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Abstract:

This paper describes a three-step algorithm for estimating a system
of error-correction equations that can be easily programmed using
least-squares procedures. Nonetheless, the algorithm is both statisti-
cally and computationally efficient and when iterated gives maximum
likelihood estimates of cointegration effects. Most important, the
algorithm can handle different levels of cointegration, over-identified
systems, breaks in trend, and complicated specifications for the
short-run dynamics. The procedure is demonstrated with some small
macroeconometric models, which suggest that breaks in the long-run
trends for output and money are both statistically and economically
significant in the 1961-94 period.



I. Introduction

Many important macroeconomic variables—such as (the log of) GDP,
price indices, and monetary aggregates—seem to have a nonstationary
trend that takes the form of a unit-root (random walk) process. These vari-

- ables are therefore often labeled as being integrated of order one and are
used in difference form in econometric models to ensure stationarity.
However, a group of variables may share a common unit-root component
and be cointegrated. Under cointegration, certain combinations of the vari-
ables are stationary or trend reverting; this fact can be used to retain statis-
tically valid information from the levels of the variables. In fact, Engle and
Granger (1987) showed a direct connection between cointegration and
error-correction models (ECMs), which increased the usage of these types
of econometric specifications that explicitly separate short-run dynamics
from long-run trends.

This paper describes an efficient, three-step algorithm for estimating a
system of error-correction equations (a vector-error correction model) that
both fully accounts for cross-equation cointegration restrictions and can be
programmed in almost any statistical package using least-squares proce-
dures. The algorithm also helps shed light on the calculations that underlie
Johansen’s (1988) maximum likelihood estimation procedure for these
models. In fact, when iterated, the three-step algorithm provides equiva-
lent results. Although the Johansen procedure is computationally faster,
the three-step algorithm does not require a software package that computes




eigenvalues and eigenvectors. This feature makes it easier to program,
especially when there are different levels of cointegration, overidentified
systems, breaks in trend, or complicated specifications for the short-run
equations.1

Some examples are presented at the end of the paper that demonstrate
the flexibility of the three-step approach. Small macroeconometric models
are estimated that allow for trend shifts without abandoning the error-cor-
rection approach. The results suggest that these breaks in the long-run rela-

tionships are both statistically and economically important.

I1. The Three-step Algorithm for a Simple Example

In the simple case of two endogenous variables, y, and y,, that are cointe-
grated over the sample period t=1,2,3,..T, a representative vector error-cor-
rection model is:

(1) V= yl.x - Yz.:
(2) Ay, =Y Va + BI.I Ay, + BI,Z Ay, + €,
(3) AY, =% Vi + BZ,I Ay, + Bzz Ay;.n-l + €y

Equation 1 defines the long-run relationship between y, and y,, while equa-
tions 2 and 3 describe the short-run dynamics. In this system, [1 -o] is the

1 GAUSS and EVIEWS (the Windows version of MicroTSP) programs for esti-
mating the models that were used for this paper (with the data) are available upon
request. I also have a programming outline to help those that are interested in
writing algorithms for other statistical packages such as RATS or SAS. 1 will
gladly review and keep an archive of programs that are written by others to
implement the three-step estimation procedure.




cointegrating vector and the y coefficients measure the speed-of-adjustment
effects that move the variables toward the long-run equilibrium condition
of v=0 and lead to trend-reversion.

This model assumes that all variables have zero means (making con-
stant terms unnecessary) and that one lag of each dependent variable is suf-
ficient to remove serial correlation in equations 2 and 3. These
assumptions keep the notation simple and are not crucial in deriving the
estimation procedure. At this stage, we also assume that E[e'e]=X is diago-
nal (that is, there is no concurrent or contemporaneous correlation among
the error terms). The implications of relaxing this restriction are discussed
in Section IV. In addition, requiring the y, variables to have a coefficient of
one in equation 1 is a convenient normalization that does not affect fully
iterated, three-step results.?

Engle and Granger’s two-step method first regresses y, on y, to esti-
mate the coefficient o and compute the long-run equations error term: v.
The second step uses lags of v and Ay as explanatory variables in OLS esti-
mation of equations 2 and 3, which capture short-run relationships. While
the parameters are consistently estimated with this procedure (Stock 1987),
they are not fully efficient since the cointegrating vector, o, is estimated
independently of the other parameters.

