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Abstract

We examine microeconomic and aggregate inventory dynamics in the business
sector of the U.S. economy. We employ high-frequency …rm-level data and use
an empirically tractable model, in which the aggregate dynamics are derived
explicitly from the underlying microeconomic data. Our results show that the
microeconomic adjustment function in both the manufacturing and trade sec-
tors is nonlinear and asymmetric, results consistent with …rms using (S; s)-type
inventory policies. There are di¤erences in the estimated adjustment functions
between the two sectors as well as the durable and nondurable goods …rms
within each sector. The estimated adjustment function is remarkably stable
across subperiods, indicating little change in the inventory adjustment process
over time. As predicted by our model, higher moments of the cross-sectional
distribution of inventory deviations a¤ect aggregate inventory dynamics.
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1 Introduction

After lying dormant for much of the 1960s and 1970s, empirical research on inven-
tories has undergone a renaissance during the last two decades. A major impetus
for this renewed interest has been the long-known, although periodically overlooked,
empirical observation that inventory ‡uctuations are highly correlated with the busi-
ness cycle.1 This observation has led macroeconomists to examine inventories as a
key component in the propagation and the ampli…cation of exogenous shocks to the
economy. Relatedly, there has been considerable debate whether recent improvements
in inventory control (e.g., just-in-time techniques, bar coding, etc.) have muted the
inventory cycle, translating into reduced volatility of aggregate output ‡uctuations.2

While this e¤ort has greatly advanced our understanding of inventory investment
and its role in the business cycle ‡uctuations, economists continue to be perplexed by
various aspects of …rm and aggregate inventory behavior. As documented in a recent
survey by Ramey and West (1997), the strong procyclical movements of inventories
and the persistence of inventory movements conditional on sales have proven to be
particularly di¢cult to reconcile with the predictions of canonical inventory models.
We argue in this paper that part of the problem lies in the framework that un-

derlies most applied inventory research—the linear quadratic (L-Q) model of Holt,
Modigliani, Muth, and Simon (1960). The linear dynamics implied by this model, al-
though relatively easy to aggregate and estimate, do not capture potential nonlinear
features of microeconomic inventory behavior. Among others, these would include
(S; s)-type inventory policies owing to the presence of …xed or proportional costs in
the production technology and asymmetries or irreversibilities induced by di¤ering
costs between drawing down and expanding inventory levels.
In addition, nonlinear microeconomic inventory behavior has the potential to a¤ect

signi…cantly aggregate inventory dynamics and can call into question the represen-
tative agent assumption underlying most applied aggregate inventory research. For
instance, suppose …rms use state-dependent (S; s) rules to manage their inventory
stocks. In such an economy, a negative aggregate shock may result in fewer …rms
reaching their trigger inventory levels, exacerbating the decline in inventory invest-
ment beyond what would be expected under a representative agent L-Q model.
Our goal in this paper is to document the prevalence of nonlinear microeconomic

inventory behavior and the impact that such behavior has on the aggregate dynamics.
We employ a ‡exible and empirically tractable framework—the so-called generalized
(S; s) approach—developed initially by Caballero (1993, 1997), Caballero and Engel

1Nearly half a century ago, Abramowitz (1950) provided the …rst statistical evidence, showing that
a typical U.S. recession prior to World War II was characterized by intense inventory disinvestment.
More recently, Blinder and Maccini (1991) have shown that this regularity continues to hold in the
postwar data.

2See, for instance, Allen (1995), Filardo (1995), and McConnell and Perez-Quiros (1998).
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(1991, 1993), and Caballero, Engel, and Haltiwanger (1995, 1997) to study employ-
ment and …xed capital investment dynamics. A fundamental element in our analysis
is the inventory adjustment function. This function relates the fraction of the devia-
tion between “desired” and actual inventory levels that …rms close during a period to
the size of that deviation. The interaction of this adjustment function with the cross-
sectional distribution of inventory deviations determines the aggregate dynamics of
the model.
The advantages of our approach are twofold. First, aggregate inventory dynamics

are derived explicitly from the underlying microeconomic data rather than from a
representative agent framework. Second, our approach is very ‡exible. The adjust-
ment function can take on a wide variety of shapes, including those implied by the
partial adjustment model, a simple (S; s) model, and a more general nonlinear asym-
metric adjustment model. Furthermore, if the adjustment function is constant, as
in the case of a partial adjustment model, the aggregate dynamics generated within
our framework are identical to the dynamics implied by the representative agent L-Q
model (Rotemberg (1987) and Caballero and Engel (1993)).
We use our framework to analyze the dynamics of inventory investment in the U.S.

business sector from 1981 to 1997, utilizing comprehensive, high-frequency (quarterly)
…rm-level data. Our results indicate that there are signi…cant nonlinearities and asym-
metries in the estimated adjustment functions in both the trade and manufacturing
sectors of the economy. The nonlinearity is consistent with a use of (S; s)-type in-
ventory policies, while the asymmetries suggest the presence of nonconvexities in the
production/deliveries technology. There are sizable di¤erences between the adjust-
ment functions of trade and manufacturing …rms as well as between nondurable and
durable goods …rms within each sector. In particular, durable goods …rms appear to
be less likely to adjust, especially when holding “excess” inventories.
In addition, we …nd some striking results concerning temporal variation in the

inventory adjustment process. The seasonal di¤erences found in trade …rms’ adjust-
ment functions are consistent with seasonal selling patterns and end-of-year e¤ects.
Interestingly, in both the manufacturing and trade sectors, the adjustment function
appears to be remarkably stable over our sample period, indicating that the inventory
adjustment process has changed little over time despite recent advances in inventory
management techniques. Combined with evidence that the dispersion of inventory de-
viations has not declined over time, the stability of the adjustment function suggests
that inventory cycles have not been muted.
One implication of our model is that the higher moments of the cross-sectional

distribution of inventory deviations should have an e¤ect on aggregate inventory dy-
namics. To test this hypothesis, we employ a simple parametric approach, which
assumes a time-invariant polynomial approximation to the adjustment function. This
analysis indicates that the nonlinearities in the adjustment function, in conjunction
with the movements in the cross-sectional density, have a signi…cant e¤ect on the
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aggregate dynamics.
The rest of this paper proceeds as follows. In the next section, we discuss the

traditional L-Q model and the “puzzles” that arise in the context of the model. In
section 3, we outline our approach to study inventory dynamics and discuss the im-
plications of some speci…c models of inventory behavior on the shape of the inventory
adjustment function. In section 4, we provide a brief description of the data and
related issues and discuss the operational details behind the construction of our key
state variable—the deviation between the actual and the “desired” level of invento-
ries. In section 5, we present our main results. Section 6 concludes and discusses the
implications and extensions for future research.

2 “Puzzles” Arising from the L-Q Model

To date, most applied inventory research has employed a version of the linear-quadratic
(L-Q) model developed by Holt, Modigliani, Muth, and Simon (1960). The prototyp-
ical L-Q model assumes that …rms maximize pro…ts subject to a convex production
technology, which implies that …rms will attempt to smooth production in the face of
stochastic sales. When incorporated into a representative agent framework, the L-Q
model has provided economists with a microstructure that is relatively easy to aggre-
gate and estimate, and that has yielded substantial insights into …rm and aggregate
inventory dynamics.
The key assumption of the L-Q model is a convex production technology. Ac-

cordingly, the L-Q model provides a more natural description of the behavior of
manufacturers than the behavior of retailers and wholesalers. Consequently, the vast
majority of recent empirical inventory research has focused on manufacturing invento-
ries, especially inventories of …nished goods—see Ramey and West (1997) for a recent
comprehensive review.3 This focus has occurred despite the fact that trade (retail and
wholesale) inventories now account for more than one-half of total business inventory
stocks in the United States (see Figure IA).
Moreover, trade inventories play a signi…cant role in cyclical ‡uctuations. The

variance of trade inventory growth has accounted for about 35 percent of the vari-
ance of business inventory growth since 1959, compared to about 40 percent for
manufacturing.4 In an analysis of more recent data, Worthington (1998) identi…es
the retail trade sector as a particularly important component of aggregate inventory
‡uctuations.

3The exceptions to this pattern include Trivedi (1973), Blinder (1981), Irvine (1981b, 1981a),
Zakrajšek (1997), and McCarthy and Zakrajšek (1997).

