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Abstract

This paper compares the properties of interest rate rules such as simple Taylor rules and rules that 
respond to price-level fl uctuations—called Wicksellian rules—in a basic forward-looking model. 
By introducing appropriate history dependence in policy, Wicksellian rules perform better than 
optimal Taylor rules in terms of welfare and robustness to alternative shock processes, and they 
are less prone to equilibrium indeterminacy. A simple Wicksellian rule augmented with a high 
degree of interest rate inertia resembles a robustly optimal rule—that is, a monetary policy rule 
that implements the optimal plan and is also completely robust to the specifi cation of exogenous 
shock processes.
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1 Introduction

Is the central bank’s objective best achieved by a policy that responds to fluctuations in

inflation or the price level? This remains an open question that has regained attention

recently among central banks, such as the Bank of Canada which just renewed its “inflation-

control target”or even in the US Federal Reserve System (e.g., Evans, 2010). This paper

argues that when monetary policy is constrained to following simple rules that respond to

inflation or the price level, price-level stabilization delivers superior outcomes on at least three

dimensions, in the context of a simple forward-looking model. First, price-level stabilization

delivers outcomes that are closest to optimal. Next, such a policy has a robustness feature

that delivers desirable outcomes even in the face of key types of model misspecification.

Finally, price-level stabilization is more likely to result in a unique bounded equilibrium.

Early studies found it preferable to respond to inflation than to price-level fluctuations

in order to minimize the short-run variability of inflation and output (e.g., Lebow et al.,

1992; Haldane and Salmon, 1995). The intuition for this result is simple: in the face of an

unexpected temporary rise in inflation, price-level stabilization requires the policymaker to

bring inflation below the target in subsequent periods. With nominal rigidities, this results

in turn in output fluctuations. In contrast, with inflation targeting, the drift in the price

level is accepted: bygones are bygones. Price-level stabilization is a “bad idea”according

to this conventional view because it would “add unnecessary short term fluctuations to

the economy” (Fischer, 1994, p. 282), while it would only provide a small gain in long-

term price predictability in the US (McCallum, 1999). However, when agents are forward-

looking, committing to a history-dependent policy allows the central bank to affect the

private sector’s expectations appropriately, hence to improve the performance of monetary

policy (Woodford, 2003a,b). This suggests that past deviations of the inflation rate should

not be treated as bygones. In fact, in the sticky-price models of Goodfriend and King

(2001), Kahn, King and Wolman (2003), and Woodford (2003a), optimal policy involves

strong price-level stabilization, though it requires some drift of the price level in the face of

some shocks.

In this paper, we consider a basic forward-looking New Keynesian model in which the
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social welfare loss function depends on the variability of inflation, the output gap and the

interest rate.1 We seek to determine whether it is best for policy to respond to fluctuations

in inflation or in the price level in this model, assuming that the central bank can commit

to a policy rule. Simple monetary policy rules are often prescribed as useful guides for the

conduct of monetary policy. Most prominently, a commitment to a Taylor rule (after Taylor,

1993) – according to which the short-term policy rate responds to fluctuations in inflation

and some measure of the output gap – is known to yield a good welfare performance in

a large class of models (see, e.g., papers collected in Taylor, 1999a; Taylor and Williams,

2010). We thus compare the performance of such Taylor rules to that of so-called Wicksellian

rules according to which the short-term policy rate depends on deviations of the price level

from a trend and the output gap.2 We compare the properties of optimal policy and simple

interest-rate rules, focusing our evaluation on two key aspects of policy rules: (i) their welfare

implications, and (ii) their robustness to some kind of misspecification that is likely prevalent,

i.e., misspecification about the assumed shock processes.

We find that Wicksellian rules perform very well in terms of welfare, indeed better than

optimal Taylor rules, by introducing a desirable amount of history dependence in policy.

Under price-level stabilization, forward-looking agents understand that current above-target

in inflation will be followed by below-target inflation in subsequent periods. This in turn

dampens the firms’willingness to change their prices, lowers the variability of inflation and

welfare losses.3

In addition, while simple Taylor rules are often argued to be robust to various types of

model misspecifications (Levin, Williams and Wieland, 1999; Levin and Williams, 2003),

we show that their welfare performance can however be very sensitive to the particular

assumptions made about the shock processes. Instead, Wicksellian rules are more robust to

alternative shock processes. Specifically, we show that (i) optimized coeffi cients of simple

Taylor rules depend critically on the assumed degree of persistence of exogenous disturbances;

1This function can be viewed as a quadratic approximation to the representative agent’s expected utility.
2Wicksellian rules are named after Wicksell (1907) who argued that “price stability”could be obtained

by letting the interest rate respond positively to fluctuations in the price level.
3Note that the inflation rate used in much of John Taylor’s work (e.g., in Taylor, 1993) is a moving

average of past quarterly inflation rates, so that his proposed rule incorporates in fact some degree of history
dependence. To understand the role of history dependence introduced by the price level, we consider here
"Taylor rules" that involve only the contemporaneous inflation rate.
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(ii) such optimized Taylor rules result in an indeterminate equilibrium for some parameter

configurations; (iii) the welfare performance relative to the first best deteriorates sharply

in the event that the economy is hit by shocks with a higher persistence than the typical

historical shocks. In contrast, optimizedWicksellian rules (i) are less sensitive to the assumed

shock persistence, (ii) generally result in a determinate equilibrium, and (iii) maintain a

very good welfare performance in the face of changes in shock processes or in the face of

misspecified shocks. This sensitivity of optimized simple Taylor rules is arguably undesirable

to the extent that in practice central banks may not want to commit to policy rules that

perform well only in the face of a few typical shocks, as they may not be able to conceive

at the time of commitment all possible shocks that will affect the economy in the future.

Policymakers might thus be more inclined to commit to a rule that is robust to the statistical

properties of the exogenous disturbances.

As shown in Giannoni and Woodford (2003a,b, 2010), it is possible under general con-

ditions to derive a robustly optimal rule that implements the optimal equilibrium and that

is completely independent of the specification of the exogenous shock processes. We show

that this rule is a close cousin of the simple Wicksellian rule augmented with a large amount

of interest-rate inertia, in the model considered. This latter rule remains extremely simple

and introduces about the right amount of history dependence, regardless of the persistence

of exogenous disturbances. It should thus be particularly appealing to policymakers who

search for simple rules but worry about unforeseeable circumstances (shocks) affecting the

economy in the future.

Several other studies have highlighted the potential advantages of price-level stabilization.

While most studies have shown numerical results in a variety of models (e.g., Williams, 2003),

our analysis of a micro-founded macroeconomic model that incorporates key tradeoffs faced

by policymakers and an accurate evaluation of agents’welfare allows us to derive analytical

results that provide a clear intuition about the welfare implications of simple Taylor rules

and Wicksellian rules, and their sensitivity to various assumptions. This paper also uniquely

emphasizes the robustness properties of simple rules focused on price-level stabilization in

the face of key model misspecifications. It also shows how inappropriate simple Taylor rules

can be in the face of misspecification of the assumed shock processes.
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We assume that the central bank is able to credibly commit to a policy rule. The de-

sirability of price-level stabilization stems essentially from the fact that the central bank’s

credible commitment to eventually undo unexpected changes in the price-level induces firms

to maintain relatively stable prices. This is differs very much for results obtained in another

branch of the literature which assumes instead that the policymaker acts under full discre-

tion. These studies consider attributing to policymakers alternative objective functions so

to mitigate the discretionary bias in policy and hence raise social welfare. They compare the

effects of a regime in which the policymaker is assigned a loss function that involves inflation

variability, to a regime in which the loss function involves price-level variability. Svensson

(1999), Dittmar et al. (1999), Dittmar and Gavin (2000), Cecchetti and Kim (2004), Vestin

(2006) show that assigning a loss function involving price-level variability may yield lower

inflation variability and a more favorable inflation-output gap trade-off. Our analysis differs

from this line of research by assuming that the central bank seeks to maximize social welfare,

and determines which simple systematic policy strategy yields the best welfare results.

Policymakers such as Evans (2010) have recently suggested committing temporarily to

stabilizing the price level around its long-run trend, in order to offset the adverse effects from

a zero lower bound on nominal interest rates which appears to have constrained monetary

policy. Supporting arguments for this view have been proposed in Eggertsson and Woodford

(2003), Wolman (2005) and Billi (2008), who have argued that a commitment to price-

level stabilization (possibly around a drifting path) may be an effective way of preventing

deflations and exiting from deflationary traps. While we don’t explicitly account for the zero-

lower bound on interest rates here, our contribution suggests that a commitment to price-level

stabilization may also be desirable even after the lower-bound constraint on interest rates

has ceased to bind.

The rest of the paper is organized as follows. Section 2 reviews the model used in our

analysis. Section 2 characterizes the optimal plan. Section 3 determines simple optimal

Taylor rules and discusses their properties. Section 4 derives simple optimal Wicksellian

rules and compare their implications to optimal Taylor rules and the optimal plan, in terms

of their dynamic responses to disturbances, their welfare implications, the sensitivity of the

optimal policy coeffi cients to the degree of persistence in the exogenous disturbances. Section
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5 introduces interest-rate inertia. It first presents a simple rule that implements the optimal

equilibrium and that is robust to the specification of the process of exogenous disturbances,

and then argues that it resembles a Wicksellian rules with a large degree of interest-rate

inertia. Section 7 concludes.