Engle and Yoo (1991) show that o can be revised by running a third-
step regression that uses (e, /) as the dependent variable. Here, adjusted
error terms from the second step estimation of equation 2 are stacked over

2 To understand the need for a normalization convention, note that by multiplying
the right-hand side of equation 1 by an arbitrary constant will not affect the § val-
ues or the fit of 2 and 3, only the scale of the ys.




analogous terms from estimates of equation 3. The single explanatory vari-
able in this case is (Yy../G;) with analogous stacking. The adjustment by
the reciprocal of the equation standard errors, which yields a weighted
regression setup, accounts for likely differences in the standard errors for
each short-run equation (heteroskedasticity). The regression of (e, /o)) on
(Yy../c) yields the incremental adjustment to o that corresponds to a step
in a Newton-Raphson optimization routine and iterating until convergence
yields maximum likelihood estimates. Most important, Engle and Yoo
show that the first iteration’s revision to o is asymptotically efficient.

One shortcoming of the Engle and Yoo procedure is that all other coef-
ficients are fixed in the third step. It is possible to relax this condition and
improve on the estimates of the cointegrating vector (in the sense that they
improve the fit of the short-run equations). For example, a better third step
can be derived by substituting for equation 1 in equations 2 and 3, multi-
plying through the y terms, moving y,., to the left-hand side, and creating a
single regression equation:

(4) (Ayl.t = ’“ yl.l-l) = a (’Yl yz.l-l) + Bl,l Ayl.l-l + Bi.z Ay2.t-l + ei.t

where the T observations for i=1 are stacked above the T observations for
i=2. With equation 4, it is made clear that cointegration places cross-equa-
tion restrictions on the effect of lagged-level variables, y, and y,, while the
coefficients (B,) for the lagged differenced variables can differ in the two
short-run equations. Therefore, it is possible to fix only the ys and os and
estimate equation 4 by defining separate lagged Ay variables for i=1 and
i=2 to yield five truly independent variables: 7y,., and two sets of Ay,,,
and Ay, .
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To expand on this framework, we can estimate revisions to ¥ simulta-
neously with revisions to . By ignoring the B effects for the time being
(for reasons that will become clear below), we create a linearized version
of the model: ‘

&) AY, =Y (Vi - O Yo) = a Y Yaur) +?i Vier = 0 Ya1)

where the y and o terms on the left-hand side are taken as given and the
incremental revisions to these parameters are denoted by ¥ and a3 Add-
ing back the § Ay terms, equation 5 could be estimated via a stacked
regression equation that is conditional on initial estimates of y and o
However, this setup may be excessively large because most “small” macro-
econometric models have at least four endogenous variables and use four
to twelve lags of each in the explanatory equations. In these instances, one
can greatly reduce the size of the matrix that must be constructed and then
inverted to compute the revised o and 'y parameters.

The trick to reducing computational burdens while efficiently estimat-
ing the stacked regression is to recognize that the OLS estimate of b, in:

)’. = bl x|,| + bz xZ.l

can be computed by first regressing y on x,, saving the resulting residuals

3 Jam grateful to Professor Christopher Sims of Yale University for pointing out
that a revision to ¥ can be made simultaneously with the revision to & . My initial
draft of this paper only revised & in step 3. Also, note that attempts to improve
the revisions by including variables that capture the multiplicative (cross-term)
effects of & and ¥ will create a singularity problem in the regression equation.




as r,, regressing X, on X,, saving the resulting residuals as rx, and finally,
regressing r, on rx,. The result is equivalent to the b, estimate from regress-
ing y on both x, and x, simultaneously. This property conveniently carries
over to the case where X,, and x,, are vectors of more than one explanatory
variable. Also, the standard error term for the second step’s b, coefficient is
the one in the original model (after a degrees of freedom correction, which
is discussed below). |

To apply this two-stage regression concept to equation 5, we first sepa-
rately regress the difference and levels variables, Ay,, Ay,, y,, and y;, on the
lagged difference variables, Ay,,, and Ay,,,, and save the resulting residuals
as Ray,, Ray, Ry,, and Ry,, respectively. Next, we construct the third-step
regression’s dependent variable as {(Ray-YRy.c1+¥0Ry,e1) ).}, with the
i=1 variables stacked above the i=2 variables. The two explanatory vari-
ables are {(YRy.+1/6)} and {(Ry+1-0Ry;1) )/G;}, with analogous stacking.4
Regression estimates of this equation yield incremental revisions to & and 'y
that simultaneously account for revisions to the B’s.