4Figure IB plots the growth rate of inventories for the three major components of the business
sector. The data are quarterly, seasonally adjusted and for visual purposes have been smoothed by
running medians.
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Although we …nd this focus on manufacturing inventories disconcerting, other
authors have been less concerned. Some argue that even if individual transactions
are not precisely the same as those assumed in the L-Qmodel, the larger aggregate still
could behave as if …rms are solving such an optimization problem; see, for example,
Blanchard (1983) and Ramey and West (1997).
Examination of the aggregate dynamics, however, point to more substantive em-

pirical problems with the model. Despite its theoretical elegance and the relative
simplicity of its empirical counterpart, the L-Q model has had di¢culty explaining
two fundamental and robust features of inventory investment. The …rst fact, noted
as early as Metzler (1941), is that inventory investment is highly procyclical; inven-
tories tend to be built up gradually in expansions and to be drawn down rapidly in
recessions. Second, as discussed by Ramey and West (1997), inventory movements
exhibit considerable persistence, even after conditioning on sales.5

The prevailing linear-quadratic-representative-agent framework has o¤ered two
competing explanations for these facts. The …rst assumes that there exist highly
persistent shocks to the cost of production. These cost shocks lead to procyclical
inventory investment because in times of low cost—that is, times of negative cost
shocks—production is more e¢cient. So even though production technology is convex,
…rms will bunch up production and accumulate inventories; of course, during times
of positive cost shocks, the opposite is true. The assumed persistence of the shock
process implies that a cost shock that perturbs the inventory-sales relationship will
take many periods to die o¤. This persistence, in turn, leads to the persistence in the
inventory-sales relationship.
The second explanation is built around a strong accelerator e¤ect and a high cost

of adjusting production. The accelerator motive links this period’s inventories to next
period’s expected sales. The connection re‡ects the economic signi…cance of stockout
(backlog) costs, which arise when sales exceed available stock. Such circumstances
may lead to lost sales or at least delayed payments if orders can be backlogged. The
accelerator e¤ect and positively serially correlated sales then cause inventory move-
ments to be procyclical. The high costs of adjusting production imply that if a shock
perturbs the inventory-sales relationship, a return to long-run equilibrium will be
gradual because …rms will adjust production only gradually to minimize adjustment
costs.
Although each explanation has some appealing aspects, the data provide limited

support for both explanations. The highly persistent cost shock hypothesis seems to
work only when the cost shocks are modelled as unobservable to the econometrician.

5Despite mixed evidence that inventories and sales are cointegrated at the industry- or the
aggregate-level, the presumably stationary linear combinations of inventories and sales—the so-called
“inventory-sales” relationship—exhibit very high …rst- and second-order autocorrelations, even at
an annual frequency, indicating that the adjustment to long-run equilibrium takes place over many
periods.
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While it is plausible that the …rm’s cost structure could be a¤ected by persistent and
unobservable disturbances, the observable counterparts to these disturbances, such
as real unit labor costs and interest rates, appear to have no appreciable e¤ect on
inventories. Evidence in favor of signi…cant adjustment costs is equally unpersuasive.
Estimates of adjustment cost parameters are unstable across di¤erent speci…cations
and estimation methods and range from negligible to economically implausibly large.6

One option in response to these negative results is to investigate the implications
of relaxing the assumption of convex adjustment technology in the L-Q model. For
instance, the operations research literature going back at least as far as the early
1960s recognized that …rms are likely to face …xed costs when making production
and/or order decisions (see Scarf (1960)). More recently, Blinder (1981) and Blinder
and Maccini (1991) have provided compelling arguments that these …xed costs are
crucial for understanding the dynamics of inventory investment, particularly in the
trade sector. The presence of such …xed costs then will lead …rms to adopt (S; s)-type
inventory policies, which induce production/delivery bunching rather than smoothing.
The recognition that …xed costs may play a crucial part in understanding inven-

tory dynamics is part of a general and persuasive argument that the constraints to
adjustment faced by individual …rms are signi…cantly di¤erent from the constraints
implicit in the quadratic adjustment technology. At the microeconomic level, non-
convexities in adjustment technology such as irreversibilities induced by technological
and/or market factors, indivisibilities and other forms of increasing returns are more
likely the norm than the exception. In contrast to the L-Q model, these nonconvexi-
ties imply a pattern of microeconomic inventory investment that is highly nonlinear
and asymmetric. Periods of inertia or more or less passive inventory accumulation
are followed by rapid inventory investment or disinvestment—a response not only to
contemporaneous shocks but also to the history of accumulated shocks.
Equally important is the fact that the nonlinear microeconomic inventory poli-

cies mean that the representative agent assumption is no longer appropriate, which
greatly complicates aggregation. As discussed in greater detail in the next section, the
evolution of the entire cross-sectional distribution of inventory deviations from target
levels is a key to the evolution of the aggregate inventory investment. In particular,
higher moments than the mean—which is a su¢cient statistic in the representative

6As is the case in all applied work, both at the micro- and macro-level, the inventory literature
is not immune to serious measurement problems in the data that undoubtedly contribute to the
poor empirical performance of the L-Q model. Some studies try to mitigate this problem by using
the presumably more accurate—though considerably more limited—physical product data and …nd
somewhat greater support for the L-Q model, in particular for the production smoothing motive;
see Fair (1989) and Krane and Braun (1991) for examples of this approach.
Alternatively, Schuh (1996) dispenses with the representative agent assumption. Using plant-level

monthly data, Schuh (1996) estimates the L-Q model and …nds that accounting for the aggregation
bias—in both the cross-sectional and the time series dimensions—moderately improves the …t of the
canonical L-Q model.
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agent L-Q model—may a¤ect aggregate inventory dynamics.
The inherent nonlinearities of the (S; s)-type models combined with complex ag-

gregate dynamics have made these models considerably less appealing to empiri-
cal macroeconomists interested in inventory ‡uctuations.7 Despite these obstacles,
some progress has been made in recent years to examine the macroeconomic impli-
cations of inventory models with (S; s)-type decision rules. Theoretical results on
the aggregation of (S; s) economies by Blinder (1981), Caplin (1985), and Caballero
and Engel (1991) provided the steady-state reduced-form predictions used by Mosser
(1988, 1991) and Episcopos (1996), to test the basic (S; s) inventory model on the U.S.
and Canadian industry-level trade data; in a recent paper, McCarthy and Zakrajšek
(1997) extend the analysis to …rm-level data.
Although Mosser (1988, 1991), Episcopos (1996), and McCarthy and Zakrajšek

(1997) …nd the behavior of inventories, sales, and deliveries broadly consistent with
the steady-state implications of the (S; s) model, the problem with this approach
is twofold. First, the steady-state aggregation results of Blinder (1981) and Caplin
(1985) are valid only under very restrictive assumptions, such as exogenous seri-
ally uncorrelated sales, time-invariant (S; s) bands, and no delivery lags.8 The sec-
ond problem lies in the fact that the steady-state reduced-form probability relation-
ships between inventory investment and sales are in fact consistent with an economi-
cally plausible parametrization of the standard L-Q model (see Blinder (1986), Kahn
(1987), and Krane (1994)).9

Accordingly, if we are to shed light on the possible e¤ects of microeconomic non-
linear inventory policies on aggregate inventory investment, we must study inventory
dynamics rather than steady state behavior. Because structural (S; s)-type models
must be kept relatively simple in order to derive analytic results useful for empiri-
cal analysis, studying inventory dynamics using real data almost surely would reject
such models. Thus, in our approach, we will sacri…ce some structural rigor to provide
a tractable empirical framework, which nonetheless encompasses the possibility of
nonlinear behavior at the microeconomic level.

7An important exception is Fisher and Hornstein (1995) who embed an (S; s) inventory problem
into a general equilibrium model.

8 In the empirical implementation, Mosser (1988, 1991) and McCarthy and Zakrajšek (1997)
attempt to allow for delivery lags and serial correlation in sales and continue to …nd support for the
simple (S; s) model.

9To address this concern, McCarthy and Zakrajšek (1997) also estimate the Euler equation as-
sociated with the canonical L-Q model. They …nd that, although the model is overwhelmingly
rejected at the industry level, estimates of the structural cost parameters are economically reason-
able and statistically signi…cant at the …rm level; however, the overidentifying restrictions imposed
by the model are rejected, and the parameter estimates are not stable across di¤erent asymptotically
equivalent normalizations.
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3 Basic Methodology

In this section, we describe the basic methodology for our analysis of the relationship
between the microeconomic—that is, …rm-level—features of inventory investment and
the implied aggregate dynamics. To model inventory investment in the manufacturing
and trade sectors of the U.S. economy, we adopt a framework used by Caballero (1993,
1997), Caballero and Engel (1991, 1993), and Caballero, Engel, and Haltiwanger
(1995, 1997) to examine employment and …xed investment dynamics.
The basic premise of our analysis is that underlying aggregate inventory dynamics

is a population of heterogeneous …rms whose inventory adjustment within a period
depends upon the size of their perceived inventory shortfall or excess. In particular,
we assume that …rms may respond proportionally more the further away inventories
are from their “target.” As noted earlier, such di¤erences in adjustment can result
from …xed or proportional costs in the production technology as postulated in (S; s)-
type models.
Our model at the microeconomic level is built around a single state variable: a

measure of the deviation between desired and actual log-level of inventories at the
…rm-level, which we label as the inventory deviation index z:

zit ´ lnH¤
it ¡ lnHit¡1: (1)