2 A Simple Structural Model

We consider a variant of the simple New Keynesian model that has been widely used in

recent studies of monetary policy, following Goodfriend and King (1997), Rotemberg and

Woodford (1997), Clarida, Galí and Gertler (1999), and Woodford (2003a,b).

2.1 Structural equations

The behavior of the private sector is summarized by two structural equations, an intertempo-

ral IS equation relating relates spending decisions to the interest rate, and a New Keynesian

aggregate supply equation4

yt − gt = Et (yt+1 − gt+1)− σ−1 (it − Etπt+1) , (1)

πt = κ (yt − ynt ) + βEtπt+1, (2)

where yt denotes the log of (detrended) real output, πt is the quarterly inflation rate, it is

the nominal interest rate (all three variables expressed in deviations from their values in a

steady-state with zero inflation and constant output growth), gt is an exogenous variable

representing autonomous variation in spending such as government spending, β ∈ (0, 1)

denotes the discount factor of the representative household, and σ, κ > 0. While (1) can be

obtained as an approximation to the representative household’s Euler equation for optimal

timing of expenditures, (2) results from a log-linear approximation to the optimal price-

setting decisions, when prices are sticky, as in Calvo (1983) and suppliers are in monopolistic

competition. The parameter κ depends on the speed of price adjustment and ynt represents

the natural rate of output, i.e., the equilibrium rate of output under perfectly flexible prices.

4Derivations of the structural equations from first principles can be found in Woodford (2003a, chap. 3).
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This natural rate of output is a composite exogenous variable that depends on a variety of

perturbations such as productivity shocks, shifts in labor supply, fluctuations in government

expenditures and shifts in preferences. We also allow for exogenous time variation in the

degree of ineffi ciency of the natural rate of output, yet − ynt , where yet is the rate of output

that would maximize the representative household’s welfare in the absence of distortions.5

As we will evaluate monetary policy in terms of deviations of output from the effi cient

rate, it will be convenient to define the welfare-relevant “output gap”as xt ≡ yt − yet , and

rewrite (1)—(2) as

xt = Etxt+1 − σ−1 (it − Etπt+1 − ret ) (3)

πt = κxt + βEtπt+1 + ut, (4)

where we now have two composite exogenous variables ret ≡ σEt

[(
yet+1 − yet

)
− (gt+1 − gt)

]
denoting the “effi cient” rate of interest, i.e., the equilibrium real interest rate that would

prevail in the absence of distortions, and a “cost-push”term ut ≡ κ (yet − ynt ) . Finally, by

definition, the log of the price level pt, satisfies

pt = πt + pt−1. (5)

2.2 Shock processes

We think of the composite shocks ret and ut as being functions of a potentially large number

of underlying disturbances, with each of the underlying disturbance having a different degree

of persistence. We assume that the central bank knows perfectly the shocks that have hit the

economy until the present, but may not be able to assess the realization of all possible future

shocks. Following Giannoni and Woodford (2003a), we let ret and ut follow the processes

ret =

∞∑
j=0

ρjrεr,t−j +

∞∑
m=0

∞∑
j=0

ρ̂jmε̂r,m,t−j (6)

5Fluctuations in yet − ynt could be due, e.g., to exogenous variation in the degree of market power of firms
or in distortionary taxation.
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ut =

∞∑
j=0

ρjuεu,t−j +
∞∑
m=0

∞∑
j=0

ρ̂jmε̂u,m,t−j (7)

where εk,t, and ε̂k,m,t are iid, mean-zero random variables, for all k ∈ {r, u} and m, t ≥ 0, but

where the innovations ε̂k,m,t have a distribution with a large atom at zero and ρk, ρ̂k ∈ [0, 1).

The shocks ret and ut are thus affected in each period by typical innovations εr,t and εu,t,

with a persistence given by ρr, ρu, and they may be infrequently affected by a large number

of other types of unforecastable disturbances, ε̂r,m,t and ε̂u,m,t each of which may have a

different degree of persistence. To simplify the analysis, we furthermore assume that such

infrequent innovations have not been observed in the past, up to the date 0 at which the

policymaker sets policy, so that the historical exogenous processes can be characterized by

ret = ρrr
e
t−1 + εrt (8)

ut = ρuut−1 + εut. (9)

up to date 0, and the conditional forecasts are given by E0r
e
t = ρtrr

e
0 and E0ut = ρtuu0. Since

it is impractical for the central bank to catalog all of the possible disturbances ε̂r,m,t, ε̂r,m,t

before they are realized, and since the policymaker cannot reject the hypothesis that the

past shocks and conditional forecasts of future shocks are described by (8)—(9), we assume

that the central bank wants to choose at date 0 a rule that would be optimal (at least within

the class of rules that it considers) under the assumption that the shock processes are given

by (8)—(9).6

2.3 Policy objective

We assume that the policymaker seeks to minimize the expected loss criterion

E[L] = (1− β) E
∞∑
t=0

βt
[
π2
t + λx (xt − x∗)2 + λi (it − i∗)2] , (10)

6The central bank does not need to regard it as certain that (8)—(9) are correct. However, we assume
that it will only consider rules that would be optimal in the case that (8)—(9) were correct. Subject to
that requirement, we assume that it would also like its rule to be as robust as possible to alternative shock
processes within the family (6)—(7).
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with weights λx, λi > 0, β ∈ (0, 1), and where x∗ ≥ 0 and i∗ represent some optimal levels of

the output gap and the nominal interest rate. The expectation E[·] is conditional on the state

of the economy at the time that the policy is evaluated, which we assume takes place before

the realization of the shocks at that date. This loss criterion can be viewed as a second-order

Taylor approximation to the lifetime utility function of the representative household in the

underlying model (see Woodford, 2003a, chap. 6). The concern for interest rate variability

in (10) reflects both welfare costs of transactions and an approximation to the zero lower

bound on nominal interest rates. The approximation of the utility function allows us also to

determine the relative weights λx, λi, and the parameters x∗, i∗ in terms of the parameters

of the underlying model.7

The ineffi cient supply shock is responsible for a trade-off between the stabilization of

inflation on one hand and the output gap on the other hand: in the face of an increase in ut,

the policymaker could not keep both inflation and the output gap constant. In the absence

of ineffi cient supply shocks, however, both inflation and the output gap could be completely

stabilized by letting the interest rate track the path of the effi cient rate of interest, ret . But

when λi > 0 in (10), a tension appears between stabilization of inflation and the output gap

on one hand and stabilization of the nominal interest rate on the other hand.

2.4 Calibration

While we characterize optimal monetary policy for arbitrary positive values of the parame-

ters, we will however at times focus on a particular parametrization of the model, using

the parameter values estimated by Rotemberg and Woodford (1997) for the U.S. economy,

and summarized in Table 1. The weights λx and λi are calibrated as in Woodford (2003a).

Rotemberg and Woodford (1997) provide estimated time-series for the disturbances ynt and

gt but do not split ynt into an effi cient component y
e
t and an ineffi cient component. We cali-

brate the variance of ret by assuming that all supply shifts are effi cient, so that the variance

of the effi cient rate of interest is the same as the variance of the natural rate of interest re-
7Woodford (2003a, chap. 6)’s derivation of the loss criterion accounts for transaction frictions and the

approximation of the lower bound on interest rates, but abstracts from ineffi cients supply shocks ut. The
approximation remains valid in the presence of ineffi cient supply shocks.

8



ported in Woodford (2003a). In our benchmark calibration, we set var(ut) to its upper bound

κ2 var(ynt ), assuming that all supply shifts are ineffi cient, but we verify that our conclusions

remain unchanged for lower values of var(ut).

Table 1: “Calibrated”parameter values

Structural parameters Shock processes Loss function

β σ κ ρr ρu var(ret ) var(ut) λx λi

0.99 0.1571 0.0238 0.35 0.35 13.8266 0.1665 0.048 0.236

3 Optimal Plan

Before evaluating alternative policies below, it will be useful to consider as a benchmark the

optimal state-contingent plan, i.e., the processes {πt, xt, it} that minimize the unconditional

expectation of the loss criterion (10) subject to the constraints (3) and (4) imposed by the

private sector’s behavior at all dates, assuming that the policymaker can commit to the plan

for the entire future.8 The first-order necessary conditions with respect to πt, xt, and it are

πt − (βσ)−1 φ1t−1 + φ2t − φ2t−1 = 0 (11)

λx (xt − x∗) + φ1t − β−1φ1t−1 − κφ2t = 0 (12)

λi (it − i∗) + σ−1φ1t = 0 (13)

at each date t ≥ 0, and for each possible state, where φ1t and φ2t refer to Lagrange multipliers

associated respectively with the constraint (3) and (4). In addition, we have the initial

conditions

φ1,−1 = φ2,−1 = 0 (14)

indicating that the policymaker has no previous commitment at time 0.

The optimal plan is a bounded solution {πt, xt, it, φ1t, φ2t}
∞
t=0 to the system of equations

(3), (4), (11) —(13) at each date t ≥ 0, together with the initial conditions (14). A bounded

solution exists, it is unique. In this solution, the endogenous variables depend not only upon

8This section generalizes slightly the results of Clarida et al. (1999) and Woodford (2003a, 2003b) by
considering the optimal plan with both ineffi cient supply shocks and a concern for interest-rate stabilization
(λi > 0).
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expected future values of the disturbances, but also upon the predetermined variables φ̂1t−1,

φ̂2t−1, so that optimal policy is generally history dependent.