I11. Efficiency and a Comparison to the Johansen
Method

This algorithm is efficient on many levels. First, because the estimates
from the first two steps are consistent, one iteration of three-step procedure
yields asymptotically efficient estimates. Second, my third step only takes
the Os as given. A more efficient step for iterating would require a nonlin-

4 Note that a separate right-hand side term for iRy, is not needed because of the
normalization assumption. Also, since v is a linear function of y; and y,, the sec-
ond right-hand variable is equivalent to R,.




ear optimization procedure. Third, if the procedure is iterated, the con-
struction of the R variables decreases the computation time by reducing the
effective size of the regression problem.” Fourth, and probably most
important, iterating until convergence yields exact maximum likelihood
estimates that fully account for cross-equation, cointegration restrictions
and that have all the desirable properties of correctly specified maximim
likelihood estimates (MLEs).®

While many other methods for estimating cointegration parameters are
also asymptotically efficient, including Engle and Yoo’s, most are single-
equation based (for example, Saikkonen 1991 and Phillips and Loretan
1991). In contrast, the three-step procedure uses information from the
entire system so that fully iterated results will be equivalent to results from
Johansen’s procedure. In fact, the construction of the R variables should be

5 For various models I have confirmed that my algorithm converges noticeably
faster than both the Engle and Yoo algorithm and a procedure that ignores simul-
taneous revisions to Y, and instead reestimates the s by repeating the second
step. Engle and Yoo also claim that the effect of iterating is likely to be small
since their procedure regresses differences variables on levels variables. While
each iteration tends to produce relatively small changes, an example in Section
VI shows that the final or “converged to” estimates can be quite different from
the results of the first iteration.

Convergence means that the first-order conditions are satisfied. However, since
the o and 'y parameters enter the model in a multiplicative fashion and cross-term
effects are ignored in the third step, convergence cannot be guaranteed for all
starting values. In fact, some restricted models that were considered for Section
VI did not converge, a result that proved useful in determining the robustness of a
particular specification. However, for a correctly specified model, the likelihood
function is concave over the admissible parameter set, guaranteeing convergence
to the MLEs when the starting values are not too far from the true values.




familiar to econometricians who are conversant with the Johansen proce-
dure. To be explicit, the MLE formula minimizes:

&) X Ry, - (YO Ry) T Ry - (Y R,

for a given Z, where y and o are 2x1 in this example. In equation 5, the
construction and use of the R variables implicitly controls for optimal val-
ues of B for any estimate of (yo). An explicit normalization scheme for o.
is not used since only the space spanned by Yo' can be identified (in other
words, specific values for o and y cannot be determined). Johansen (1988)
shows how to form the concentrated likelihood function by substituting the
combined (yo) effect into the formula for  and by using eigenvalue calcu-
lations to solve the corresponding first-order (optimization) conditions.
The three-step procedure relies on an iterated technique to reach the same
set of parameter values.

The following section describe how models that are more complicated
than equations 1 to 3 can be specified and programmed in a relatively effi-
cient manner. For example, adding exogenous trends or placing restric-
tions on the long-run relationships is straightforward. Also, the three-step
algorithm allows the short-run equations to be handled more flexibly. In
much of the empirical work with ECMs, the short-run equations are given
the same lagged differenced variables. This trait, which is likely to lead to
compromises that overparameterize some equations and underparameterize
others, results in a loss in efficiency. Obviously, the benefits of parsimony
should not be abandoned, and diagnostic tests that can detect overfitting
problems should be considered.




IV. Generalizing the Three-step Algorithm

A point to note about the three-step procedure described above is that the
variance-covariance matrix for the equation error terms, X, was assumed to
be diagonal (no contemporaneous correlation). Typically, users of
Johansen’s method do not restrict X, and the three-step algorithm must be
amended to replicate the corresponding MLE cointegration vectors. The
easiest way to make the change for the model above is to add contempora-
neous values of Ay, to equation 3. The necessary adjustments for comput-
ing the R variables are described below. Note that because of identification
problems, a similar adjustment cannot simultaneously be made to
equation 2. However, adding Ay,, to the right-hand side of equation 2,
instead of adding Ay,, to the right-hand side of equation 3, will not change
the final cointegrating vector estimate because it does not change the value
of the likelihood function.”

Other possible changes are the addition of trends, dummy variables,
and other exogenous variables to equations 1, 2, and 3. For instance, it is
not necessary to include all error-correction terms or to have the same lag
length in every short-run equation. Also, the addition of other variables to
the right-hand side of the short-run equations is an easy task with the three-
step procedure; as long as these exogenous variables are stationary, addi-
tion will not violate the basic assumptions of the error-correction frame-
work. In fact, other relevant variables can improve the efficiency of
estimates of the long-run relationships by making the short-tun equations

7 The o estimates can change greatly, however, when contemporaneous effects are
excluded from the short-run equations.




more precise. In comparison, the statistical software packages that have
built-in Johansen procedures are currently quite limited in their ability to
experiment with and test different specifications for the short-run equa-
tions.

The following steps present the generalized three-step algorithm for
k=1,2,.K cointegrating relationships, i=1,2,..N endogenous variables and
the N short-run equations. In these directions, X, represents the entire set
of right-hand side variables, save the cointegration terms, in the equation
that explains Ay, Similarly, Z, represents the entire set of right-hand side
variables in the k» cointegrating (levels) equation. Identification issues
concerning the appropriate sets of variables for the long- and short-run
equations are discussed in the next section.

