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Abstract 

 
We estimate a DSGE model where rare large shocks can occur, by replacing the commonly used 

Gaussian assumption with a Student’s t distribution. Results from the Smets and Wouters (2007) 

model estimated on the usual set of macroeconomic time series over the 1964-2011 period 

indicate that 1) the Student’s t specification is strongly favored by the data even when we allow 

for low-frequency variation in the volatility of the shocks and 2) the estimated degrees of freedom 

are quite low for several shocks that drive U.S. business cycles, implying an important role for 

rare large shocks. This result holds even if we exclude the Great Recession period from the 

sample. We also show that inference about low-frequency changes in volatility—and in 

particular, inference about the magnitude of Great Moderation—is different once we allow for fat 

tails. 
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1 Introduction

Great Recessions do not happen every decade — this is why they are dubbed “great”

in the first place. To the extent that DSGE models rely on shocks in order to generate

macroeconomic fluctuations, they may need to account for the occurrence of rare but very

large shocks to generate an event like the Great Recession. For this reason, we estimate a

linearized DSGE model assuming that shocks are generated from a Student’s t distribution,

which is designed to capture fat tails, in place of a Gaussian distribution, which is the

standard assumption in the DSGE literature. The number of degrees of freedom in the

Student’s t distribution, which determines the likelihood of observing rare large shocks

(and which we allow to vary across shocks), is estimated from the data.

We show that estimating DSGE models with Student’s t distributed shocks is a fairly

straightforward extension of current methods (described, for instance, in An and Schorfheide

(2007)). In fact, the Gibbs sampler is a simple extension of Geweke (1993)’s Gibbs sam-

pler for a linear model to the DSGE framework. The paper is closely related to Chib

and Ramamurthy (2011) who, in independent and contemporaneous work, also propose a

similar approach to the one developed here for estimating DSGE models with Student’s t

distributed shocks. One difference between this work and Chib and Ramamurthy (2011)’s

is that we also allow for low-frequency changes in the volatility of the shocks, in light of

the evidence provided by several papers in the DSGE literature (Justiniano and Primiceri

(2008), Fernández-Villaverde and Rubio-Ramı́rez (2007), Liu et al. (2011), among others).1

We specifically follow the approach in Justiniano and Primiceri (2008) (henceforth, JP),

who postulate a random walk as the law of motion of the log volatilities. We show that

ignoring low-frequency movements in volatility biases the results toward finding evidence

in favor of fat tails.

We apply our methodology to the Smets and Wouters (2007) model (henceforth, SW),

estimated on the same seven macroeconomic time series used in SW. Our baseline data set

starts in 1964Q4 and ends in 2011Q1, but we also consider a sub-sample ending in 2004Q4

to analyze the extent to which our findings depend on the inclusion of the Great Recession

in our sample. We use the SW model both because it is a prototypical medium-scale DSGE
1Another difference between this paper and Chib and Ramamurthy (2011) is that Chib and Ramamurthy

use a simple three equation New Keynesian model, while we use the full Smets and Wouters (2007) model.
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model, and because its empirical success has been widely documented.2 Models that fit the

data poorly will necessarily have large shocks. We therefore chose a DSGE model that is at

the frontier in terms of empirical performance to assess the extent to which macro variables

have fat tails.

The motivation for our work arises from evidence such as that displayed in Figure 1.

The top two panels of Figure 1 show the time series of the smoothed “discount rate” and

“marginal efficiency of investment” shocks (in absolute value) from the SW model estimated

under Gaussianity. The shocks are normalized, so that they are expressed in standard

deviations units. The solid line is the median, and the dashed lines are the posterior 90%

bands. The Figure shows that the size of the shocks is above 3.5 standard deviations

on several occasions, one of which is the recent recession. The probability of observing

such large shocks under Gaussianity is very low. In addition to this DSGE model-based

evidence, existing literature shows that the unconditional distribution of macro variables

is not Gaussian (e.g., see Christiano (2007) for pre-Great Recession evidence, and Ascari

et al. (2012) for more recent work).

While the visual evidence against Gaussianity is strong, there are several reasons to

perform a more careful quantitative analysis. First, these shocks are obtained under the

counterfactual assumption of Gaussianity, that is, using a misspecified model. Second, a

quantitative estimate of the fatness of the tails is an obvious object of interest. Third, it

is important to disentangle the relative contribution of fat tails from that of (slow moving)

time-varying volatility. The bottom panel of Figure 1, which shows the evolution of the

smoothed monetary policy shocks estimated under Gaussianity (again, normalized, and in

absolute value), provides a case in point, as the clustering of large shocks in the late 70s

and 80s is quite evident.

In general, studying the importance of fat tails by looking only at the kurtosis in

the unconditional distribution of either macro variables (as in Ascari et al. (2012)) or

of estimated shocks can be misleading, because the evidence against Gaussianity can be
2 The forecasting performance of the SW model was found to be competitive in terms of accuracy relative

to private forecasters and reduced-form models not only during the Great Moderation period (see Smets

and Wouters (2007) and Edge and Gürkaynak (2010)), but also including data for the Great Recession (Del

Negro and Schorfheide (forthcoming)). In earlier drafts of this paper we used a DSGE model with financial

frictions along the lines of Bernanke et al. (1999) and Christiano et al. (2009) and found strong evidence in

favor of Student’s t distributed shocks in that setting as well.
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due to low-frequency changes in volatility. Conversely, the presence of large shocks can

potentially distort the assessment of low-frequency movements in volatility. To see this,

imagine estimating a model that allows only for slow moving time variation in volatility,

but no fat tails, in presence of shocks that fit the pattern shown in the top panel of Figure 1.

As the stochastic volatility will try to fit the squared residuals, such a model may produce a

time series of volatilities peaking around 1980, and then again during the Great Recession.

Put differently, very large shocks may be interpreted as persistent changes in volatility, when

they may in fact be rare realizations from a process with a time-invariant distribution. For

instance, the extent to which the Great Recession can be interpreted as a permanent rise

in macroeconomic volatility may depend on whether we allow for rare large shocks.

Finally, we expect that the evidence provided in this paper will be further motivation

for the study of non-linear models. First, if shocks have fat tails, linearization may sim-

ply produce a poor approximation of the full model. Second, non-linearities may explain

away the fat tails: what we capture as large rare shocks may in fact be Gaussian shocks

whose effect is amplified through a non-linear propagation mechanism. In fact, the ex-

tent to which non-linearities can alleviate the need for fat-tailed shocks to explain business

cycles could possibly become an additional metric for evaluating their usefulness. In this

regard, the results in Dewachter and Wouters (2012) are very promising. These authors

solve non-linearly a model with capital-constrained financial intermediaries and provide

very interesting evidence suggesting that the non-linear propagation of shocks may induce

outcomes that resemble those due to fat-tailed shocks in a linear model.

Our findings are the following. We provide strong evidence that the Gaussianity as-

sumption in DSGE models is counterfactual, even after allowing for low-frequency changes

in the volatility of shocks. Such strong evidence is remarkable considering that our sample

consists of macro variables only, which implies fat tails are not just a feature of financial

data, but of macro data as well. This finding is robust to excluding the Great Recession

from the sample. We follow two approaches in our analysis: comparing the fit of different

specifications using Bayesian marginal likelihoods, and inference on the posterior estimates

of the degrees of freedom of the Student’s t distribution. We demonstrate that the model fit

improves considerably if we allow for Student’s t shocks in addition to stochastic volatility.

Further, we show that the posterior estimates of the Student’s t distribution’s degrees of

freedom for some shocks are quite low, indicating a substantial degree of fat tails. From

our results, we can cluster the shocks in the model into three broad categories. Shocks
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to productivity, to the household’s discount rate, to the marginal efficiency of investment,

and to the wage markup all have fat tails, even in the case with stochastic volatility. Con-

versely, shocks to government expenditures and to price markups have posterior means for

the degrees of freedom that are somewhat high, indicating that their distribution is not far

from Gaussian, regardless of whether we allow for stochastic volatility. Finally, the degrees

of freedom for monetary policy shocks are estimated to be extremely low in the case with

constant volatility, but shift dramatically toward higher values when we allow for stochastic

volatility.

In order to evaluate the importance of fat tails in the study of the business cycle, we

consider an experiment in which we shut down the fat tails, and recreate a counterfactual

path of the economy in their absence. We show that in this case almost all recessions

in the sample would have been of roughly the same magnitude, and the Great Recession

would have been essentially a “run-of-the-mill” recession. Finally, we show that allowing

for fat tails changes the inference about slow moving stochastic volatility. Specifically, we

reevaluate the evidence in favor of the Great Moderation hypothesis, discussed for example

in JP, and find that when we consider Student’s t shocks, the magnitude of the reduction in

the volatility of output and other variables is smaller. Similarly, we show that the evidence

in favor of a permanent increase in volatility following the Great Recession is weaker when

we consider the possibility that shocks have a Student’s t distribution.

Although we show that inference about low-frequency movements in volatility is affected

by whether we allow for Student’s t shocks, we should emphasize that they capture very

different features of the data and are therefore far from being perfect substitutes. In other

words, this paper is not a horse race between stochastic volatility and fat tails. In fact, we

find that the data provide fairly strong evidence in favor of both features as long as the

sample includes both pre- and post- Great Moderation data.

The rest of the paper proceeds as follows. Section 2 discusses Bayesian inference. Sec-

tion 3 describes the model, as well as our set of observables. Section 4 describes the results.

We conclude in Section 5.
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2 Bayesian Inference

This section begins with a description of the estimation procedure for a DSGE model with

both Student’s t distributed shocks and stochastic volatilities (which we will often refer

to as SV). The Gibbs sampler combines the algorithm proposed by Geweke (1993)’s for

a linear model with Student’s t distributed shocks (see also Geweke (1994), and Geweke

(2005) for a textbook exposition) with the approach for sampling the parameters of DSGE

models with time-varying volatilities discussed in JP. In essence, our sampler applies to

DSGE models the algorithms proposed by Chib et al. (2002) and Jacquier et al. (2004) for

combining stochastic volatility and fat tails. We mainly follow JP and Chib et al. (2002)

in using the approach of Kim et al. (1998) (henceforth, KSC) in drawing the stochastic

volatilities, but we also check the robustness of our results using the approach developed

Jacquier et al. (1994) (henceforth, JPR).

The model consists of the standard measurement and transition equations:

yt = D(θ) + Z(θ)st, (1)

st+1 = T (θ)st +R(θ)εt, (2)

for t = 1, .., T , where yt, st, and εt are n × 1, k × 1, and q̄ × 1 vectors of observables,

states, and shocks, respectively. Let p(θ) denote the prior on the vector of DSGE model

parameters θ. We assume that:

εq,t = σq,th̃
−1/2
q,t ηq,t, all q, t, (3)

where

ηq,t ∼ N (0, 1), i.i.d. across q, t, (4)

λqh̃q,t ∼ χ2(λq), i.i.d. across q, t. (5)

For the prior on the parameters λq we assume Gamma distributions with parameters λ/ν

and ν:

p(λq|λ, ν) =
(λ/ν)−ν

Γ(ν)
λ ν−1
q exp(−ν λq

λ
), i.i.d. across q. (6)

where λ is the mean and ν is the number of degrees of freedom (Geweke (2005) assumes

a Gamma with one degree of freedom). Note that the fat tails in this model affect our
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structural shocks εq,t and hence cannot interpreted as “outliers” as in standard regression

models.3 Define

σ̃q,t = log (σq,t/σq) , (7)

where the parameters {σq}q̄q=1 (the non-time varying component of the shock variances)

are included in the vector of DSGE parameters θ. We assume that the σ̃q,t follows an

autoregressive process:

σ̃q,t = ρqσ̃q,t−1 + ζq,t, ζq,t ∼ N (0, ω2
q ), i.i.d. across q, t. (8)

The prior distribution for ω2
q is an inverse Gamma IG(νω/2, νωω2/2), that is:

p(ω2
q |νω, ω2) =

(
νωω

2/2
) νω

2

Γ(νω/2)
(ω2
q )
− νω

2
−1 exp

[
−νωω

2

2ω2
q

]
, i.i.d. across q. (9)

We consider two types of priors for ρq:

p(ρq|ω2
q ) =


1 SV-UR

N (ρ̄, ω2
q v̄ρ)I(ρq), i.i.d. across q, I(ρq) =

 1 if |ρq| < 1

0 otherwise,
SV-S

(10)

In the SV-UR case σ̃q,t follows a random walk as in JP, while in the SV-S it follows a

stationary process as in Fernández-Villaverde and Rubio-Ramı́rez (2007). In both cases the

σq,t process is persistent: in the SV-UR case the persistence is wired into the assumed law

of motion for σ̃q,t, while in the SV-S case it is enforced by choosing the hyperparameters ρ̄

and σ̄ρ in such a way that the prior for ρq puts most mass on relatively high values of ρq. As

a consequence, σq,t and h̃q,t play different roles in (3): σq,t allows for slow-moving trends

in volatility, while h̃q,t allows for large transitory shocks. In essence, this model postulates

that there are two coexisting processes driving the volatility dynamics in the macro data,

one that is very persistent (σ̃q,t) and one that is high frequency — in our case, i.i.d. (h̃q,t).

The literature so far has focused on the former and largely ignored the latter. Of course the

i.i.d. assumption for the high frequency movements in volatility is very stark.4 In future

research it will be worth trying to relax this assumption. Considering two overlapping
3We do not have measurement errors at all in this model, let alone Student’s t ones. From looking at the

plots of the shocks in Figure 1 (and the posterior estimates of h̃t in Figure B.5) it appears that the many

large shocks coincide with macro events, and are therefore unlikely to just represent measurement error.
4There is also an ongoing debate in empirical macro on whether the low frequency movements in volatility

should be modeled using autoregressive processes or regime-switching models (e.g.,Liu et al. (2011)).
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Markov-Switching processes for the volatilities, one persistent and one transitory, is an

option.

Finally, to close the model we make the following distributional assumptions on the

initial conditions σ̃q,0:

p(σ̃q,0|ρq, ω2
q ) =

 0 SV-UR

N (0, ω2
q/(1− ρ2

q)), i.i.d. across q SV-S
(11)

where the restriction under the SV-UR case is needed to obtain identification. In the station-

ary case we have assumed that σ̃q,0 is drawn from the ergodic distribution. In the remainder

of the paper we will use the notation x1:q̄,1:T to denote the sequence {x1,1, .., x1,T , .., xq̄,T }

and, to further simplify notation if no ambiguity arises, we will often omit the 1 : q̄ subscript.

So, for instance, h̃1:T will denote {h̃1,1, .., h̃1,T , .., h̃q̄,T }.