4 Commitment to an Optimal Taylor Rule

We next consider an optimal policy problem in the case that the policymaker restricts its

policy by setting the interest rate according to the standard “Taylor rule”

it = ψππt + ψxxt + ψ0, (15)

at all dates t ≥ 0, where ψπ, ψx, and ψ0 are policy coeffi cients to be chosen optimally, i.e.,

so as to maximize the expected welfare (10), subject to the structural equations (3)—(4) and

the shock processes (8)—(9). Such a simple rule, while restrictive hence not fully optimal, is

known to perform well in a wide range of models. We focus here on the simplest Taylor rule

without inertia, but we discuss an extension including the lagged interest rate in section 6.2.

To determine the optimal policy coeffi cients, we first characterize the optimal equilib-

rium that is consistent with the given rule, and next we determine policy coeffi cients that

correspond to that equilibrium. Using (15) to substitute for the interest rate in (3) and (4),

we observe that inflation and the output gap must satisfy a system of difference equations

of the form

Etzt+1 = A zt + a et (16)

where zt ≡ [πt, xt, 1]′ , and et ≡ [ret , ut]
′. Given that zt does not involve any predetermined

variable in this case, the resulting equilibrium, if it exists, must be non inertial. The evolution

of the endogenous variables can then be described by

πt = πni + πrr
e
t + πuut, xt = xni + xrr

e
t + xuut, it = ini + irr

e
t + iuut, (17)

where πni, xni, ini are the steady-state values of the respective variables in this equilibrium,

and πr, πu, and so on, are the equilibrium response coeffi cients to fluctuations in ret and ut.

As we show in Appendix A.1, ir and iu are positive for any positive weights λi, λx. Thus
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the optimal non-inertial plan involves an adjustment of the nominal interest rate in the

direction of the perturbations. Furthermore, the response coeffi cients πr, xr are positive if

and only if
σ

κ
>

ρr
(1− βρr) (1− ρr)

, (18)

that is, whenever the fluctuations in the effi cient rate are not too persistent (relative to the

ratio σ
κ
). When (18) holds, a positive shock to the effi cient rate ret stimulates aggregate

demand, raising the output gap and inflation.

For the Taylor rule to be consistent with an optimal equilibrium of the form (17), we

show in Appendix A.1 that the policy coeffi cients must satisfy

ψπ =
xuir − iuxr
xuπr − πuxr

, ψx =
πriu − irπu
xuπr − πuxr

, (19)

Substituting the coeffi cients πr, xr, ... with their values characterizing the optimal non-inertial

equilibrium, yields the coeffi cients of the optimal Taylor rule as functions of the underlying

structural coeffi cients. However, for the optimal Taylor rule to implement the optimal non-

inertial equilibrium, it must guarantee that the dynamic system involving (3), (4), and (15)

admits a unique bounded solution. It is well known (see, e.g., Woodford, 2003a, chap. 4)

that if we restrict our attention to the case in which ψπ, ψx ≥ 0, then the policy rule (15)

results in a determinate equilibrium if and only if

ψπ +
1− β
κ

ψx > 1. (20)

4.1 Optimal Taylor rule and sensitivity to shock processes

To get some intuition about the optimal Taylor rule, let us consider the special case in which

both perturbations have the same degree of persistence, i.e., ρr = ρu ≡ ρ. In this case, the

optimal Taylor rule coeffi cients reduce to

ψπ =
κ

λi (σ (1− ρ) (1− βρ)− ρκ)
, ψx =

λx (1− βρ)

λi (σ (1− ρ) (1− βρ)− ρκ)
. (21)
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Figure 1: Optimal Taylor rules (ψπ, ψx) for different degrees of shock persistence (ρr; ρu).

They are both positive when (18) holds. The optimal coeffi cient on inflation, ψπ, increases

with the slope to the aggregate supply, κ, to prevent a given output gap from creating more

inflation. Similarly the optimal coeffi cient on output gap, ψx, increases when λx increases

as the policymaker is more willing to stabilize the output gap. In addition, the optimal

Taylor rule becomes more responsive to both inflation and output gap fluctuations when λi

decreases as the policymaker is willing to let the interest rate vary more, and when the IS

curve becomes flatter (σ is smaller) as shocks to the effi cient rate of interest have a larger

impact on the output gap and inflation.

These expressions reveal that the optimal Taylor coeffi cients are particularly sensitive to

the assumed degree of persistence of the shocks, as shown in Figure 1. As ρ increases to

approach the bound (18), corresponding to ρ ' 0.68 in our calibration, the optimal Taylor

rule coeffi cients become in fact unboundedly large, and become negative when the inequality

in (18) is reversed, i.e., when ρ > 0.68. Table 2 reports the optimal coeffi cients (given by

(A.41) and (A.42) in Appendix A.1) for different degrees of persistence of the perturbations.

While the white region of Figure 1 indicates the set of Taylor rules that result in a
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unique bounded equilibrium, the gray region indicates combinations (ψπ, ψx) that result in

indeterminacy of the equilibrium. Figure 1 reveals for example that when both shocks are

purely transitory (ρr = ρu = 0), the “optimal”Taylor rule lies in the region of indeterminacy,

as they are not large enough to satisfy (20). Committing to an “optimal”Taylor rule that lies

in the region of indeterminacy can thus result in a large set of bounded equilibria, including

some that involve an arbitrarily large value of the loss criterion (10). Note from Figure

1 that the problem of indeterminacy arises not only when ρr = ρu = 0, but also in some

cases when the disturbances are more persistent (e.g., when ρr = 0.35 and ρu = 0, or when

ρr = ρu = 0.9).

4.2 Desirability of history dependence

Even if we abstract from equilibrium indeterminacy, the optimal Taylor rule may yield

substantially higher welfare losses than the first best. Table 2 reports the policymaker’s loss,

E [L] , in addition to the following measure of variability

V [z] ≡ E

[
(1− β)

∞∑
t=0

βtẑ2
t

]

for the four endogenous variables, π, x, i, and p, so that E [L] is a weighted sum of V [π] , V [x] ,

and V [i] with weights being the ones of the loss function (10).9 When ρr = ρu = 0.35, as in

the baseline calibration, the loss is 1.28 in the optimal plan, while it is 2.63 when committing

to an optimal Taylor rule. The welfare losses of generated by this simple policy rule stem

primarily from a higher variability of inflation and of interest rates.

To understand better the source of the welfare losses under the simple Taylor rule, we

show in Figure 2 the response of endogenous variables to an unexpected disturbance to the

effi cient rate of interest, assuming for illustrative purposes no shock persistence (ρr = 0).10

9The table reports the statistics in the case in which x∗ = i∗ = 0, so that the steady state is the same
for each plan (and is zero for each variable). The statistics measure therefore the variability of each variable
around its steady state, and E [L] indicates the loss due to temporary disturbances in excess of the steady-
state loss. All statistics in Table 2 are reported in annual terms: V [π] , V [i] , and E [L] are multiplied by
16. The weight λx in Table 1 is also multiplied by 16 to represent the weight attributed to the output gap
variability (in annual terms) relative to that of annualized inflation and annualized interest rate.
10The responses of ı̂t and π̂t in Figures 2 and 3 are multiplied by 4 so that the responses of all variables

are reported in annual terms.
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Table 2: Statistics and Optimal Policy Rules

Statistics Coefficients of optimal policy rule
V[π ] V[x ] V[i ] V[p ] E[L ] p t π t x t x t- 1 i t- 1 i t- 2

Optimal Plan / Optimal Rule
ρ r  = 0 ρ u  = 0 0.157 10.215 0.983 0.938 0.883 -- 0.641 0.325 -0.325 2.163 -1.010

ρ u  = 0.35 0.192 10.994 0.983 0.951 0.956 -- 0.641 0.325 -0.325 2.163 -1.010
ρ u  = 0.9 0.195 20.057 0.983 1.098 1.397 -- 0.641 0.325 -0.325 2.163 -1.010

ρ r  = 0.35 ρ u  = 0 0.217 11.056 1.922 2.727 1.206 -- 0.641 0.325 -0.325 2.163 -1.010
ρ u  = 0.35 0.252 11.835 1.922 2.740 1.279 -- 0.641 0.325 -0.325 2.163 -1.010
ρ u  = 0.9 0.255 20.898 1.922 2.887 1.720 -- 0.641 0.325 -0.325 2.163 -1.010

ρ r  = 0.9 ρ u  = 0 0.487 5.196 6.765 46.597 2.337 -- 0.641 0.325 -0.325 2.163 -1.010
ρ u  = 0.35 0.522 5.975 6.765 46.610 2.410 -- 0.641 0.325 -0.325 2.163 -1.010
ρ u  = 0.9 0.525 15.038 6.766 46.757 2.851 -- 0.641 0.325 -0.325 2.163 -1.010

Optimal Non-Inertial Plan / Optimal Taylor Rules
ρ r  = 0 ρ u  = 0 0.269 13.495 2.030 1.680 1.401 -- 0.641 0.325 -- -- --