(1) Specify and estimate each of the K cointegrating relationships by
OLS methods using one of the endogenous variables (y,) as a left-
hand side variable. The right-hand side candidates (Z,) are the
other endogenous (some y variables may be excluded) and possibly
exogenous variables such as a constant and a time trend. Save the
residuals as the initial error correction (v,) terms for step 2. (Since
the error-correction term is entered with a lag in the step 2 regres-
sions, the sample period should be t=0 to t=T-1 for this step when
the short-run equations are estimated for the period t=1 to t=T.)

(2) Again using OLS procedures, estimate the N short-run equations
for each endogenous, differenced variable (Ay,) including both
short-run effects (X,) and the lagged error-correction terms (v) on
the right-hand side. Save each equation’s standard error (o,) and
error correction coefficients (v,,) for the third step.
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(3) A. Regress each of the differenced variables (Ay,)) on the corre-
sponding set of short-run variables (X)) and save the residuals as a
vector: (Ray). Regress each of the left-hand side levels variables
(v in step 1 on each set of short-run variables (X,) and save the
residual as a vector: (Ry,;). Next, regress each of the right-hand
variables in the step one regressions on each set of short-run vari-
ables (X)) and save these residuals as a matrix: (Rz;).

B. Set the third step’s left-hand side variable as {(Ray,-Z.Yi Rv,)/0,}
stacked over {(Ray,-X.Y..Rv.)/0, and so on, where Ry, =(Ry, -0, Rz, ),
forming NT rows. Create the right-hand side variables for o as
{(V.R2)/0, (121R2,)/0, ... (Ye.Rex)/0,} stacked over {(Y,.Rz,)/0,
(122R2,)/0, ... (WaRe,)/0,} and so on. The right-hand side vari-
ables for y start with {(0l,Rz,,)/0, (0,R2,,)/0, ... (0Rz,)/0,} with
zeros in the remaining rows. Each set of remaining ¥ variables
(i=2,3,...n) have zeros in the first T(i-1) rows, followed by {(c..Rz,.)/
O, (R2,)/0, ... (0kRz)/6,} and zeros in any remaining rows.

C. Regress the TNx1 left-hand side variable in step 3B on the two
sets of right-hand side variables (for & and ¥ ) and use the resulting
coefficients to compute incremental revisions to o and . Finally,
the most direct way to estimate G, for step 3B is to compute the
standard error for (Ray-ZYRv.).

As explained above, this algorithm will converge to the MLE solution by
iterating between 3B and 3C. Note that step 3A does not need to be
repeated, since the R variables do not depend on any estimated coefficients.

11



V. Identification and Testing

A. Long-run Identification

If more than one cointegrating relationship is estimated, each must be linearly
independent. In the absence of a theoretically justified structure, one way to
achieve indepehdence is to exclude any variable used as a left-hand side vari-
able in step 1 from the right-hand side of the other first-step regressions. This
particular design is not restrictive, however. A linear combination of two
cointegrating vectors is also a valid cointegrating vector, and other designs
can be constructed from the results. Another possibility with the three-step
algorithm is to entirely exclude some variables from the cointegration scheme
(an example is given in Section VI) to yield an overidentified system. The
conventional Johansen procedure only handles exactly identified syste:ms.8

B. Short-run Identification

For contemporaneous correlation effects, a “triangular structure” is most
convenient. Also, it is consistent with the Cholesky decomposition
schemes that are popular in VAR analysis. When this structure is set up to
identify contemporaneous causation, the first equation excludes all contem-
poraneous variables, the second equation adds only the first differenced
endogenous variable (on a contemporaneous basis), the third equation adds

8 Johansen (1991) shows the formulas for applying linear restrictions, but this pro-
cedure also reguires eigenvalue calculations and is not easily implemented within ,
most statistical software packages. Pesaran and Shin (1994) discuss the identifi-
cation assumptions of the Johansen procedure and derive two alternative MLE
procedures for overidentified (constrained) cointegration schemes that share
some features with the three-step approach. Their approach does not rely solely
on OLS estimation procedures, however.
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the first and second differenced endogenous variables, and so on.

Different contemporaneous schemes, including structural decomposi-
tions, could be designed and implemented by adding contemporaneous
terms to the short-run equations in a nontriangular manner.” However, care
must be taken to ensure that the system remains identified. Also, research-
ers should be aware that structural interpretations of the second step  and y
estimates will depend on the placement of contemporaneous variables in
the right-hand side of the short-run equations, as a causal ordering among
the variables would be assumed.

