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Abstract

We develop a new methodology for estimating the importance of herd behavior in
financial markets. Specifically, we build a structural model of informational herding that
can be estimated with financial transaction data. In the model, rational herding arises
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1 Introduction

In recent years there has been much interest in herd behavior in financial
markets. This interest has led researchers to look for theoretical explanations
and empirical evidence of herding. There has been, however, a substantial
disconnect between the empirical and theoretical literatures: the theoreti-
cal work has identified motives for herding in abstract models that cannot
easily be brought to the data; the empirical literature has mainly looked for
atheoretical, statistical evidence of trade clustering, which is interpreted as
herding.

This paper takes a novel approach: we develop a theoretical model of
herding in financial markets that can be estimated with financial markets
transaction data. This methodology allows us to measure the quantitative
importance of herding, to identify when it happens, and to assess the infor-
mational inefficiency that it generates.

The theoretical work on herd behavior started with the seminal papers
of Banerjee (1992), Bikhchandani et al. (1992), and Welch (1992).! These
papers model herd behavior in an abstract environment in which agents with
private information make their decisions in sequence. They show that, after
a finite number of agents have chosen the same action, all following agents
disregard their own private information and imitate their predecessors. More
recently, a number of papers (see, among others, Avery and Zemsky, 1998;
Lee, 1998; Cipriani and Guarino, 2008) have focused on herd behavior in
financial markets. In particular, these studies analyze a market where in-
formed and uninformed traders sequentially trade a security of unknown
value. The price of the security is set by a market maker according to the
order flow. The presence of a price mechanism makes it more difficult for
herding to arise. Nevertheless, there are cases in which it occurs. In Avery
and Zemsky (1998), for instance, herd behavior can occur when there is un-
certainty not only about the value of the asset but also about the occurrence
of an information event or about the model parameters.

As mentioned above, whereas the theoretical research has tried to identify
the mechanisms through which herd behavior can arise, the empirical litera-

'We only study informational herding. Therefore, we do not discuss herd behavior due
to reputational concerns or payoff externalities. For an early critical assessment of the
literature on herd behavior see Gale (1996). For recent surveys of herding in financial
markets see Bikhchandani and Sharma (2001), Vives (2008) and Hirshleifer and Teoh
(2009).



ture has followed a different track. The existing work (see, e.g., Lakonishok
et al., 1992; Grinblatt et al., 1995; and Wermers, 1999) does not test the
theoretical herding models directly, but analyzes the presence of herding in
financial markets through statistical measures of clustering.? These papers
find that, in some markets, fund managers tend to cluster their investment
decisions more than would be expected if they acted independently. This
empirical research on herding is important, as it sheds light on the behavior
of financial market participants and in particular on whether they act in a
coordinated fashion. As the authors themselves emphasize, however, deci-
sion clustering may or may not be due to herding (for instance, it may be the
result of a common reaction to public announcements). These papers cannot
distinguish spurious herding from true herd behavior, that is, the decision
to disregard one’s private information to follow the behavior of others (see
Bikhchandani and Sharma, 2001; and Hirshleifer and Teoh, 2009).

Testing models of informational herd behavior is difficult. In such models,
a trader herds if he trades against his own private information. The problem
that empiricists face is that there are no data on the private information
available to traders and, therefore, it is difficult to know when traders decide
not to follow it. Our purpose in this paper is to present a methodology
to overcome this problem. We develop a theoretical model of herding and
estimate it using financial market transaction data. We are able to identify
the periods in the trading day in which traders act as herders and to measure
the informational inefficiency that this generates. This is the first paper
on informational herding that, instead of using a statistical, atheoretical
approach, brings a theoretical social learning model to the field data.?

Our theoretical analysis builds on the work of Avery and Zemsky (1998),
who use a sequential trading model & la Glosten and Milgrom (1985) to study
herding in financial markets. Avery and Zemsky (1998) show that, in finan-
cial markets, the fact that the price continuously adjusts to the order flow
makes herding more difficult to arise. However, they also show that herding
does arise if there is "event uncertainty," in the market, that is, uncertainty
on whether an information event (i.e., a shock to the asset value, on which
informed traders receive a signal) has occurred. Since event uncertainty

2See also the recent paper by Dasgupta et al. (2011), who study the effect of institu-
tional herding on long-term returns, and the literature cited therein.