In equation (1), i indexes …rms, t indexes time, and Hit denotes real, end-of-period
inventory stocks. It is important to note that zit depends on the desired level of
inventories, H¤

it, a theoretical construct, which implies that zit is ultimately model-
dependent.
The evolution of zit over time re‡ects the shocks to the desired inventory level

and the inventory adjustment that the …rm undertakes in response to these shocks.
Shocks to desired inventories can be classi…ed into aggregate shocks—those common
to all …rms—and idiosyncratic shocks that are …rm-speci…c. From equation (1), it
follows that the change in a …rm’s inventory deviation during period t, ¢zit, can be
decomposed as follows:

¢zit = ¢ lnH
¤
it ¡¢ lnHit¡1 = (´t + ºit)¡¢ lnHit¡1; (2)

where (´t + ºit) represents the decomposition of the desired inventory growth into
economy-wide average desired inventory growth, ´t, and a …rm-speci…c idiosyncratic
shock, ºit, which, by de…nition, has a zero cross-sectional mean in each period.
Because we are working in discrete time, the timing convention of shocks and

adjustment is important. Following Caballero, Engel, and Haltiwanger (1997), we
assume that each period begins with an idiosyncratic shock ºit, displacing the inven-
tory deviation that the …rm had carried over from the previous period. The result is
a perturbation in the cross-section of inventory deviations that is then subjected to
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the aggregate shock ´t. Finally, the period ends with …rms adjusting their inventory
levels.
In any given period t, the underlying heterogeneity among …rms is captured by

the cross section of …rms’ inventory deviations, denoted by f(z; t). That is, f (z; t) is
the cross-sectional distribution of …rms’ inventory deviations immediately preceding
period t’s adjustments. Therefore, the fraction of …rms with inventory deviations
between z and z + dz in period t is approximately equal to f (z; t)dz.
Average inventory investment, where the average is computed over …rms with a

similar inventory deviation index in period t, is described by the adjustment function,
denoted by ¤(z; t). From an operational standpoint, we consider a class of …rms with
similar inventory deviations prior to adjustment and calculate the fraction of the
inventory deviation that is closed, on average, by …rms within each of these classes.
From this de…nition, it then follows that the average inventory investment by …rms
with inventory deviation z in period t is equal to z¤(z; t).
In this framework, therefore, the three elements needed to relate …rm-speci…c

inventory investment decisions to aggregate inventory growth are the inventory de-
viation index z, the adjustment function ¤(z; t), and the cross-sectional density of
…rms’ inventory deviations f(z; t). Letting ¢lnHA

t denote the growth rate of aggre-
gate inventories in period t, then the preceding de…nitions imply that

¢lnHA
t =

Z
z¤(z; t)f(z; t)dz: (3)

We use ¢lnHA
t as our measure of aggregate inventory growth. Note that ¢lnHA

t

di¤ers from the rate of growth of aggregate inventories in our sample only in that our
measure does not weigh …rms’ inventory growth by their size at each point in time.10

Equation (3) highlights the connection between the movements in the cross-
sectional distribution of inventory deviations and the growth rate of aggregate inven-
tories. The dynamics of aggregate inventory investment are determined by the interac-
tion between the shape of the adjustment function and the shifts in the cross-sectional
density of inventory deviations induced by aggregate and idiosyncratic shocks. In gen-
eral, as long as the adjustment function ¤(z; t) depends explicitly on z, aspects of
f(z; t) other than its mean (e.g., dispersion, skewness, and concentration) will in‡u-
ence aggregate dynamics.
To illustrate this interaction more concretely, let us consider some simple exam-

ples. Figure IIA displays a constant adjustment function, ¤(z) ´ ¸0. In this case,
because the adjustment rate (solid line) is constant, a shift in the cross-sectional dis-
tribution caused by an aggregate shock (dashed lines) does not a¤ect the adjustment
rate of individual …rms. The e¤ect of the aggregate shock thus is summarized by the
shift in the mean of the distribution. In fact, as shown by Rotemberg (1987) and

10The time series behavior of the two measures of aggregate inventory growth is very similar; the
correlation between the two series is 0.84 for the manufacturing sector and 0.92 for the trade sector.
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Caballero and Engel (1993), this adjustment function generates aggregate dynamics
identical to linear dynamics of the partial-adjustment model, which in turn can be
obtained from a representative-agent framework with quadratic adjustment costs.
Next, suppose …rms follow identical simple (S; s) policies (Figure IIB). In this

case, ¤(z) = 0 when the inventory deviation lies in the inaction range (S; s), and
¤(z) = 1 when the deviation reaches any of the trigger points—that is, …rms adjust
inventories to their “desired” levels when inventories move outside the (S; s) range.
The e¤ect of a positive aggregate shock on aggregate inventory investment under
this policy can no longer be summarized by the shock’s e¤ect on the mean of the
distribution. Besides the e¤ect of shifting the mean, which will have a positive impact
on aggregate inventory investment, the shock increases the fraction of …rms which will
invest (z > s) and decrease the fraction of …rms which will disinvest (z < S), which has
an additional positive e¤ect on aggregate investment. More generally, shocks which
increase the dispersion of the distribution will a¤ect aggregate inventory investment
by increasing the fraction of …rms outside of the inaction range.
The partial adjustment model and the (S; s) model provide two extremes of the

adjustment process. The former implies smooth gradual adjustment, while the ad-
justment process in the latter model is lumpy and infrequent. However, even if …xed
adjustment costs are prevalent among …rms, adjustment functions are not likely to
exhibit the extreme (S; s) shape. Even the most disaggregated economic data have
been aggregated to some extent (e.g., over products, time, etc.). Hence, it seems likely
that the observed adjustment process will incorporate some degree of smoothness as
well as a degree of lumpiness.
The key feature of the generalized (S; s) approach is that the fraction of the inven-

tory deviation that is closed in each period increases with respect to the (absolute)
size of the gap between desired and actual inventory levels. For example, if the ad-
justment function is a time-invariant quadratic function ¤(z) = ¸0+¸1z+¸2z2, then
equation (3) implies that

¢lnHA
t = ¸0m

(1)
z (t) + ¸1m

(2)
z (t) + ¸2m

(3)
z (t); (4)

wherem(k)
z (t) denotes the k

th noncentral moment of the cross-sectional distribution of
inventory deviations in period t. Therefore, in this case, the evolution of the standard
deviation and skewness of the cross-sectional distribution of inventory deviations will
have an impact on aggregate inventory investment.
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4 Data and Econometric Issues

4.1 Data

The …rm-level data used in our analysis come from the COMPUSTAT quarterly
P/S/T, Full Coverage and Research data …les. Two data sets are used in the analysis.
The …rst is a panel of 3,946 manufacturing …rms, and the second is a panel of 1,206
retail and wholesale trade …rms. Because our measurements of inventory deviations
require estimates at the two-digit SIC level, …rms in SIC 29 (Petroleum re…ning and
related industries) and SIC 55 (Automotive dealers and gasoline service stations)
were excluded from the sample owing to an insu¢cient number of …rms for reliable
estimation.
Both panels span the time period 1980:Q4 to 1997:Q4 (69 quarters) and are un-

balanced, with the minimum (continuous) tenure in each panel being 8 quarters.
After eliminating …rms with gaps in the time-series dimension or implausible entries,
we were left with a total of 118,885 …rm/quarter observations for the manufacturing
sector and 32,666 …rm/quarter observations for the trade sector. During our sample
period, …rms in the manufacturing panel account, on average, for almost 65 percent of
aggregate manufacturing inventories, and …rms in the trade panel account for about
20 percent of aggregate trade inventory stocks. The Data Appendix contains de-
tails on the exact sample selection procedure, the construction of variables as well as
summary statistics of the samples.
Let us make one additional point concerning the data. If nonlinear adjustment is

important in determining inventory dynamics, plant (outlet)-level data may be more
desirable than …rm-level data. Decisions and shocks at the plant level can have im-
plications for the …rm’s inventory policy. For example, manufacturing plants within a
single …rm that produce di¤erent products may have quite di¤erent inventory policies
depending upon the demand for the products that each plant produces. Similarly, re-
tail outlets in di¤erent locations will make inventory decisions based on local demand
conditions. Thus to the extent that individual plants have an independent existence
and make independent decisions, the distribution of shocks and inventory deviations
across plants within a …rm may in‡uence the …rm’s overall inventory policy. Concen-
trating at the …rm level then may miss some information concerning microeconomic
adjustment and its e¤ect on aggregate dynamics.
Nevertheless, many aspects of inventory policies are centralized within the …rm

and thus are likely to depend on …rm-wide conditions and shocks. Finished manu-
facturing inventories may go to a centralized distribution center, which enables the
…rm to make production and inventory decisions more e¢ciently. Much of the in-
ventory for retail …rms may be held in central warehouses. Furthermore, …nancial
conditions and capital market access are …rm- rather than plant-level phenomena.
Hence, the well-documented sensitivity of inventory investment to movements in in-
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ternal funds or net worth—caused by the limited access of many …rms to external
credit markets—is evidence of the role that nonconvexities may play at the …rm level.
Thus much of the e¤ect that microeconomic nonconvexities may have on aggregate
inventory dynamics can be studied at the …rm level. If anything, using …rm-level data
may understate the role of nonlinear inventory adjustment in determining aggregate
inventory ‡uctuations.

