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Abstract 

We show that inflation risk is priced in stock returns and that inflation risk premia in the cross-

section and the aggregate market vary over time, even changing sign as in the early 2000s. This 

time variation is due to both price and quantities of inflation risk changing over time. Using a 

consumption-based asset pricing model, we argue that inflation risk is priced because inflation 

predicts real consumption growth. The historical changes in this predictability and in stocks' 

inflation betas can account for the size, variability, predictability and sign reversals in inflation 

risk premia. 
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1. Introduction

We show that inflation risk is priced in stock returns and that both the price and quantities of inflation risk

are strongly time-varying, even changing sign over our sample from 1962 to 2014. We argue that inflation

is risky because it predicts real consumption growth in a time-varying way. Positive shocks to inflation

sometimes contain bad news for future consumption, whereas at other times they contain good news. We

provide new empirical evidence, for both the cross-section of stock returns and the aggregate stock market,

and develop an equilibrium model to argue that it is the time-variation in the predictive content of inflation

that drives the observed time-variation in the price and quantities of inflation risk.

To quantify the predictive content of inflation at a given point in time, we define the nominal-real co-

variance as the slope coefficient in a conditional (that is, rolling) regression of real consumption growth on

lagged inflation. We find that this nominal-real covariance is an economically strong and statistically sig-

nificant predictor of the inflation risk premium in the cross-section of stocks. We measure the quantity of

inflation risk of stocks by their conditional inflation beta, that is, the slope coefficient in a rolling regression

of returns on inflation shocks. A one standard deviation increase in the nominal-real covariance predicts an

increase in annualized expected return of 5.3% for a high-minus-low portfolio constructed by sorting stocks

in deciles according to their inflation beta. Given an unconditional average return for the high-minus-low

inflation beta portfolio of -4.2%, this increase implies that the inflation risk premium can switch sign.

To understand why, consider periods when the nominal-real covariance is negative, such as during the

1970s. In such periods, higher inflation is a bad state of nature as it predicts lower future consumption

growth. As a result, high inflation beta stocks are attractive to hedge against bad states and therefore

command lower premia. In contrast, in periods when the nominal-real covariance is positive, such as since

the early 2000s, a positive shock to inflation contains good news for future consumption. Now, stocks with

lower inflation betas are more attractive to hedge and the inflation risk premium switches sign.

We provide further evidence for this explanation by running pooled predictive regressions for the returns

of ten inflation beta-sorted portfolios on their conditional inflation betas, the nominal-real covariance, and

an interaction term. We find that the interaction term predicts returns well, whereas the other two (non-

interaction) terms do not. Thus, understanding the cross-section of inflation risk premia requires knowledge

not only of the relative magnitude of inflation betas across stocks, but also of the nominal-real covariance at

each point in time.

To understand how variation in quantities and price of inflation risk interact to determine inflation risk

premia, we decompose conditional inflation betas into portfolio-specific and time-specific components in

our pooled regressions. We present three results that are new to the literature. First, the cross-sectional

distribution of inflation risk premia widens and compresses over time due to variation in the price of inflation

risk. This result follows from the fact that the interaction between the portfolio-specific component of inflation

1



betas and the nominal-real covariance fully captures the time-series predictability of the high-minus-low

inflation beta portfolio return. Time-variation in the relative quantities of inflation risk (inflation betas) in

the cross-section does not add any information.

Second, quantities of inflation risk vary over time with the nominal-real covariance. This time-variation is

largely common across stocks. Pairwise correlations between the inflation betas of any two decile portfolios

and between any decile portfolio and the aggregate stock market are well above 90%.

Third, the aggregate stock market risk premium contains an inflation component that is time-varying,

due to time-variation in both the price and quantity of inflation risk in the aggregate market. This conclusion

follows from the fact that the interaction between the inflation beta of the market portfolio and the nominal-

real covariance predicts market returns, whereas neither the nominal-real covariance nor the market’s inflation

beta predict returns in isolation. The joint effect of the price and quantity of inflation risk is large: when the

inflation beta of the market portfolio and the nominal-real covariance are both one standard deviation below

their mean, the market risk premium equals 13.6%, more than double its unconditional mean. The intuition

is that the aggregate stock market is riskier when it comoves negatively with inflation shocks that contain

bad news for future consumption growth.

To provide a theoretical foundation for this empirical evidence, we develop a consumption-based equilib-

rium model. Our model takes the joint stochastic processes for consumption, inflation, and the nominal-real

covariance as given, while asset prices are determined endogenously through the Euler equation of a repre-

sentative agent. There are three key ingredients in our model. The first ingredient is that the representative

agent has Epstein-Zin-Weil (EZ) utility. The second ingredient is that inflation is persistent.1 The third

ingredient is that, as in the data, inflation shocks predict future real consumption growth in a time-varying

way that allows for sign reversals.2 It is this third ingredient that is new to the literature.

Because EZ preferences are not time-separable, marginal utility depends not only on current consumption

growth, as in the classic consumption-CAPM, but also on the entire future path of consumption. Since

inflation shocks predict future consumption growth, inflation shocks represent shocks to marginal utility

and are therefore priced. When the nominal-real covariance is positive, the price of inflation risk is also

positive, because higher inflation today represents a good state of nature as future consumption growth is

expected to be higher. As the nominal-real covariance changes sign over time, so does the price of inflation

risk. To study the cross-section of stock returns, we model dividends as being exogenous and exposed to

the same sources of risk as consumption. Because inflation shocks predict the future path of dividends with

sign and magnitude depending on the nominal-real covariance, the endogenous quantities of inflation risk

1Inflation persistence is widely documented in the literature (see, e.g., Fuhrer and Moore, 1995; Stock and Watson, 2005;
Campbell and Viceira, 2002; Ang, Bekaert, and Wei, 2007).