ρ u  = 0.35 0.391 13.957 2.233 4.224 1.593 -- 1.291 0.263 -- -- --
ρ u  = 0.9 0.144 30.354 2.159 3.217 2.122 -- 3.658 0.038 -- -- --

ρ r  = 0.35 ρ u  = 0 0.358 9.989 6.747 3.631 2.435 -- 0.888 0.694 -- -- --
ρ u  = 0.35 0.479 10.451 6.949 6.175 2.627 -- 1.724 0.572 -- -- --
ρ u  = 0.9 0.233 26.848 6.876 5.168 3.156 -- 5.041 0.089 -- -- --

ρ r  = 0.9 ρ u  = 0 0.500 0.529 10.437 39.175 2.993 -- -1.743 -3.222 -- -- --
ρ u  = 0.35 0.622 0.991 10.640 41.719 3.185 -- -2.575 -2.495 -- -- --
ρ u  = 0.9 0.375 17.388 10.566 40.712 3.714 -- -5.108 -0.283 -- -- --

Optimal Wicksellian Rules
ρ r  = 0 ρ u  = 0 0.122 13.923 1.237 0.008 1.087 1.997 -- 0.182 -- -- --

ρ u  = 0.35 0.146 15.191 1.294 0.015 1.186 1.383 -- 0.228 -- -- --
ρ u  = 0.9 0.142 24.466 1.391 0.090 1.653 0.853 -- 0.274 -- -- --

ρ r  = 0.35 ρ u  = 0 0.149 15.898 2.646 0.013 1.543 2.872 -- 0.139 -- -- --
ρ u  = 0.35 0.161 17.597 2.778 0.018 1.669 2.338 -- 0.201 -- -- --
ρ u  = 0.9 0.096 28.790 2.761 0.012 2.140 3.323 -- 0.140 -- -- --

ρ r  = 0.9 ρ u  = 0 0.158 7.072 10.459 0.089 2.973 2.613 -- 0.134 -- -- --
ρ u  = 0.35 0.166 8.239 10.699 0.102 3.093 2.426 -- 0.241 -- -- --
ρ u  = 0.9 0.110 18.822 10.779 0.094 3.567 2.626 -- 0.259 -- -- --

Estimated  Historical Rule
ρ r  = 0 ρ u  = 0 0.178 10.531 1.313 0.833 0.997 -- 0.424 0.297 -0.032 1.160 -0.430

ρ u  = 0.35 0.330 10.639 1.351 3.586 1.164 -- 0.424 0.297 -0.032 1.160 -0.430
ρ u  = 0.9 5.182 13.019 5.078 555.455 7.012 -- 0.424 0.297 -0.032 1.160 -0.430

ρ r  = 0.35 ρ u  = 0 0.215 11.941 2.961 1.218 1.492 -- 0.424 0.297 -0.032 1.160 -0.430
ρ u  = 0.35 0.367 12.049 2.999 3.972 1.659 -- 0.424 0.297 -0.032 1.160 -0.430
ρ u  = 0.9 5.219 14.429 6.726 555.841 7.507 -- 0.424 0.297 -0.032 1.160 -0.430

ρ r  = 0.9 ρ u  = 0 3.080 9.485 21.954 317.172 8.728 -- 0.424 0.297 -0.032 1.160 -0.430
ρ u  = 0.35 3.232 9.592 21.993 319.926 8.895 -- 0.424 0.297 -0.032 1.160 -0.430
ρ u  = 0.9 8.084 11.973 25.719 871.794 14.743 -- 0.424 0.297 -0.032 1.160 -0.430

Notes: The gray cases indicate that the policy rule results in an indeterminate equilibrium
The estimated historical rule refers to Judd and Rudebusch (1998).
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Figure 2: Impulse responses to an innovation in re with autocorrelation of ρr = 0.

Under the optimal Taylor rule (dashed lines), the nominal interest rate increases by less

than the natural rate of interest, in order to dampen the variability of the nominal interest

rate. Monetary policy is therefore relatively expansionary so that inflation and the output

gap increase at the time of the shock. In later periods however, these variables return to

their initial steady-state as the perturbation vanishes. In contrast, in the optimal plan

(solid lines), the short-term interest rate is more inertial than the effi cient rate. Inertia in

monetary policy is especially desirable here because it induces the private sector to expect

future restrictive monetary policy, hence future negative output gaps which in turn have a

disinflationary effect already when the shock hits the economy. Thus the expectation of an

inertial policy response allows the policymaker to offset the inflationary impact of the shock

by raising the short-term interest rate by less than with the simple Taylor rule.11

Similarly, in the face of an unexpected transitory ineffi cient supply shock ut (with ρu = 0),

11When shocks are more persistent, the nominal interest rate also increases modestly on impact, in the
optimal plan, but is expected to be higher than the effi cient rate in later periods, so that agents can expect
a tight monetary policy in the future, with negative output gaps and a decline of price level then. However
to achieve a similar future path of the output gap and the price level, the optimal Taylor rule needs raise
the interest rate suffi ciently on impact, so as to bring down inflation and the output gap already at the time
of the shock. This is why the optimal Taylor rule coeffi cients become negative when ρr is suffi ciently large.
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Figure 3: Impulse responses to an innovation in u with autocorrelation of ρu = 0.

Figure 3 shows that the optimal Taylor rule induces the nominal interest rate to increase, so

as to reduce output (gap), and therefore to mitigate inflationary pressures. In the optimal

plan (solid lines), however, it is optimal to maintain the output gap below steady state even

after the shock has vanished. This generates the expectation of a slight deflation in later

periods and thus helps dampening the initial increase in inflation. The last panel confirms

that the price level initially rises with the adverse shock but then declines back to almost

return to its initial steady-state level. In fact the new steady-state price level is slightly

below the initial one. The optimal interest rate hardly deviates from the steady-state, but

remains above steady-state for several periods, so as to achieve the desired deflation in later

periods.

Figures 2 and 3 reveal that in the optimal plan, the effects of disturbances are mitigated

more effectively than with the optimal Taylor rule by being spread out over a longer period

of time, through an inertial policy.
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Figure 4: Welfare losses of alternative policy rules as a function of shock persistence (ρr = ρu).
Notes: The quasi optimal rule (p) is given in (30) while the quasi optimal rule (π) is given in (31).

4.3 Welfare implications of alternative shock processes

We have shown above that the optimal Taylor rule coeffi cients are sensitive to the degree of

persistence of shocks. This does not imply however that this sensitivity has important welfare

implications, as two simple Taylor rules with different coeffi cients may in principle result in

similar outcomes. To evaluate the welfare implications of alternative shock processes, we

suppose that the central bank has committed to a simple Taylor rule, optimized under a

correct assumption about the past shocks – i.e., that their law of motion is given by (8)—(9),

with degrees of series correlation ρr = ρu = 0.35 – but that it now faces new disturbances

ε̂r,m,t and ε̂u,m,t which propagate through the economy with a different persistence ρ̂.12

Figure 4 plots welfare losses E[L] for various policy rules as a function of the degree of

persistence of the shocks ret and ut. The dashed line represents the welfare losses implied

by the commitment to the Taylor rule optimized in our benchmark calibration, i.e., with

ρr = ρu = 0.35. Note that this policy rule which has coeffi cients ψπ = 1.72, ψx = 0.57 is not

12We focus here on the properties of policy rules that have been optimized in a particular model, but we
do not evaluate policy rules that would be robust to uncertainty about the underlying model, or uncertainty
about driving shock processes, as discussed, e.g., Giannoni (2002, 2007), Hansen and Sargent (2008).
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too different from the policy rule initially proposed by Taylor (1993). The figure shows again

that in the benchmark case, the welfare loss under the optimal Taylor rule (2.63) is about

twice as large as in the optimal plan (1.28) denoted here by the solid line, as documented

in Table 2. However, as the shock persistence ρ increases, the welfare performance of this

simple Taylor rule deteriorates considerably with losses approaching 50, i.e., about 15 times

the loss under optimal policy, as ρ approaches 1.

Figure 5 shows that the welfare deterioration is due to dramatic increases in inflation and

interest-rate volatility under the simple Taylor rule when the shocks become more persistent.

While the Taylor rule is relatively successful at stabilizing the output gap, this does not

contribute much to the overall welfare given the low value of λx. Figures 4 and 5 consider

changes in the persistence of both shocks ret and ut. Similar figures emerge when one considers

changes in the persistence of one shock at a time.

5 Commitment to a Simple Wicksellian Rule

While simple Taylor rules of the form (15) lack history dependence – a key property of

optimal policy in forward-looking models – and are sensitive to the degree of persistence

of exogenous disturbances, we now turn to an alternative very simple rule that introduces

a desirable amount of history dependence and that turns out to be less sensitive to shock

persistence. It is given by

it = ψp (pt − p̄t) + ψxxt + ψ0 (22)

at all dates t ≥ 0, where p̄t is some deterministic trend for the (log of the) price-level satisfying

p̄t = p̄t−1 + π̄, (23)

and π̄ is a constant. Following Woodford (2003a, chap. 2) we call such a rule a Wicksellian

rule. The price level depends by definition not only on current inflation but also on all past

rates of inflation. It follows that the rule (22) introduces history dependence in monetary

policy, as it forces the policymaker to compensate any shock that might have affected inflation

in the past. While rules of this form are as simple as standard Taylor rules, they have received
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less attention in recent studies of monetary policy. One reason may be because it is widely

believed that such rules would result in a larger variability of inflation (and the output gap),

as the policymaker would respond to an inflationary shock by generating inflation below

target in subsequent periods. However, as we show below, this is not true when agents are

forward-looking and they understand that the policymaker commits to a rule of the form

(22). Although the policymaker and the private sector do not care about the price level per

se, as the latter does not enter the loss criterion (10), we shall argue that a Wicksellian rule

has desirable properties for the conduct of monetary policy.