2.1 The Gibbs-Sampler

The joint distribution of data and unobservables (parameters and latent variables) is given

by:

p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(λ1:q̄)p(ρ1:q̄|ω2

1:q̄)p(ω
2
1:q̄)p(θ), (12)

where p(y1:T |s1:T , θ) and p(s1:T |ε1:T , θ) come from the measurement and transition equation,

respectively, p(ε1:T |h̃1:T , σ̃1:T , θ) obtains from (3) and (4):

p(ε1:T |h̃1:T , σ̃1:T , θ) ∝
q̄∏
q=1

(
T∏
t=1

h̃
−1/2
q,t σq,t

)
exp

[
−

T∑
t=1

h̃q,tε
2
q,t/2σ

2
q,t

]
, (13)

p(h̃1:T |λ1:q̄) obtains from (5)

p(h̃1:T |λ1:q̄) =
q̄∏
q=1

T∏
t=1

(
2λq/2Γ(λq/2)

)−1
λ
λq/2
q h̃

(λq−2)/2
q,t exp(−λqh̃q,t/2), (14)

and p(σ̃1:T |ω2
1:q̄) obtains from expressions (8) and (11):

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄) ∝

q̄∏
q=1

(ω2
q )
−(T−1)/2 exp

[
−

T∑
t=2

(σ̃q,t − ρqσ̃q,t−1)2/2ω2
q

]
p(σ̃q,1|ρq, ω2

q ), (15)

where

p(σ̃q,1|ρq, ω2
q ) ∝


(ω2
q )
−1/2 exp

(
− σ̃2

q,1

2ω2
q

)
, SV-UR

(ω2
q (1− ρ2

q))
−1/2 exp

(
− σ̃2

q,1

2ω2
q (1−ρ2

q)

)
. SV-S

(16)

Finally, p(λ1:q̄) =
∏q̄
q=1 p(λq|λ), p(ω2

1:q̄) =
∏q̄
q=1 p(ω

2
q |ν, ω2).
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2.1.1 The KSC Version

The sampler is slightly different depending on the approach for drawing the stochastic

volatilities, which are obtained from:

p(ε1:T |h̃1:T , σ̃1:T , θ)p(σ̃1:T |ρ1:q̄, ω
2
1:q̄). (17)

In this section we describe the sampler under the KSC approach, and in the next section

we consider the JPR approach. The key insight of KSC is that if p(ε1:T |h̃1:T , σ̃1:T , θ) in (17)

were linear in σ̃1:T and Gaussian, one could use standard state-space methods for drawing

σ̃1:T . In fact, taking squares and then logs of (3) one can see that ε∗q,t = log(σ−2
q h̃q,tε

2
q,t + c)

(where c = .001 is an offset constant) is linear in σq,t:

ε∗q,t = 2σ̃q,t + η∗q,t, η
∗
q,t ' log(η2

q,t), (18)

but is not Gaussian, since η∗q,t ∼ log(χ2
1). KSC suggest approximating the distribution of

η∗q,t using a mixture of normals:5

p(η∗q,t) '
K∑
k=1

π∗kN (m∗k, ν
∗ 2
k ) (19)

, or equivalently, η∗q,t | ςq,t = k ∼ N (m∗k − 1.2704, ν∗ 2
k ), P r(ςq,t = k) = π∗k.

Call ϑ = {θ, s1:T , h̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, ε1:T } all unobservables other than ς1:T and σ̃1:T .

Del Negro and Primiceri (2013) recognize that in standard macro models it is often difficult

to draw from p(ϑ|σ̃1:T , ς1:T , y1:T ), and that therefore a Gibbs sampler such as the following

one would not work: i) draw ϑ from ϑ|σ̃1:T , ς1:T , y1:T , ii) draw σ̃1:T from σ̃1:T |ϑ, ς1:T , y1:T ,

iii) draw ς1:T from ς1:T |σ̃1:T , ϑ, y1:T .6 They suggest the following sampler instead:

(1) draw σ̃1:T from σ̃1:T |ϑ, ς1:T , y1:T ;

(2) draw ϑ, ς1:T from ϑ, ς1:T |σ̃1:T , y1:T , which can be divided into two substeps:

(2-1) draw ϑ from the marginal ϑ|σ̃1:T , y1:T ;

(2-2) draw ς1:T from the conditional ς1:T |ϑ, σ̃1:T , y1:T .
5We follow Omori et al. (2007) in using a 10-mixture approximation, as opposed to the 7-mixture ap-

proximation adopted in Kim et al. (1998). The parameters that optimize this approximation, namely

{π∗k,m∗k, ν∗k}Kk=1, are given in Omori et al. (2007). Note that these parameters are independent of the

specific application.
6In several macro applications, including previous drafts of this paper, the sampling procedure is described

in this way except that the step ϑ|σ̃1:T , ς1:T , y1:T is mistakenly replaced with ϑ|σ̃1:T , y1:T .
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2.1.2 The JPR Version

Under the JPR approach the volatilities can be drawn directly from (17). The Gibbs

sampler is therefore simply:

(1) draw σ̃1:T from σ̃1:T |ϑ, y1:T ;

(2) draw ϑ from ϑ|σ̃1:T , y1:T .

For step (1), σ̃1:T is drawn in an additional Gibbs step, in which each σ̃t is drawn conditional

on (θ, y1:T , σ̃−t), where σ̃−t contains all elements of σ̃1:T except for σ̃t. Each σ̃t is drawn from

an inverse gamma proposal distribution, and is then accepted or rejected in a Metropolis

Hastings step.7

Note that step (2-2) and (2) in the KSC and JPR samplers, respectively, are identical.

The next section describes this step in detail.

2.1.3 Drawing from ϑ|σ̃1:T , y1:T

We draw from ϑ|σ̃1:T , y1:T using a sequence of conditional distributions (i.e., a Gibbs-within-

Gibbs step). These are as follows:

(i) Draw from p(θ, s1:T , ε1:T |h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished in two

steps:

(i.a) Draw from the marginal p(θ|h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ), where

p(θ|h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T )

∝
[∫

p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ) · d(s1:T , ε1:T )
]
p(θ)

= p(y1:T |h̃1:T , σ̃1:T , θ)p(θ)
(20)

where

p(y1:T |h̃1:T , σ̃1:T , θ) =
∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)·d(s1:T , ε1:T )

7As noted in Jacquier et al. (1994), the posterior σ̃t|σ̃−t, ϑ, y1:T can also be easily sampled using a log-

normal density and then applying a Metropolis Hastings step. However, JPR warn that the tails of the log-

normal distribution may not be thick enough for good sampling. In line with these results, our experiments

with a log-normal proposal produced largely similar results, but substantially worse convergence properties,

using the criteria of Section A.4.
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is computed using the Kalman filter with (1) as the measurement equation

and (2) as transition equation, with

εt|h̃1:T , σ̃1:T ∼ N (0,∆t), (21)

where ∆t are q̄ × q̄ diagonal matrices with σ2
q,t · h̃−1

q,t on the diagonal. The draw

is obtained from a Random-Walk Metropolis-Hastings step.8

(i.b) Draw from the conditional p(s1:T , ε1:T |θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is

accomplished using the simulation smoother of Durbin and Koopman (2002).

(ii) Draw from p(h̃1:T |θ, s1:T , ε1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished by draw-

ing from

p(ε1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)

∝
q̄∏
q=1

T∏
t=1

h̃
(λq−1)/2
q,t exp(−

[
λq + ε2

q,t/σ
2
q,t

]
h̃q,t/2), (22)

which implies [
λq + ε2

q,t/σ
2
q,t

]
h̃q,t|θ, ε1:T , σ̃1:T , λq ∼ χ2(λq + 1). (23)

(iii) Draw from p(λ1:q̄|h̃1:T , θ, s1:T , ε1:T , ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished by drawing

from

p(h̃1:T |λ1:q̄)p(λ1:q̄) ∝
q̄∏
q=1

((λ/ν)ν Γ(ν))−1 [2λq/2Γ(λq/2)]−TλTλq/2+ν−1
q(

T∏
t=1

h̃
(λq−2)/2
q,t

)
exp

[
−

(
ν

λ
+

1
2

T∑
t=1

h̃q,t

)
λq

]
. (24)

This is a non-standard distribution, hence the draw is obtained from a Metropolis-

Hastings step. Following Geweke (2005), we use a lognormal proposal.

(iv) Draw from p(ω2
1:q̄, ρ1:q̄|σ̃1:T , θ, s1:T , ε1:T , h̃1:T , λ1:q̄, y1:T ) using

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(ω

2
1:q̄)p(ρ1:q̄|ω2

1:q̄) ∝
q̄∏
q=1

(ω2
q )
− ν+T−1

2
−1

exp

[
−
νω2 +

∑T
t=2(σ̃q,t − ρqσ̃q,t−1)2

2ω2
q

]
p(σ̃q,1|ρq, ω2

q )p(ρq|ω2
q ), (25)

8In keeping with the spirit of the paper, we use a Student’s t distribution with 10 degrees of freedom, as

opposed to the customary Gaussian, as our proposal density.
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where p(σ̃q,1|ρq, ω2
q ) is given by equation (16). In the SV-UR case ρq is fixed to 1, and

we can draw ω2
q (i.i.d. across q) from:

ω2
q |σ̃1:T , · · · ∼ IG

(
ν + T

2
,
1
2

(
νω2 +

T∑
t=2

(σ̃q,t − σ̃q,t−1)2 + σ̃2
q,1

))
. (26)

In the SV-S case the joint posterior of ρq, ω2
q is non-standard because of the likelihood

of the first observation p(σ̃1|ρq, ω2
q ). We therefore use the Metropolis-Hastings step

proposed by Chib and Greenberg (1994). Specifically, we use as proposal density the

usual Normal-Inverted Gamma distribution, that is,

ω2
q |σ̃1:T , · · · ∼ IG

(
ν+T−1

2 , 1
2

(
νω2 +

∑T
t=2 σ̃

2
q,t + v̄−1

ρ ρ̄2 − V̂ −1
q ρ̂2

q

))
,

ρq|ω2
q , σ̃1:T , · · · ∼ N

(
ρ̂q, ω

2
q V̂q

)
, i.i.d. across q,

(27)

where ρ̂q = V̂q

(
v̄−1
ρ ρ̄+

∑T
t=2 σ̃q,tσ̃q,t−1

)
, V̂q = (v̄−1

ρ +
∑T

t=2 σ̃
2
q,t−1)−1. We then ac-

cept/reject this draw using the proposal density and the acceptance ratio

p(σ̃1, ρ
(∗)
q , ω

2 (∗)
q )I(ρ(∗)

q )

p(σ̃1, ρ
(j−1)
q , ω

2 (j−1)
q )I(ρ(j−1)

q )
,

with (ρ(j−1), ω
2 (j−1)
q ) and (ρ(∗), ω

2 (∗)
q ) being the draw at the (j − 1)th iteration and

the proposed draw, respectively.

3 The DSGE Model

The model considered is the one used in Smets and Wouters (2007), which is based on

earlier work by Christiano et al. (2005) and Smets and Wouters (2003). It is a medium-

scale DSGE model, which augments the standard neoclassical stochastic growth model

with nominal price and wage rigidities as well as habit formation in consumption and

investment adjustment costs. Due to space constraints, and to the fact that the model is

the same as in SW, we relegate the detailed model description to appendix B (it is also

available in Cúrdia et al. (2012), the working paper version). Since this is a paper about

shocks, we nonetheless need to describe what they are and how they enter the model.

The model has seven exogenous processes, and the shocks (εt) are innovations to these

processes. Government spending g enters the resource constraint — these are units of

output the government demands in any period but have no productive use; the discount

rate process b enters the Euler equation, and drives a wedge between the marginal utility
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of consumption and the riskless real return; the “marginal efficiency of investment” (MEI)

process µ affects the rate of transformation between consumption and installed capital;

total factor productivity (TFP) z enters the production function; rm is the residual in the

policy interest-rate rule (and innovations to this process are called “policy shocks”); price

(λf ) and wage (λg) markup shocks enter the price and wage Phillips curves, respectively.

All these shocks follow univariate AR(1) processes, with the exception of price and wage

markup shocks, which follow an ARMA(1,1) process. Innovations to the TFP process will

also affect the government spending process contemporaneously.

We collect all the DSGE model parameters in the vector θ, stack the structural shocks in

the vector εt, and derive a state-space representation for our vector of observables yt, which

is composed of the transition equation (2), which summarizes the evolution of the states

st, and the measurement equation (1), which maps the states onto the vector of observ-

ables yt, and where D(θ) represents the vector of steady state values for these observables.

Specifically, the model is estimated based on seven quarterly macroeconomic time series:

real output, consumption, investment, and real wage growth, hours, inflation, and interest

rates, all measured in percent (the data construction is the same as in SW). Section B.2

in appendix B provides further details on the data. In our benchmark specification we use

data from 1964Q4 to 2011Q1, but we also consider a variety of sub-samples. Table B.1 in

appendix B shows the priors for the DSGE model parameters, which coincide with those

used in SW.9

4 Results

This section describes our findings. First, we present the evidence in favor of Student’s t

distributed shocks. Second, we quantify the impact of rare shocks on the macroeconomy.

Third, we show the extent to which allowing for Student’s t shocks affects the inference

about time-variation in volatility. Finally, we discuss the variance decomposition for real

GDP growth. The results in Sections 4.1 through 4.4 are obtained under a specification

using i) the full sample, ii) the SV-UR assumption for the law of motion of the stochastic

volatilities, and iii) the KSC procedure for drawing the volatilities (Section 2.1.1). Section
9 We follow SW (but not necessarily best practice in DSGE model estimation, e.g. Del Negro and

Schorfheide (2008)) in assuming independent priors for the DSGE parameters.
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4.5 studies the robustness of the results using different assumptions and estimation ap-

proaches for the SV component, and various subsamples. There are many more objects of

interest than we have space to show and discuss here, such as the posterior estimates of the

DSGE parameters, and the time series for the time-varying volatilities σq,t, the Student’s

t components h̃q,t, and the standardized shocks ηq,t. We show these results in appendix B

which is available online and in the working paper version (Cúrdia et al. (2012)), and we

briefly discuss them in Sections A.2 and A.3.

4.1 Evidence of Fat Tails

In the introduction we showed that shocks extracted from standard Gaussian estimation

are sometimes quite large — four standard deviations or more in size. In this section we

consider more formal evidence against Gaussianity.10 Specifically, this section addresses

two questions. First, do we still need fat-tailed shocks once we allow for low-frequency

movements in volatility? Second, which shocks are fat-tailed, and how fat are the tails?

We address these questions by: i) assessing the improvement in fit obtained by allowing for

Student’s t distributed shocks relative to both the standard model as well as models with

low-frequency movements in the volatility; ii) presenting the posterior distribution of the

degrees of freedom for each shock.