Most interesting is a finding below that the use of an over-identified
system (shown in a case where zero contemporaneous correlation is
assumed) can greatly affect estimates of long-run relationships. This
should not be too surprising to users of unrestricted VARs who find
impulse response function to be sensitive to the error decomposition
scheme. In addition, each error correction effect need not be present in
every short-run equation. In other words, some y,; may be set to zero by
excluding the corresponding error-correction terms from the right-hand
side of a short-run equation. This option can greatly affect both the short-

and long-run properties of the model.

9 Using u to represent the vector of correlated error terms of the short-run equa-
tions, the generalized, “structural” model has u=Ae with Z, being a diagonal
matrix and E[uu'} = AZCA’. Since the u’s are linear functions of Ay and the
explanatory variables, the model can be reformulated to yield independent errors
with contemporaneous Ay’s in the right-hand side of some equations according to
ATAy=A"XB+e. See Hamilton (1994) for a comparison of recursive (trian-
gular) and nonrecursive (structural) VARs. Little work has been done on com-
bining cointegration restrictions and structural identification, however.
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C. Constructing Parameter Standard Errors
Conventional formulas, such as o¥X'X)* with X={R, R,}, for the coeffi-
cient standard errors in the step 3 regression can be used to compute stan-
dard errors for both o and y. It must be recognized that most statistical
packages make a degrees-of-freedom adjustment of ( 1/(T-P)) to compute O,
where T is the sample size and P is the number of estimated coefficients.
This formula is inappropriate here, however, because the number of right-
hand variables in the third step is less than the number of coefficients in the
entire system. To get an unbiased estimate of parameter uncertainty, OLS
standard errors can be simply multiplied by ((T-P)/(T-M))"*2, where M is the
actual number of coefficients in the model (including the implicit B terms).
The alternative adjustment that is used below sets M=0, which yields max-
imum-likelihood (but not unbiased) estimates of the parameter standard
errors.1©

Since cointegration forces the correlation between R, and R, to go to
zero as the sample size increases, asymptotically valid standard errors can
be constructed by ignoring the correlation between the two sets of variables
during the sample period. In other words, the standard errors for & and can
be computed by inverting (R,'R,), and the standard errors for y can be com-
puted by separately inverting (R,R,). This property is a direct consequence
of the fact that the errors in the long-run equations are stationary, while the
individual levels variables are not. (See Johansen 1991 for a detailed
proof.) Usually only these asymptotics-motivated standard errors are
reported, although they may not be appropriate for the sample size that is

10 Note that the division by @; in step 3 makes the stacked equation’s standard error
equal to one and (X'X)"! can be used without any adjustment.
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used in a particular study. Below I report both sets of parameter standard
errors and discuss significant differences.

D. Testing
Various hypothesis tests can easily be accommodated. First, t-statistics are
valid for testing point estimates of individual cointegration parameters as
long as the null hypothesis does not imply that a lower order of cointegra-
tion is present. For example, a t-test of =0 in equation 1 would not have a
conventional distribution since it assumes that y, and y, are not related in
the long run.!!

While Wald or F-tests for multiple restrictions can be applied in a
straightforward manner, likelihood ratio (LR) tests can be also computed
by estimating both the null (H,, restricted) and alternative (H,, unrestricted)

models. The test statistic is:
LR =T * X, (log Gy, - 108 Oy)

and would be compared to the ¥ distribution for q degrees of freedom,
which corresponds to the additional number of parameters in H,. This
framework is particularly useful when the null model’s specification
includes restrictions on both the short-run equations and the cointegration

1 pjckey and Rosanna (1994) provide a good overview of the problem.
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parameters. 12 Again, it must be realized that when the null specification
has one less cointegrating relationship than the alternative model, conven-
tional test distributions (chi-square in this case) are not appropriate.

VI. Applications to U.S. Macroeconometric Data

The ability of the three-step algorithm to handle nonstandard cointegrating
relationships is demonstrated in this section with some small macro-mod-
els that use quarterly data over the 1961-1994 period. This exploration,
although tentative, shows that researchers should not ignore the possibility
of breaks in both the economy’s trend and its underlying structure. In
essence, this analysis is motivated by Campbell and Perron’s (1991) dis-
cussion of the problems that can result from using conventional unit-root
tests to make specification decisions and from ignoring the possibility of
breaks in trend. To save space, I have deleted tables with unit-root tests
that would justify the primary cointegration schemes. The results are avail-
able on request and are consistent with the majority of the other studies on
the subject: the log of nominal GDP, real GDP, nominal M2, real M2, and
nominal interest rates are only stationary after differencing (at least over
the 1960-94 period). The only controversial decision is whether the log of
the GDP deflator must be double differenced to achieve stationarity.
Therefore, cases where inflation does and does not have a unit root are con-

12 However, as noted above, asymptotic independence between o and Y may be
assumed. Also, the LR calculation assumes that both models were formulated to
have diagonal error covariance matrices (Z), which can always be achieved by
judiciously choosing the placement of contemporaneous Ay variables. See
footnote 9.
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sidered below.