To characterize the equilibrium that obtains if the policymaker commits to (22), we

consider a steady state in which in which inflation, the output gap and the nominal interest

rate take respectively the constant values πwr, xwr, iwr, we define the deviations from the

steady state as π̂t ≡ πt − πwr, x̂t ≡ xt − xwr, ı̂t ≡ it − iwr, and we let p̂t ≡ pt − p̄t be the

(percentage) deviation of the price level from its trend. As discussed in Appendix A.2, using

(22) to substitute for ı̂t in the intertemporal IS equation, we can rewrite (3), (4), and (5)

again as in (16) but where zt ≡ [π̂t, x̂t, p̂t−1]′ , et ≡ [ret , ut]
′. With shock processes (8) and

(9), the resulting equilibrium is of the form

ẑt = zrr
e
t + zuut + zpp̂t−1 (24)

for any variable ẑt ∈ {π̂t, x̂t, ı̂t, p̂t} , where zr, zu, zp are equilibrium response coeffi cients to

fluctuations in ret , ut, and pt−1. As further shown in Appendix A.2, the policy coeffi cients ψp

and ψx relate in turn to the equilibrium coeffi cients as follows

ψp =
xuir − iuxr
xupr − xrpu

, ψx =
priu − irpu
xupr − xrpu

. (25)

The optimal equilibrium resulting from a Wicksellian rule (22) is therefore characterized

by the optimal steady state and the optimal response coeffi cients zr, zu, zp in (24) that mini-

mize the loss function (10) subject to the constraints (3), (4), (5) and (22), where ψp and ψx

are given by (25). For the Wicksellian rule to implement the desired equilibrium, though, it

must guarantee that the dynamic system admits a unique bounded solution. An analysis of

the transition matrix yields the following result.
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Proposition 1 In the model composed of (3), (4), (5), with σ, κ > 0 and 0 < β < 1, a com-

mitment to the Wicksellian policy rule (22) results in a unique bounded rational expectations

equilibrium {πt, xt, it, pt} , if

ψp > 0 and ψx ≥ 0. (26)

Proof. See Appendix A.3.

Hence any Wicksellian rule with positive coeffi cients implies a determinate equilibrium.13

In general, the coeffi cients of optimal Wicksellian rule are complicated functions of the pa-

rameters of the model. Unlike those of the optimal Taylor rule, they are also function of the

variance of the shocks. Rather than trying to characterize analytically the optimal Wicksel-

lian rule, we proceed with a numerical investigation of its properties and its implications for

equilibrium inflation, output gap and the nominal interest rate.

5.1 A comparison of Taylor rules and Wicksellian rules

Figure 6 reports optimal coeffi cients of the Wicksellian rule for different degrees of shock

persistence (ρr; ρu). It is noteworthy that all optimal policy coeffi cients are positive for this

wide range of shock persistence. It follows from Proposition 1 that these policy rules result

in a determinate equilibrium, in contrast to some of the “optimal”Taylor rules presented

in Figure 1. Furthermore, while the optimal Taylor rule coeffi cients vary importantly with

different degrees of shock persistence, Figure 6 shows that the optimal coeffi cients of Wick-

sellian rules are concentrated in a narrower area that those of optimal Taylor rules (Figure

1). The optimal Wicksellian rules are thus less sensitive to the different assumptions about

serial correlation of the disturbances.

In addition, optimal Wicksellian rules also introduce a kind of history dependence that

is desirable for monetary policy. As shown in Figures 2 and 3, a commitment to an optimal

Wicksellian policy allows the policymaker to achieve a response of endogenous variables that

is closer to the optimal plan than is the case with the optimal Taylor rule.

One particularity of the equilibrium resulting from a Wicksellian policy, of course, is that

the price level is trend-stationary. In the optimal plan, policy also eventually brings the

13A similar result is mentioned in Kerr and King (1996), in the case that ψx is set to 0.
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price level to its original trend in the face of ineffi cient supply shocks ut. However, when

the economy is hit by exogenous fluctuations in ret and there is a concern for interest-rate

stabilization (λi > 0), it is not optimal for the price level to be stable. In fact, in the

optimal plan, Figure 2 shows that the price level is expected to end up at a slightly lower

level in the future. While not fully optimal, the Wicksellian policy reduces welfare losses

considerably by introducing history dependence and offsetting fluctuations in the price level.

Another notable feature of optimal Wicksellian policy in Figure 3 is that the interest rate

rises importantly, so that the response of inflation remains close to the optimal response.

While this of creates a significant drop in output (gap) in our calibration, the welfare loss is

only moderately affected by the recession, given the low weight λx.

A comparison of the welfare implications for both Taylor and Wicksellian rules suggests

that Wicksellian rules result in general in a lower welfare loss, in the model considered

here. We first show this analytically in a simple case and then proceed with a numerical

investigation of the more general case.

A special case. To simplify the analysis, we consider the special case in which the short-

term aggregate supply equation is perfectly flat so that κ = 0, and both shocks have the

same degree of serial correlation ρ. In this case, we can solve for equilibrium inflation using

(4), and we obtain

πt = βEtπt+1 + ut =
∞∑
j=0

βjEtut+j = (1− βρ)−1 ut.

Inflation is exogenous in this case. The best the policymaker can do is therefore to minimize

the variability of the output gap and the interest rate. Using (21), we note that the optimal

Taylor rule reduces in this case to ı̂t = λx/[λiσ (1− ρ)]x̂t and so involves no response to infla-

tion. Since the Taylor rule is non inertial, one cannot reduce the variability of future output

gaps and interest rates by responding to current fluctuations in inflation. In contrast, with

a Wicksellian rule, the policymaker’s response to contemporaneous price-level fluctuations

and the belief that he will respond in the same way to price-level fluctuations in the future

have a desirable effect on the expected future path of the output gap and the interest rate.
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We can establish the following result.

Proposition 2 When κ = 0 and ρr = ρu ≡ ρ > 0, there exists a Wicksellian rule of the

form (22) with ψp > 0, ψx > 0 that results in a unique bounded equilibrium, and that achieves

a lower loss than the one resulting from the optimal Taylor rule.

Proof. See Appendix A.4.

General case: A numerical investigation. In the more general case in which κ > 0 and

we allow for arbitrary degrees of serial correlation of the shocks, the analytical characteri-

zation is substantially more complicated. However a numerical investigation suggests again

that appropriate Wicksellian rules perform better than the optimal Taylor rule in terms of

the loss criterion (10). Using the calibration of Table 1, and for various degrees persistence

of the disturbances, Table 2 reveals that the loss is systematically lower with the optimal

Wicksellian rule than it is with the optimal Taylor rule. For instance, when ρr = ρu = .35,

the loss is 1.67 with the Wicksellian rule, compared to 2.63 with the Taylor rule, and 1.28

with the fully optimal rule.14 This relatively good performance of the Wicksellian rules is

due to the low variability of inflation and the nominal interest rate. On the other hand,

the output gap is in general more volatile under the optimal Wicksellian rule. Of course

the variability of the price level is higher for fully optimal rules and optimal Taylor rules,

but this does not affect the loss criterion. While the results of Table 2 are based on our

benchmark calibration, we still find, for alternative assumptions about the parameters λx,

ρr, ρu, and the variances of the shocks, that the welfare loss E [L] implied by the optimal

Wicksellian rule is lower than that implied by the optimal Taylor rule, and is only slightly

higher than in the optimal plan.

In addition, the simple Wicksellian rules turn out to be very robust to alternative specifi-

cations of the shock processes. Looking again at Figures 4 and 5, we observe that an optimal

Wicksellian rule – optimized under the assumption that the serial correlation of the shocks

is ρr = ρu = 0.35 – performs again very well when the economy is hit by new disturbances

14Recall that Table 2 indicates the losses due to fluctuations around the steady state. However, since the
steady states are the same for the optimal Taylor rule and the optimal Wicksellian rule, the comparison
applies also to the levels of the variables, for any values x∗, i∗.
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ε̂r,m,t and ε̂u,m,t which propagate through the economy with a different persistence ρ̂. The

welfare losses under the Wicksellian rule (dashed-dotted line) remain only slightly above the

losses in the first best, even for very high degrees of shock persistence. This is very different

from the performance of simple Taylor rules which imply very high losses when ρ approaches

1, and suggests that the commitment to bringing the price level back to its original trend is

an effective way of guarding against misspecifications or changes of the shock processes.

6 Introducing Interest-Rate Inertia

Wicksellian rules have the desirable feature of introducing history dependence while the

simple Taylor rules considered so far are by assumption not inertial. One natural question is

thus whether the performance of simple Taylor rules could not be dramatically improved by

letting the interest rate respond also to past interest rates, as this would introduce at least

some form of history dependence in policy. To answer this question, we first characterize a

fully optimal rule.