Before we delve into the results, we provide an intuitive description of the relationship

between the degrees of freedom of the Student’s t distribution and the likelihood of observing

large shocks. Recall from equation (3) that a Student’s t distributed shock εt can be

decomposed as εt = σth̃
−1/2
t ηt, where ηt is drawn from a standard Gaussian distribution (we

omit the q subscript for ease of exposition). Therefore, given σt, the chances of observing

a very large εt depend on the chances of h̃t being small. The prior for h̃t is given by

(5). If λ is high, this prior concentrates around one, and the likelihood of observing large
10A referee asked to see how the specifications with Student’s t distributed shocks and stochastic volatility

deal with these large innovations — that is, whether the large |εt| is rationalized with a large σt or a large

Student’s t component h̃
−1/2
t . Figures B.6 and B.5 in the online appendix show the time series of σt and

h̃
−1/2
t and therefore address this question. Note that since the posterior estimates of the DSGE model

parameters are quite similar across specifications, as discussed in section A.2, the innovations εt are also

very similar, and provide a good basis for comparison. The figures show that the large discount rate and

MEI shocks are explained overwhelmingly as rare shocks (high values of h̃
−1/2
t , while not surprisingly the

large policy shocks in the late 70s/early 80s are due mainly to high volatility during that period (high values

of σ̃t).
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shocks is slim (the λ→∞ limit represents Gaussianity). As λ drops, the distribution of h̃t

spreads out and the chances of observing a low h̃t increase. The following table provides

a quantitative feel for what different λs imply in terms of the model’s ability to generate

fat-tailed shocks. Specifically, the table shows the number of shocks larger (in absolute

value) than x standard deviations per 200 periods, which is the size of our sample. The

table shows that with 9 degrees of freedom the chances of seeing even a single shock as large

as those shown in Figure 1 are not high (.28 for shocks larger than 4 standard deviations),

and become negligible for 15 or more degrees of freedom.

λ, x: 3 4 5

∞ .54 .012 1e−4

15 1.14 .13 .02
9 1.57 .28 .06
6 2.08 .54 .17

In what follows, we consider three different Gamma priors of the form (6) for the degrees of

freedom parameter λ, which capture different a priori views on the importance of fat tails.

The first prior, λ = 15, captures the view that the world is not quite Gaussian, but not too

far from Gaussianity either. The second prior, λ = 9, embodies the idea that the world is

quite far from Gaussian, yet not too extreme. The last prior, λ = 6, implies prior belief in

a model with fairly heavy tails.

The tightness of these priors depends on the degrees of freedom parameter ν in equation

(6), which we set equal to 4.11 Figure 2 shows the three priors for λ = 6, 9, and 15. Since

the variance of the prior is λ2/ν, lower values of λ correspond to a tighter prior. Note

however that the prior with higher variance (λ = 15) puts most of the mass on high values

of the degrees of freedom. For instance, the prior probability put on the regions {λ < 4},

{λ < 6}, and {λ < 9} by the λ = 15 prior is roughly 2.5%, 8%, and 22%, respectively.

With the description of the prior in hand, we are now ready to discuss our evidence

on the importance of fat tails. Table 1 shows the log-marginal likelihood — the standard

measure of fit in a Bayesian framework — for models with different assumptions on the

shocks distribution.12 We consider four different combinations: i) Gaussian shocks with

constant volatility (baseline), ii) Gaussian shocks with time-varying volatility, iii) Student’s
11Results obtained using ν = 1 are very similar.
12Appendix A.1 provides details on the computation of the marginal likelihood for these models.
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t distributed shocks with constant volatility, and iv) both Student’s t shocks and time-

variation in volatility (in the remainder of the paper we will sometimes refer to specifications

ii), iii) and iv) as TD, SV, and SVTD, respectively).13 Finally, our prior for the innovations

in stochastic volatility is an IG prior with mode at (.01)2 and .1 degrees of freedom.14

The Gaussian/constant-volatility model is clearly rejected by the data. This is not

surprising in light of the evidence contained in JP, Fernández-Villaverde and Rubio-Ramı́rez

(2007), and Liu et al. (2011). Both the specification with SV only and those with Student’s t

shocks only perform substantially better than the Gaussian/constant-volatility specification.

Also, the log-marginal likelihoods indicate that even after accounting for fat-tailed shocks,

allowing for time-variation in the volatility improves fit: for any row in Table 1, the log-

marginal likelihood increases moving from the left (no SV) to the right (SV) column. From

the perspective of this paper, however, the main finding is provided by the fact that the fit

improves when Student’s t shocks are included, and continues to improve as the prior puts

more weight on fat tails, regardless of whether we include SV. In summary, the data strongly

favor Student’s t distributed shocks with a non-negligible degree of fat tails, whether or not

we allow for low-frequency movements in volatility.15

13Here we focus on the specification where the volatilities follow a random walk (SV-UR case in equa-

tion (10)), as in JP, because this specification obtains a better fit of the data than the specification where

the volatility follow a stationary autoregressive process (SV-S case), but we discuss the results for the SV-S

case in Section 4.5.1.
14Specifically, in the IG(νω/2, νωω

2/2) prior (see equation (9)) we set νω/2 = .1 and choose ω2 so that

the mode, given by νωω
2/2

1+νω/2
, equals (.01)2. It is well known that when ω2 is very low, as is the case here,

designing a prior that is not too informative is challenging. In Monte Carlo experiments we found that using

very low degrees of freedom (νω/2 = .1) led to good performance regardless of whether the true value of ω2

was 10−4, 10−3, or 10−2, and therefore settled on this value. Figure B.1 in the appendix B provides a plot

of the prior distribution for ω2.
15The difference in log-marginal likelihoods between the Gaussian/constant-volatility model and the SV

model only is much larger than the difference in log-marginal likelihoods between any of the Student’s t

specification and the corresponding specification (for the same prior) with SV. This finding is robust across

SV specifications and estimation procedures, as discussed in Section 4.5. This suggests that there is some

substitutability between the two features (SV and Student’s t) in terms of fitting the data. However, the two

features cannot be complete substitutes — one captures low frequency movements in volatility, the other

very high frequency ones. Hence we should not be surprised that the data favor specifications with SV even

for relatively low values of λ. Nonetheless, as the λ = 15 specification is closer to the Gaussian one than,

say, the λ = 6 specification, we would have expected the difference between the case without SV and the

case with SV to be larger for λ = 15 than for λ = 6, and we find this is not the case.
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Our second piece of evidence comes from the posterior distribution of the degrees of

freedom λ. Table 2 shows the posterior mean and 90% bands for the degrees of freedom for

each shock, in the specifications with and without stochastic volatility. Two results emerge.

First, for quite a few shocks the estimated degrees of freedom are small, even when we allow

for low-frequency movements in volatility. Second, allowing for low-frequency movements

in volatility substantially changes the inference about the degrees of freedom for some of

the shocks, implying that this feature is necessary for a proper assessment of how fat-tailed

macroeconomic shocks are.

As for the first result, Table 2 shows that four shocks have a mean below 6 for the best-

fitting prior on the degrees of freedom according to the log-marginal likelihood criterion

(λ = 6). For priors with higher λ the posterior mean degrees of freedom for these four

shocks increases, but this is mostly because the posterior distribution becomes more skewed

to the right (that is, it places some mass on higher values for λ). Still, for many shocks the

posterior distribution puts sizable mass on the {λ < 6} region even for λ = 15, and in quite

a few cases the 5th percentile of the posterior distribution barely changes as a function of

λ. In any case, the substantive results on the importance of fat tails for macroeconomic

fluctuations and on the inference about time variation in volatility are by and large the same

regardless of the choice of λ, as we discuss below. The shocks with the fattest tails (lowest

posterior degrees of freedom) are those affecting the discount rate (b), TFP (z), the marginal

efficiency of investment (µ), and the wage markup (λw) processes. Not surprisingly, these

shocks are the usual suspects as key drivers of business cycles (see SW, Justiniano et al.

(2009)).

As for the result that allowing for low-frequency movements in volatility substantially

changes the inference about the degrees of freedom, the monetary policy shock rm is a case

in point. Its estimated degrees of freedom are very low when one ignores time variations in

volatility apparent in Figure 1. In the specification ignoring time-variation in volatility, the

model interprets the large shocks of the late seventies/early eighties as evidence of fat tails.

Once these secular changes in volatility are taken into account, the posterior estimates of

the degrees of freedom increase substantially. What is the intuition for this finding? The

posterior distribution of h̃t, which determines how fat the tails are, is given by (23):[
λ+ ε2

t /σ
2
t

]
h̃t | θ, ε1:T , σ̃1:T , λ ∼ χ2(λ+ 1).

For a given value of σt, a larger estimated shock εt implies a smaller posterior value of
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h̃t. Not surprisingly, large shocks are interpreted by the model as evidence for fat tails.

However, the shock is standardized by σt: if a large shock occurs during a period where

all shocks tend to be large, it is discounted, and the posterior value of h̃t may not be

particularly small.16

4.2 Large Shocks and Macroeconomic Fluctuations

We have shown that quite a few important shocks in the SW model have fat tails. What

does this mean in terms of business cycle fluctuations? This section tries to provide a

quantitative answer to this question by performing a counterfactual experiment. Recall

again from equation (3) that εt = σth̃
−1/2
t ηt. Therefore, once we compute the posterior

distribution of εt (the smoothed shocks) and h̃t, we can purge the Student’s t component

from εt using ε̃t = σtηt. We can then compute counterfactual histories that would have

occurred had the shocks been ε̃t instead of εt. All these counterfactuals are computed for

the best fitting model: SVTD(λ = 6).

The left panel of Figure 3 shows these counterfactual histories for output, consumption,

and investment growth. For all plots the magenta solid lines are the median counterfactual

paths, the magenta dashed lines represent the 90% bands, and the solid black lines represent

the actual data. The right panel uses actual and counterfactual histories to compute a

rolling window standard deviation, where each window contains the prior 20 quarters as

well as the following 20 quarters, for a total of 41 quarters. These rolling window standard

deviations are commonly used measures of time-variation in the volatility of the series. The

difference between actual and counterfactual standard deviations measures the extent to

which the change in volatility is accounted for by fat-tailed shocks.17

The left panels suggest that fat-tailed shocks account for a non negligible part of fluc-

tuations in the three variables. For output growth, the Student’s t component accounted
16Consistent with the intuition given above, the posterior mean of λ increases for all shocks (for given

prior) when we include time-variation in volatility, with the exception of the MEI(µ) shock, for which it

remains virtually the same.
17 The distribution of h̃t is non-time varying. However, since large shocks occur rarely, they may account

for changes in the rolling window volatility. Note that in the counterfactual we “kill” the fat tails without

keeping the overall volatility of the process constant — the purpose is just to showcase the importance of

rare shocks. So one should not interpret the counterfactual rolling window standard deviations as measures

of “true” underlying volatility.
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for a sizable fraction of the contraction in output growth during the Great Recession. In

particular, if the fat tail component were absent the Great Recession would have been of

about the same size as milder recessions, such as the 1990-91 recession. In general, without

the fat-tailed component of the shocks all recessions (with the exception of the 2001 reces-

sion) would be of roughly the same magnitude in terms of output growth.18 Figures B.2

and B.3 in appendix B of the paper show that these results are robust to the choice of λ,

the prior mean for the degrees of freedom of the Student’s t distribution.

Further, the rolling window standard deviation shown in the right panel shows that the

Student’s t component explains a non-negligible part of changes in the realized volatility in

the data. One can interpret this evidence as saying that the ’70s and early ’80s were more

volatile than the Great Moderation period at least in part because rare shocks took place.19

Similar conclusions apply to the decomposition of consumption and investment growth

(middle and bottom panels, respectively). It is notable that in the case of investment, and

to a lesser extent of consumption, the rolling-window volatility computed from the data

has spiked up recently to levels near those prior to the Great Moderation. When we take

the Student’s t component into account, however, the recent increase in the rolling-window

volatility appears much milder.

4.3 Student’s t Shocks and Inference about Time-Variation in Volatility

This section discusses the extent to which accounting for fat tails makes us reevaluate the

magnitude of low-frequency changes in volatility.20 Inference about the stochastic volatility
18Dewachter and Wouters (2012) solve non-linearly a model with capital-constrained financial intermedi-

aries. They back out from the data a process for total factor productivity and feed this process into their

non-linear model. They then compare the path of several variables under the non-linear and linear solution

methods. These two paths for investment growth look strikingly similar to the actual (for the non-linear

method) and counterfactual (for the linear method) paths of investment growth in Figure 3, suggesting that

the non-linear propagation of shocks may induce outcomes that resemble those due to fat-tailed shocks in a

linear model.
19For example at the peak of the volatility in 1978, the rolling window standard deviation of output

growth is about 1.25 in the data, but once we shut down the Student’s t component it drops to 0.90, which

is a reduction of about 28% in volatility.
20The point that inference about stochastic volatility changes when one accounts for rare large shocks is

not new, and is made quite eloquently in Jacquier et al. (2004).
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is conducted using state-space methods under the KSC procedure, where

log(σ−2h̃tε
2
t + c) = 2σ̃t + η∗t ,

is the measurement equation (with c a small constant), and equation (8) is the transition

equation. Intuitively, the estimated time-varying volatilities will try to fit the time series

log(σ−2h̃tε
2
t + c). Since this quantity depends on ε2

t , the model will interpret changes over

time in the size of the squared shocks ε2
t as evidence of time variation in the volatilities σ̃t.

In a world with fat tails, ε2
t will vary over time simply because h̃t changes. If one ignores

variations in h̃t by assuming Gaussian shocks, one may obtain the wrong inference about

the time variation in the σts. For instance, one may conclude that the Great Recession

signals a permanent change in the level of macroeconomic volatility, when in fact it may be

(at least in part) the result of a particularly large realization of the shocks.

Does all of this matter in practice? An implication of stochastic volatility is that the

model-implied variance of the endogenous variables changes over time. Therefore, rather

than looking at the posterior estimates of the stochastic volatility component for individual

shocks we focus here on the time-variation of the standard deviation of output and consump-

tion.21 Specifically, Figure 4 shows the model-implied volatility of output and consumption

growth, as measured by the unconditional standard deviation of the series computed at

each point in time t assuming that the standard deviations of the shocks is going to remain

equal to the estimated value of σq,t = σqe
σ̃q,t forever after (that is, abstracting from the fact

that σ̃q,t+s, for s > 0, will be affected by future volatility shocks according to equation (8);

this is the same object computed in Figure 5 of JP).