4.2 Measuring Inventory Deviations

In the discussion of Section 3, equation (3) determined the dynamics of aggregate
inventory investment given a measure of the inventory deviation index z. To construct
a measure of z, we use the observation that …rms typically compare their inventory
levels to their sales as a gauge of the appropriate inventory level.
Speci…cally, we assume that the desired level of inventories in period t, H¤

it is given
by the following function of sales:

H¤
it = AitS

¾i
it ; (5)

where Sit denotes real sales in period t, Ait is a …rm-speci…c and time-varying pa-
rameter governing the signi…cance of the stockout avoidance motive, and ¾i is a
…rm-speci…c scale parameter. Given the timing of the model, we can now derive our
measure of z. First, let eit denote the inventory deviation index at the end of the
period, after all the adjustments have taken place. It follows by de…nition that

eit = lnH
¤
it ¡ lnHit = h

¤
it ¡ hit = (ait + ¾isit)¡ hit; (6)

where the lower case variable designates the logarithm of that variable. Note that
from equations (1) and (6), eit di¤ers from zit only in that the former incorporates
the inventory adjustment during the period; that is, eit = zit ¡¢hit.
The ex post inventory deviation index eit is observed by the …rm at the end of the

period after all shocks including sales shocks have taken place. The key identifying
assumption of our model is that once the adjustment has occurred, any deviation of
inventories from their desired level will not persist inde…nitely. This implies that the
ex post inventory deviation index eit is stationary and that E[eit] = 0: From equation
(6), our identifying assumption implies that eit can be considered as a residual in the
following regression:

ln
·
H

S¾i

¸
it
= ait ¡ eit: (7)

Equation (7) contains two unknown variables: the logarithm of the stockout avoidance
constant ait and the scale parameter ¾i, which determines the desired inventory-sales
relationship. We …rst turn to the problem of estimating ¾i.
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Although we have written the model as if ¾i was a constant parameter, there are
many economic reasons why ¾i may vary over time as well as over individual …rms.
The entry into and exit from our sample could cause ¾i to vary over time because
the desired inventory-sales relationship may be markedly di¤erent when a …rm is
in transition. Time and/or state dependence in inventory policies and advances in
inventory monitoring technology are likely to in‡uence the importance of stockout
costs over time, which in turn would cause …rms to change the weighting given to
sales in determining the desired inventory-sales relationship over time. It thus seems
important to allow for time as well as cross-sectional variation in the estimation of
¾i.
To achieve a reasonable compromise between cross-sectional heterogeneity and

time variation and still obtain a degree of precision, we estimate the following cross-
sectional regression for each period t:

hit = constit + ¾itsit + ²it: (8)

We estimate the values of ¾it in each period by pooling the …rm-level data for each
2-digit industry. That is, we estimate equation (8) for each period by least squares,
allowing both the constant and the scale parameter ¾it to vary across di¤erent indus-
tries.
Least squares estimates of ¾it from equation (8), however, are likely to be biased

downward because of probable measurement error in the sales variable. To ascertain
the severity of this bias, we also estimate the reverse regression (i.e., with sit as the
response variable in the regression), which because of the probable measurement error
in inventories, leads to an upwardly biased estimate of ¾it. From these two regressions,
we obtain lower and upper bounds for the estimate of the scale parameter ¾it.
Figure III displays the time path of the estimated scale parameter for each 2-digit

industry. The solid line in each panel corresponds to the lower bound estimate, and
the dashed line is the upper bound estimate of ¾it; the straight horizontal lines are the
time invariant estimates of the lower and upper bounds of ¾i. Note that for a majority
of industries the di¤erence between the lower and the upper bound estimates is in the
order of 10 percent; the measurement error bias is the most acute in SICs 27 (Printing
& Publishing), 31 (Leather & Leather Products), and 59-1 (Other Retail Durables)
where the di¤erence between the lower and the upper bound estimates exceeds 20
percent. All of our subsequent results, however, are robust to either estimate of the
scale parameter ¾it.11

11This is consistent with the theoretical analysis of Caballero, Engel, and Haltiwanger (1997) who
…nd that measurement error is more likely to conceal rather than arti…cially generate the nonlinear
nature of the inventory adjustment process.
To check the robustness of our results, we considered several alternative estimators of ¾it, including

the L1 and the IV estimator. However, the alternative estimates of ¾it had only negligible e¤ects
on our reported results.
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For the most part, the estimates of the scale parameter ¾it are close to one,
although there are industries and time periods where the parameter is substantially
above or below unity. More importantly, note that in many industries the parameter
displays both low- and high-frequency (seasonal) ‡uctuations, indicating the need to
allow the unconstrained temporal variation in this parameter.
We next consider the stockout avoidance parameter Ait. We assume that a …rm-

speci…c stockout avoidance behavior over time consists of a low- and high-frequency
components. The low-frequency component re‡ects such in‡uences as advances in
inventory monitoring technology, changes in the …rm’s relationship with its suppliers,
and changes in product diversity. The high-frequency component, on the other hand,
is meant to capture movements in the stockout avoidance behavior associated with
seasonal ‡uctuations.
Speci…cally, we assume that Ait takes on the following log-linear form:

ait = °i £ Y EAR(t) + µi £QTR(t): (9)

In equation (9), °i and µi denote …xed …rm e¤ects, Y EAR(t) is an indicator function
that takes on the year value associated with the observation in period t, andQTR(t) is
an indicator function that takes on the quarter value associated with the observation
in period t.12

Conditional on the estimate of the scale parameter ¾it, we can then obtain an
estimate of the ex post inventory deviations from the following regression:

ln
·
H

S¾it

¸
it
= °i £ Y EAR(t) + µi £QTR(t) + uit: (10)

We estimate equation (10) for each 2-digit industry by weighted least squares with
the weights equal to the …rm’s tenure in the panel.13 The negative of the estimated
residual ûit from this regression is our estimate of eit. To derive an estimate of zit,
remember that equations (1) and (6) imply that zit di¤ers from eit only in that the
latter incorporates adjustment. Therefore, using our estimate of the ex post deviation
eit,

zit = eit +¢hit; (11)

where ¢hit denotes the actual growth rate of inventories of …rm i in period t. These
estimates of the ex ante deviations are then used in our analysis of …rm inventory
adjustment.

12For example, in period t = 1995:Q1, Y EAR(t) = 1995 and QTR(t) = 1. Therefore, °i £
Y EAR(t) denotes …xed …rm-speci…c year e¤ects and µi£QTR(t) denotes …xed …rm-speci…c seasonal
e¤ects.
13Given our assumptions, it is clearly possible to estimate the scale parameter ¾it and the ex post

inventory deviation index eit jointly. Because of computational feasibility, we adopt the two stage
procedure, which yields consistent, although ine¢cient, estimates.
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5 Results

In this section, we characterize each of the elements of equation (3). Of particular
interest are the shape of the adjustment function and its sectoral, seasonal, and sub-
sample components. Next we examine the evolution of the cross-sectional distribution
of the inventory deviation index z. We measure the interaction between the shape of
the adjustment function and the ‡uctuations in the cross-sectional density and relate
its impact to aggregate dynamics.

5.1 Microeconomic Adjustment Functions

To compute the average adjustment function, we …rst discretize the state space. The
inventory deviation index z takes values between -0.5 and 0.5, over an equally-spaced
grid with intervals of size 0.01.14 In each interval, we construct the adjustment func-
tion by dividing the average inventory growth of those …rms that are at z just before
inventory adjustments take place by z, for z 6= 0.15 In what follows, all depicted
adjustment functions are smoothed by a cubic B-spline.

5.1.1 Average Adjustment

The solid line in Figure IV shows the estimated average—over all …rms and quarters—
adjustment functions for the manufacturing and the trade sectors along with two
standard deviation error bands.16 The dashed lines represent the smoothed average
density of inventory deviations. Examining the adjustment function for the manufac-
turing sector in the top panel, three observations stand out. First, …rms with larger
absolute deviations adjust more than do …rms with smaller deviations irrespective
of whether the deviation is a shortage (z > 0) or an excess (z < 0). Such behavior
is indicative of nonconvexities in the adjustment technology, which induce …rms to
adopt (S; s)-type inventory policies.

