
,

and εt represents innovations to exogenous productivity disturbances.
The model is solved using the solution algorithm developed by Sims (2000) as adapted to

sunspot equilibria by Lubik and Schorfheide (2003). In the case of indeterminacy, in addition to
the fundamental technology shock, the manager observes an exogenous sunspot shock, νt, which
influences dynamics of the key macroeconomic variables. Consistency with rational expectations
requires that the sunspot is i.i.d. with Et−1νt = 0.

Because of the linear structure of the model, the forecast errors for the next period labor, level
of technology, dividend, and manager’s consumption can be expressed as function of two sources of
uncertainty: the technology shock and the sunspot

τ t = Φ1εt + Φ2νt

where Φ1 and Φ2 have dimension 4×1. The solution algorithm of Sims (2000) explicitly constructs
a mapping from shocks to the expectation errors in (D.1). As shown above, when δ is suffi ciently
small, our model has at least one stable solution. If Φ1 is uniquely determined by the parameters
ϑ and Φ2 = 0, the model has a unique solution. This is the case of determinacy in which the
propagation mechanism of the technology shocks is uniquely determined. Thus, sunspots do not
affect equilibrium allocations; neither do they induce fluctuations. If Φ1 is not uniquely determined
by the parameters ϑ and Φ2 is different from zero, the equilibrium is indeterminate. In this case,
sunspot shocks can be interpreted as shocks to endogenous forecast errors. Detailed technical
conditions for indeterminacy are developed in Lubik and Schorfheide (2003). In our model, it
is the subset of ϑ related to the manager’s compensation and risk aversion that is critical for
indeterminacy; this is given by ϑν = [ηm, θ, δ, A].
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E Appendix E: Optimal Contract when µ = 0

While Theorem 2 applies for any value of µ (including µ = 0), the following Theorem states that
in the limiting case where µ = 0, one can find another contract that is also optimal, but that is
convex in the firm’s dividend.38

Theorem 4 Suppose that the measure of managers µ = 0, and that ηs and ηm satisfy either
0 ≤ ηs < 1, 0 ≤ ηm < 1, or 1 < ηs, 1 < ηm. Then the contract of the form (12) with A = 0,

0 < ϕ = Λ
1/ηm
4 , δ = 1, γ = 1, and θ = 1−ηs

1−ηm
> 0 is optimal. If, in addition, |ηm − 1| < |ηs − 1| ,

then θ > 1 and this contract is convex in wtnt + dt (f) .

Proof. The equilibrium conditions resulting from the model with a compensation contract (12)
are given in (19)—(28), (4)—(5), and (11) holding with equality. To prove Theorem 4 we simply need
to show that in the case that the contract’s parameters take the values stated in the Theorem 4,
the resulting equilibrium conditions imply the same equilibrium as the optimal plan characterized
by equations (B.11)—(B.23). Note that in the case that the measure of managers µ = 0 considered
here, the optimal risk-sharing condition (B.11) need not be satisfied in an optimal equilibrium.
When the contract satisfies the restrictions just mentioned, we obtain

cmt = ϕ (wtnt + dt)
1−ηs
1−ηm

cst = wtnt + dt,

so that (B.18), (B.19) hold and

cmt = ϕ (cst )
1−ηs
1−ηm . (E.1)

The variable xt, given in (19), reduces to

xt =
1− ηs
1− ηm

Λ
1−ηm

ηm(1−ηs)

4 (cmt )
ηm−ηs
1−ηs

so that equation (18) reduces to

(cmt )
ηm−ηs
1−ηs

−ηm = βEt

[(
cmt+1

) ηm−ηs
1−ηs

−ηm rt+1

]
,

when µ = 0. Using (E.1) to replace cmt , this expression reduces to the consumer-worker-shareholder’s
optimal condition for intertemporal consumption allocation (B.15)

(cst )
−ηs = βEt

[(
cst+1

)−ηs rt+1

]
.

All other conditions are identical to the remaining expressions characterizing the optimal plan, (3),
(4), (5), and (B.17). The proposed contract is thus optimal when µ = 0.