The first two models, in Tables 1a and 1b, estimate error-correction
equations for the log of nominal output (py) and M2 (m). Four lags of the
differenced variables are used in the short-run equations in this example
and all that follow. The cointegrating coefficients are normalized to equal
one for nominal GDP. In addition, following the format of equation 1, the
M2 coefficient is given a sign that is consistent with it being a left-hand
side variable in an OLS equation. Therefore, the sign is opposite what
would be reported for cointegration equations that put all variables on the
same side of the long-run equation. The important feature for this normal-
ization scheme is that a positive sign signifies that nominal GDP and M2
tend to move in the same direction.

In the top panel of Table la, no additional time trend variables are
used, and contemporaneous short-run effects are ignored. The first row
reports the OLS first step results. A coefficient of almost exactly one on
M2 suggests that M2 velocity (the ratio of Nominal GDP-to-M2) is station-
ary over the 1961-89 period. The first iteration’s three-step coefficient for
M2 is again very close to one, as are the fully iterated or MLE results. The
second panel in Table 1a allows contemporaneous interaction between Apy
and Am, and the results are quite similar. An M2 coefficient that is close to
one seems to be very robust in this simple two-variable system.

The bottom panel of Table 1a shows the MLE error-correction coeffi-
cients for both models. The ordering is Apy then Am2 in the model that
includes contemporaneous effects in the short-run equations. However,
since the cross correlation is low (less than 0.05), this assumption has little
impact on the results. The signs are as expected, and nominal output and
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M2 growth are affected almost equally by deviations of M2 velocity from
its mean. The individual t-statistics are not exceptionally high, however,
even though formal cointegration tests easily reject the null hypothesis that
M2 velocity had a unit-root component in the 1961-1989 period. In com-
puting t-statistics, it is interesting that the two sets of parameter standard
errors agree at the first four decimal places. (In other models, there are sig-
nificant differences.)

Table 1b shows results for another nominal GDP-M2 model, with the
sample expanded to 1994 and time-trend effects added. Again, the top
panel results ignore contemporaneous short-run correlations, while the
middle panel includes these effects. Experimenting with a few options,
including a simple linear term, a quadratic trend, and piece-wise trend
shifts in 1974 and 1991, I found plausible estimates and significant trends
when a 1991 trend shift was added to an equation with a 1974 trend shift.
(In this analysis, significance is defined by a t-statistic above two.) The
OLS estimates and first-iteration three-step results show only an economi-
cally meaningful trend after 1990. However, in both panels, MLEs of both
the 1974 and 1991 trend shift are significant, and an LR test of joint time
trend effects gives a highly significant value of more than 16. Most impor-
tant, the trend shift is found to be quite large—the coefficients suggest that
~ nominal GDP will tend to increase at a rate that is almost 6.0 percent per
year above the growth rate of M2.

By comparing Tables 1a and 1b, we can see that the addition of a time
trend lowers the M2 coefficient significantly below one when the asymp-
totics-motivated standard errors are used in a t-test. Results for models that
are not reported in the tables confirmed that this effect was not caused by
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expanding the sample period. However, the table shows substantially
higher standard errors when the cross-correlation between o. and yis not set
at zero. Also in contrast to the simpler model, error-correction effects are
quite low for nominal GDP growth, while the statistical significance of Yam
remains high. Further exploration (not reported in the tables) shows that
this condition is not a consequence of the ordering (Apy then Am2 in the
table). Rather, it occurs when the sample period is increased to 1994.
Table 2 shows estimates for a model that splits Nominal GDP into real
(v) and price (p) terms and adds T-bill (r) rates along with M2. Only a single
cointegrating relationship with a simple time trend is allowed over the
1961-94 period. The most interesting finding is that parameter estimates
are greatly affected by the inclusion of contemporaneous effects. For
example, the role of interest rates in the cointegrating or equilibrium rela-
tionship overwhelms that of M2 in the model without contemporaneous
effects. In the model with contemporaneous effects, the coefficients for
M2 and interest rates are similar in magnitude. Also, the two sets of
parameter standard errors are much closer with this specification. The
results from this model should not be taken too seriously, however, since
formal LR tests suggest that a second cointegrating relationship exists.
Table 3 presents a more interesting vector error-correction model for
real GDP (y), real M2 (m2-p), T-Bill rates (1), and the inflation rate from
the price deflator (Ap). The use of the inflation rate instead of the price
level is in recognition of the fact that inflation rates are often found to be
nonstationary. Two cointegrating equations are allowed in the model, and
1961-94 is used for the sample period. Formal LR tests pointed to at least
two cointegrating relationships, with more than 95 percent confidence.
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The possibility of a third cointegration equation cannot be discounted,
however, and is discussed below.