In the top panel, the red line shows this measure for the SV only specification, while

the black lines show this volatility for the SVTD(λ = 6) specification. As in the other plots,

the solid line is the posterior median and the dashed lines correspond to the 90% bands

around the median. For both variables the model-implied volatility is generally higher when

we account for fat-tailed shocks, which is intuitive. However, the difference between the

models is not constant over time. At the peak of the high-volatility period (late 70s and

early 80s), the two models agree. However, during the Great Moderation the model that

does not allow for fat-tailed shocks seems to overestimate the decline in macroeconomic

volatility.
21Figure B.6 in appendix B shows the posterior estimates of the shocks εq,t (in absolute value) and the

shock volatilities σq,t in the SV only and SVTD specifications.
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The middle panel of Figure 4 hones in on this finding. This panel shows the posterior

distribution of the ratio of the volatility in 1981 (roughly, the peak of the volatility series)

relative to the volatility in 1994 (roughly, the bottom) for output and consumption growth,

respectively. The red and black bars are for the SV only and SVTD(λ = 6) specifications,

respectively. Numbers greater than one indicate that volatility was higher in 1981 relative to

1994. There is no doubt that this is the case, as both histograms are well to the right of one.

However, the magnitude of the decrease in volatility depends on whether or not we allow

for fat-tailed shocks. The posterior distribution for the ratio of the output growth volatility

in 1981 relative to the volatility in 1994 in the estimation with Student’s t shocks is smaller

relative to the case with Gaussian shocks. The median is 1.3 in the former, compared to

1.7 in the latter. For the red bars, most of the mass is to the right of 1.5, implying that

volatility dropped by more than one third between 1981 and 1994. The converse holds for

the black bars, which show a smaller decline in volatility. This same pattern is also evident

for the consumption growth. Figures B.2 and B.3 in appendix B show that these results

are virtually identical for different choices of λ, the prior mean for the degrees of freedom

of the Student’s t distribution.

As a result of the Great Recession there has been an increase in volatility in many

macroeconomic variables since 2008, as measured by the rolling window standard deviations

shown in Figure 3. To what extent does this increase reflect a permanent increase in the

volatility of the underlying shocks, and, potentially, the end of the Great Moderation?22

The bottom panels of Figure 4 show the ratio of the volatility in 2011 (end of the sample)

relative to the volatility in 2005 (pre-Great Recession) for output and consumption growth,

respectively, with numbers greater than one indicating a permanent rise in volatility. Under

the model with time-varying volatility and Gaussian shocks, the probability that volatility

in both output and consumption has increased after the Great Recession is quite high.

The probability of the ratio being below one is 17% and 18% for output and consumption

growth, respectively. The model that has Student’s t shocks in addition to time-varying

volatility is less confident: the probability of the ratio being below one increases to 31%

in the case of output, and 33% in the case of consumption growth. Moreover, this model
22Clark (2009) also investigates the end of the Great Moderation using a univariate model with time-

varying coefficients and innovaltion volatilities, and finds that the implied unconditional volatility of several

macroeconomic variables incresaed notably during the Great Recession. Barnett and Chauvet (2008) also

discuss the possibility that the Great Moderation period is over.
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implies that if such an increase took place, it was fairly modest, with most of the mass

below 1.25.

4.4 Variance Decomposition

Table 3 shows the relative contribution of the different shocks to the unconditional variance

of real GDP growth, for the specification with both stochastic volatility and Student’s t

components (with λ = 6). Since volatility is time-varying, we compute the unconditional

variance at each point in time t assuming that the time-varying component of the standard

deviations of the shocks is going to remain equal to the estimated value of σt forever after, as

we did in the previous section. The table shows the relative contribution of each structural

shock to this unconditional variance at five different points in time: 1964Q4 (beginning of

sample), 1981Q1 (peak of the high volatility period), 1994Q1 (great moderation), 2007Q1

(pre-great recession) and 2011Q1 (end of sample). In sum, we find that the shocks that

are most important for explaining real GDP growth are those that exhibit fat tails, like the

discount rate (b), marginal efficiency of investment (µ), and TFP (z) shocks.23

4.5 Robustness

This section discusses the robustness of our results to different assumptions and estimation

approaches for the stochastic volatility component, and to different sub-samples. The results

are shown in appendix B. The lesson from these robustness exercises is that the two main

results of the paper, namely i) there is strong evidence in favor of Student’s t distributed

shocks, and ii) accounting for fat tails changes the inference about low frequency movements

in volatility, are very robust.

4.5.1 Robustness to Different Estimation Approaches and Assumptions for the

Stochastic Volatility Component

Results using the JPR algorithm are quite different from those obtained with the KSC

algorithm in terms of the inference about stochastic volatility. Table B.18 shows the log-

marginal likelihoods under this approach, and they are markedly higher for all SV speci-
23Table B.4 in appendix B shows the variance decomposition for the other specifications (Gaussian, TD

only, and SV only).
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fications than those computed using the KSC approach (Table 1). Inference about time-

variation in volatility is also quite different, as reported in the bottom panel of Figure B.7

for output growth, especially as far as the spike in volatility in the late 70s and early 80s

is concerned. As a result of this spike, the ratios are much larger for both the SV only

and the SVTD specifications. The difference between results under the JPR and KSC al-

gorithm are puzzling, considering that the model/prior specification is identical, and that

both estimations appeared to have converged.24 In spite of these differences, the results are

very robust as far as the message of this paper is concerned. Table B.18 shows that the

model’s fit improves sizably by allowing for fat tailed shocks, and that best specification is

still the one with the lowest prior for the degrees of freedom (λ = 6). Table B.19 shows

that the inference about the degrees of freedom of the Student’s t distribution are virtu-

ally identical to those reported for the KSC algorithm for the best specification. The top

panel of Figure B.7 shows that the importance of Student’s t distributed shocks in terms of

output growth fluctuations is the same as that computed under the other algorithm. The

bottom panel shows that allowing for Student’s t shocks changes the inference about the

size of fluctuations in volatility, perhaps even more than under the alternative algorithm.

Figuring out which algorithm, JPR or KSC, proves most reliable for macro applications is

arguably an important issue to sort out for applied macroeconomists, but is not the goal of

this paper.

We also investigated robustness of the results to the SV-S specification, where following

a referee’s suggestion we use a prior for ρq with ρ̄ = .6 and v̄ρ = (.2)2/ωq
2.25 Table B.20

shows that the log-marginal likelihood results for the SV-S specification are worse than

those for the SV-UR, and that allowing for fat tails improves the model’s fit considerably.

The results under this specification are largely in line with those of the baseline.26

24Section A.4 discusses the convergence results for the KSC algorithm, which are available in appendix B.

Convergence results for the JPR algorithm are available upon request.
25We also tried a prior for ρq that does not depend on ωq, i.e., N (.6, (.2)2), and obtained very similar

results.
26Table B.22 shows the posterior estimates of the degrees of freedom of the Student’s t distribution;

Figure B.8 is the analog of Figure B.7 for this specification; Table B.22 shows the posterior estimates of the

SV persistence parameter ρq.
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4.5.2 Sub-sample Analysis

Does evidence in favor of fat-tailed shocks depends on whether the Great Recession is

included in the estimation sample? In order to address this question, we re-estimated

the model for the sub-sample ending in the fourth quarter of 2004 — the end date of

the sample used in JP.27 Table B.23 shows in columns two and three the log-marginal

likelihood for all the specifications considered above but estimated on the shorter sub-

sample. The results for this sub-sample are in line with the results for the full sample:

including Student’s t distributed shocks improves fit, regardless of whether we also consider

stochastic volatility, and the lower the prior mean for the degrees of freedom the higher the

log-marginal likelihood we obtain. The posterior means of the degrees of freedom of the

Student’s t distribution (Table B.24) are also mostly in line with those for the full sample.

The top panel of Figure B.9 shows the importance of Student’s t distributed shocks in

terms of output growth fluctuations. The results again agree with those for the full sample.

The bottom panels of Figure B.9 provide evidence regarding time-variation in volatility. It

appears that for the short sample this is more muted than in the full sample, although the

result that accounting for fat tails leads to less volatile estimates of the low-frequency SV

process still holds.28 Figure B.10 reproduces some of the results in Figure B.9 using the

JPR algorithm. We find more evidence of time variation in volatility using this algorithm,

as we did for the full sample, but the results concerning the importance of fat tails are

unchanged.

We also investigate how much the results depend on the period of high volatility ex-

perienced in the late 1970s by focusing on two sub-samples starting in the Great Moder-

ation period: 1984Q1 and 1991Q4. Table B.23 shows in columns four through seven the

log-marginal likelihoods for these sub-samples. Again, we find that having Student’s t dis-

tributed shocks improves fit, regardless of whether we also consider stochastic volatility; and

the lower the prior mean for the degrees of freedom the higher the log-marginal likelihood

we obtain. The posterior means of the degrees of freedom of the Student’s t distribution

(Tables B.26 and B.27) are mostly consistent with previous results, and the top panels of
27Note that our model, data, and prior on ω2 differ from JP in important ways, hence we would not expect

to replicate their results.
28Figures B.11 and B.12 provide the posterior for h̃

−1/2
q,t and σq,t, respectively, for this sub-sample. These

figures broadly look consistent with those for the full sample, i.e. they appear to be the chopped up version

of Figures B.5 and B.6, respectively.
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Figures B.13 and B.14 show that the impact of fat-tailed shocks on output fluctuations is

in line with the results of the full sample. Adding stochastic volatility does not substan-

tially improve the fit, if at all, in these sub-samples. This suggests that, even if the Great

Recession is included in the sample, most of the evidence in favor of stochastic volatility

for the full sample is due to the shift in volatility from the late 1970s to the 1990s. The

bottom panels of Figures B.13 and B.14 are consistent with this view, as they show little

evidence of changes in volatility for output growth.

5 Conclusions

We provide strong evidence that the Gaussianity assumption in DSGE models is coun-

terfactual, even after allowing for low-frequency changes in the volatility of shocks. It is

important to point out a number of caveats regarding our analysis. First, we allow for

excess kurtosis but not for skewness. The plots in in Figure 1 make it plain that most large

shocks occur during recessions, implying that skewness may also be an salient feature of the

shocks distribution. Müller (forthcoming) describes some of the dangers associated with

departures from Gaussianity when the alternative shock distribution is also misspecified.

Importantly for our analysis, not allowing for skewness may lead to an underestimation of

the importance of fat tails during recessions, as we only estimate the average amount of

kurtosis. Second, we allow for permanent (random walk) and i.i.d (Student’s t distribution)

changes in the variance of the shocks. These assumptions are convenient, but also extreme.

Our main point is that together with low-frequency changes in the standard deviation of

shocks, there are also short run spikes in volatility. So far, the literature for the U.S. has

mainly focused on the former phenomenon; in this paper we emphasize the latter. Still, in

future research it may be important to relax the assumption that these short run spikes

are identically distributed over time. Third, in order to study the full implications of fat-

tailed shocks on the macroeconomy we need to use non linear models, as we discuss in the

introduction.29 Finally, we have not investigated the implication of allowing for fat tails in

terms of forecasting. Do DSGE models with Student’s t shocks have a superior forecasting

performance relative to models with Gaussian shocks in terms of root mean squared errors?
29The optimal policy response to rare large shocks is another important issue that deserves attention.

The financial econometrics literature has studied the implication of alternative hedging strategies vis-á-vis

fat-tailed shocks (e.g., Bos et al. (2000)).
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Or are the gains in marginal likelihood mainly reflected in an improved precision of the

forecast distribution? We leave these important extensions for future research.
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Cúrdia, V., M. Del Negro, and D. L. Greenwald (2012): “Rare Shocks, Great

Recessions,” Federal Reserve Bank of New York Staff Reports, 585.

Del Negro, M. and G. Primiceri (2013): “Time-Varying Structural Vector Autoregres-

sions and Monetary Policy: A Corrigendum,” Federal Reserve Bank of New York Staff

Reports, 619.

Del Negro, M. and F. Schorfheide (2008): “Forming Priors for DSGE Models (and

How it Affects the Assessment of Nominal Rigidities),” Journal of Monetary Economics,

55, 1191–1208.

Del Negro, M. and F. Schorfheide (forthcoming): “DSGE Model-Based Forecasting,”

in Handbook of Economic Forecasting, Volume 2, ed. by G. Elliott and A. Timmermann,

Elsevier.

Dewachter, H. and R. Wouters (2012): “Endogenous risk in a DSGE model with

capital-constrained Financial intermediaries,” National Bank of Belgium Working Paper,

235.

Durbin, J. and S. J. Koopman (2002): “A Simple and Efficient Simulation Smoother

for State Space Time Series Analysis,” Biometrika, 89, 603–616.

Edge, R. and R. Gürkaynak (2010): “How Useful Are Estimated DSGE Model Forecasts

for Central Bankers,” Brookings Papers of Economic Activity, forthcoming.

Fernández-Villaverde, J. and J. F. Rubio-Raḿırez (2007): “Estimating Macroeco-
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A Appendix

A.1 Marginal likelihood

The marginal likelihood is the marginal probability of the observed data, and is computed as the integral of (12)

with respect to the unobserved parameters and latent variables:

p(y1:T ) =
R
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)

p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄)p(θ)

d(s1:T , ε1:T , h̃1:T , σ̃1:T , λ1:q̄ , ρ1:q̄ , ω2
1:q̄ , θ),

=
R
p(y1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2

1:q̄)

p(λ1:q̄)p(ω2
1:q̄)p(θ)d(h̃1:T , σ̃1:T , λ1:q̄ , ρ1:q̄ , ω2

1:q̄ , θ)

(28)

where the quantity

p(y1:T |h̃1:T , σ̃1:T , θ) =
R
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)

p(ε1:T |h̃1:T , σ̃1:T , θ) · d(s1:T , ε1:T )

is computed at step 1a of the Gibb-sampler described above.

We obtain the marginal likelihood using Geweke (1999)’s modified harmonic mean method. If f(θ, h̃1:T , σ̃1:T , λ1:q̄ , ρ1:q̄ , ω2
1:q̄)

is any distribution with support contained in the support of the posterior density such thatZ
f(θ, h̃1:T , σ̃1:T , λ1:q̄ , ρ1:q̄ , ω

2
1:q̄) · d(θ, h̃1:T , σ̃1:T , λ1:q̄ , ρ1:q̄ , ω

2
1:q̄) = 1,

it follows from the definition of the posterior density that:

1
p(y1:T )

=
R f(θ,h̃1:T ,σ̃1:T ,λ1:q̄,ρ1:q̄,ω

2
1:q̄)

p(y1:T |h̃1:T ,σ̃1:T ,θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄)p(θ)

p(θ, h̃1:T , σ̃1:T , λ1:q̄ , ρ1:q̄ , ω2
1:q̄ |y1:T ) · d(θ, h̃1:T , σ̃1:T , λ1:q̄ , ρ1:q̄ , ω2

1:q̄)

We follow JP in choosing

f(θ, h̃1:T ) = f(θ) · p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω

2
1:q̄), (29)

where f(θ) is a truncate multivariate distribution as proposed by Geweke (1999). Hence we approximate the marginal

likelihood as:

p̂(y1:T ) =

24 1

nsim

nsimX
j=1

f(θj)

p(y1:T |h̃j1:T , σ̃
j
1:T , θ

j)p(θj)

35−1

(30)
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where θj , h̃j1:T , and σ̃j1:T are draws from the posterior distribution, and nsim is the total number of draws. We are

aware of the problems with (29), namely that it does not ensure that the random variable

f(θ, h̃1:T , σ̃1:T , λ1:q̄ , ρ1:q̄ , ω2
1:q̄)

p(y1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄)p(θ)

has finite variance. Nonetheless, like JP we found that this method delivers very similar results across different chains.