38A less general version of this optimal contract is considered in Danthine and Donaldson (2008a).
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F Appendix F: Generalized Model with Manager Participating on
Financial Markets

In the model of Section 2, the managers have no access to financial markets. They may smooth
their consumption over time by making investment decisions in the firm that result in the desired
income pattern, but have no other opportunity to borrow or lend. We now extend this model
to allow the managers to buy or sell riskless bonds and demonstrate that the results obtained in
Section 2 are not sensitive to our assumption that managers are excluded from financial markets.

The model presented below is essentially identical to the one of Section 2 augmented with (i)
the possibility for managers to access the bond market, and (ii) one technical change incorporated
so that log-linear approximation techniques can, in this more general setting, still provide reli-
able conclusions pertaining to local determinacy or explosiveness of the general equilibrium. This
technical change incorporates tiny time variation in the agents’discount factors in order to retain
stationarity of the bond holdings. In the absence of such time variation, when both managers
and consumer-shareholder-workers have access the bond market, transitory productivity shocks
will generally have a permanent effect on the agents’consumption to the extent that one group of
agents may borrow from the other group on impact and make interest payments forever.

The flow of ideas in this section is straightforward. First we characterize the competitive
equilibrium under bond trading in an environment where managers are compensated according to
the contract specified in (12). We then describe the sets of parameter combinations which lead to
equilibrium indeterminacy/instability. These sets are presented in a manner directly analogous to
the regions described in the prior figures 1—4.

Accordingly, we begin by detailing the consumer-worker and manager problems for this ex-
panded setting.

F.1 The Consumer-Worker-Shareholder’s Problem

The representative consumer-worker-shareholder chooses processes for consumption cst , labor supply
nst , bond holdings b

s
t , and equity holdings z

e
t (f) to maximize his expected utility

E0

[ ∞∑
t=0

χt−1

(
(cst )

1−ηs

1− ηs
−B (nst )

1+ζ

1 + ζ

)]
(F.1)

subject to his budget constraint

cst +
∫
qet (f)zet+1(f)df + qbt b

s
t+1 =

∫
(qet (f) + dt(f)) zet (f)df + wtn

s
t + bst . (F.2)

As in Section 2, wt denotes the competitive wage rate, qbt and q
e
t , are respectively bond and equity

prices, dt denotes the equity security’s dividend. (We assume that each household is holding a
fully diversified portfolio of shares of each firm in equal proportions so that the dividends dt are
aggregated over all firms.) Consistent with Ferrero, Gertler and Svensson (2010), the discount
factor χt evolves according to χt = βtχt−1, with χ−1 = 1, and

βt ≡ β
[
1 + φ

(
log c̄− ϑ̄

)]
/
[
1 + φ

(
log ct − ϑ̄

)]
, (F.3)

where ct = cst + µcmt corresponds to the aggregate consumption level but is treated by households
and managers as exogenous, β ∈ (0, 1) is the steady-state discount factor, and φ is calibrated to a
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very small positive number and ϑ̄ is a constant. In the limit as φ 7−→ 0, χt−1 7−→ βt.39

F.2 The Manager’s Problem

The manager of firm f chooses processes for his own consumption, cmt (f), hiring decisions, nt(f),
investment it (f) in the physical capital stock, kt(f), dividends, dt(f), and riskless bond holdings
bmt (f) to maximize her discounted expected utility

E0

[ ∞∑
t=0

χt−1

cmt (f)1−ηm

1− ηm

]
(F.4)

subject to

cmt (f) + qbt b
m
t+1 (f) ≤ gmt (f) + bmt (f) (F.5)

dt(f) = yt(f)− wtnt(f)− it(f)− µgmt (f) (F.6)

yt(f) = (kt(f))α (nt(f))1−α eλt (F.7)

kt+1(f) = (1− Ω) kt(f) + it(f), k0(f) given. (F.8)

The manager’s budget constraint (F.5) states that her consumption and the value of her newly
purchased bonds can be no larger than her compensation, gmt (f), plus the value of the bond
holdings in the prior period. Equation (F.6) states that dividends, dt(f), are given by the free cash
flows of the firm. Finally (F.7) specifies the firm’s production technology, while (F.8) describes the
firm’s capital accumulation. The manager chooses to operate the firm provided that

E0

[ ∞∑
t=0

χt−1

(cmt )1−ηm

1− ηm

]
≥ um

1− β . (F.9)