3Whereas there are no direct empirical tests of herding models, there is experimental
work that tests these models in the laboratory (see, e.g., Cipriani and Guarino, 2005 and
2009; and Drehmann, Oechssler, and Rider, 2005).



is a typical assumption of sequential trading market microstructure models
(starting from Easley and O’Hara, 1992), it is a natural way of generating
herd behavior in a financial economy.*

In our model, herding arises for a mechanism similar to that exposed by
Avery and Zemsky (1998). However, whereas they were interested in pro-
viding theoretical examples of herding, our aim is to provide an empirical
methodology to gauge the importance of herding in actual financial markets.
For this purpose, we build a model of herding that can be estimated with
financial market transaction data. In the model, an asset is traded over many
days; at the beginning of each day, an informational event may occur, which
causes the fundamental asset value to change with respect to the previous
day. If an informational event has occurred, some traders receive private
information on the new asset value.” These traders trade the asset to ex-
ploit their informational advantage over the market maker. If no event has
occurred, all traders in the market are noise traders, that is, they trade for
non-information reasons only (liquidity or hedging motives). Whereas the
informed traders know that they are in a market with private information
(since they themselves are informed), the market maker does not. This asym-
metry of information between traders and the market maker implies that the
market maker moves the price too “slowly” in order to take into account
the possibility that the asset value may have not changed (in which case all
trading activity is due to non-informational motives). As a result, after, for
instance, a history of buys, a trader, even with a bad signal, may value the
asset more than the market maker does. He will, therefore, trade against his
own private information and herd-buy.

We estimate the model with stock market transaction data via maximum
likelihood, using a strategy first proposed by Easley et al. (1997) to estimate
the parameters of the Glosten and Milgrom (1985) model. There is an im-
portant difference, however, between Easley et al.’s (1997) methodology and
ours. In their set up, informed traders are perfectly informed about the value
of the asset; as a result, their decisions are never affected by the decisions of
previous traders, and they never herd. Therefore, only the total number of
buys, sells and no trades in each day matters; the sequence in which these

*A similar mechanism is also present in Gervais (1997). Recently, Park and Sabourian
(2011) have illustrated the necessary and sufficient conditions on private information for
the occurrance of herding.

®The event is called informational precisely because some traders in the market receive
private information on it.



trades arrive is irrelevant. In contrast, in our framework, the precision of
private information is one of the parameters that we estimate. This opens
the possibility that informed traders may receive noisy signals, and that they
may find it optimal to ignore them and engage in herd behavior. In this cir-
cumstance, the sequence by which trades arrive in the market does matter:
in contrast to Easley et al. (1997), we cannot estimate our model using only
the number of buy or sell orders in a given day, but we must consider the
whole history of trading activity in each day of trading.

As an illustration of the methodology, we estimate the model using trans-
action data for a NYSE stock (Ashland Inc.) during 1995. The restriction
that private signals are always correct (as in Easley et al., 1997) is rejected
by the data, which implies both that herd behavior arises in equilibrium and
that there is information content in the sequence of trades.

Note that in each day of trading there is always high heterogeneity in trad-
ing decisions (i.e., even in days when the fundamental value has increased,
we observe many sell orders, and vice versa). If private information were
perfectly precise, the only way to account for it would be to have a high
proportion of noise traders in the market (indeed, Easley et al. (1997) esti-
mate that the proportion of noise traders is 83 percent). The advantage of our
methodology is that it accounts for the heterogeneity in trading decisions not
only through the the presence of noise traders, but also by allowing informed
traders to receive the wrong piece of information. As one may expect, our
estimate of the proportion of informed traders increases substantially with
respect to Easley et al. (1997); according to our estimates, however, informed
traders have a relatively imprecise signal, incorrect 40 percent of the time.
In a nutshell, we partially explain the apparent noise in the data as the re-
sult of the rational behavior of imperfectly informed traders, as opposed to
assuming that it all comes from randomly acting noise traders.