A.2 Parameter Estimates

Does accounting for Student’s t shocks and/or stochastic volatility affect the posterior distributions for the DSGE

model parameter estimates? JP find that the answer is generally no as far as stochastic volatility is concerned.

In our application we broadly reach similar conclusions. Table B.2 shows the posterior means for the parameters

estimated in the following four cases: 1) Gaussian shocks and constant volatility (Baseline), 2) Gaussian shocks with

stochastic volatility (SV), 3) Student’s t shocks (St-t), and 4) Student’s t shocks with stochastic volatility (St-t+SV).

For reference, we also report the prior mean and standard deviation. We find that the parameter capturing investment

adjustment costs (S
′′

) is lower in the baseline specifications relative to the alternatives. Interestingly, JP also find

that this parameter is sensitive to changing the specification of the shock distribution, in spite of using a slightly

different model and a different sample. Unlike JP, we find that other parameters are also sensitive to the specification

of the shock distribution. Namely, we also find that the labor disutility is somewhat more convex when we depart

from Gaussianity. We find that the price rigidities parameter (ζp) has a higher posterior mean when we account for

fat-tails than when we do not (it is about 0.73 in the Gaussian case and 0.85 in the case with both fat tails and

stochastic volatility). Additionally, the estimates of the persistency of the shocks are also influenced by the inclusion

of stochastic volatility and/or fat tails. Finally, Table B.25 compares the posterior means of the DSGE parameters

under the various specifications for the full sample and the sample ending in 2004Q4. The posterior estimates appear

to change with the sample for all specifications, hence it is not clear that specifications with SV or TD provide more

“robust” parameters estimates with respect to changes in the sample. Admittedly, this issue deserves a more detailed

assessment.

A.3 Posterior estimates of the shocks (εq,t) , stochastic volatilities (σ̃t),

Student’s t scale component (h̃t), “tamed” shocks (ηt), and Stochastic

Volatility Innovation Variance ω2
q

As discussed in Section 2, our model makes a strong assumption: we assume that changes in volatility are either very

persistent or i.i.d. (Student’s t). It is worth looking at, and analyzing, the posterior estimates of the Student’s t scale

components h̃
−1/2
q,t and the “tamed” shocks ηq,t to assess whether these are indeed i.i.d., as they ought to be, or whether

there is still residual autocorrelation. Figures B.4 and B.5 in appendix B show precisely these quantities (the ηq,t are

in absolute value) for the SVTD(λ = 6) specification. In addition, tables B.13 and B.14 show the posterior mean of

autocorrelation of the “raw” shocks (εq,t) and the “tamed” shocks (ηq,t), respectively, across different specifications.

While the autocorrelation of the “raw” shocks (εq,t) is non-negligible (and often higher for the Student’s t case) the

autocorrelation of the ηq,ts is always smaller in the SVTD specification, and often substantially so. In addition, the

autocorrelation of the ηq,ts for the specification with SV only is always larger than in the SVTD specification for

those shocks where the autocorrelation is non-negligible, such as the price markup (λf ) and the policy (rm) shocks.

Another important assumption is that both the ηq,t and the h̃q,t are uncorrelated across different shocks q.

Table B.15 shows the cross-correlation in the “tamed” shocks (ηq,t). The table shows that the cross-correlations are

sometimes quite large for the Gaussian and SV case (e.g., up to .47 and .38, respectively, for policy rm and discount
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rate b shocks) but is generally much smaller for the SVTD specification (at most .18). One may be concerned that

with Student’s t shocks the auto/cross correlations have migrated to the h̃−1/2. Tables B.16 and B.17 suggest that

this is not the case: all autocorrelations and cross-correlations are very small, less than .035.

Finally, figure B.6 shows the posterior estimates of the shocks εq,t (in absolute value) and the shock volatilties

σq,t in the SV and SVTD specifications. The figure shows that the time series of σq,t broadly reflects the time

variation in the volatility of the shocks, and how allowing for fat tails affects the estimates of σq,t. Table B.3 shows

the posterior of the SV innovation variance ω2
q . One should bear in mind that the effect of SV shocks on σq,t depends

on the size of the non-time varying components σq , which is different across specifications (see Table B.2). Therefore

ω2
q is sometimes smaller in the SV than the SVTD specification, but this is often because the corresponding estimate

of σq is larger, and hence movements in σq,t may well be larger.

A.4 Computational Issues and Convergence

Our results are based on 4 chains, each beginning from a different starting point, with 220 thousand draws each,

of which we discard the first 20 thousand draws. The computational cost of using time-variation in volatility is

substantial but not overwhelming. In our experiments, we found that, relative to the baseline Gaussian model, the

TD, SV and SVTD estimations took roughly 2-4 times as long to sample the same number of draws. The TD, SV, and

SVTD estimations all took roughly the same amount of time. The reason for this is that the main computational cost

is related to drawing the disturbances on each iteration of the Gibbs sampler (which is not necessary in a Gaussian

model) rather than the drawing of the time-varying volatilities or the volatility parameters. For this (expensive) step

of drawing the disturbances, we recommend the simulation smoother of Durbin and Koopman (2002), which we have

found to be highly efficient relative to alternative methods.

We provide a formal assessment of convergence in Tables B.5 through B.12 of appendix B. We present convergence

results for our main specification (SVTD(λ̄ = 6)). The same convergence results are available for all the samples

and sub-samples and all the different specifications. We use four metrics to assess convergence, aside from plots of

the evolution of the MCMC draws in each chain and comparing histograms across chains for each parameter. First,

the R statistic of Gelman and Rubin (1992), which compares the variance of each parameter estimate between and

within chains and estimates the factor by which these could be reduced by continuing to take draws. This statistic

is always larger or equal than one, and a cut-off of 1.01 is often used. Second, the number of effective draws in each

chain for each parameter, which corrects for the serial correlation across draws following Geweke et al. (1992). Third,

the number of effective draws in total, which combines the previous two corrections applied to the mixed simulations

from the four chains (Gelman et al. (2004), page 298). Finally, we show the separated partial means test of Geweke

et al. (1992) in which few rejections implies being closer to convergence.

We focus on showing convergence for the objects of interest in this paper: namely the value of the posterior,

estimates of the degrees of freedom λ of the Student’s t distribution, the variance of SV innovations, and the ratios

of pre/post Great Moderation volatility. Overall, we were very satisfied with convergence for our most important

specifications. As shown in the tables of Section B.3.2, the R-squared statistic for the posterior and for the parameters

governing the SV and TD components all exhibit low R statistics, high numbers of effective observations, and few

rejections of the separated partial means test. Convergence for the DSGE parameters θ was also generally quite good,

although some parameters have only a few hundred effective draws. We found the convergence properties of our

alternative specifications to be satisfactory. All convergence results are available upon request. We found that the

convergence speed for our main SVTD specification and the baseline Gaussian specification were similar, as measured

by the number of effective draws out of samples of the same size.

We were frequently able to improve the convergence properties of our samples by re-running the estimation. In

particular, using the previous run’s realized covariance matrix of the θ parameters as the covariance of our proposal

density for θ often yielded much better convergence properties.
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Table 1: Log-Marginal Likelihoods

Constant Volatility Stochastic Volatility

Gaussian shocks

-1117.9 -1083.7

Student’s t distributed shocks

λ = 15 -999.8 -994.0

λ = 9 -990.6 -972.2

λ = 6 -975.9 -964.2

Notes: The parameter λ represents the prior mean for the degrees of freedom in the Student’s t distribution.

Table 2: Posterior of the Student’s t Degrees of Freedom

Without Stochastic Volatility With Stochastic Volatility

λ = 15 λ = 9 λ = 6 λ = 15 λ = 9 λ = 6

Gvmt (g) 9.9 7.3 5.9 11.4 8.3 7.6
(3.2,16.8) (3.1,11.5) (2.9,8.9) (5.5,24.0) (3.6,13.1) (3.6,11.5)

Discount (b) 4.4 4.1 3.9 5.5 4.6 5.3
(2.3,6.4) (2.3,5.9) (2.3,5.5) (2.5,8.4) (2.4,6.7) (2.6,7.9)

MEI (µ) 9.9 7.5 6.0 9.2 7.2 6.1
(3.3,16.5) (3.2,11.8) (2.9,9.0) (3.2,15.3) (3.1,11.2) (3.0,9.3)

TFP (z) 6.0 4.8 4.2 7.5 5.5 5.6
(2.1,10.2) (2.1,7.5) (2.1,6.2) (2.5,12.9) (2.3,8.7) (2.5,8.6)

Price Markup (λf ) 11.1 8.0 6.5 12.3 9.4 8.2
(3.7,18.7) (3.4,12.7) (3.1,9.9) (4.2,20.5) (3.9,14.8) (3.9,12.3)

Wage Markup (λw) 9.5 7.3 6.1 10.8 8.1 6.9
(3.5,15.4) (3.3,11.3) (3.1,9.0) (3.9,17.9) (3.5,12.7) (3.4,10.3)

Policy (rm) 3.4 3.2 3.1 8.2 5.9 8.1
(1.9,5.0) (1.9,4.6) (1.8,4.3) (2.3,14.6) (2.2,9.8) (3.9,12.2)

Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter.
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Table 3: Variance Decomposition for Real GDP Growth

g b µ z λf λw rm

σ1964 0.179 0.439 0.087 0.163 0.037 0.017 0.079
σ1981 0.204 0.348 0.074 0.101 0.032 0.022 0.220
σ1994 0.179 0.394 0.108 0.142 0.039 0.046 0.092
σ2007 0.167 0.370 0.104 0.149 0.046 0.056 0.109
σ2011 0.167 0.360 0.102 0.148 0.048 0.051 0.123

Notes: The table shows the relative contribution of the different shocks to the unconditional variance of real GDP,

for the specification with stochastic volatility and Student’s t distributed shocks. Since volatility is time-varying we

evaluate this contribution at different points in time: 1964 (beginning of sample), 1981 (peak of the high volatility

period), 1994 (great moderation), 2007 (pre-great recession) and 2011 (end of sample).
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Figure 1: Smoothed Shocks under Gaussianity (Absolute Value, Standardized)
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Notes: The solid line is the median, and the dashed lines are the posterior 90% bands. The vertical shaded regions

identify NBER recession dates.
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Figure 2: Priors on degrees of freedom of Student’s t distribution
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Notes: Prior density for λ = 6 (solid), 9 (dashed), and 15 (dash-and-dotted). All priors have ν = 4 degrees of

freedom.
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Figure 3: Counterfactual evolution of output, consumption and hours worked when the

Student’s t distributed component is turned off, estimation with Student’s t distributed

shocks and stochastic volatility.
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Figure 4: Time-Variation in the unconditional standard deviation of output and consump-

tion; models estimated with and without the Student’s t distributed component.
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B Appendix — Additional Information/Results

B.1 The Smets-Wouters Model

We begin by briefly describing the log-linearized equilibrium conditions of the Smets and

Wouters (2007) model. We follow Del Negro and Schorfheide (forthcoming) and detrend

the non-stationary model variables by a stochastic rather than a deterministic trend.30 Let

z̃t be the linearly detrended log productivity process which follows the autoregressive law

of motion

z̃t = ρz z̃t−1 + σzεz,t. (31)

We detrend all non stationary variables by Zt = eγt+
1

1−α z̃t , where γ is the steady state

growth rate of the economy. The growth rate of Zt in deviations from γ, denoted by zt,

follows the process:

zt = ln(Zt/Zt−1)− γ =
1

1− α
(ρz − 1)z̃t−1 +

1
1− α

σzεz,t. (32)

All variables in the following equations are expressed in log deviations from their non-

stochastic steady state. Steady state values are denoted by ∗-subscripts and steady state

formulas are provided in the technical appendix of Del Negro and Schorfheide (forthcom-

ing).31 The consumption Euler equation is given by:

ct = − (1− he−γ)
σc(1 + he−γ)

(Rt − IEt[πt+1] + bt) +
he−γ

(1 + he−γ)
(ct−1 − zt)

+
1

(1 + he−γ)
IEt [ct+1 + zt+1] +

(σc − 1)
σc(1 + he−γ)

w∗L∗
c∗

(Lt − IEt[Lt+1]) , (33)

where ct is consumption, Lt is labor supply, Rt is the nominal interest rate, and πt is in-

flation. The exogenous process bt drives a wedge between the intertemporal ratio of the

marginal utility of consumption and the riskless real return Rt − IEt[πt+1], and follows an

AR(1) process with parameters ρb and σb. The parameters σc and h capture the relative

degree of risk aversion and the degree of habit persistence in the utility function, respec-

tively. The following condition expresses the relationship between the value of capital in
30This approach makes it possible to express almost all equilibrium conditions in a way that encompasses

both the trend-stationary total factor productivity process in Smets and Wouters (2007), as well as the case

where technology follows a unit root process.
31Available at http://economics.sas.upenn.edu/~schorf/research.htm.
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terms of consumption qkt and the level of investment it measured in terms of consumption

goods:

qkt = S′′e2γ(1 + βe(1−σc)γ)
(
it −

1
1 + βe(1−σc)γ

(it−1 − zt)

− βe(1−σc)γ

1 + βe(1−σc)γ
IEt [it+1 + zt+1]− µt

)
, (34)

which is affected by both investment adjustment cost (S′′ is the second derivative of the

adjustment cost function) and by µt, an exogenous process called the “marginal efficiency

of investment” that affects the rate of transformation between consumption and installed

capital (see Greenwood et al. (1998)). The exogenous process µt follows an AR(1) process

with parameters ρµ and σµ. The parameter β captures the intertemporal discount rate in

the utility function of the households.

The capital stock, k̄t, evolves as

k̄t =
(

1− i∗
k̄∗

)(
k̄t−1 − zt

)
+
i∗
k̄∗
it +

i∗
k̄∗
S
′′
e2γ(1 + βe(1−σc)γ)µt, (35)

where i∗/k̄∗ is the steady state ratio of investment to capital. The arbitrage condition

between the return to capital and the riskless rate is:

rk∗
rk∗ + (1− δ)

IEt[rkt+1] +
1− δ

rk∗ + (1− δ)
IEt[qkt+1]− qkt = Rt + bt − IEt[πt+1], (36)

where rkt is the rental rate of capital, rk∗ its steady state value, and δ the depreciation rate.