F.3 The Decentralized Equilibrium

We next define the decentralized equilibrium in which the consumer-shareholder-worker chooses
his own consumption, labor supply, bonds and equity holdings and in which the manager of firm
f ∈ [0, 1] chooses her own stream of consumption, makes decisions about physical investment,
hiring, and dividend payouts, and is paid according to the following pre-specified compensation
contract:

gm (wtnt, dt, dt (f)) = A+ ϕ [δ(wtnt + dt)
γ + dt (f)− dt]θ (F.10)

for non-negative coeffi cients A, δ, ϕ, γ and θ. The relevant contract is identical to (12).
The consumer-shareholder-worker chooses cst , n

s
t , z

e
t+1 (f) , bst+1 to maximize his utility function

(F.1) subject to his budget constraint (F.2) and (F.3). This yields the first-order necessary condi-

39This formulation of the discount factor incorporates the stimulative effect on individual consumption of an increase
in average consumption, as in Uzawa (1968). However the parameter φ is calibrated to such a small value that this
effect is negligible. As mentioned above, it merely serves as a technical device to guarantee a unique steady state
in the case of incomplete financial markets across groups of agents. One can alternatively obtain a such a unique
steady state by assuming a constant discount factor β, but introducing a debt-elastic interest rate premium in the
budget constraints (F.2) and (F.5) below, as in Benigno (2001), Kollmann (2002), Schmitt-Grohe and Uribe (2003),
and Justiniano and Preston (2010).

50



tions

(cst )
−ηs wt = B (nst )

ζ (F.11)

qet (f) = Et

[
βt

(
cst+1

)−ηs
(cst )

−ηs

(
qet+1 (f) + dt+1 (f)

)]
(F.12)

qbt = Et

[
βt

(
cst+1

)−ηs
(cst )

−ηs

]
(F.13)

which are identical to (3)—(5), except for βt being allowed to vary.
Each manager in turn decides whether to manage the firm or instead whether receive her reserva-

tion utility. The measure µ of managers who work in firm f chooses cmt (f) , nt (f) , kt+1 (f) , bmt+1 (f) ,
dt (f) to maximize their utility (F.4) subject to the restrictions (F.5)—(F.8) and the compensation
contract (F.10). We will assume that the compensation is suffi ciently generous for each manager’s
participation constraint (F.9) to be satisfied, so that they all decide to work in a firm. The La-
grangian for the representative manager’s problem in firm f can be expressed as

L = E0

{ ∞∑
t=0

χt−1

(
(cmt (f))1−ηm

1− ηm

+Λ1t (f)
[
(kt (f))α (nt (f))1−α eλt − wtnt (f)− kt+1 (f) + (1− Ω) kt (f)

−µ
(
A+ ϕ [(δwtnt + dt)

γ + dt (f)− dt]θ
)
− dt (f)

]
+Λ2t (f)

[
A+ ϕ [(δwtnt + dt)

γ + dt (f)− dt]θ + bmt (f)− cmt (f)− qbt bmt+1 (f)
])}

.

The necessary first-order conditions with respect to cmt (f) , nt (f) , bmt+1 (f) , kt+1 (f) , dt (f) are

Λ2t (f) = (cmt (f))−ηm (F.14)

wt = (1− α) yt (f) /nt (f) (F.15)

qbt = Et

[
βt

Λ2t+1 (f)

Λ2t (f)

]
(F.16)

Λ1t (f) = Et {βtΛ1t+1 (f) [1− Ω + αyt+1 (f) /kt+1 (f)]} (F.17)

and

Λ1t (f) = Λ2t (f)
xt(f)

1 + µxt(f)
(F.18)

for all f, where xt (f) is again defined as in (17), so that

xt (f) = θϕ [(δwtnt + dt)
γ + dt (f)− dt]θ−1 . (F.19)

F.3.1 Equilibrium definition

The decentralized equilibrium is a set of processes {cst , cmt , nst , n
f
t , b

s
t , b

m
t , z

e
t , it, yt, kt, rt, wt, q

b
t , q

e
t , dt,

βt, χt−1} such that:

1. The first-order conditions (F.11)—(F.19) are satisfied together with the constraints (F.2),
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(F.3), (F.5)—(F.8), (F.9), χt = βtχt−1, all holding with equality, and the transversality con-
dition: limt→∞ χt−1u

m
1 (cmt ) kt+1 = 0, for any given initial k0, and for χ−1 = 1.