6.1 A robustly optimal policy rule

As argued in Giannoni (2001, Chap. 1) and Giannoni and Woodford (2003a,b, 2010), it is

possible under general conditions to find a policy rule that is optimal – i.e., that minimizes

the welfare loss E [L] subject to the constraints (3) and (4) imposed by the private sector

– and that is also robust to alternative specifications of the shock processes. This robustly

optimal policy rule is obtained by combining the first-order necessary conditions (11)—(14)

characterizing the optimal state-contingent plan to eliminate the Lagrange multipliers. This

yields a single equation involving only target variables, that can be interpreted as an implicit

policy rule. Solving (13) for φ1t as a function of it, and (12) for φ2t as a function of xt, it, it−1,

and using the resulting expressions to substitute for the Lagrange multipliers in (11) yields

the instrument rule15

it = ψππt + ψx∆xt + (1 + ψi) it−1 + ψ∆i∆it−1 − ψii∗ (27)

15This rule is analogous to what Svensson (2003) calls an optimal specific targeting rule.
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where ∆xt ≡ xt − xt−1 denotes first differences, and the policy coeffi cients are given by

ψπ =
κ

λiσ
> 0, ψx =

λx
λiσ

> 0, ψi =
κ

βσ
> 0, ψ∆i = β−1 > 1. (28)

This rule necessarily holds in the optimal plan in all period t ≥ 2, for it is consistent

with the first-order conditions (11)—(13) at these dates. For this policy rule to implement

the optimal equilibrium, it must also determine a unique bounded equilibrium. Remarkably,

the rule (27) also has this very desirable property. In fact, a commitment to (27) at all dates

t ≥ 0 implies a determinate rational-expectations equilibrium (see Giannoni and Woodford,

2003b, Proposition 1).16 The equilibrium implied by a commitment to the time-invariant

policy rule (27) at all dates t ≥ 0 is the unique bounded solution the structural equations

(3)—(4), the first-order conditions (11)—(13) at all dates t ≥ 0, where the initial Lagrange

multipliers φ1,−1, φ2,−1 are not given by (14) but depend instead on the historical values

x−1, i−1, and i−2, through the equations (11)—(13). Such a policy involves the same response

to random shocks in periods t ≥ 0 as in the optimal (Ramsey) plan, and is a rule that is

optimal from a timeless perspective (see, e.g., Woodford 1999).17

A further interesting feature of this policy rule is that it does not involve any shock.18

The optimal policy rule (27) has thus the desirable property of being completely robust to

the specification of the shock processes, even if the latter are of the form specified in (6)—(7),

as long as they are bounded. An implication of this is that a commitment to the optimal

rule (27) with coeffi cients given by (28) does not only implement the optimal plan in the

case of the assumed autocorrelation of the shocks, but also for any other degree of shock

persistence. As a result, the policymaker would not need to reconsider its commitment and

change the rule in the event that the economy would be hit by shocks that have different

16As further shown in Giannoni and Woodford (2010), a policy rule (or target criterion) constructed in
this fashion from the first-order conditions associated with the optimal policy problem implies a locally
determinate equilibrium under very general conditions, even in the context of large-scale nonlinear models.
17The optimal (Ramsey) plan is the bounded solution to the structural equations (3)—(4), the first-order

conditions (11)—(13) at all dates t ≥ 0, where the initial Lagrange multipliers φ1,−1, φ2,−1are given by (14).
Such a plan can be implemented by the time-varying rule given by i0 = ψππ0+ψxx0, in period 0, i1 = ψππ1
+ ψx (x1 − x0) + (1 + ψi1) i0 in period 1 and (27) at all dates t ≥ 2.
18More generally, as long as the shocks enter in an additively separable fashion in the policymaker’s

objective function and in the constraints imposed by the private sector, the first-order conditions to the
optimal policy problem don’t involve any exogenous shocks or even any properties of their driving processes.
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properties than then ones observed prior to the commitment. By keeping the policy rule

unchanged, it would continue to achieve the optimal equilibrium, hence the lowest possible

loss for any value of ρ. The welfare losses associated with the rule (27)—(28) are therefore

the ones associated with the optimal plan, and displayed by the solid line in Figures 4 and

5, for different values of ρ.19

Equation (27) indicates that to implement the optimal plan, the central bank should

relate the interest rate positively to fluctuations in current inflation, in changes of the output

gap, and in lagged interest rates.20 The interest rate should not only be inertial in the sense

of being positively related to past values of the interest rate, it should be super-inertial, as the

lagged polynomial for the interest rate in (27), 1−(1+ κ
βσ

+β−1)L+β−1L2 = (1−z1L)(1−z2L)

involves a root z1 > 1 while the other root z2 ∈ (0, 1) . A reaction greater than one of the

interest rate to its lagged value has been found by Rotemberg and Woodford (1999) and

Woodford (2003b) to be a desirable feature of policy in models with optimizing agents. Such

a super-inertial rule brings about the optimal responses to shocks when economic agents

are forward-looking. Optimal policy requires rapidly raising the interest rate to deviations

of inflation and the output gap from the target (which is 0), if such deviations are not

subsequently undone. But of course, such a policy is perfectly consistent with a stationary

rational expectations equilibrium, and in fact is the one generating the lowest overall welfare

loss and a low variability of the interest rate in equilibrium. In fact, the interest rate does

not explode in equilibrium because the current and expected future optimal levels of the

interest rate counteract the effects of an initial deviation in inflation and the output gap

by generating subsequent deviations with the opposite sign of these variables, as shown in

Figures 2 and 3.21

19While we assume here that the policymaker knows with certainty the model of the economy, though
it may face uncertainty about the shock processes, Walsh (2004) has shown that the same rule turns out
to be robust to misspecifications of the structural model of the kind considered by Hansen and Sargent
(2008). However, as Walsh (2004) emphasizes, while the rule is the same in the two approaches, different
macroeconomic behavior would be observed, as expectations are formed differently in the two approaches.
20From a practical point of view, it might be an advantage to respond to changes in the output gap rather

than the level as the change in the output gap may be known with greater precision. For example, Orphanides
(2003) shows that subsequent revisions of U.S. output gap estimates have been quite large (sometimes as
large as 5.6 percentage points), while revisions of estimates of the quarterly change in the output gap have
been much smaller.
21Optimal interest-rate rules are super-inertial under general conditions, as long as the private sector is

suffi ciently forward-looking (see, Giannoni and Woodford, 2003a).
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The coeffi cients of the optimal policy rule are reported in the upper right panel of Table

2, for our benchmark calibration.22 For comparison, the last panel of Table 2 reports the

coeffi cients derived from Judd and Rudebusch’s (1998) estimation of actual Fed reaction

functions between 1987:3 and 1997:4, along with the statistics that such a policy would imply

if the model provided a correct description of the actual economy.23 As shown in Table 2,

the estimated historical rule in the baseline case involves only slightly smaller responses to

fluctuations in inflation and the output gap than the optimal rule. However the estimated

response to lagged values of the interest rate is sensibly smaller that the optimal one.

6.2 Simple rules and interest rate inertia

The analysis of the optimal policy rule (27) suggests that it is desirable for the current

interest rate to respond strongly to movements in the past interest rate. While the policy

rule (27) achieves the lowest possible loss in the model considered and remains relatively

simple, recent research has given considerable attention to even simpler policy rules (see, e.g.,

contributions collected in Taylor, 1999). As we now show, even if we allow for considerable

inertia in interest rate in the policy rule, it remains preferable to respond to fluctuations in

the price level than in the inflation rate. To see this, consider a minor departure from the

optimal rule (27) with coeffi cients given by (28), neglecting the term ψi (it−1 − ı̄) and setting

ψ∆i to 1 instead of β−1.24 After this simplification, and using (5) and (23), the rule (27)

reduces to

∆it = ψπ (∆pt −∆p̄t) + ψx∆xt + ∆it−1 (29)

where ψπ and ψx are again given by (28), and the steady-state inflation rate is given by

π̄ = λii
∗/β. Assuming furthermore that at some point t0 − 1 in the past, the interest rate

satisfied it0−1 = ψπ (pt0−1 − p̄t0−1)+ψxxt0−1+it0−2 and using (23) implies that a commitment

22The coeffi cients ψx reported here are multiplied by 4, so that the response coeffi cients to output gap,
and to annualized inflation are expressed in the same units. (See footnote 9.)
23The estimated historical policy rule refers to regression A in Judd and Rudebusch (1998).
24Doing so prevents the rule from being super-inertial, a feature that has been criticized on the grounds

that such rules lead to explosive behavior in models which involve no rational expectations and no forward-
looking behavior (see, e.g., Taylor 1999b).
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to (29) at all dates t ≥ t0 is equivalent a commitment to the rule

it = ψπ (pt − p̄t) + ψxxt + it−1 (30)

at all dates t ≥ t0. This of course is none else than a Wicksellian rule augmented with the

lagged interest rate. Given that the coeffi cient on the lagged interest rate is 1, this quasi-

optimal rule specifies how changes in the interest rate ∆it should depend on fluctuations

in the price level (in log deviations from a trend) and the output gap. As (30) reveals, a

desirable policy involves even more history dependence than we had considered in the case

of simple Wicksellian rules.