Given that capital is subject to variable capacity utilization ut, the relationship between k̄t

and the amount of capital effectively rented out to firms kt is

kt = ut − zt + k̄t−1. (37)

The optimality condition determining the rate of utilization is given by

1− ψ
ψ

rkt = ut, (38)

where ψ captures the utilization costs in terms of foregone consumption. Real marginal

costs for firms are given by

mct = wt + αLt − αkt, (39)

where α is the income share of capital (after paying markups and fixed costs) in the produc-

tion function. From the optimality conditions of goods producers it follows that all firms

have the same capital-labor ratio:

kt = wt − rkt + Lt. (40)
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The production function is:

yt = Φp (αkt + (1− α)Lt) + I{ρz < 1}(Φp − 1)
1

1− α
z̃t, (41)

under trend stationarity. The last term (Φp−1) 1
1−α z̃t drops out if technology has a stochas-

tic trend, because in this case one has to assume that the fixed costs are proportional to

the trend. Similarly, the resource constraint is:

yt = gt +
c∗
y∗
ct +

i∗
y∗
it +

rk∗k∗
y∗

ut − I{ρz < 1} 1
1− α

z̃t, (42)

where again the term − 1
1−α z̃t disappears if technology follows a unit root process. Govern-

ment spending gt is assumed to follow the exogenous process:

gt = ρggt−1 + σgεg,t + ηgzσzεz,t.

Finally, the price and wage Phillips curves are, respectively:

πt =
(1− ζpβe(1−σc)γ)(1− ζp)

(1 + ιpβe(1−σc)γ)ζp((Φp − 1)εp + 1)
mct

+
ιp

1 + ιpβe(1−σc)γ
πt−1 +

βe(1−σc)γ

1 + ιpβe(1−σc)γ
IEt[πt+1] + λf,t, (43)

and

wt =
(1− ζwβe(1−σc)γ)(1− ζw)

(1 + βe(1−σc)γ)ζw((λw − 1)εw + 1)

(
wht − wt

)
− 1 + ιwβe

(1−σc)γ

1 + βe(1−σc)γ
πt +

1
1 + βe(1−σc)γ

(wt−1 − zt − ιwπt−1)

+
βe(1−σc)γ

1 + βe(1−σc)γ
IEt [wt+1 + zt+1 + πt+1] + λw,t, (44)

where ζp, ιp, and εp are the Calvo parameter, the degree of indexation, and the curvature

parameters in the Kimball aggregator for prices, and ζw, ιw, and εw are the corresponding

parameters for wages. wht measures the household’s marginal rate of substitution between

consumption and labor, and is given by:

wht =
1

1− he−γ
(
ct − he−γct−1 + he−γzt

)
+ νlLt, (45)

where νl characterizes the curvature of the disutility of labor (and would equal the inverse

of the Frisch elasticity in absence of wage rigidities). The mark-ups λf,t and λw,t follow

exogenous ARMA(1,1) processes

λf,t = ρλfλf,t−1 + σλf ελf ,t + ηλfσλf ελf ,t−1, and
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λw,t = ρλwλw,t−1 + σλwελw,t + ηλwσλwελw,t−1,

respectively. Finally, the monetary authority follows a generalized feedback rule:

Rt = ρRRt−1 + (1− ρR)
(
ψ1πt + ψ2(yt − yft )

)
(46)

+ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+ rmt ,

where the flexible price/wage output yft is obtained from solving the version of the model

without nominal rigidities (that is, Equations (33) through (42) and (45)), and the residual

rmt follows an AR(1) process with parameters ρrm and σrm . We use the method in Sims

(2002) to solve the log-linear approximation of the DSGE model.

The measurement equations (equation ) for real output, consumption, investment, and

real wage growth, hours, inflation, and interest rates are given by:

Output growth = γ + 100 (yt − yt−1 + zt)

Consumption growth = γ + 100 (ct − ct−1 + zt)

Investment growth = γ + 100 (it − it−1 + zt)

Real Wage growth = γ + 100 (wt − wt−1 + zt)

Hours = l̄ + 100lt

Inflation = π∗ + 100πt

FFR = R∗ + 100Rt

, (47)

where all variables are measured in percent, and the parameters π∗ and R∗ measure the

steady state level of net inflation and short term nominal interest rates, respectively and

where l̄ captures the mean of hours (this variable is measured as an index).

B.2 Data

The data set is obtained from Haver Analytics (Haver mnemonics are in italics). We com-

pile observations for the variables that appear in the measurement equation (47). Real

GDP (GDPC), the GDP price deflator (GDPDEF), nominal personal consumption expen-

ditures (PCEC), and nominal fixed private investment (FPI) are constructed at a quarterly

frequency by the Bureau of Economic Analysis (BEA), and are included in the National

Income and Product Accounts (NIPA).

Average weekly hours of production and non-supervisory employees for total private

industries (PRS85006023), civilian employment (CE16OV), and civilian noninstitutional
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population (LNSINDEX) are produced by the Bureau of Labor Statistics (BLS) at the

monthly frequency. The first of these series is obtained from the Establishment Survey,

and the remaining from the Household Survey. Both surveys are released in the BLS

Employment Situation Summary (ESS). Since our models are estimated on quarterly data,

we take averages of the monthly data. Compensation per hour for the non-farm business

sector (PRS85006103) is obtained from the Labor Productivity and Costs (LPC) release,

and produced by the BLS at the quarterly frequency. Last, the federal funds rate is obtained

from the Federal Reserve Board’s H.15 release at the business day frequency, and is not

revised. We take quarterly averages of the annualized daily data.

All data are transformed following Smets and Wouters (2007). Specifically:

Output growth = LN((GDPC)/LNSINDEX) ∗ 100

Consumption growth = LN((PCEC/GDPDEF )/LNSINDEX) ∗ 100

Investment growth = LN((FPI/GDPDEF )/LNSINDEX) ∗ 100

Real Wage growth = LN(PRS85006103/GDPDEF ) ∗ 100

Hours = LN((PRS85006023 ∗ CE16OV/100)/LNSINDEX) ∗ 100

Inflation = LN(GDPDEF/GDPDEF (−1)) ∗ 100

FFR = FEDERAL FUNDS RATE/4
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B.3 Additional Results for Baseline Estimation

B.3.1 Parameters and Variance Decomposition

Table B.1: Priors for the Medium-Scale Model

Density Mean St. Dev. Density Mean St. Dev.

Policy Parameters

ψ1 Normal 1.50 0.25 ρR Beta 0.75 0.10
ψ2 Normal 0.12 0.05 ρrm Beta 0.50 0.20
ψ3 Normal 0.12 0.05 σrm InvG 0.10 2.00

Nominal Rigidities Parameters

ζp Beta 0.50 0.10 ζw Beta 0.50 0.10

Other “Endogenous Propagation and Steady State” Parameters

α Normal 0.30 0.05 π∗ Gamma 0.62 0.10
Φ Normal 1.25 0.12 γ Normal 0.40 0.10
h Beta 0.70 0.10 S′′ Normal 4.00 1.50
νl Normal 2.00 0.75 σc Normal 1.50 0.37
ιp Beta 0.50 0.15 ιw Beta 0.50 0.15
r∗ Gamma 0.25 0.10 ψ Beta 0.50 0.15

ρs, σs, and ηs

ρz Beta 0.50 0.20 σz InvG 0.10 2.00
ρb Beta 0.50 0.20 σb InvG 0.10 2.00
ρλf Beta 0.50 0.20 σλf InvG 0.10 2.00
ρλw Beta 0.50 0.20 σλw InvG 0.10 2.00
ρµ Beta 0.50 0.20 σµ InvG 0.10 2.00
ρg Beta 0.50 0.20 σg InvG 0.10 2.00
ηλf Beta 0.50 0.20 ηλw Beta 0.50 0.20
ηgz Beta 0.50 0.20

Notes: Note that β = (1/(1 + r∗/100)). The following parameters are fixed in Smets and Wouters (2007): δ = 0.025,

g∗ = 0.18, λw = 1.50, εw = 10.0, and εp = 10. The columns “Mean” and “St. Dev.” list the means and the

standard deviations for Beta, Gamma, and Normal distributions, and the values s and ν for the Inverse Gamma

(InvG) distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The effective prior is truncated at the boundary of the

determinacy region. The prior for l̄ is N (−45, 52).
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Table B.2: Posterior Means of the DSGE Model Parameters

Prior Mean Prior SD Baseline SV St-t St-t+SV

α 0.300 0.050 0.150 0.134 0.150 0.135
ζp 0.500 0.100 0.734 0.780 0.808 0.846
ιp 0.500 0.150 0.315 0.344 0.383 0.286
Φ 1.250 0.120 1.580 1.518 1.575 1.551
S′′ 4.000 1.500 4.686 5.013 5.070 5.651
h 0.700 0.100 0.611 0.609 0.582 0.571
ψ 0.500 0.150 0.714 0.734 0.670 0.666
νl 2.000 0.750 2.088 2.212 2.300 2.476
ζw 0.500 0.100 0.803 0.826 0.830 0.843
ιw 0.500 0.150 0.541 0.547 0.495 0.511
β 0.250 0.100 0.206 0.184 0.202 0.175
ψ1 1.500 0.250 1.953 1.866 1.820 1.884
ψ2 0.120 0.050 0.083 0.073 0.115 0.116
ψ3 0.120 0.050 0.245 0.217 0.213 0.184
π∗ 0.620 0.100 0.683 0.719 0.706 0.808
σc 1.500 0.370 1.236 1.109 1.248 1.274
ρ 0.750 0.100 0.835 0.854 0.875 0.875
γ 0.400 0.100 0.306 0.321 0.356 0.389
L̄ -45.00 5.000 -44.17 -46.67 -43.38 -44.73
ρg 0.500 0.200 0.977 0.977 0.982 0.988
ρb 0.500 0.200 0.758 0.845 0.844 0.852
ρµ 0.500 0.200 0.748 0.753 0.791 0.806
ρz 0.500 0.200 0.994 0.991 0.987 0.981
ρλf 0.500 0.200 0.791 0.797 0.811 0.830
ρλw 0.500 0.200 0.981 0.952 0.962 0.923
ρrm 0.500 0.200 0.154 0.219 0.219 0.227
σg 0.100 2.000 2.892 3.169 2.387 2.665
σb 0.100 2.000 0.125 0.122 0.072 0.100
σµ 0.100 2.000 0.430 0.454 0.325 0.300
σz 0.100 2.000 0.493 0.869 0.362 0.473
σλf 0.100 2.000 0.164 0.191 0.163 0.127
σλw 0.100 2.000 0.281 0.203 0.213 0.151
σrm 0.100 2.000 0.228 0.243 0.133 0.095
ηgz 0.500 0.200 0.787 0.775 0.786 0.765
ηλf 0.500 0.200 0.670 0.749 0.815 0.734
ηλw 0.500 0.200 0.948 0.914 0.924 0.865

Notes: We use a prior mean of 6 degrees of freedom for the Student’s t distributed component. The stochastic

volatility component assumes a prior mean for the size of the shocks to volatility of (0.01)2.
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Figure B.1: Prior on Innovation Variance (ω2) for Stochastic Volatility
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Table B.3: Posterior of the Stochastic Volatility Innovation Variance

Without Student’s t With Student’s t

g 0.001 0.007
(0.000,0.002) (0.000,0.015)

b 0.003 0.005
(0.000,0.006) (0.000,0.0012)

µ 0.000 0.002
(0.000,0.001) (0.000,0.005)

z 0.002 0.003
(0.000,0.004) (0.000,0.007)

λf 0.001 0.008
(0.000,0.003) (0.001,0.016)

λw 0.001 0.002
(0.000,0.002) (0.002,0.005)

rm 0.006 0.022
(0.000,0.011) (0.005,0.039)

Notes: Numbers shown for the posterior mean and the 90% intervals of the stochastic volatility innovation variance.
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Table B.4: Variance Decomposition for Real GDP Growth

Gaussian Shocks

g b µ z λf λw rm

Without Stochastic Volatility

0.225 0.354 0.095 0.140 0.041 0.036 0.109

With Stochastic Volatility

σ1964 0.162 0.359 0.062 0.252 0.031 0.012 0. 123
σ1981 0.160 0.438 0.052 0.075 0.027 0.016 0. 233
σ1994 0.240 0.306 0.120 0.136 0.052 0.057 0. 089
σ2007 0.189 0.312 0.106 0.156 0.062 0.068 0. 106
σ2011 0.175 0.318 0.100 0.163 0.062 0.061 0. 121

Student’s t Shocks

g b µ z λf λw rm

Without Stochastic Volatility

0.184 0.352 0.083 0.124 0.036 0.020 0.199

With Stochastic Volatility

σ1964 0.170 0.417 0.082 0.207 0.034 0.016 0. 073
σ1981 0.205 0.350 0.075 0.091 0.032 0.021 0. 225
σ1994 0.178 0.394 0.109 0.142 0.038 0.045 0. 094
σ2007 0.163 0.361 0.104 0.155 0.044 0.054 0. 118
σ2011 0.168 0.359 0.105 0.138 0.048 0.051 0. 132

Notes: The tables show the relative contribution of the different shocks to the unconditional variance of real GDP.

In the case with stochastic volatility we evaluate this contribution at different points in time: 1964 (beginning of

sample), 1981 (peak of the high volatility period), 1994 (great moderation), 2007 (pre-great recession) and 2011 (end

of sample).
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B.3.2 Convergence Tables

Table B.5: R Statistic and Number of Effective Draws: Posterior

R mneff neff (1) neff (2) neff (3) neff (4)

post 1.0001 16393 4871 4897 4071 4400

Table B.6: Separated Partial Means Test: Posterior

SPM4(1) SPM4(2) SPM4(3) SPM4(4)

post 3.76 1.61 2.02 2.37

The null hypothesis of the SPM test is that the mean in two separate subsamples is the same. * indicates

pvalue less than 5%. ** indicates pvalue less than 1%.
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Table B.7: R Statistic and Number of Effective Draws: Student’s t Degrees of Freedom (λ)

R mneff neff (1) neff (2) neff (3) neff (4)

g 1.0001 28090 5781 7019 5894 7309

b 1.0001 16072 4118 2268 3113 1490

µ 1.0001 32383 4703 4658 5683 4388

z 1.0002 11328 1981 2657 2859 2550

λf 1.0001 19064 6741 6382 4886 4382

λw 1.0001 16329 9489 8524 7566 3714

rm 1.0002 7946 3956 3716 4365 3000

Table B.8: Separated Partial Means Test: Student’s t Degrees of Freedom (λ)

SPM4(1) SPM4(2) SPM4(3) SPM4(4)

g 3.12 3.99 2.59 2.99

b 2.01 1.50 0.72 6.32

µ 1.55 3.48 1.07 0.48

z 7.75 4.58 0.50 8.56 *

λf 0.06 0.21 6.16 2.31

λw 0.65 0.82 3.89 3.86

rm 3.98 2.09 1.44 2.72

The null hypothesis of the SPM test is that the mean in two separate subsamples is the same. * indicates

pvalue less than 5%. ** indicates pvalue less than 1%.
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Table B.9: R Statistic and Number of Effective Draws: SV Innovation Variance