The first long-run equation is specified to correspond to an IS (goods
demand) equation with a break in 1974 (both a one-time level shift and a
trend change). The second long-run equation is an LM (money demand)
specification. A trend shift in 1974 is allowed in the IS equation, and a
trend shift in 1991 is allowed in the LM equation.

I attempted to include both inflation and nominal interest rate terms in
the IS equation and thereby estimate real rate effects, but the inflation coef-
ficient was implausibly large. Therefore, only nominal interest rate effects
are captured, and an unexpected positive, although insignificant, relation-
ship with output is found.!> With this model, the trend in output is signifi-
cantly lower after 1974. Also, the point estimate of the level shift is large,
but imprecisely estimated, a result that is consistent with Perron’s (1989)
conclusion about oil price shocks in the 1970s. For the LM equation, the
elasticity between real M2 and real output is slightly greater than one,
interest rate effects are insignificant, and a large trend shift occurs in 1991.

The bottom panel of Table 3 shows the error-correction terms (y;s and
Yw) for each short-run equation. The most prominent findings are that the
only statistically significant v coefficient is for real M2, while the Y, coef-
ficients for output, real M2, and interest rates are significant. In fact, direct
trend reversion for real output is quite weak (y;s,,= -0.0308), even after con-
trolling for a break in 1974. However, deviations of real M2 from trend

13 These effects are not necessarily due to cointegration restrictions since unre-
stricted VARs often show puzzling interest rate effects (i.e., positive or expan-
sionary monetary shocks raise interest rates and lower inflation).
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have a strong positive impact on real output (Y,u.= 0.1430). Also, the sign
of Yis.%, is surprisingly negative, which implies that inflation falls when out-
put is above trend. While the effect is insignificant, it also does not support
the view that there is a strong short-run Phillips curve effect from changes
in aggregate demand. Note that since inflation is not present in either long-
run equation, a vertical long-run Phillips curve is assumed, a condition that
presumably makes short-run inflation effects stronger.

Although a more complete analysis of other plausible mMacro-economic
relationships and break dates are necessary before we can make strong con-
clusions, the IS and LM equations in Table 3 demonstrate how the vector-
error correction framework can show breaks in the data. Because the IS
effects are quite weak, future research on the effect of inflation in the long-
run equations seems warranted. Both sets of standard errors show that only
the two trend coefficients are clearly significant in this long-run equation.
Also, t-statics for the s terms are relatively low. One way to try and solve
this problem is to add a one-period ahead forecast of inflation (from the
short-run inflation equation) to the IS relationship. Another option is to
consider a cointegrating relationship that would capture stationarity in real
interest rates. In fact, I attempted to add a third cointegrating equation for
nominal interest rates and realized inflation to the model in Table 3, but the
estimated real rates turned out to be both implausible and overly sensitive
to seemingly minor alterations in the specifications. A possible solution to
this negative finding would be to use predicted inflation in the cointegrat-
ing relationship for nominal rates. Finally, it would be interesting to add
long-term rates and an equilibrium yield-curve relationship to the model.
The three-step algorithm provides a way to explore these effects as well as
breaks in trends.
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VII. Conclusion

This paper introduces a three-step algorithm to compute cointegration
effects in a system of equations. This procedure relies solely on least-
squares calculations and is therefore more intuitive than the Johansen
method, which requires eigenvalue and eigenvector calculations. Most
important, the flexibility of the approach allows for testing more compli-
cated cointegration schemes. This feature is successfully demonstrated
through estimates of small IS/LM based macro-econometric models with
breaks in trends.
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Table 1A. Nominal GDP and M2 ECM, 1961-1989

Long-run Coefficients

pY m2
OLS LHS 1.0074
Without contemporaneous effects
3rd step LHS 1.0071
MLE LHS 1.0071
(se) (0.0116)
(ase) (0.0116)
With contemporaneous effects
3rd step LHS 1.0070
MLE LHS 1.0070
(se) 0.0113)
(ase) (0.0113)

Error-Correction Coefficients

Apy Am2
Without contemporaneous effects
Y -0.0672 0.0490
(se) (0.0323) (0.0220)
(ase) (0.0323) (0.0220)
With contemporaneous ¢lfects
Y -0.0672 0.0507
(se) (0.0323) (0.0224)

(ase) (0.0323) (0.0224)

Notes: Each shost run equation includes 4 lags of each differenced,
endogenous variable. py: log of Nominal GDP. m2: log of M2.
LHS: treated as a right-hand side variable with a coefficient

of one (and the other variables are treated as lefi-hand side
variables). se: parameter standard errors from full system.

ase: asymplotocs-mot| ivated dard ervors.