Table 3 quantifies the welfare losses implied by a commitment to the quasi-optimal rule

(30) for different degrees of shock persistence. Figures 4 and 5 also plot the welfare losses

(with black dots) as a function the shocks’autocorrelation. Importantly, this very simple

rule performs remarkably well, with welfare losses appear only marginally higher than in the
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fully optimal rule for a very wide range of shock persistence, given that the policy coeffi cients

are totally invariant to the assumed properties of the shock process.

To contrast, we consider now an expanded version of the Taylor rule that allows for

interest rate inertia

it = ψπ (πt − π̄) + ψxxt + it−1, (31)

where ψπ and ψx are again given by (28). Clearly, introducing a large amount of interest

rate inertia contributes to reducing the welfare losses substantially: comparing Tables 2 and

3, we note that the welfare losses drop from 2.63 to 1.38 when introducing the lagged interest

rate in the Taylor rule and ρr = ρu = 0.35. This is not surprising, in light of the discussion

in sections 3 and 4, as the rule (31) resembles closely the simple Wicksellian rule, were it not

for the response to the output gap.25 In addition, Levin et al. (1999) show that rules that

have a coeffi cient of one on the lagged interest rate tend to perform well across models, and

Orphanides andWilliams (2007) show that such rules are robust to potential misspecification

of private sector learning, in a model in which agents have imperfect knowledge about the

structure of the economy. However, as Figure 4 and 5 show, the performance of the rule

(31) deteriorates also markedly as the shock persistence increases. So, while allowing for

high degree of interest inertia in interest rates allows to improve the performance of simple

policy rules, our results show that it remains preferable for the interest rate to respond to

price-level fluctuations than to inflation fluctuations in the model considered, and the gains

from price-level stabilization are larger in the face of misspecifications of the shock processes.

7 Conclusion

This paper has characterized the properties of various simple interest-rate rules in the con-

text of a stylized structural forward-looking model of the economy. We have compared the

performance of simple Taylor rules and simple Wicksellian rules – which determine the

interest rate as a function of deviations of the price level from its trend and an output gap

25Indeed, assuming that at some point t0 − 1 in the past the interest rate satisfied it0−1 =
ψπ (pt0−1 − p̄t0−1) + ψxxt0−1, a commitment to the “difference rule”∆it = ψπ (πt − π̄) + ψx∆xt at all
dates t ≥ t0 is equivalent a commitment to the Wicksellian rule it = ψπ (pt − p̄t) + ψxxt at all dates t ≥ t0.

29



– to determine whether the central bank’s objective function, which is assumed to depend

on the volatility of inflation, output gap and interest rate, is best achieved by a policy that

responds to fluctuations in inflation or the price level. We have shown that appropriate

Wicksellian rules result systematically in a lower welfare loss, a lower variability of inflation

and of the nominal interest rate than optimal Taylor rules, by introducing desirable history

dependence in monetary policy. The coeffi cients of optimal Wicksellian rules have the further

advantage of being less sensitive to alternative degrees of persistence in the shock processes.

An implication of this is that Wicksellian rules perform better than simple Taylor rules in

the face of changes in shock processes. This makes a commitment to simple Wicksellian rules

more appealing as their robustness property provides little ground for a reconsideration of

the commitment when the economy is affected by new kinds of disturbances. Moreover,

Wicksellian rules are less prone to equilibrium indeterminacy than optimal Taylor rules.

The fact that simple Wicksellian rules perform so well in our model becomes clear when

we observe a simple Wicksellian rule augmented with a large amount of interest-rate inertia

(30) resembles a robustly optimal rule which, as argued in Giannoni and Woodford (2003a,b,

2010), implements the optimal plan and is also completely robust to the specification of

exogenous shock processes. A Wicksellian rule of this form states that changes (and not

the level) of the policy rates should depend positively on the deviations of the price level

from trend, and the output gap. This rule remains very simple, is again fully robust to

the specification of the shock processes, and introduces an even great amount of history

dependence than simple Wicksellian rules, which yields a remarkable welfare performance

in the model considered. Such a rule should thus be particularly appealing to policymakers

who search for a simple rule, yet worry about unforeseeable circumstances (shocks) affecting

the economy in the future.

Our results have been derived here in an arguably stylized model in which agents have full

information about the current state of the economy and are completely rational. This has al-

lowed us to emphasize that the history dependence generated by the price-level stabilization

results in important welfare gains and has good robustness properties to the assumed shock

processes. Recent research suggests that the benefits from price-level stabilization hold in

different setups as well. In fact, Preston (2008) assumes that private agents are non-rational
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and learn adaptively. He shows that a price-level target corrects past mistakes and yields

better welfare results than inflation stabilization when the central bank cannot perfectly un-

derstand private agents’behavior. This is consistent with Orphanides and Williams (2007)’s

conclusion on the desirability of “difference” interest-rate rules, which resemble our Wick-

sellian rules. Gaspar, Smets and Vestin (2007), using in a medium-scale model involving

a number of rigidities and inertial behavior of the private sector find that the stabilization

of the price-level path is a simple and effective way of implementing a desirable equilib-

rium. A concern raised by Mishkin and Schmidt-Hebbel (2001) is that a commitment to

price-level stabilization may propagate iid measurement errors in inflation. However Gorod-

nichenko and Shapiro (2007) considering a forward-looking model with backward-looking

features show that a rule akin to our Wicksellian rule can effectively stabilize the economy

in the face of imperfectly observed shifts in potential output growth or surprises in the price

level. Boivin (2009) and Woodford (2010) similarly argue that stabilizing the price level

might be more desirable in the event that the price level is not perfectly observed, provided

that the public is suffi ciently forward looking and understands the policy regime. In addi-

tion, Eggertsson and Woodford (2003), Wolman (2005) and Billi (2008) have argued that

a commitment to price-level stabilization may be an effective way of preventing deflations

and exiting from deflationary traps. While these papers emphasize different desirable fea-

tures of price-level stabilization, they all point to some robustness property of price-level

stabilization.
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A Appendix

A.1 Optimal non-inertial plan and optimal Taylor rule

The coeffi cients in (17) need to satisfy the structural equations (3) and (4) at each date, and
for every possible realization of the shocks, hence

(1− β) πni − κxni = 0, πni − ini = 0 (A.32)

(1− ρr)xr + σ−1 (ir − ρrπr − 1) = 0, (1− βρr) πr − κxr = 0 (A.33)

(1− ρu)xu + σ−1 (iu − ρuπu) = 0, (1− βρu) πu − κxu − 1 = 0. (A.34)

Substituting (17) into (10), and using E (retut) = 0, we can rewrite the loss function as

E [L0] =
[(
πni
)2

+ λx
(
xni − x∗

)2
+ λi

(
ini − i∗

)2
]

+
(
π2
r + λxx

2
r + λii

2
r

)
var (ret )

+
(
π2
u + λxx

2
u + λii

2
u

)
var (ut) . (A.35)

The optimal non-inertial plan involves equilibrium coeffi cients that minimize the loss E [L0]
subject to (A.32) —(A.34). These are given by:

ini = πni =
(1− β)κ−1λxx

∗ + λii
∗

1 + (1− β)2 κ−2λx + λi
, xni =

1− β
κ

(1− β)κ−1λxx
∗ + λii

∗

1 + (1− β)2 κ−2λx + λi
, (A.36)

πr =
λi (σγr − ρrκ)κ

hr
, πu =

λiσ (σγu − ρuκ) (1− ρu) + λx (1− βρu)
hu

, (A.37)

xr =
λi (σγr − ρrκ) (1− βρr)

hr
, xu = −κ− ρuλi (σγu − ρuκ)

hu
, (A.38)

ir =
λx (1− βρr)

2 + κ2

hr
> 0, iu =

σκ (1− ρu) + λx (1− βρu) ρu
hu

> 0, (A.39)

where γj ≡
(
1− ρj

) (
1− βρj

)
> 0, hj ≡ λi

(
σγj − ρjκ

)2
+λx

(
1− βρj

)2
+κ2 > 0, j ∈ {r, u} .

For the Taylor rule to be consistent with an equilibrium of the form (17), the policy
coeffi cients obtained by substituting (17) into (15) must satisfy

ir = ψππr + ψxxr, iu = ψππu + ψxxu, ini = ψππ
ni + ψxx

ni + ψ0. (A.40)

Solving (A.40) for ψπ, ψx, ψ0 and using (A.37)—(A.39) yields

ψπ =
(κ− ρuλi (σγu − ρuκ)) (ξr (1− βρr) + κ2) + (σκ (1− ρu) + ρuξu)λi (σγr − ρrκ) (1− βρr)
λi (σγr − ρrκ) ((κ− ρuλi (σγu − ρuκ))κ+ (λiσ (σγu − ρuκ) (1− ρu) + ξu) (1− βρr))
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(A.41)

ψx =
(λiσ (σγu − ρuκ) (1− ρu) + ξu) (ξr (1− βρr) + κ2)− λi (σγr − ρrκ)κ (σκ (1− ρu) + ρuξu)

λi (σγr − ρrκ) ((κ− ρuλi (σγu − ρuκ))κ+ (λiσ (σγu − ρuκ) (1− ρu) + ξu) (1− βρr))
(A.42)

where ξj ≡ λx
(
1− βρj

)
> 0, and j ∈ {r, u} , where we assume σγr − ρrκ 6= 0.