Allowing for an imperfectly precise signal has important consequences
for estimates of trading informativeness. A large literature has studied the
information content of trading activity using a measure (usually called the
PIN, an acronym for Private INformation-based trading) based on the Easley
et al. (1997) methodology (i.e., assuming that all informed traders receive the
correct information). Using that methodology, the measure of information-
based activity in our sample would be 9 percent. Using our methodology,
instead, we obtain 19 percent. The difference is due to the fact that in the
previous literature incorrect trades (e.g., selling in a good-event day) can only
be due to exogenous, non-informative (e.g., liquidity) reasons, whereas in our
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setup we do not exclude the possibility that they may be due to informed
traders who either receive incorrect information or herd.%

Given our estimated parameters, we study how traders’ beliefs evolve
during each day of trading. By comparing these beliefs to the prices, we are
able to identify periods of the trading day in which traders herd. In most
of the trading periods, a positive (albeit small) measure of informed traders
herd. In an information-event day, on average, between 2 percent (4 percent)
of informed traders herd-buy (sell).

Herd behavior generates serial dependence in trading patterns, a phenom-
enon documented in the empirical literature. Herding also causes informa-
tional inefficiencies in the market. On average, the misalignment between the
price we observe and the price we would observe in the absence of herding is
equal to 4 percent of the asset’s unconditional fundamental value.

The rest of the paper is organized as follows. Section 2 describes the theo-
retical model. Section 3 presents the likelihood function. Section 4 describes
the data. Section 5 presents the results. Section 6 concludes. An Addendum
available upon request contains the proofs and other supplementary material.

2 The Model

Following Easley and O’Hara (1987), we generalize the original Glosten and
Milgrom (1985) model to an economy where trading happens over many days.

An asset is traded by a sequence of traders who interact with a market
maker. Trading days are indexed by d = 1,2, 3,.... Time within each day is
discrete and indexed by t =1,2,3, ....

The asset

We denote the fundamental value of the asset in day d by V. The asset
value does not change during the day, but can change from one day to the
next. At the beginning of the day, with probability 1 — « the asset value
remains the same as in the previous day (V; = vg_1), and with probability
« it changes.” In the latter case, since as we will see, there are informed

6 As we explain later, in the context of our analysis, the PIN that one would estimate
in the standard way (i.e., as in Easley et al., 1996) does not measure the proportion of
informed trading activity in the market, but rather the proportion of trading activity
stemming from informed traders with the correct signal.

"Note that vq_; is the realization of the random variable V;_;. Throughout the text,
we will denote random variables with capital letters and their realizations with lower case



traders in the market, we say that an information event has occurred. If an
information event occurs, with probability 1 — § the asset value decreases to
vg_g — AF (“bad informational event”), and with probability § it increases
to vg_1 + A (“good informational event”), where \* > 0 and A\ > 0.
Informational events are independently distributed over the days of trading.
To simplify the notation, we define v¥ := vy + A and vh =y — AL
Finally, we assume that (1 — (5)/\L = 6M" | which, as will become clear later,
guarantees that the closing price is a martingale.

The market

The asset is exchanged in a specialist market. Its price is set by a market
maker who interacts with a sequence of traders. At any time ¢t = 1,2, 3...
during the day a trader is randomly chosen to act and can buy, sell or decide
not to trade. Each trade consists of the exchange of one unit of the asset for
cash. The trader’s action space is, therefore, A ={buy, sell,no trade}. We
denote the action of the trader at time t in day d by X, and the history of
trades and prices until time ¢ — 1 of day d by H{.

The market maker

At any time t of day d, the market maker sets the prices at which a
trader can buy or sell the asset. When posting these prices, he must take
into account the possibility of trading with traders who (as we shall see) have
some private information on the asset value. He will set different prices for
buying and for selling, that is, there will be a bid-ask spread (Glosten and
Milgrom, 1985). We denote the ask price (the price at which a trader can
buy) at time ¢ by a? and the bid price (the price at which a trader can sell)
by b¢.

Due to (unmodeled) potential competition, the market maker makes zero
expected profits by setting the ask and bid prices equal to the expected
value of the asset conditional on the information available at time ¢ and on
the chosen action, that is,

al = B(Vy|h, X1 = buy, a?, b),
bl = B(Vy|he, X{ = sell, al, bf).

Following Avery and Zemsky (1998), we will sometime refer to the market
maker’s expectation conditional on the history of trades only as the “price”

letters.



of the asset, and we will denote it by pf = E(V¢|h;).8

The traders

There are a countable number of traders. Traders act in an exogenous
sequential order. Each trader is chosen to take an action only once, at time
t of day d. Traders are of two types, informed and noise. The trader’s own
type is private information.