R mneff neff (1) neff (2) neff (3) neff (4)

g 1.0014 1451 1038 1739 1428 1159

b 1.0001 32466 4481 7342 6195 4399

µ 1.0003 6324 4139 5848 6985 6569

z 1.0001 14141 2118 3256 2908 2533

λf 1.0013 1549 1936 1475 1780 769

λw 1.0018 1133 1794 2393 2429 348

rm 1.0003 6221 2179 2089 3343 3020

Table B.10: Separated Partial Means Test: SV Innovation Variance

SPM4(1) SPM4(2) SPM4(3) SPM4(4)

g 2.75 4.77 5.37 2.03

b 0.96 1.98 4.17 1.63

µ 3.94 1.96 2.37 3.14

z 3.58 1.80 0.27 10.60 *

λf 0.23 1.95 1.00 4.40

λw 1.47 4.15 3.22 4.72

rm 3.65 4.02 1.58 2.09

The null hypothesis of the SPM test is that the mean in two separate subsamples is the same. * indicates

pvalue less than 5%. ** indicates pvalue less than 1%.
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Table B.11: R Statistic and Number of Effective Draws: Ratio of 1981 to 1994 Variance

R mneff neff (1) neff (2) neff (3) neff (4)

Output Growth 1.0002 9654 2627 6393 3794 2444

Per Capita Consumption Growth 1.0003 6734 3421 1387 5583 4921

Per Capita Investment Growth 1.0000 57827 2318 5256 9423 8376

Table B.12: Separated Partial Means Test: Ratio of 1981 to 1994 Variance

SPM4(1) SPM4(2) SPM4(3) SPM4(4)

Output Growth 2.88 1.39 3.69 0.22

Per Capita Consumption Growth 2.68 4.76 4.43 1.31

Per Capita Investment Growth 1.93 5.78 0.97 2.70

The null hypothesis of the SPM test is that the mean in two separate subsamples is the same. * indicates

pvalue less than 5%. ** indicates pvalue less than 1%.
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B.3.3 Robustness to the choice of λ

Figure B.2: Results for λ = 9

Output Growth: Counterfactual evolution with Student’s t component turned off

Historical Path Rolling Window Standard Deviation
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Notes: Top panels: Black lines are the historical evolution of the variable, and magenta lines are the median counter-

factual evolution of the same variable if we shut down the Student-t distributed component of all shocks. The rolling

window standard deviation uses 20 quarters before and 20 quarters after a given quarter. Southwest panel: Black line

is the unconditional standard deviation in the estimation with both stochastic volatility and Student-t components,

while the red line is the unconditional variance in the estimation with stochastic volatility component only. Southeast

panel: Black bars correspond to the posterior histogram of the ratio of volatility in 1981 over the variance in 1994

for the estimation with both stochastic volatility and Student-t components, while the red bars are for the estimation

with with stochastic volatility component only.
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Figure B.3: Results for λ = 15

Output Growth: Counterfactual evolution with Student’s t component turned off

Historical Path Rolling Window Standard Deviation
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window standard deviation uses 20 quarters before and 20 quarters after a given quarter. Southwest panel: Black line

is the unconditional standard deviation in the estimation with both stochastic volatility and Student-t components,

while the red line is the unconditional variance in the estimation with stochastic volatility component only. Southeast

panel: Black bars correspond to the posterior histogram of the ratio of volatility in 1981 over the variance in 1994

for the estimation with both stochastic volatility and Student-t components, while the red bars are for the estimation

with with stochastic volatility component only.
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B.3.4 Posterior estimates of the shocks (εq,t) , stochastic volatilities (σ̃t), Stu-

dent’s t scale component (h̃t), and “tamed” shocks (ηt)

Figure B.4: ηq,t
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Notes: Estimation with Student’s t distribution with λ = 6. The solid line is the median, and the dashed lines are

the posterior 90% bands. Black line is the absolute value of the shock, and the red line is the stochastic volatility

component.
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Figure B.4 — Continued
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Notes: Estimation with Student’s t distribution with λ = 6. The solid line is the median, and the dashed lines are

the posterior 90% bands. Black line is the absolute value of the shock, and the red line is the stochastic volatility

component.
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Figure B.5: h̃−1/2
q,t
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Notes: Estimation with Student’s t distribution with λ = 6. The solid line is the median, and the dashed lines are

the posterior 90% bands. Black line is the absolute value of the shock, and the red line is the stochastic volatility

component.
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Table B.13: Autocorrelation of Squared “Raw” Shocks (εq,t)

Spec. g b µ z λf λw rm

Gaussian 0.191 0.054 0.095 0.101 0.282 0.158 0.350

Student t 0.216 0.004 0.131 0.106 0.306 0.199 0.263

SV 0.221 0.066 0.135 0.534 0.297 0.223 0.322

SV + t 0.303 0.061 0.222 0.256 0.382 0.213 0.290

Table B.14: Autocorrelation of Squared “Tamed” Shocks (ηq,t)

Spec. g b µ z λf λw rm

Gaussian 0.191 0.054 0.095 0.101 0.282 0.158 0.350

Student t 0.178 0.026 0.060 0.072 0.141 0.142 0.175

SV 0.146 0.024 0.103 0.187 0.227 0.149 0.210

SV + t 0.143 0.027 0.074 0.083 0.124 0.122 0.155
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Table B.15: Cross Correlation of “Tamed” Shocks (ηq,t)

Gaussian

g b µ z λf λw rm

g 1.000 0.193 0.130 0.289 0.080 0.179 0.255
b 0.193 1.000 0.200 -0.010 0.267 0.001 0.472
µ 0.130 0.200 1.000 0.099 0.107 0.030 0.308
z 0.289 -0.010 0.099 1.000 0.111 0.251 0.106
λf 0.080 0.267 0.107 0.111 1.000 0.047 0.181
λw 0.179 0.001 0.030 0.251 0.047 1.000 0.039
rm 0.255 0.472 0.308 0.106 0.181 0.039 1.000

Student’s t

g 1.000 0.064 0.074 0.181 0.059 0.043 0.179
b 0.064 1.000 0.102 -0.014 0.110 0.036 0.159
µ 0.074 0.102 1.000 0.027 -0.010 0.044 0.106
z 0.181 -0.014 0.027 1.000 0.049 0.090 0.109
λf 0.059 0.110 -0.010 0.049 1.000 0.029 0.094
λw 0.043 0.036 0.044 0.090 0.029 1.000 0.040
rm 0.179 0.159 0.106 0.109 0.094 0.040 1.000

SV

g 1.000 0.089 0.096 0.299 0.021 0.231 0.152
b 0.089 1.000 0.091 -0.053 0.308 0.027 0.380
µ 0.096 0.091 1.000 0.110 0.047 0.068 0.251
z 0.299 -0.053 0.110 1.000 0.052 0.297 0.153
λf 0.021 0.308 0.047 0.052 1.000 0.075 0.162
λw 0.231 0.027 0.068 0.297 0.075 1.000 0.107
rm 0.152 0.380 0.251 0.153 0.162 0.107 1.000

SV + Student’s t

g 1.000 0.044 0.054 0.176 0.028 0.077 0.154
b 0.044 1.000 0.114 -0.032 0.115 0.071 0.160
µ 0.054 0.114 1.000 0.029 0.026 0.058 0.130
z 0.176 -0.032 0.029 1.000 0.029 0.112 0.111
λf 0.028 0.115 0.026 0.029 1.000 0.073 0.089
λw 0.077 0.071 0.058 0.112 0.073 1.000 0.074
rm 0.154 0.160 0.130 0.111 0.089 0.074 1.000
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Table B.16: Autocorrelation of h̃−1/2

Spec. g b µ z λf λw rm

No SV 0.033 0.005 0.011 0.019 0.023 0.024 0.061

SV 0.022 0.004 0.013 0.018 0.018 0.018 0.032

Table B.17: Cross Correlation of h̃−1/2

Student t

g b µ z λf λw rm

g 1.000 0.013 0.013 0.039 0.010 0.007 0.045
b 0.013 1.000 0.022 -0.004 0.022 0.007 0.047
µ 0.013 0.022 1.000 0.005 -0.002 0.007 0.026
z 0.039 -0.004 0.005 1.000 0.010 0.019 0.033
λf 0.010 0.022 -0.002 0.010 1.000 0.005 0.022
λw 0.007 0.007 0.007 0.019 0.005 1.000 0.009
rm 0.045 0.047 0.026 0.033 0.022 0.009 1.000

SV + Student t

g 1.000 0.008 0.009 0.034 0.004 0.012 0.027
b 0.008 1.000 0.023 -0.008 0.021 0.013 0.035
µ 0.009 0.023 1.000 0.005 0.004 0.010 0.025
z 0.034 -0.008 0.005 1.000 0.004 0.021 0.024
λf 0.004 0.021 0.004 0.004 1.000 0.011 0.015
λw 0.012 0.013 0.010 0.021 0.011 1.000 0.013
rm 0.027 0.035 0.025 0.024 0.015 0.013 1.000
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Figure B.6: Shocks (absolute values) and smoothed stochastic volatility component, σq,t
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Notes: Estimation with Student’s t distribution with λ = 6. The solid line is the median, and the dashed lines are

the posterior 90% bands. Black line is the absolute value of the shock, and the red line is the stochastic volatility

component.
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Figure B.6 — Continued
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B.4 Robustness to Different Assumptions and Estimation Approches for

the Stochastic Volatility Component

B.4.1 JPR Version of Algorithm

Table B.18: Log-Marginal Likelihoods, JPR Algorithm

Constant Volatility Stochastic Volatility

Gaussian shocks

-1117.9 -975.2

Student’s t distributed shocks

λ = 15 -999.8 -945.1

λ = 9 -990.6 -936.3

λ = 6 -975.9 -928.7

Notes: The parameter λ represents the prior mean for the degrees of freedom in the Student’s t distribution.

Table B.19: Posterior of the Student’s t Degrees of Freedom, JPR Algorithm

Without Stochastic Volatility With Stochastic Volatility

λ = 15 λ = 9 λ = 6 λ = 15 λ = 9 λ = 6

Gvmt (g) 10.8 7.7 6.1 14.0 9.9 7.6
(3.5,18.4) (3.1,12.4) (2.8,9.4) (4.8, 23.0) (4.2, 15.5) (3.7, 11.6)

Discount (b) 8.6 6.8 5.7 7.9 6.4 5.4
(3.4,14.0) (3.2,10.5) (2.8,8.4) (2.6, 13.8) (2.7, 10.2) (2.6, 8.0)

MEI (µ) 11.0 8.0 6.5 3.4 7.6 6.2
(3.7,18.4) (3.3,12.7) (3.1,9.8) (2.9, 17.6) (3.1, 12.0) (2.9, 9.3)

TFP (z) 5.3 4.5 3.9 9.9 7.1 5.6
(2.0,8.7) (2.0,6.9) (2.0,5.8) (2.9, 17.3) (2.7, 11.5) (2.5, 8.7)

Price Markup (λf ) 10.5 7.5 6.1 15.3 10.6 8.2
(3.4,17.9) (3.1,12.0) (2.9,9.3) (5.6, 24.7) (4.6, 16.5) (4.0, 12.3)

Wage Markup (λw) 10.9 8.1 6.5 11.9 8.6 6.9
(3.8,18.1) (3.5,12.6) (3.2,9.7) (4.1, 19.9) (3.6, 13.4) (3.4,10.3)

Policy (rm) 3.2 3.0 2.9 15.0 10.5 8.1
(1.7,4.6) (1.7,4.3) (1.7,4.1) (5.4, 24.5) (4.5, 16.4) (3.9, 12.2)

Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter.
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Figure B.7: Results using JPR Algorithm

Output Growth: Counterfactual evolution with Student’s t component turned off

Historical Path Rolling Window Standard Deviation
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Notes: Top panels: Black lines are the historical evolution of the variable, and magenta lines are the median counter-

factual evolution of the same variable if we shut down the Student-t distributed component of all shocks. The rolling

window standard deviation uses 20 quarters before and 20 quarters after a given quarter. Southwest panel: Black line

is the unconditional standard deviation in the estimation with both stochastic volatility and Student-t components,

while the red line is the unconditional variance in the estimation with stochastic volatility component only. Southeast

panel: Black bars correspond to the posterior histogram of the ratio of volatility in 1981 over the variance in 1994

for the estimation with both stochastic volatility and Student-t components, while the red bars are for the estimation

with with stochastic volatility component only.
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B.4.2 SV-S Specification

Table B.20: Log-Marginal Likelihoods, SV-S Specification

Constant Volatility Stochastic Volatility

Gaussian shocks

-1117.9 -1100.2

Student’s t distributed shocks

λ = 6 -975.9 -971.0

Notes: The parameter λ represents the prior mean for the degrees of freedom in the Student’s t distribution.

Table B.21: Posterior of the Student’s t Degrees of Freedom, SV-S Specification

Without Stochastic Volatility With Stochastic Volatility

λ = 6 λ = 6

Gvmt (g) 6.1 7.2
(2.8,9.4) (3.4, 11.0)

Discount (b) 5.7 4.1
(2.8,8.4) (2.3, 5.8)

MEI (µ) 6.5 5.7
(3.1,9.8) (2.8, 8.6)

TFP (z) 3.9 4.2
(2.0,5.8) (2.1, 6.4)

Price Markup (λf ) 6.1 6.6
(2.9,9.3) (3.2, 10.0)

Wage Markup (λw) 6.5 6.1
(3.2,9.7) (3.0, 9.0)

Policy (rm) 2.9 3.2
(1.7,4.1) (1.7, 4.6)

Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter.
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Table B.22: Posterior of SV Persistence Parameter, SV-S pecification

Without Student t With Student t

Gvmt (g) 0.495 0.879
(0.091, 0.803) (0.470, 1.000)

Discount (b) 0.711 0.475
(0.295, 1.000) (0.129, 0.781)

MEI (µ) 0.472 0.473
(0.130, 0.782) (0.133, 0.778)

TFP (z) 1.000 0.473
(0.999, 1.000) (0.126, 0.777)

Price Markup (λf ) 0.477 0.477
(0.132, 0.789) (0.125, 0.785)

Wage Markup (λw) 0.514 0.475
(0.200, 1.000) (0.129, 0.781)

Policy (rm) 0.990 0.518
(0.977, 1.000) (0.205, 1.000)

Notes: Numbers shown for the posterior mean and the 90% intervals of the SV persistence parameter.
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Figure B.8: Results using SV-S specification.