2. The labor, goods and capital markets clear: nst = nt; yt = it + cst + µcmt ; and investors hold
all outstanding equity shares, zet = 1, and all other assets (one period bonds) are in zero net
supply, bst + µbmt = 0.

By imposing market clearing relationships on the necessary and suffi cient first order con-
ditions detailed above, we can also fully characterize the equilibrium as the set of processes
{cst , cmt , nst , n

f
t , b

s
t , b

m
t , z

e
t , it, yt, kt, rt, wt, q

b
t , q

e
t , dt, βt} which satisfy:

(cst )
−ηs wt = B (nt)

ζ (F.20)

qet = Et

[
βt

(
cst+1

)−ηs
(cst )

−ηs

(
qet+1 + dt+1

)]
(F.21)

qbt = Et

[
βt

(
cst+1

)−ηs
(cst )

−ηs

]
(F.22)

qbt = Et

[
βt

(
cmt+1

)−ηm
(cmt )−ηm

]
(F.23)

rt ≡ 1− Ω + αyt/kt (F.24)

wt = (1− α) yt/nt (F.25)

cst = wtnt + dt − µ
(
bmt − qbt bmt+1

)
(F.26)

cmt = A+ ϕ (δwtnt + dt)
γθ + bmt − qbt bmt+1 (F.27)

dt = yt − wtnt − it − µ
(
A+ ϕ (δwtnt + dt)

γθ
)

(F.28)

yt = kαt n
1−α
t eλt (F.29)

kt+1 = (1− Ω) kt + it (F.30)

βt ≡ β
[
1 + φ

(
log c̄− ϑ̄

)]
/
[
1 + φ

(
log ct − ϑ̄

)]
(F.31)

(cmt )−ηm = Et

[
βt
(
cmt+1

)−ηm ( 1 + µxt
1 + µxt+1

)(
xt+1

xt

)
rt+1

]
(F.32)

xt = θϕ (δwtnt + dt)
γ(θ−1) (F.33)

where k0 is given, and where again we assume that the manager’s compensation is large enough for
his participation constraint (F.9) to be satisfied.

F.3.2 Approximating the Decentralized Equilibrium around the Deterministic Steady
State

We assume that in the steady state, consumer-shareholder-workers and managers hold no nominal
bonds (b̄m = 0). As a result, the steady state in this economy is the same as the model of Section
3. Denoting the steady state value of a variable with an overhead bar, it is defined as the solution
to the following set of equations: c̄m = A+

(
ϕδw̄n̄+ ϕd̄

)γθ
; w̄n̄ = (1− α) ȳ; ȳ = k̄αn̄1−α; Ωk̄ = ı̄;

x̄ = ϕθ
(
δw̄n̄+ d̄

)γ(θ−1)
; r̄ = αȳ/k̄+1−Ω; β−1 = r̄; c̄s = w̄n̄+d̄ and (c̄s)−ηs w̄ = Bn̄ζ . Denoting the

log-deviations from that steady state value with a ˆ, and defining b̂mt ≡ bmt /c̄m, we can approximate
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the model’s dynamics by the following log-linearized equilibrium conditions:

ĉmt = Ξ
[
δωŷt + (1− ω) d̂t

]
+ b̂mt − βb̂mt+1

ĉst = ωŷt + (1− ω) d̂t − µ
c̄m

c̄s

(
b̂mt − βb̂mt+1

)
Ω
k̄

ȳ
ı̂t =

(
α− µc̄

m

ȳ
Ξδω

)
ŷt −

(
d̄

ȳ
+ µ

c̄m

ȳ
Ξ (1− ω)

)
d̂t

ŷt = λt + αk̂t + (1− α) n̂t

ŵt = ŷt − n̂t
r̂t = (1− β (1− Ω))