In no-event days, all traders in the market are noise traders. In information-
event days, at any time ¢ an informed trader is chosen to trade with proba-
bility 1 and a noise trader with probability 1 — p, with € (0, 1).

Noise traders trade for unmodeled (e.g., liquidity) reasons: they buy with
probability 5, sell with probability 5 and do not trade with probability 1 —¢
(with 0 < ¢ < 1). Informed traders have private information on the asset
value. They receive a private signal on the new asset value and observe the
previous history of trades and prices, and the current prices. The private
signal S¢ has the following value-contingent densities:

g™ (silvi) =1+ 7(2s) = 1),

g (sflvg) =1 —7(2s{ = 1),
with 7 € (0,00). (See Figure 1.)

For 7 € (0, 1], the support of the densities is [0, 1]. In contrast, for 7 > 1,
the support shrinks to [, 7= 1+2‘/_] for g# and to [TJrl 2*/;, ] for g% (in
order for the density functions to integrate to one). Note that, given the
value of the asset, the signals S? are i.i.d. The signals satisfy the monotone
likelihood ratio property At each time ¢, the likelihood ratio after receiving

Pr(Vy= vy Fhisd) _ g" (sfvlil) Pr(Vd A 1hd)
s Pr(Vazok ‘h“st) = oD Pr(Vazol Ihd is higher than that before

receiving the 51gna,1 if s¢ > 0.5, and lower if s¢ < 0.5. For this reason we refer
to a signal larger than 0.5 as a “good signal” and to a signal smaller than
0.5 as a “bad signal.”

The parameter T measures the informativeness of the signals. When 7 —
0, the densities are uniform and the signals are completely uninformative. As
T increases, the signals become more and more informative. For 7 € [0, 1),
the support of the distribution of the likelihood ratio is bounded away from 0
and infinity, while for 7 > 1 it is not. Following Smith and Sgrensen (2000),
in the first case we say that beliefs are bounded, and in the second case,

the signal

8Standard arguments show that b < p¢ < a¢ (see Glosten and Milgrom, 1985).
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Figure 1: The signal. Signal state-contingent density functions for different values
of 7.

that they are unbounded. With bounded beliefs, no signal realizations (even
the most extreme ones) reveal the asset value with probability one. With
unbounded beliefs, in contrast, some high (low) signal realizations are only
possible when the asset value is high (low), and therefore, the signal can
be perfectly informative.” As 7 tends to infinity, the measure of perfectly
informative signals tends to one.

An informed trader knows that an information event has occurred, and
that as a result, the asset value has changed with respect to the previous
day. Moreover, his signal is informative on whether the event is good or
bad. Nevertheless, according to the signal realization that he receives and
the precision 7, he may not be completely sure of the effect of the event on
the asset value. For instance, he may know that there has been a change in
the investment strategy of a company, but not be sure whether this change
will affect the asset value in a positive or negative way. The parameter 7
can be interpreted as measuring the precision of the information that the
trader receives, or the ability of the trader to process such private infor-
mation. Finally, note that, given our signal structure, informed traders are
heterogenous, since they receive signal realizations with different degrees of
informativeness about the asset’s fundamental value.

In addition to capturing heterogeneity of information in the market, a

In particular, any signal greater than or equal to g—tl reveals that the asset value is
vf , whereas a signal lower than or equal to 72—;1 reveals that the asset value is Ué‘.
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Figure 2: Informed trader’s decision. The figure illustrates the signal realiza-
tions for which an informed trader decides to buy or sell when V; = v’ (the signal
density function is conditional on vZf).

linear density function for the signal makes it possible to compute the traders’
strategies and the market maker’s posted prices analytically. As a result, we
obtain a simple and tractable likelihood function. Moreover, in contrast to
other specifications such as a discrete signal (e.g., a noisy binary signal), our
choice avoids creating a discontinuity in the likelihood function, which would
make estimation problematic.

An informed trader’s payoff function, U : {v}, v} x A x v}, vi]?—RT,
is defined as

vg — al if X = buy,
Uvg, X, al,b3) = { 0 if X¢ = no trade,
b — vy if X7 = sell.

An informed trader chooses X{ to maximize E(U(Vy, X2, ad, b%)|h, s¢)
(i.e., he is risk neutral). Therefore, he finds it optimal to buy whenever
E(Vy|hd, s?) > ad, and sell whenever E(Vy|he, s?) < bd. He chooses not to
trade When b < E(Vylhd, s¢) < al.