14This interval covers over 99.0 percent of our sample.
15 In calculating the adjustment function, values of z close to zero—that is, between -0.02 and

0.02—are excluded, because the calculation involves dividing the average adjustment rate by z.
Because of the unbalanced nature of our panel and the varying degree of precision regarding our

key parameter estimates, the average adjustment rate in each z-interval is computed as a weighted
average of inventory growth rates, where the weights are given by the reciprocal of the …rm-speci…c
standard deviation of the estimated post-adjustment inventory deviation index eit.
16The error bands are obtained via a nonparametric bootstrap method. Speci…cally, from the

original sample, we draw with replacement the estimated inventory deviations and the actual in-
ventory adjustments (i.e., inventory growth rates). For each of the 1,000 bootstrap samples, we
compute the adjustment function as described in the text. We then compute the standard deviation
of the estimated average adjustment for each point in our z-space. Finally, the resulting §2 stan-
dard deviation error bands are smoothed using the same procedure as in the case of the adjustment
function.
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Second, the average manufacturing adjustment function displays an asymmetric
adjustment process. Manufacturing …rms with inventories above their desired level
(z < 0) adjust less than …rms with similar-sized inventory shortages (z > 0). There
are several possible explanations for such asymmetric behavior. First, because of a
strong stockout avoidance motive, manufacturing …rms could be more willing to carry
extra inventories. Second, market irreversibilities could prevent …rms from reducing
their excess inventory levels. Alternatively, manufacturing …rms could be reluctant
to cut output, because they …nd it costly not to employ their capital and labor.
Finally, note that the estimated adjustment rates are economically plausible, in

contrast to the implied adjustment rate obtained from the estimation of a canonical L-
Q model. According to Ramey and West (1997), typical estimates of the adjustment
rate from the L-Q model on quarterly data are in the 10-20 percent range, indicating
economically implausible large inventory adjustment costs.
As in the manufacturing sector, the adjustment function of trade …rms is highly

nonlinear (bottom panel). There are, however, several important di¤erences. First,
for a given inventory deviation, trade …rms close, on average, a larger fraction of
their inventory gap. Furthermore, the asymmetry of the adjustment process is less
apparent in the trade sector. Trade …rms with large negative inventory deviations
seem to be more willing or able to reduce their inventory overhangs.
To summarize, the adjustment functions in the manufacturing and trade sectors

exhibit signi…cant nonlinearities indicative of nonconvexities in adjustment, (S; s)-
type behavior, and a possible strong stockout avoidance motive. These nonlinearities
in the adjustment process imply that higher moments of the cross-sectional distribu-
tion of inventory deviations may a¤ect aggregate inventory investment, and that the
linear dynamics of the L-Q model are not su¢cient to explain aggregate inventory
‡uctuations.

5.1.2 Sectoral Adjustment

In addition to the di¤erences in the adjustment function between manufacturing and
trade …rms, there remains scope for considerable heterogeneity within each sector.
Furthermore, possible di¤erences in the adjustment function within each sector may
provide additional insight into the nature of the nonlinearities documented in the
previous section. Figure V displays the di¤erences in the adjustment functions for
the durable and nondurable components of each sector.
We …rst turn to the manufacturing sector. The qualitative shape of the adjustment

function for durable and nondurable goods …rms is very similar—in both sectors,
the adjustment function exhibits signi…cant nonlinearities associated with (S; s)-type
inventory policies. However, when …rms carry excess inventories (z < 0), nondurable
goods manufacturers adjust more than durable goods manufacturers, except when
the inventory overhang is very small. In the case of an inventory shortage (z > 0),
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the adjustment rate of …rms in the nondurable goods sector appears to be somewhat
higher than that of durable goods …rms. These di¤erences may re‡ect the fact that
nondurable goods manufacturers are more willing or better able to close inventory
deviations, possibly owing to di¤ering production technologies or market structures.
The di¤erences between the adjustment functions of the durable and nondurable

goods …rms in the trade sector are more pronounced. For the entire range of the
inventory deviation index z, nondurable goods …rms adjust considerably more than
…rms in the durable goods sector. Note also that the adjustment function of durable
goods …rms exhibits greater asymmetry: durable goods …rms with inventories above
their desired level (z < 0) adjust less than …rms with similar-sized inventory shortages
(z > 0). This asymmetry does not seem to be present in the nondurable goods
sector to the same extent. As noted earlier, the di¤erence in the adjustment function
between durable and nondurable goods trade …rms could re‡ect the di¤ering nature
of the goods sold—for example, market irreversibilities—the relative signi…cance of
the stockout avoidance motive between the two sectors, or technological di¤erences
in the delivery process.
In summary, there are signi…cant di¤erences between the adjustment functions

for nondurable and durable goods …rms in both the manufacturing and the trade
sectors. Each subsector provides considerable evidence of (S; s)-type behavior, while
the durable goods subsectors provide greater evidence of asymmetries in inventory
adjustment. In both manufacturing and trade, nondurable goods …rms appear to
be better able or more willing to adjust, especially when it comes to decreasing
their inventory stocks. These nonlinearities indicate that the higher moments of the
cross-sectional distribution of inventory deviations should matter for the aggregate
dynamics in each subsector.

5.1.3 Seasonal Adjustment

We now turn our attention to the temporal variation in the adjustment function.
Undoubtedly, variables other than the inventory deviation have an impact on …rms’
inventory adjustments. Examining the di¤erences in the adjustment function over
time provides a gauge for evaluating the e¤ects of these unmodelled variables. Because
our data are quarterly and not seasonally adjusted, we proceed in two steps. First,
we examine seasonal ‡uctuations in the adjustment function. In the next subsection,
we look at di¤erences over di¤erent subperiods of our sample.
The seasonal patterns in the adjustment function are displayed in Figure VI. In

this …gure, the fourth quarter adjustment function refers to the average inventory ad-
justment between the end of the third and fourth quarters. By considering quarterly
variation in the adjustment function, we are computing the average adjustment using
relatively few observations, especially for the trade sector. Although our panels con-
tain a fair amount of observations, especially for the manufacturing sector, our data
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sets are unbalanced and considerably smaller than the LRD panel used by Caballero
et al..17 Therefore, the seasonal variation in the adjustment function is likely to be
imprecisely estimated and caution must be exercised when interpreting time variation
at a quarterly frequency.
Given this caveat, seasonal variations in the manufacturing sector seem to be

only minor. The adjustment functions for the second, third, and fourth quarters
are essentially parallel shifts of each other, and have similar shape as the overall
average adjustment function. The …rst quarter adjustment function—which captures
average inventory adjustment between the end of the fourth and …rst quarters—
exhibits the greatest qualitative di¤erences. Despite these di¤erences, the estimated
adjustment function is nonlinear and asymmetric. A puzzling feature of the …rst
quarter adjustment function, especially in light of all our other results, is that the
adjustment rate is relatively constant over a considerable range of positive inventory
deviations (i.e., inventory shortages).
In the trade sector, the seasonal ‡uctuations in the adjustment function are more

pronounced. In particular, note that the fourth quarter adjustment function indicates
that trade …rms with excess inventories disinvest more than they do in other quar-
ters. In fact, …rms with excess inventories are more likely to adjust than …rms with
shortages in the fourth quarter, a feature not observed in any of the other quarterly
adjustment functions. This may re‡ect the sell-o¤ of inventory during the Christmas
and year-end selling season.
Despite our caveats, seasonal variations in the adjustment function for trade …rms

appear to be substantial. Besides year-end e¤ects, the di¤erences are consistent with
the e¤ect of the Christmas selling season on trade …rms.

5.1.4 Period Adjustment

In this section, we examine the stability of the adjustment function across di¤erent
subperiods of our sample. This analysis allows us to investigate the extent to which
technological improvements in inventory control may have a¤ected the adjustment
process. Furthermore, it provides an idea of how low-frequency movements in the
adjustment function a¤ect aggregate inventory dynamics.
Given that our data span a long period of time, we ideally would like to examine

yearly variations in the adjustment function. Unfortunately, the number of observa-
tions in each year is not su¢cient to provide a reliable estimate of the adjustment
function. Hence, we compute the average adjustment function for four di¤erent sub-
periods of our sample: 1981-1984, 1985-1988, 1989-1992, and 1993-1997. Even with
this grouping, the estimates of the adjustment function across di¤erent subperiods
are likely to be imprecise, much as in the case of seasonal adjustment.