(
ŷt − k̂t

)
ŵt = ηsĉ

s
t + ζn̂t

β̂t = −φ̃
(
ĉst + µ

c̄m

c̄s
ĉmt

)
q̂bt = β̂t − ηsEtĉst+1 + ηsĉ

s
t

q̂bt = β̂t − ηmEtĉmt+1 + ηsĉ
m
t

x̂t =

(
θ − 1

θ

)
c̄m

c̄m −A

(
ĉmt − b̂mt + βb̂mt+1

)
k̂t+1 = (1− Ω) k̂t + Ωı̂t

and the log-linearized Euler equation for the manager’s consumption

−ηmĉmt = Et

[
β̂t − ηmĉmt+1 +

1

1 + µx̄
(x̂t+1 − x̂t) + r̂t+1

]
,

where

ω ≡ w̄n̄

w̄n̄+ d̄
, Ξ ≡ γθ (1−A/c̄m)

δω + 1− ω > 0, φ̃ ≡ φc̄s/c̄

1 + φ
(
log c̄− ϑ̄

) > 0.

As in Section 3, the set of equations above will form the basis for our characterization of the
regions of indeterminacy.

F.3.3 Regions of indeterminacy

Figures 5, 6, and 7 present the regions of indeterminacy/instability for the same specific scenarios,
respectively, that underlie Figures 1, 2, and 3 with the addition of bond trading by the managers.
In all cases the contract form remains as in (12). Subject to this contract form, the regions identify
sets of parameter combinations that give rise to indeterminacy/instability, as before.

F.4 Is Bond Trading Important?

Under the optimal contract, the resulting equilibrium is a Pareto optimum and thus represents
an allocation that cannot be improved upon for both managers and shareholder-workers. The
presence of voluntary bond trading between agents can neither improve upon nor detract from the
Pareto allocation. In other words, the optimal contract (12) in conjunction with parameter choices
specified in Theorem 1, remains optimal even if the structure of the economy is generalized to admit
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Figure 5: Analogue of Figure 1 but with the admission of bond trading.
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Figure 6: Analogue of Figure 2 but with the admission of bond trading.
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Figure 7: Analogue of Figure 3 but with the admission of bond trading.

bond trading. The task of this Appendix is to verify this claim formally. We do so by first deriving
the solution to the planner’s problem (the complete markets solution), and then demonstrating
that the equilibrium allocation under the optimal contract and zero bond trading coincides with
it. In this sense optimal contracting can be viewed as a substitute for complete markets and thus
more than a substitute for bond trading.

The planner’s problem is as follows:

max
{cmt ,cst ,nst ,kt+1}

E0

( ∞∑
t=0

βt

[
φµ

(cmt )1−ηm

1− ηm
+

(cst )
1−ηs

1− ηs
−B n1−ζ

t

1− ζ

])

subject to
cst + µcmt + kt+1 − (1− Ω) kt = yt = kαt n

1−α
t λt.

It is well known that the necessary and suffi cient first order conditions for the above problem are:

φ (cmt )−ηm = (cst )
−ηs (F.34)

Bn−ζt = (cst )
−ηm kαt n

−α
t λt (F.35)

(cmt )−ηm = βEt

[(
cmt+1

)−ηm (αkαt+1n
1−α
t+1 λt+1 + 1− Ω

)]
. (F.36)

Together with the constraints
µcmt + cst + it = yt, and (F.37)

kt+1 = (1− Ω) kt + it, (F.38)

these five equations completely and uniquely determine the real Pareto allocation. Given the
optimal contract form and parameter values and no-bond-trading, we will next demonstrate that
the equilibrium characterization (F.20)—(F.33) guarantees these exact same relationships. Its real
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allocation must thus be identical.
By (F.25) and (F.20), (F.35) is satisfied. By (F.25), (F.32) and (F.33), and recognizing that

for the optimal contact, θ = 1 so that xt = ϕ , (F.32) is identical to (F.36). By construction
(F.38) and (F.30) are identical. By (F.26), (F.27) and the definition of dividends, (F.28), (F.37) is
guaranteed. Lastly, for the optimal parameter choices (A = 0, θ = 1, γ =

η
s

ηm
) and no bond trading

(bmt = bst = 0), (F.26) and (F.27) guarantee optimal risk sharing, (F.34).
In this setting, therefore, optimal contracting substitutes for market completeness, and thus

for bond trading as well. For contracts parameterized non-optimally, however, bond trading may
expand the parameter set leading to indeterminacy/instability.
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