Note that at each time ¢, the trading decision of an informed trader can be
simply characterized by two thresholds, o¢ and ﬁf, satisfying the equalities

[lehmat} _b?

and

E[V7|n], 57] = af.



An informed trader will sell for any signal realization smaller than ¢¢ and buy
for any signal realization greater than 3¢. Obviously, the thresholds at each
time ¢ depend on the history of trades until that time and on the parameter
values.!?

Figure 2 (drawn for the case of a good informational event) illustrates
the decision of informed traders. An informed trader buys the asset with a
signal higher than the threshold value Bf , sells it with a signal lower than
o, and does not trade otherwise. The measure of informed traders buying
or selling is equal to the areas (labelled as “Informed Buy” and “Informed
Sell”) below the line representing the signal density function.

Herd Behavior

To discuss herd behavior, let us start by introducing some formal definitions.

Definition 1 An informed trader engages in herd-buying at time ¢ of day d
if 1) he buys upon receiving a bad signal, that is,

E(Vy|hd, sf) > af for s§ < 0.5,
and 2) the price of the asset is higher than at time 1, that is,
vl = B(VI|h{) > p{ = vas.

Similarly, an informed trader engages in herd-selling at time ¢ of day d
if 1) he sells upon receiving a good signal, that is,

E(Vyhd, s8) < b for s¢ > 0.5,
and 2) the price of the asset is lower than at time 1, that is,
pd = E(VYRY) < p? = vg_y.
In other words, a trader herds when he trades against his own private
information in order to conform to the information contained in the history

of trades, that is, to buy after the price has risen or to sell after the price has
fallen.

10Gince noise traders buy and sell with probabilities bounded away from zero, stan-
dard arguments prove that both the bid and ask prices, and the informed traders’ signal
thresholds exist and are unique.

10



Since traders in our model receive different signals, it may well be (and
typically will be the case) that, at a given point in time, traders with less
informative signals (i.e., close to 0.5) will herd, whereas traders with more
informative signals (close to the extremes of the support) will not. We are
interested in periods of the trading day in which traders engage in herd
behavior for at least some signal realizations. At any given time ¢, we can
detect whether an informed trader herds for a positive measure of signals
by comparing the two thresholds ¢ and Bf to 0.5. Since a trader engages
in herd-buying behavior if he buys despite a bad signal (sf < 0.5), there is
a positive measure of herd-buyers whenever 3¢ < 0.5."'! Similarly for herd
sellers. Note that, as we will discuss below, condition 2 in the definition of
herding is always satisfied when condition 1 is. Therefore, we formally define
herd behavior as follows:

Definition 2 There is herd behavior at time ¢ of day d when there is a
positive measure of signal realizations for which an informed trader
either herd-buys or herd-sells, that is, when

3% < 0.5 0or o > 0.5.

Figures 3 and 4 show an example of herd-buy and herd-sell, respectively,
in a day with a good information event. The areas below the signal den-
sity function and between the thresholds and 0.5 represent the measures of
informed traders who herd-buy and herd-sell.

The reason why herd behavior arises is that prices move “too slowly”
as buy and sell orders arrive in the market. Suppose that, at the beginning
of an information-event day, there is a sequence of buy orders. Informed
traders, knowing that there has been an information event, attach a certain
probability to the fact that these orders come from informed traders with
good signals. The market maker, however, attaches a lower probability to this
event, as he takes into account the possibility that there was no information
event, and that all the buys came from noise traders. Therefore, after a
sequence of buys, he will update the prices upwards, but by less than the
movement in traders’ expectations. Because traders and the market maker
interpret the history of trades differently, the expectation of a trader with

11'We identify an informed trader with the signal he receives: thus, “a positive measure
of herd-buyers” means “a positive measure of signal realizations for which an informed
trader herd-buys.”

11
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Figure 3: Herd-buy. In the figure, an informed trader buys even upon receiving
a bad signal (higher than 0.3).

a bad signal may be higher than the ask price, in which case he herd-buys
(obviously, traders who receive signals close to 0.5 will be more likely to herd,
since the history of trades has more weight in forming their beliefs).

We state this result in the next proposition (the proof is in the Addendum
available on request):

Proposition 1 For any finite 7, herd behavior arises with positive prob-
ability. Furthermore, herd behavior can be misdirected, that is, an
informed trader can engage in herd-buy (herd-sell) in a day of bad
(good) information event.