A.2 Optimal Wicksellian rule

We observe from (3) and (4) that in a steady state

iwr = πwr, xwr =
1− β
κ

πwr. (A.43)

The structural equations (3), (4) can then be expressed in terms of the hatted variables
representing deviations from the steady state, and the policy rule (22) may be written as26

ı̂t = ψpp̂t + ψxx̂t. (A.44)

Using (A.44) to substitute for ı̂t in (3), we can write the resulting system in matrix form as:

Etzt+1 = Â zt + â et (A.45)

where zt ≡ [π̂t, x̂t, p̂t−1]′, et ≡ [ret , ut]
′, and

Â =

 β−1 −κβ−1 0

σ−1
(
ψp − β−1

) (
1 + σ−1

(
κ
β

+ ψx

))
ψpσ

−1

1 0 1

 . (A.46)

With shock processes (8) and (9), the resulting equilibrium is of the form (24). Using (24)
and noting that E

[
(1− β)

∑∞
t=0 β

tẑt
]

= 0, we can write the loss criterion (10) as

E [L] =
[
(πwr)2 + λx (xwr − x∗)2 + λi (i

wr − i∗)2]+ E[L̂]. (A.47)

where

E[L̂] ≡ E

{
(1− β)

∞∑
t=0

βt
[
π̂2
t + λxx̂

2
t + λiı̂

2
t

]}
. (A.48)

The optimal steady state is then found by minimizing the first term in brackets in (A.47)
subject to (A.43). Since this is the same problem as the one for the optimal non-inertial
plan, we have

πwr = πni, xwr = xni, and iwr = ini. (A.49)

where πni, xni, and ini are given in (A.36).

26We normalize the steady-state value p̂t to zero. It follows ψ0 = iwr − ψxxwr. This normalization has no
effect on the welfare analysis that follows. Note also that πt = pt − pt−1 = p̂t − p̂t−1 + π̄. Hence πwr = π̄.
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To determine the optimal equilibrium responses to disturbances, we note that the solu-
tion (24) may only describe an equilibrium if the coeffi cients zr, zu, zp satisfy the structural
equations (3) and (4) at each date, and for every possible realization of the shocks. These
coeffi cients need therefore to satisfy the following feasibility restrictions, obtained by substi-
tuting (24) into (3), (4), (5):

xr (1− ρr)− xppr + σ−1 (ir + (1− pp − ρr) pr − 1) = 0 (A.50)

xu (1− ρu)− xppu + σ−1 (iu + (1− pp − ρu) pu) = 0 (A.51)

xp − xppp + σ−1 (ip + (1− pp) pp) = 0 (A.52)

(βρr + βpp − 1− β) pr + κxr = 0 (A.53)

(βρu + βpp − 1− β) pu + κxu + 1 = 0 (A.54)

(βpp − 1− β) pp + κxp + 1 = 0. (A.55)

Similarly, substituting the solution (24) into the policy rule (A.44), we have

ir = ψppr + ψxxr, iu = ψppu + ψxxu, ip = ψppp + ψxxp, (A.56)

which can be solved to yield the policy coeffi cients

ψp =
xuir − iuxr
xupr − xrpu

, ψx =
priu − irpu
xupr − xrpu

, (A.57)

provided that xupr − xrpu 6= 0. Substituting (A.57) into (A.56), we obtain

ip −
xuir − iuxr
xupr − xrpu

pp −
priu − irpu
xupr − xrpu

xp = 0, (A.58)

which is an additional constraint that must be satisfied by the equilibrium coeffi cients.
Finally using (5), the solution (24), and (8)—(9), we can rewrite the loss (A.48) as

E[L̂] = var (ret )

((
p2
r + λxx

2
r + λii

2
r

)
+ (pr (pp − 1) + λxxrxp + λiirip)

2βρrpr
1− βρrpp

)
+ var (ut)

((
p2
u + λxx

2
u + λii

2
u

)
+ (pu (pp − 1) + λxxuxp + λiiuip)

2βρupu
1− βρupp

)
(A.59)

+
(
(pp − 1)2 + λxx

2
p + λii

2
p

)(
var (ret )

βp2
r

1− βp2
p

1 + βρrpp
1− βρrpp

+ var (ut)
βp2

u

1− βp2
p

1 + βρupp
1− βρupp

)
.

The optimal equilibrium resulting from a Wicksellian rule (22) is therefore characterized by
the optimal steady state (A.49), and the optimal response coeffi cients pr, pu, and so on, that
minimize the loss function (A.59) subject to the constraints (A.50)—(A.55) and (A.58). The
coeffi cients of the optimal Wicksellian rule are in turn determined by (A.57).
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A.3 Proof of Proposition 1

The model composed of (3), (4), (5), and the Wicksellian policy rule (22) can be expressed
in matrix form as the dynamic system (A.45) with transition matrix (A.46). The character-
istic polynomial associated to Â is P (X) = X3 + A2X

2 + A1X + A0 where A0 = −σ+ψx
βσ

,

A1 =
κ+σβ+2σ+ψxβ+κψp+ψx

βσ
, A2 = −2σβ+σ+κ+ψxβ

βσ
. The system (A.45) results in a determinate

equilibrium if and only if the characteristic polynomial P (X) admits two roots outside and
one root inside the unit circle. Using Proposition C.2 of Woodford (2003a), P (X) has one
root inside the unit circle and two roots outside if P (1) > 0, P (−1) < 0, and |A2| > 3.
These conditions are satisfied provided that ψp and ψx satisfy (26). Hence P (X) has exactly
2 roots outside the unit circle, and (A.45) results in a determinate equilibrium.

A.4 Proof of Proposition 2

We show that the loss criterion (10) for the optimal Taylor rule is higher than the one for a
particular Wicksellian rule. Since the optimal steady-state is the same for both families of
rules, it is suffi cient to compare the loss E[L̂] resulting from deviations from the steady-state.

Loss for optimal Taylor rule. Under the optimal Taylor rule, the equilibrium coeffi cients
are given in (A.37) — (A.39). Setting κ = 0, and ρr = ρu = ρ, and using the resulting
expressions to substitute for the equilibrium coeffi cients in the loss function (A.35), we
obtain the loss in deviations from steady-state:

E[L̂tr] =
λiλx

λiσ2 (1− ρ)2 + λx
var (ret ) +

λx (1 + λiρ
2) + λiσ

2 (1− ρ)2(
λiσ2 (1− ρ)2 + λx

)
(1− βρ)2 var (ut) . (A.60)

Loss for some particular Wicksellian rule. In the case in which κ = 0 and ρr = ρu =
ρ > 0, the restrictions (A.50)—(A.55) and (A.58) constraining the equilibrium resulting from
any Wicksellian rule (A.44) can be solved in terms of xr, xu to yield:

pr = 0, pu =
1

1− βρ, pp = 1, xp =
xu (1− βρ)− xrρ

1 + xrσρ
(A.61)

ir = 1− xrσ (1− ρ) , iu = ρ
(1− xrσ (1− ρ)) (1 + xuσ (1− βρ))

(1 + xrσρ) (1− βρ)
, ip = 0. (A.62)

There is also a second solution which is not admissible as it involves pp = β−1 > 1, hence an
explosive price level. Consider now an equilibrium in which xr and xu satisfy

xr =
λiσ (1− ρ)

λiσ2 (1− ρ)2 + λx
, xu = λiσρ

(
λiσ

2 (1− ρ)2 + λx
)
β (1− βρ2)− λxρ (1− β)

(1− βρ) ∆
,

(A.63)
where ∆ ≡

(
λiσ

2 (1− ρ)2 + λx
)

(λiσ
2 (1− βρ2) (1− βρ) + λx (1 + βρ)) , and where (A.61)—

(A.62) are used to compute the remaining coeffi cients xp, ir, iu, ip. Expression (A.63) do
in general not minimize the loss criterion (A.59), though they would do so in the case
that var (ut) = 0. We call this equilibrium a “quasi-optimal equilibrium”. One implication
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of course is that the resulting loss, E[L̂qwr], cannot be smaller than the one obtained in
the optimal equilibrium, E[L̂wr], so that E[L̂qwr] ≥ E[L̂wr]. The Wicksellian rule (A.44)
that implements this quasi-optimal equilibrium, obtained by using (A.57) yields: ψp =

ρλx(1−β)(1−βρ2)
(1−ρ)(λiσ2(1−βρ2)(1−βρ)+λx(1+βρ))

> 0, and ψx = λx
λiσ(1−ρ)

> 0. It follows from Proposition 1 that
this rule results in a unique bounded equilibrium.
Next, substituting the above equilibrium coeffi cients in the loss criterion (A.59), we obtain

E[L̂qwr] =
λiλx

λiσ2 (1− ρ)2 + λx
var (ret )

+

(
1

(1− βρ)2 + λiλxρ
2λiσ

2β (1− ρ)2 (1− βρ2) + λx
(
1− β2ρ2

)
(1− βρ)3 ∆

)
var (ut)

(A.64)

Comparing the losses. Comparing (A.60) and (A.64), we obtain after some algebraic
manipulations: E[L̂tr] > E[L̂qwr]. Thus E[L̂tr] > E[L̂qwr] ≥ E[L̂wr], which completes the
proof. �
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