17In their analysis of business …xed investment and employment, Caballero et al. have a balanced
panel of 10,000 individual plants in the manufacturing sector over the time period 1972 to 1980.
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Despite this caveat, Figure VII indicates that the adjustment function has been
remarkably stable across the four subperiods. In each sector, the adjustment function
displays a similar nonlinear shape—consistent with the use of (S; s)-type inventory
policies—in each of these periods. The most pronounced time variation in the adjust-
ment function occurs during the latest subperiod (1993-1997) in the manufacturing
sector, where the adjustment rates associated with inventory shortages appear some-
what higher.
The relative time invariance of the adjustment function indicates that the in-

ventory adjustment process has not changed signi…cantly over our sample period.
Furthermore, the stability of the adjustment function suggests that the aggregate
inventory ‡uctuations are driven primarily by movements in the cross-sectional dis-
tribution of inventory deviations rather than by shifts in the adjustment function.
This result is in contrast to the popular view, which argues that advances in in-
ventory control practices have reduced the volatility of inventory investment and its
contribution to the overall output ‡uctuations.18

5.1.5 Distribution of Adjustments

Figures VIII and IX show the distribution of adjustment rates conditional on di¤erent
ranges of inventory deviations for the manufacturing (Figure VIII) and trade (Figure
IX) sectors. The horizontal axis in each panel represents the fraction of the inventory
deviation closed by a …rm in any given quarter. We use data pooled over all …rms
and quarters to generate these conditional distributions. For example, the bar in the
bottom panel of Figure VIII at the value 0.1 on the horizontal axis represents the
fraction of …rm/quarter observations with an inventory deviation index in the interval
[0.1,0.3] that closed 10 percent of their inventory gap. The upper panel in each …gure
corresponds to a situation where …rms have “large” excessive holdings of inventories
( z 2 [¡0:5;¡0:3]); the middle panel corresponds to “large” inventory shortages (z 2
[0:3; 0:5]), and the bottom panel corresponds to a situation of a “normal” inventory
shortage (z 2 [0:1; 0:3]).
There are a couple of noteworthy features in the conditional distribution of ad-

justments. First, even though there is a wide dispersion in the distribution of ad-
justment rates—in particular, there is a fraction of …rms which overshoot their target
(¤(z) > 1:0)—most …rms have adjustment rates lying between 0 and 1.0, which is
the range consistent with the model. This occurs despite the potential distortions
induced by entry into and exit from our sample.
Second, a sizable fraction of …rms exhibits no adjustment, indicating substantial

inaction in the quarterly adjustment that is consistent with the use of (S; s)-type
inventory policies. In particular, the mode of the conditional distribution for manu-

18Our results are consistent with Allen (1995) and Filardo (1995) who …nd that the net e¤ect of
improved inventory control methods on the business cycle is negligible.
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facturing …rms with large inventory overhangs is at zero (top panel), which suggests
that a large fraction of these …rms does not reduce their inventory holdings. This re-
sult is particularly at odds with the partial-adjustment model, because for most …rms
inventories are a relatively small fraction of sales at the quarterly frequency, and we
would expect these …rms to reduce their excess inventory levels. Consequently, the
evidence of the inertia in the inventory adjustment process is indicative of nonconvex-
ities in the production technology, which results in infrequent production adjustment.

5.2 The Cross Section of Inventory Deviations

The cross section of inventory deviations results from the interaction between aggre-
gate and idiosyncratic shocks and the microeconomic adjustment process. The den-
sity function of this cross section corresponds to the histogram of deviations in each
period. The average densities—where the average is computed over all …rm/quarter
observations in the manufacturing and the trade sectors—are displayed by the dashed
lines in Figure IV. In this section, we consider the time variation of these distributions
and the evolution of the shocks a¤ecting inventory deviations.
The time paths of the …rst four moments of the cross-sectional distribution of the

inventory deviations are presented in Figures X and XI for the primary subcompo-
nents of the manufacturing and trade sectors, respectively.19 Each moment displays
substantial temporal variation and does not appear to be correlated with other mo-
ments. In particular, the implied cross-sectional distributions of inventory deviations
exhibit both substantial skewness and kurtosis; interestingly, these higher moments
are more volatile in nondurable goods industries—for example, note the skewness and
kurtosis in the manufacturing sector.
The visual evidence of the time variation in the cross-sectional density of inventory

deviations is con…rmed by formal statistical evidence. Figure XII presents a histogram
of signi…cance levels from a sequence of nonparametric tests for the equality of cross-
sectional distributions over time in manufacturing and trade sectors. Speci…cally
we compute the probability value for the Kolmogorov–Smirnov test statistic (see
DeGroot (1975)) of the null hypothesis that f (z; t) = f(z; t + 1), against the two-
sided alternative that f(z; t) 6= f(z; t + 1), for all t. Note that for most of our
sample period, we can reject the null hypothesis that the cross-sectional distribution
of inventory deviations is stable across adjacent periods at any of the usual signi…cance
levels.
Finally, note that the dispersion of inventory deviations—as measured by the stan-

dard deviation of the cross-sectional distribution—does not exhibit a secular decline
during our sample period. Such a decline would be consistent with advances in in-

19All moments are unweighted and have been seasonally adjusted with quarterly dummies; excess
kurtosis is de…ned as the di¤erence between 3, the kurtosis of the normal distribution, and the
sample kurtosis.
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ventory management techniques, which, presumably, allow …rms to align inventories
more closely to their desired levels.
Figures XIII and XIV plot the evolution of the aggregate and idiosyncratic shocks

computed from equation (2) using the path of the estimated inventory deviations. The
time path of aggregate shocks is computed according to ´t =

1
Nt

PNt
i=1(¢zit+¢hit¡1),

where Nt denotes the number of …rms in period t. In each period, the distribution
of idiosyncratic shocks corresponds to the histogram of estimated º its, which are
obtained from ºit = (¢zit+¢hit¡1)¡ ´t. The left and right top panels of each …gure
show the time path of the cross-sectional mean of the inventory deviation index z
(solid line) and the estimated time path of the aggregate shock ´t (dashed line)
for the primary subcomponents of the two sectors. The left and right bottom panels
show the temporal variation in the standard deviation (left panel) and skewness (right
panel) of the idiosyncratic shocks in each of the primary subcomponents of the two
sectors.
Note that the time path of aggregate shocks in the manufacturing sector is closely

correlated with movements in the mean of the cross-sectional distribution of inventory
deviations; the correlation between the two series in the durables goods component of
the manufacturing sector is 0.85, and the correlation in the nondurable goods sector
is 0.83. In the trade sector, however, the same correlations are only 0.66 for the
durables and 0.67 for the nondurable goods sector. Consequently, ‡uctuations in
the cross-sectional density of inventory deviations in the trade sector could be driven
to a greater extent by idiosyncratic shocks. Note that in both the manufacturing
and trade sectors, the cross-sectional distribution of idiosyncratic shocks exhibits
substantial dispersion and skewness. Moreover, both moments display considerable
temporal variation.

5.3 Aggregate Dynamics and Cross-sectional Moments

In this section, we consider the impact of nonlinear microeconomic adjustment on
the aggregate inventory dynamics. We use a simple parametric approach to analyze
whether higher moments of the cross-sectional density a¤ect aggregate dynamics.
The density functions pictured in Figures IV indicate that for a signi…cant fraction
of our …rm/quarter observations, inventories are within §25 percent of their desired
level. More importantly, the distribution of inventory deviations is concentrated in
the interval over which the adjustment function is particularly nonlinear. This con-
centration suggests that—with the proper speci…cation of the aggregate adjustment
function—cross-sectional moments other than the mean should a¤ect aggregate dy-
namics.
Following Caballero and Engel (1993), we test this hypothesis as follows. Suppose

that the adjustment function can be approximated by a second-degree polynomial,
¤(z) = ¸0 + ¸1z + ¸2z

2. From equations (3) and (4) it follows that the aggregate
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dynamics will depend on the …rst three noncentral moments of the cross-sectional
density f(z; t). Expansion of these noncentral moments in terms of mean and central
moments implies,

¢lnHA
t = ¸0¹z(t) + ¸1[¾

2
z(t) + ¹

2
z(t)] + ¸2[¾

3
z(t)°z(t) + 3¾

2
z(t)¹z(t) + ¹

3
z(t)] (12)

where ¹z denotes the mean of the cross-sectional density f (z; t), ¾z the standard
deviation, and °z the skewness coe¢cient. The constant adjustment function implicit
in the partial-adjustment model implies that ¸1 = ¸2 = 0, while a model with a
nonconstant adjustment function implies nonzero coe¢cients on the higher moments.
Estimates of equation (12) as well as the partial-adjustment model are presented

in Tables 1A and 1B for the manufacturing and trade sectors respectively. The …rst
two columns in each table report the results for the durable goods component and
the last two columns for the nondurable goods sector. The equations for durable and
nondurable goods in each sector are estimated jointly in a SUR framework using least
squares over the period 1981Q1–97Q4.20