Table 1B. Nominal GDP and M2 ECM, 1961-1994

Long-run Coefficients

pY m2 w74+ 19l+
OLS LHS 1.0185 -0.0347 0.9356
Without contemporaneous effects
3rd step LHS 1.0118 -0.0005 1.4064
MLE LHS 0.8635 0.5713 1.1798
(se) (0.1048) (0.3920) (0.6691)
(ase) (0.0625) (0.2082) (0.6325)
With contemporaneous effects
3rd step LHS 1.0108 -0.0030 1.4041
MLE LHS 0.8873 0.4794 1.2269
(se) (0.0894) (0.3306) (0.6147)
(ase) (0.0572) (0.1908) (0.5804)

Error-correction Coefficients

Apy Am2
Without contemporaneous effects
Y -0.0058 0.0398
(se) (0.0131) (0.0206)
(ase) (0.0128) (0.0085)

With contemporaneous effects

Y -0.0092 0.0438
(se) (0.0147) (0.0211)
(ase) (0.0141) (0.0094)

Notes: py: log of nominal GDP. m2: log of M2. t74+: time trend starting in 1974:1.

191+ time trend stanting in 1991:2. See Table 1A for further explanations,
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Table 2. GDP, Deflator, M2, and T-Bill Rate ECM, 1961-1994

Long-run Coefficients

y p m2 r trend
OLS LHS -0.6789 0.4009 . 0.7426 0.7933
Without contemporancous effects
3rd step LHS -0.6359 0.3509 09185 0.8328
MLE LHS -0.5061 0.1115 2.4702 1.0887
(se) (0.1668) (0.2505) (1.4175) (0.3548)
(ase) (0.1518) .1611) (0.5017) (0.2476)
With contemporaneous effects
3rd step LHS -0.6372 0.3718 0.6294 0.8055
MLE LHS -0.6482 0.3817 0.4744 0.8130
(se) (0.0566) (0.0582) (0.1847) (0.0915)
(ase) (0.0554) (0.0582) (0.1845) (0.0883)
Error-correction Coefficients
Ay Ap Am2 Ar
Without contemporaneous effects
¥ 0.0546 0.0208 -0.0085 0.0667
(se) (0.0417) (0.0167) (0.0165) (0.0481)
(nsc) (0.0216) 0.0097) (0.0155) 0.0202)
With contemporaneous effects
Y . -0.1020 -0.0072 0.1048 0.1847
(se) (0.0594) (0.0262) (0.0426) (0.0550)
(ase) (0.0576) (0.0262) (0.0397) (0.0490)

Notes: . y: log of real GDP. p: log of GDP deflator. m2: log of M2. r: 3 month T-Bill rate
See Table 1A for further explanations.
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Table 3. Small (IS/LM) Macroeconometric Model, 1961-1994

Long-run Coefficients-- IS Equation

y r trend d74+ 174+

OLS LHS 0.1526 0.9445 -4.8778 -0.3152

3rd step LHS 0.2084 0.8374 -3.0580 -0.2234

MLE LHS 0.2319 0.8335 -3.1749 -0.2764
(se) (0.5442) (0.0810) (2.6875) (0.0812)
(ase) (0.3742) (0.0689) (2.6473) (0.0795)

Long-run Coefficients-- LM Equation

m2 y r trend u9l+

OLS LHS 1.0778 -0.9197 -0.0327 -1.3479

3rd step LHS 1.2528 -0.2669 -0.1854 -1.2659

MLE LHS 1.1800 -0.0682 -0.1318 -1.0825
(se) (0.1453) (0.2974) (0.0891) (0.1978)
(ase) (0.1077) (0.1939) (0.0767) (0.1866)

Error-correction Coefficients

Ay Arm2 Ar Alp
Yis -0.0308 -0.0684 0.0252 -0.0099
(se) : (0.0408) (0.0309) (0.0282) (0.0107)
(ase) (0.0211) (0.0180) (0.0208) (0.0091)
Yim 0.1430 -0.0613 -0.0750 0.0205
(se) (0.0429) (0.0420) (0.0360) (0.0151)
(ase) (0.0312) (0.0285) (0.0318) (0.0141)

Notes: y: log of real GDP. p: log of GDP deflator. rm2: real M2 (log of M2 minus log of GDP deflator).
r: 3 month T-Bill rate. d74+: dummy (0/1) for period starting 1974:1. 174+: time trend starting
in 1974:1. u914: time trend starting in 1991:2. See Table LA for further explanations.