Output Growth: Counterfactual evolution with Student’s t component turned off

Historical Path Rolling Window Standard Deviation
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Notes: Top panels: Black lines are the historical evolution of the variable, and magenta lines are the median counter-

factual evolution of the same variable if we shut down the Student-t distributed component of all shocks. The rolling

window standard deviation uses 20 quarters before and 20 quarters after a given quarter. Southwest panel: Black line

is the unconditional standard deviation in the estimation with both stochastic volatility and Student-t components,

while the red line is the unconditional variance in the estimation with stochastic volatility component only. Southeast

panel: Black bars correspond to the posterior histogram of the ratio of volatility in 1981 over the variance in 1994

for the estimation with both stochastic volatility and Student-t components, while the red bars are for the estimation

with with stochastic volatility component only.
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B.5 Subsample Analysis

Table B.23: Log-Marginal Likelihoods, Sub-samples

Sample Ending in 2004Q4 Sample Starting in 1984Q1 Sample Starting in 1991Q4

Constant Stochastic Constant Stochastic Constant Stochastic
Volatility Volatility Volatility Volatility Volatility Volatility

Gaussian shocks

-964.0 -936.5 -521.3 -526.5 -378.1 -382.1

Student’s t distributed shocks

λ = 15 -881.6 -870.1 -476.8 -479.56 -348.5 -341.9

λ = 9 -870.6 -849.0 -471.1 -469.9 -339.5 -333.1

λ = 6 -858.8 -844.1 -460.4 -462.2 -329.9 -328.1

Notes: The parameter λ represents the prior mean for the degrees of freedom in the Student’s t distribution.
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B.5.1 Sample Ending in 2004Q4

Table B.24: Posterior of the Student’s t Degrees of Freedom, Sample Ending in 2004Q4

Without Stochastic Volatility With Stochastic Volatility

λ = 15 λ = 9 λ = 6 λ = 15 λ = 9 λ = 6

Gvmt (g) 10.8 7.7 6.1 11.2 8.0 6.3
(3.5,18.4) (3.1,12.4) (2.8,9.4) (3.7,18.8) (3.3,12.7) (2.9,9.6)

Discount (b) 8.6 6.8 5.7 9.4 7.2 5.7
(3.4,14.0) (3.2,10.5) (2.8,8.4) (3.3,15.5) (3.1,11.2) (2.8,8.6)

MEI (µ) 11.0 8.0 6.5 11.3 8.3 6.6
(3.7,18.4) (3.3,12.7) (3.1,9.8) (3.8,19.0) (3.4,13.1) (3.1,10.1)

TFP (z) 5.3 4.5 3.9 6.5 5.0 4.3
(2.0,8.7) (2.0,6.9) (2.0,5.8) (2.3,11.0) (2.2,7.9) (2.1,6.5)

Price Markup (λf ) 10.5 7.5 6.1 11.7 8.5 7.0
(3.4,17.9) (3.1,12.0) (2.9,9.3) (4.0,19.5) (3.5,13.4) (3.2,10.7)

Wage Markup (λw) 10.9 8.1 6.5 12.1 8.8 6.9
(3.8,18.1) (3.5,12.6) (3.2,9.7) (4.2,20.1) (3.7,13.7) (3.4,10.3)

Policy (rm) 3.2 3.0 2.9 9.4 7.0 5.6
(1.7,4.6) (1.7,4.3) (1.7,4.1) (2.6,16.6) (2.5,11.4) (2.4,8.8)

Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter.
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Figure B.9: Results for sub-sample ending in 2004Q4.

Output Growth: Counterfactual evolution with Student’s t component turned off

Historical Path Rolling Window Standard Deviation

1965 1969 1973 1977 1981 1985 1989 1993 1997 2001
−3

−2

−1

0

1

2

3

4
Output Growth

pe
rc

en
t

−3

−2

−1

0

1

2

3

4

1965 1969 1973 1977 1981 1985 1989 1993 1997 2001

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Output Growth

pe
rc

en
t

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Output Growth: SV versus SV + Student’s t

Unconditional variance over time Ratio of variance in 1981 relative to 1994

1965 1969 1973 1977 1981 1985 1989 1993 1997 2001

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

pe
rc

en
t

1965 1969 1973 1977 1981 1985 1989 1993 1997 2001

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

pe
rc

en
t

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

16

18

20

 Median:1.21  Median:1.31

Consumption Growth: SV versus SV + Student’s t

Unconditional variance over time Ratio of variance in 1981 relative to 1994

1965 1969 1973 1977 1981 1985 1989 1993 1997 2001
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

pe
rc

en
t

1965 1969 1973 1977 1981 1985 1989 1993 1997 2001
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

pe
rc

en
t

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

16

 Median:1.24  Median:1.42

Notes: Top panels: Black lines are the historical evolution of the variable, and magenta lines are the median counter-

factual evolution of the same variable if we shut down the Student-t distributed component of all shocks. The rolling

window standard deviation uses 20 quarters before and 20 quarters after a given quarter. Southwest panel: Black line

is the unconditional standard deviation in the estimation with both stochastic volatility and Student-t components,

while the red line is the unconditional variance in the estimation with stochastic volatility component only. Southeast

panel: Black bars correspond to the posterior histogram of the ratio of volatility in 1981 over the variance in 1994

for the estimation with both stochastic volatility and Student-t components, while the red bars are for the estimation

with with stochastic volatility component only.
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Figure B.10: Results using JPR Algorithm — sub-sample ending in 2004Q4

Output Growth: Counterfactual evolution with Student’s t component turned off

Historical Path Rolling Window Standard Deviation
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Notes: Top panels: Black lines are the historical evolution of the variable, and magenta lines are the median counter-

factual evolution of the same variable if we shut down the Student-t distributed component of all shocks. The rolling

window standard deviation uses 20 quarters before and 20 quarters after a given quarter. Southwest panel: Black line

is the unconditional standard deviation in the estimation with both stochastic volatility and Student-t components,

while the red line is the unconditional variance in the estimation with stochastic volatility component only. Southeast

panel: Black bars correspond to the posterior histogram of the ratio of volatility in 1981 over the variance in 1994

for the estimation with both stochastic volatility and Student-t components, while the red bars are for the estimation

with with stochastic volatility component only.
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Figure B.11: h̃−1/2
q,t — sub-sample ending in 2004Q4
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Notes: Estimation with Student’s t distribution with λ = 6. The solid line is the median, and the dashed lines are

the posterior 90% bands. Black line is the absolute value of the shock, and the red line is the stochastic volatility

component.
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Figure B.12: Shocks (absolute values) and smoothed stochastic volatility component, σq,t — sub-

sample ending in 2004Q4
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Notes: Estimation with Student’s t distribution with λ = 6. The solid line is the median, and the dashed lines are

the posterior 90% bands. Black line is the absolute value of the shock, and the red line is the stochastic volatility

component.
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Figure B.12 — Continued
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the posterior 90% bands. Black line is the absolute value of the shock, and the red line is the stochastic volatility

component.
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Table B.25: Comparison of Parameter Estimates: Subsample ending in 2004Q4 vs. full

sample

Full Sample To 2004Q4

Base SV TD SVTD Base SV TD SVTD
α 0.15 0.134 0.15 0.135 0.174 0.17 0.181 0.179
ζp 0.734 0.78 0.808 0.846 0.696 0.776 0.763 0.82
ιp 0.315 0.344 0.383 0.286 0.291 0.306 0.313 0.289
Φ 1.58 1.518 1.575 1.551 1.704 1.686 1.719 1.677
S′′ 4.686 5.013 5.07 5.651 6.114 6.693 7.169 6.516
h 0.611 0.609 0.582 0.571 0.703 0.703 0.734 0.68
ψ 0.714 0.734 0.67 0.666 0.626 0.637 0.547 0.521
νl 2.088 2.212 2.3 2.476 2.349 2.67 2.601 2.636
ζw 0.803 0.826 0.83 0.843 0.756 0.802 0.812 0.829
ιw 0.541 0.547 0.495 0.511 0.584 0.554 0.528 0.501
β 0.206 0.184 0.202 0.175 0.167 0.151 0.162 0.161
ψ1 1.953 1.866 1.82 1.884 2.066 2.071 1.957 1.934
ψ2 0.083 0.073 0.115 0.116 0.09 0.104 0.12 0.138
ψ3 0.245 0.217 0.213 0.184 0.238 0.207 0.193 0.189
π∗ 0.683 0.719 0.706 0.808 0.709 0.784 0.756 0.847
σc 1.236 1.109 1.248 1.274 1.406 1.426 1.471 1.42
ρ 0.835 0.854 0.875 0.875 0.825 0.852 0.867 0.874
γ 0.306 0.321 0.356 0.389 0.415 0.421 0.431 0.434
L̄ -44.17 -46.67 -43.38 -44.73 -42.897 -43.542 -43.348 -44.265
ρg 0.977 0.977 0.982 0.988 0.98 0.981 0.98 0.981
ρb 0.758 0.845 0.844 0.852 0.285 0.335 0.279 0.453
ρµ 0.748 0.753 0.791 0.806 0.735 0.739 0.746 0.772
ρz 0.994 0.991 0.987 0.981 0.963 0.961 0.959 0.963
ρλf 0.791 0.797 0.811 0.83 0.891 0.831 0.893 0.863
ρλw 0.981 0.952 0.962 0.923 0.969 0.951 0.928 0.902
ρrm 0.154 0.219 0.219 0.227 0.145 0.15 0.183 0.179
σg 2.892 3.169 2.387 2.665 3.091 3.388 2.566 2.654
σb 0.125 0.122 0.072 0.1 0.232 0.23 0.192 0.163
σµ 0.43 0.454 0.325 0.3 0.435 0.43 0.35 0.334
σz 0.493 0.869 0.362 0.473 0.463 0.717 0.331 0.38
σλf 0.164 0.191 0.163 0.127 0.136 0.166 0.111 0.117
σλw 0.281 0.203 0.213 0.151 0.255 0.197 0.188 0.12
σrm 0.228 0.243 0.133 0.095 0.235 0.196 0.133 0.112
ηgz 0.787 0.775 0.786 0.765 0.747 0.736 0.74 0.736
ηλf 0.67 0.749 0.815 0.734 0.73 0.681 0.771 0.775
ηλw 0.948 0.914 0.924 0.865 0.887 0.876 0.833 0.797
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B.5.2 Sample Starting in 1984Q1

Table B.26: Posterior of the Student’s t Degrees of Freedom, Sample Starting in 1984Q1

Without Stochastic Volatility With Stochastic Volatility

λ = 15 λ = 9 λ = 6 λ = 15 λ = 9 λ = 6

Gvmt (g) 7.6 5.8 4.8 7.6 5.7 4.7
(2.4, 13.2) (2.3, 9.3) (2.2, 7.4) (2.4, 13.2) (2.3, 9.1) (2.1, 7.3)

Discount (b) 9.6 6.9 5.6 9.6 7.0 5.6
(2.9, 16.4) (2.7, 11.2) (2.5, 8.6) (2.9, 16.4) (2.7, 11.3) (2.5, 8.7)

MEI (µ) 10.0 7.6 6.1 10.0 7.5 6.0
(3.3, 17.0) (3.1, 12.0) (2.8, 9.3) (3.4, 17.0) (3.0, 11.8) (2.8, 9.2)

TFP (z) 6.8 5.2 4.3 7.5 5.6 4.6
(2.1, 11.8) (2.1, 8.4) (2.0, 6.7) (2.3, 13.1) (2.2, 9.1) (2.1, 7.2)

Price Markup (λf ) 8.9 6.4 5.1 10.3 7.0 5.5
(2.5, 15.7) (2.2, 10.4) (2.2, 8.0) (2.8, 18.0) (2.6, 11.6) (2.3, 8.6)

Wage Markup (λw) 9.5 7.2 5.8 10.4 7.6 6.1
(3.1, 16.2) (2.9, 11.4) (2.7, 8.8) (3.3, 17.7) (3.1, 12.2) (2.8, 9.4)

Policy (rm) 10.6 7.6 6.1 10.9 7.7 6.0
(3.3, 18.0) (3.0, 12.3) (2.7, 9.3) (3.3, 18.5) (3.0, 12.4) (2.7, 9.3)

Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter.



Cúrdia, Del Negro, Greenwald, “Rare Shocks, Great Recessions” Appendix xxxviii

Figure B.13: Results for sub-sample starting in 1984Q1
Output Growth: Counterfactual evolution with Student’s t component turned off

Historical Path Rolling Window Standard Deviation
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Notes: Top panels: Black lines are the historical evolution of the variable, and magenta lines are the median counter-

factual evolution of the same variable if we shut down the Student-t distributed component of all shocks. The rolling

window standard deviation uses 20 quarters before and 20 quarters after a given quarter. Southwest panel: Black line

is the unconditional standard deviation in the estimation with both stochastic volatility and Student-t components,

while the red line is the unconditional variance in the estimation with stochastic volatility component only. Southeast

panel: Black bars correspond to the posterior histogram of the ratio of volatility in 2011 over the variance in 1994

for the estimation with both stochastic volatility and Student-t components, while the red bars are for the estimation

with with stochastic volatility component only.
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B.5.3 Sample Starting in 1991Q4

Table B.27: Posterior of the Student’s t Degrees of Freedom, Sample Starting in 1991Q4

Without Stochastic Volatility With Stochastic Volatility

λ = 15 λ = 9 λ = 6 λ = 15 λ = 9 λ = 6

Gvmt (g) 9.9 6.9 5.4 10.0 7.1 5.5
(2.7,17.1) (2.5,11.4) (2.2,8.5) (2.7,17.5) (2.5,11.6) (2.3,8.7)

Discount (b) 9.8 7.4 5.6 10.1 7.3 5.8
(3.0,16.9) (2.8,12.0) (2.4,8.7) (3.0,17.4) (2.7,11.8) (2.5,9.1)

MEI (µ) 7.0 5.5 4.6 7.2 5.6 4.6
(2.3,11.9) (2.1,8.8) (2.0,7.2) (2.3,12.3) (2.2,9.1) (2.0,7.2)

TFP (z) 7.6 5.4 4.2 7.9 5.6 4.4
(1.9,13.9) (1.8,9.1) (1.7,6.8) (2.0,14.3) (1.9,9.4) (1.8,7.1)

Price Markup (λf ) 6.2 5.0 3.7 10.0 6.9 5.4
(1.6,11.2) (1.7,8.4) (1.5,6.0) (2.1,18.2) (1.9,11.7) (1.9,8.9)

Wage Markup (λw) 10.6 7.4 5.7 10.7 7.4 5.8
(3.0,18.3) (2.6,12.1) (2.4,9.0) (3.0,18.5) (2.6,12.2) (2.4,9.1)

Policy (rm) 11.7 7.8 5.9 11.7 7.9 5.9
(3.1,20.2) (2.6,12.9) (2.4,9.4) (3.1,20.1) (2.7,13.0) (2.4,9.4)

Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter.
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Figure B.14: Results for sub-sample starting in 1991Q4
Output Growth: Counterfactual evolution with Student’s t component turned off

Historical Path Rolling Window Standard Deviation
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Notes: Top panels: Black lines are the historical evolution of the variable, and magenta lines are the median counter-

factual evolution of the same variable if we shut down the Student-t distributed component of all shocks. The rolling

window standard deviation uses 20 quarters before and 20 quarters after a given quarter. Southwest panel: Black line

is the unconditional standard deviation in the estimation with both stochastic volatility and Student-t components,

while the red line is the unconditional variance in the estimation with stochastic volatility component only. Southeast

panel: Black bars correspond to the posterior histogram of the ratio of volatility in 2011 over the variance in 1994

for the estimation with both stochastic volatility and Student-t components, while the red bars are for the estimation

with with stochastic volatility component only.
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