Turning …rst to the manufacturing sector, the estimates of the constant adjust-
ment rate in the partial adjustment model are presented in the …rst and third columns
of Table 1A. Both estimates are statistically highly signi…cant and indicate quarterly
adjustment rates of 0.632 in the durable goods manufacturing and 0.339 in the non-
durable goods sector. Although the adjustment rate in the durables sector is not
unreasonable, the adjustment rate in the nondurables sector appears to be too low,
especially compared to the adjustment function we previously estimated for this sector
(Figure V).
Estimates of the quadratic adjustment function in the second and fourth columns

provide additional evidence that the adjustment function is not constant. In the
durable goods sector, the null hypothesis of ¸1 = ¸2 = 0 is rejected at any of the
usual signi…cance levels. In particular, the quadratic term, ¸2, is highly signi…cant,
which is indicative of (S; s)-type behavior in this sector. In the nondurable goods sec-
tor, the null hypothesis of a constant adjustment function is also rejected, although
the rejection is not as strong as that in the durable goods component. In this case, the
linear term, ¸1, is statistically signi…cant but the quadratic term, ¸2, is not statisti-
cally di¤erent from zero. Furthermore, the implied shape of the quadratic adjustment
function for the nondurable goods sector indicates a likely misspeci…cation.
The results for the trade sector are presented in Table 1B. For the partial adjust-

ment model, the estimated constant adjustment rate is 0.245 in the durable goods
sector and 0.730 for nondurables—both estimates are statistically signi…cant. The

20Because the regressors are derived from an auxilliary econometric model, they are measured with
sampling error—the so-called “generated regressor” problem. Consequently, although the parameter
estimates are consistent, hypothesis tests based on the estimated covariance matrix are biased.
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implied adjustment rate in the durable goods sector appears to be unreasonably low,
compared both to economic intuition and our nonparametric estimates of the adjust-
ment function from the …rm-level data (Figure V).
However, the parametric estimates of the quadratic adjustment function in the

trade sector provide only limited evidence that the adjustment function is nonlinear.
In the durable goods sector, the null hypothesis of a constant adjustment function is
rejected at better than a 5-percent signi…cance level. As in the manufacturing durables
sector, it is the quadratic term, ¸2, that is most signi…cant, indicating (S; s)-type
behavior in the sector; the implied adjustment rates for this sector, however, remain
rather low. In the nondurable goods sector, the higher moment terms have little
e¤ect and the constant adjustment function—consistent with the partial adjustment
model—cannot be rejected.21

Overall, our parametric approach provides some support for the hypothesis that
the higher cross-sectional moments of the inventory deviation distribution in‡uence
the dynamics of average inventory investment, especially for the durable goods in-
dustries. Nevertheless, it appears that the in‡uence of these higher moments on
average inventory growth is more complicated than that implied by a time-invariant
second-order polynomial approximation of the adjustment function.

6 Conclusion

In this paper, we have examined aggregate inventory dynamics by building directly
on the microeconomic evidence. Our empirical methodology employs high-frequency
…rm-level data and the generalized (S; s) framework developed Caballero (1993, 1997),
Caballero and Engel (1991, 1993), and Caballero, Engel, and Haltiwanger (1995,
1997). The combination of these two factors allows us to model explicitly the un-
derlying microeconomic heterogeneity and provides us with an empirically tractable
aggregation methodology. One contribution of our paper is a uni…ed approach in
modelling the behavior of manufacturing and trade inventories, providing a frame-
work that is consistent with numerous empirical regularities of the data.
The key …nding of our paper is that the estimated adjustment function is nonlinear

and asymmetric, implying a pattern of microeconomic inventory adjustment consis-
tent with the use of (S; s)-type inventory policies. The nonlinearity of the adjust-
ment function is re‡ected in the fact that …rms with larger deviations from “desired”
inventory levels adjust proportionally more than do …rms with smaller deviations—
behavior consistent with the presence of nonconvexities in the adjustment technology.
The asymmetry, especially evident in the manufacturing sector, re‡ects the fact that

21Note that the …rst moment of the cross-sectional distribution, ¹z(t), includes a period t aggregate
shock and hence uses more information than the typical aggregate time series partial adjustment
speci…cation.
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…rms with excessive inventory holdings adjust less than …rms with similarly sized
inventory shortages. In part, these asymmetries are consistent with a presence of
a stockout avoidance motive. Furthermore, we …nd sizable di¤erences between the
adjustment functions of manufacturing and trade …rms as well as between those of
…rms in the durable and nondurable goods industries in each sector.
The seasonal variations in the adjustment function display interesting features, no-

tably in the trade sector, where there is evidence consistent with the Christmas selling
season and year-end e¤ects. More importantly, we …nd that the adjustment function
is remarkably stable across di¤erent subperiods of our sample. This result suggests
that the inventory adjustment process has changed little during our sample period,
despite a popular view that recent developments in inventory management techniques
have allowed …rms to adjust faster and more completely. The time invariance of the
adjustment function—combined with our evidence that shows that the dispersion of
the inventory deviations has not declined—indicates that the inventory cycle has yet
to be tamed. This further implies that movements in the cross-sectional distribution
of inventory deviations are likely to play a key role in determining aggregate business
cycle ‡uctuations.
In particular, the nonlinearities and asymmetries in the inventory adjustment

function would imply that the higher cross-sectional moments of inventory devia-
tions a¤ect aggregate dynamics. In contrast to the implied dynamics of the partial-
adjustment model, a simple parametric approach employed in this paper suggests
that the higher moments of the cross-sectional distribution of inventory deviations
have some explanatory power for aggregate inventory investment, especially for the
durable goods industries.
Overall, our results strongly support the applicability of the generalized (S; s)

framework in connecting microeconomic inventory policies to aggregate dynamics.
However, much work on the aggregate implications of our model remains to be done.
A limitation of our model is that it is built around a single state variable, the …rm’s
inventory deviation from its desired level. Although this state variable may be a
su¢cient statistic for many aspects of the …rm’s inventory policy, it is probably in-
su¢cient to capture all relevant considerations. In particular, the …nancial condition
of …rms has been shown to have signi…cant e¤ects on cyclical inventory ‡uctuations
in all sectors; see, for example, Gertler, and Gilchrist (1994), Fazzari, Hubbard, and
Petersen (1997), and Zakrajšek (1997). An index of the …rm-level …nancial capacity,
therefore, would appear to be a particularly promising candidate to be included in
the model.
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A Data Appendix

This section describes the selection rules used to construct our …rm-level panels and
the construction of all variables in the analysis. The data for our paper come from
the P/S/T, Full Coverage, and Research COMPUSTAT data …les. As we discussed in
the main text, …rms in SIC 29 (Petroleum re…ning and related industries) and SIC 55
(Automotive dealers and gasoline service stations) were excluded from the analysis,
because these two industries contained an insu¢cient number of observations for
reliable estimation.
The COMPUSTAT data …les are compiled in a …scal-year format. The …scal

quarters in the data are aligned with calendar quarters as follows:

1. If the …rm’s …scal year ends in the same month as a calendar quarter, the
adjustment is straightforward, as the …scal quarters are relabeled to correspond
to calendar quarters.

2. If the …rm’s …scal-year end does not coincide with the end of a calendar quarter,
the data are adjusted so that the majority of the …scal quarter is placed into
the appropriate calendar quarter.

A.1 Selection Rules

We selected all …rms with positive total inventories, positive net sales, positive total
assets, and with at least eight continuous quarters of data between 1980Q4–97Q4. To
avoid results that are driven by a small number of extreme observations, two criteria
were used to eliminate …rms with substantial outliers or obvious errors:

1. If a …rm’s estimate of (real) output/deliveries from the accounting identity Y ´
S +¢H was negative at any point during a …rm’s tenure in the sample, a …rm
was eliminated in its entirety.22

2. If a …rm’s inventory-sales ratio was above (below) the 99.0 (1.0) percentile of
the distribution in any period during the …rm’s tenure in the panel, the …rm
was eliminated in its entirety.

As a consequence of these selection rules, 798 …rms were eliminated from the
manufacturing panel, and 216 …rms were eliminated from the trade panel.23

22Note that the accounting identity, Y ´ S + ¢H, holds only for …nished goods inventories.
Because the quarterly COMPUSTAT data report only the dollar value of total inventory stocks, this
relationship does not hold exactly in our data. Nevertheless, the results reported in this paper are
virtually identical when we include …rms that violate this “accounting identity.”
23Over 3/4 of eliminated …rms were deleted because of the second selection criterion. Visual

inspection of the eliminated …rms revealed severe anomalities and likely errors in their reported
data.
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A.2 Construction of Variables

² Inventories: The COMPUSTAT data report the book value of total invento-
ries. Because the …rm-level COMPUSTAT data provide limited and incomplete
information on the inventory accounting practices, we assumed that all inven-
tory stocks are evaluated using the FIFO method; namely, once a …nished good
is placed on shelves, it is given a price tag that remains on the item regard-
less of what subsequently happens to the price of newly produced goods.24

This implies that the replacement value of inventory stocks equals their book
value. To convert nominal reported value of inventories to real terms, inven-
tory stocks were de‡ated by the sector-speci…c (i.e., durable and nondurable)
implicit (1992=100) inventory de‡ator.