Avery and Zemsky (1998) have shown how herding can arise because
of uncertainty on whether an information event has occurred (see their IS2
information setup). In our model herding arises for the same reason. Our
contribution is to embed this theoretical reason to herd in a model that is
suitable to empirical analysis.

Note that in our model (similarly to Avery and Zemsky’s IS2 information
setup), traders trade against their own private information (i.e., buy after
a bad signal or sell after a good one) only to conform to the past trading
pattern, and never to go against it. Using the language of the social learning
literature, in our model agents go against their private information only to
herd, and never to act as contrarians. This means that whenever condition
1 in Definition 1 is satisfied, so is condition 2. That is, condition 2 is redun-
dant. For instance, an informed trader with, e.g., a bad signal never buys

12
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Figure 4: Herd sell. In the figure, an informed trader sells even upon receiving a
good signal (lower than 0.7).

after a history of trades have pushed the price downward with respect to
the beginning of the day. Indeed, his expected value after the price has de-
creased is lower than that of the market maker (because he attaches a higher
probability to the event that the sell orders come from informed traders).!?

When 7 > 1, extreme signals reveal the true value of the asset, and
traders receiving them never herd. In the limit case of 7 tending to infinity,
all signal realizations become perfectly informative, with the result that no
informed trader herds. Therefore, while our model allows for herd behavior,
it also allows for the possibility that some traders (when 7 > 1) or all traders
(when 7 — o0) only rely on their private information and never herd.

The probability of herding depends on the parameter values. To take
an extreme example, when « (the probability of an information event) is
arbitrarily close to zero, the market maker has a very strong prior that there
is no information event. He barely updates the prices as trades arrive in the
market, and herding arises as soon as there is an imbalance in the order flow,
as happens in the seminal model of Bikhchandani et al. (1992). In contrast,
if v is close to 1, the market maker and the informed traders update their
beliefs in very similar manners, and herding rarely occurs.

Herding is important also for the informational efficiency of the market.
During periods of herd behavior, private information is aggregated less ef-
ficiently by the price as informed traders with good and bad signals may
take the same action. The most extreme case is when traders herd for all

12The formal proof of the result is contained in an Addendum available on request.
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signal realizations (e.g., traders herd-buy even for s¢ = 0). In such a case,
the market maker is unable to make any inference on the signal realization
from the trades. The market maker, however, updates his belief on the asset
value, since the action remains informative on whether an information event
has occurred.'® Since the market maker never stops learning, he gradually
starts interpreting the history of past trades more and more similarly to the
traders and, as a result, the measure of herders shrinks.

During an information-event day, the measure of herders changes with the
sequence of trades, and can become positive more than once at different times
of the day. Given that information always flows to the market, however, the
bid and ask prices converge to the asset value almost surely.'* Eventually
the market maker learns whether a good event, a bad event, or no event
occurred.!’ 16

3 The Likelihood Function

To estimate the herding model presented above, we have to specify its like-
lihood function. Let us denote the history of trades at the end of a trading
day by h? := thd, where Ty is the number of trading times in day d. We
denote the likelihood function by

L(P; {hd}g):l) =Pr ({hd}f;:l@) 3

13The market maker learns since in periods of herding, the proportion of buys and sells
is different from that in an uninformed day. Essentially, whereas in our model there is
herd behavior, there is never an informational cascade.

14The proof of convergence is standard and we omit it.

5Recall that we have assumed that (1 — §)AY = dAT. This implies that E(Vyy1|Vy =
vq) = vgq. Since the price converges to the fundamental value almost surely, this guarantees
that the martingale property of prices is satisfied. (We return on this point at the end of
Section 4.)

160f course, with a finite number of trades, learning the true value of the fundamental
is not guaranteed. An implicit assumption of the literature is that even in those days
in which there is not enough trading activity, the market maker learns the true value
of the asset by the end of the day—i.e., before the following trading day starts—e.g.,
because public information is revealed during the night. In any event, in our dataset there
is enough trading activity that learning during the day occurs most of the time: the end-
of-day market maker’s belief that an event has occurred is either above 0.9 or below 0.1
in 87 percent of days (i.e., in 87 percent of days the market maker has learned whether
there was an event or not with 90 percent confidence)