² Net Sales: To construct a real measure of sales, the reported nominal value of
sales was de‡ated by the sector-speci…c (i.e., durable and nondurable) implicit
(1992=100) sales de‡ator.

² All other variables were de‡ated by the chain-weighted (1992=100) GDP de‡a-
tor.

A.3 Data Summary

Tables A.1–A.4 provide information on the two-digit SIC composition and summary
statistics for the two data sets used in our analysis. Although each two-digit industry
has at least 1,100 observations, the coverage of the manufacturing sector is consid-
erably more extensive, especially in SICs 28, 34, 35, and 38. This is due to the fact
that, relative to the trade sector, a greater fraction of manufacturing …rms is publicly
traded and thus included in the COMPUSTAT data …les.
Because all …rms in the sample are publicly traded, most of them are relatively

large. In the manufacturing sector, the median …rm size, measured by total assets, is
almost $79 million, while in the trade sector, the median …rm size is almost $115 mil-
lion. The distributions of most variables display considerable skewness—the means of
inventories, sales, (approximate) output, and assets are much greater than the medi-
ans. The distribution of the inventory-sales ratio, on the other hand, is considerably
more symmetric. Also note that even after excluding outliers there remains a great
deal of heterogeneity in inventory investment and in the growth of inventories and
sales.
24It has been noted that …rms are most likely to use LIFO accounting to value their inventory

stocks—an accounting method that creates a wedge between the reported book value and the re-
placement value of inventory stocks—during times of high in‡ation. Given that our samples spans
the time period of low and stable in‡ation, the assumption that …rms use FIFO accounting seems
reasonable.
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Finally, as mentioned in the text, the panels are unbalanced, with …rms entering
and exiting the data sets. In the manufacturing sector, the average tenure is 30
quarters and the median is 25 quarters. For the trade sector, the average tenure in
the panel is 27 quarters and the median is 21 quarters.
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TABLE 1A

Aggregate Dynamics and Cross-Sectional Moments

Mfg. Durables Mfg. Nondurables
¤(z) P.A.M.a Quadraticb P.A.M. Quadratic

¸0 0.632 0.523 0.339 0.386
(0.049) (0.052) (0.048) (0.047)

¸1 - 0.138 - 0.404
(0.152) (0.202)

¸2 - 0.545 - 0.015
(0.170) (0.097)

SSE 0.013 0.012 0.029 0.028
p-valuec - 0.000 - 0.041
DW (1)d 0.145 0.237 0.087 0.119
DW (2) 0.329 0.220 0.078 0.028
DW (3) 0.193 0.176 0.097 0.121
DW (4) 0.586 0.567 0.045 0.263
S-W e 0.006 0.001 0.653 0.003

Notes: Estimation period: 1981Q1{97Q4 (T = 68). All data are
seasonally unadjusted. All speci¯cations include a constant term (not
reported). The dependent variable is the growth rate of (real) aver-
age inventories. The sector-speci¯c equations are estimated jointly in a
SUR framework using OLS. Asymptotic standard errors are reported in
parenthesis.

aPartial-adjustment model: ¤(z) = ¸0.
bQuadratic adjustment function: ¤(z) = ¸0 + ¸1z + ¸2z2.
cProbability value for the Wald test of the null hypothesis that ¸1 =

¸2 = 0.
dDW (p) indicates the probability value for the Durbin- Watson test

of the pth-order serial correlation.
eProbability value for the Shapiro-Wilk test of the normality of the

residuals.

31



TABLE 1B

Aggregate Dynamics and Cross-Sectional Moments

Trade Durables Trade Nondurables
¤(z) P.A.M.a Quadraticb P.A.M. Quadratic

¸0 0.245 0.105 0.730 0.748
(0.065) (0.085) (0.058) (0.059)

¸1 - 0.205 - -0.197
(0.296) (0.209)

¸2 - 0.640 - -0.037
(0.255) (0.073)

SSE 0.059 0.052 0.058 0.054
p-valuec - 0.033 - 0.253
DW (1)d 0.203 0.118 0.937 0.950
DW (2) 0.263 0.155 0.709 0.496
DW (3) 0.870 0.934 0.970 0.969
DW (4) 0.000 0.003 0.000 0.000
S-W e 0.794 0.001 0.915 0.994

Notes: Estimation period: 1981Q1{97Q4 (T = 68). All data are
seasonally unadjusted. All speci¯cations include a constant term (not
reported). The dependent variable is the growth rate of (real) aver-
age inventories. The sector-speci¯c equations are estimated jointly in a
SUR framework using OLS. Asymptotic standard errors are reported in
parenthesis.

aPartial-adjustment model: ¤(z) = ¸0.
bQuadratic adjustment function: ¤(z) = ¸0 + ¸1z + ¸2z2.
cProbability value for the Wald test of the null hypothesis that ¸1 =

¸2 = 0.
dDW (p) indicates the probability value for the Durbin- Watson test

of the pth-order serial correlation.
eProbability value for the Shapiro-Wilk test of the normality of the

residuals.
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Table A.1

Industry Composition: Manufacturing Sector

Industry Classi¯cation No. of Firms Observations
SIC 20: Food & Kindred Prod. 212 6,494
SIC 22: Textile Mill Prod. 107 2,976
SIC 23: Apparel & Other Prod. 108 2,820
SIC 24: Lumber & Wood Prod. 69 2,230
SIC 25: Furniture & Fixtures 74 2,404
SIC 26: Paper & Allied Prod. 111 3,735
SIC 27: Printing & Publishing 116 3,876
SIC 28: Chemicals & Allied Prod. 397 12,497
SIC 30: Rubber & Plastic Prod. 153 4,396
SIC 31: Leather & Leather Prod. 39 1,374
SIC 32: Stone, Clay & Glass Prod. 79 2,079
SIC 33: Primary Metal Industries 161 4,941
SIC 34: Fabricated Metal Prod. 182 5,614
SIC 35: Industrial Machinery 654 19,206
SIC 36: Electronic Equip. 636 19,293
SIC 37: Transportation Equip. 198 5,929
SIC 38: Instruments & Related Prod. 527 15,752
SIC 39: Misc. Durables 123 3,269

Table A.2

Summary Statistics: Manufacturing Sector

Variable Mean Std. Dev. Median Minimum Maximum

Inventories 134.2 519.4 16.0 0.003 12414.9
Net Sales 248.2 1147.6 25.5 0.005 39335.0
Gross Output 253.1 1164.0 26.3 0.001 38280.7
Total Assets 1013.9 6243.2 78.8 0.107 259303.0
Inv/Sales Ratio 0.74 0.46 0.64 0.07 5.20
Inv. Investment 1.07 49.1 0.08 -2444.7 3077.6
Inv. Growth Rate (%) 2.00 18.0 1.30 -242.5 451.0
Sales Growth Rate (%) 1.90 24.1 2.11 -331.1 477.0

No. of Firms 3,946
Tenure (Quarters) 30.1 18.6 25.0 8.0 69.0
Observations 118,885

Notes: Sample period: 1984:Q4{1997:Q4. All variables are in millions of 1992 dollars.
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Table A.3

Industry Composition: Trade Sector

Industry Classi¯cation No. of Firms Observations
SIC 50: Wholesale Durables 296 8,000
SIC 51: Wholesale Nondurables 151 4,052
SIC 52: Building Materials 38 1,145
SIC 53: General Merch. Stores 99 3,179
SIC 54: Food Stores 98 3,082
SIC 56: Apparel & Accessory Stores 84 2,533
SIC 57: Furniture & Home Furnishings 80 2,152
SIC 58: Eating & Drinking Places 171 4,035
SIC 59-1: Misc. Retail Durables 72 1,805
SIC 59-2: Misc Retail Nondurables 117 2,683

Table A.4

Summary Statistics: Trade Sector

Variable Mean Std. Dev. Median Minimum Maximum

Inventories 165.3 599.7 28.7 0.007 18369.0
Net Sales 341.4 1133.7 61.0 0.017 34571.5
Deliveries 351.7 1155.0 63.9 0.013 31885.7
Total Assets 681.9 3686.7 114.6 0.047 108274.7
Inv/Sales Ratio 0.57 0.43 0.50 0.02 3.01
Inv. Investment 3.38 90.2 0.11 -3065.6 3110.9
Inv. Growth Rate (%) 2.55 21.8 2.03 -331.2 529.8
Sales Growth Rate (%) 2.30 25.7 2.31 -203.4 331.6

No. of Firms 1,206
Tenure (Quarters) 27.1 17.6 21.0 8.0 69.0
Observations 32,666

Notes: Sample period: 1984:Q4{1997:Q4. All variables are in millions of 1992 dollars.
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Figure IA
Share of Trade Inventories
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Average Aggregate Adjustment Function
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Stability Tests of the Cross-sectional Distribution
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