2Although interesting, our aim is not to explain the source of this predictability. Rather, our aim is to explain the asset
pricing implications from exogenous variation in the predictive relation between inflation and consumption growth. See Duffee
(2018) for a survey and the challenges in explaining the time-variation in the nominal-real covariance.
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of stocks are also functions of the nominal-real covariance. Our proposed calibration shows that the model

can quantitatively reproduce the empirical results discussed above, including the size and time-variation of

the price and quantities of inflation risk in the cross-section of stocks, and their relation to the nominal-real

covariance. Inflation persistence is key in allowing us to quantitatively match the relatively high inflation

risk premium observed in the data, as a more persistent inflation has a longer-lasting effect on the future

path of expected consumption and hence on marginal utility.

Empirically, we find that the cross-section of inflation betas is wide, which is instrumental in identifying

the inflation risk premium. Our evidence suggests that the cross-sectional variation in inflation betas is mainly

driven by variation in inflation exposure in cash flows rather than in discount rates. There is heterogeneity in

inflation betas both across and within industries. Industry affiliation is an important determinant of inflation

risk unconditionally. On average, the best inflation hedgers are oil, gold, and mining stocks. However,

inflation risk is also priced in a time-varying way within industries, even outside the best inflation-hedging

industries. This finding is new to the literature and motivates us to abstract from industry effects in our

model.

Our empirical results are robust. We consider alternative measures of the nominal-real covariance, using

either the covariance between inflation and industrial production or the stock market beta of a long-term

bond. We analyze alternative ways to measure inflation risk premia, estimating a maximum correlation

mimicking portfolio (Breeden, Gibbons, and Litzenberger, 1989) and a Fama and MacBeth (1973) cross-

sectional regression for individual stocks. We use different methods to estimate inflation risk, for instance, by

filtering inflation shocks using first-differences or an AR(1)-process instead of an ARMA(1,1)-process, which

is our main specification. We also consider a truly out-of-sample exercise using real-time vintage inflation,

similar to Ang, Brière, and Signori (2012). We find that our inflation beta-sorted portfolios are not only

exposed to shocks in realized inflation but also to changes in breakeven inflation from TIPS. Finally, our

results carry through when we control for benchmark predictors or exposure to benchmark asset pricing

factors.3

We contribute to the empirical literature on inflation by providing a rich set of new facts concerning

inflation risk premia in the stock market. Measures of the inflation risk premium have had a natural starting

point in the yield curve. With the development of sophisticated no-arbitrage term structure models and the

emergence of inflation-linked bonds, estimates of the inflation risk premium in the bond market have become

more reliable and widely available.4 Another conventional way to estimate the inflation risk premium is to

3The benchmark predictors are the dividend yield, term spread, default spread, and the consumption-wealth ratio of Lettau
and Ludvigson (2001a,b). The benchmark factors are MKT, SMB, HML, WML, RMW, and CMA combined in the CAPM
(Sharpe, 1964; Lintner, 1965; Mossin, 1966) and the multi-factor models of Fama and French (1993), Carhart (1997), and Fama
and French (2015).

4See, e.g., Ang and Piazzesi (2003); Ang, Piazzesi, and Wei (2006); Ang, Bekaert, and Wei (2007, 2008); Dai, Singleton, and
Yang (2007); Le, Singleton, and Dai (2010); Le and Singleton (2010); Haubrich, Pennacchi, and Ritchken (2012); Gürkaynak,
Sack, and Wright (2010); Chen, Liu, and Cheng (2010); Campbell, Sunderam, and Viceira (2017).
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study the joint time-series behavior of inflation and aggregate market returns.5

Similar to us, Chen, Roll, and Ross (1986), Ferson and Harvey (1991), and Ang, Brière, and Signori

(2012) estimate the inflation risk premium in the cross-section of stocks. However, these papers focus on the

unconditional asset pricing implications of inflation risk. The typical point estimate is a negative inflation

risk premium that is not statistically significant and varies considerably across sample periods. We provide

a natural explanation for this evidence, which is a time-varying inflation risk premium that can change sign.

We also contribute to this literature by studying the macroeconomic mechanism behind this time-variation,

both empirically and in an equilibrium model.

Our model builds on the mathematics and economic intuition of the long-run risk model of Bansal and

Yaron (2004), but the economic sources of risk are different. We contribute to the long-run risk literature

in several ways. First, we use directly observable inflation as a predictor of consumption instead of an

unobserved long-run risk component that must be inferred from asset prices using the model’s assumptions.

The observability of inflation thus resolves one of the main limitations of the long-run risk model. Our reliance

on observables is advantageous also relative to other consumption-based models that contain varying degrees

of “dark matter” (Chen, Dou, and Kogan, 2015; Cochrane, 2017). Second, predictability of consumption

using inflation, and inflation persistence itself, both operate at business cycle frequency. In contrast, long-

run risk operates at substantially lower frequencies. In addition, inflation shocks have a higher variance

than long-run risk shocks. The combination of higher volatility and lower persistence of inflation shocks

makes the inflation premium comparable in magnitude to the premium earned by the low volatility, but high

persistence, long-run risk shocks. Third, because inflation is less persistent than long-run risk, the timing

premium that agents are willing to pay for the early resolution of uncertainty in our model is considerably

lower than in the long-run risk model by about 50%, which alleviates the criticism of Epstein, Farhi, and

Strzalecki (2014). Finally, inflation predicts consumption growth in a time-varying way as determined by the

nominal-real covariance, while the predictability of consumption with long-run risk is constant over time.

Recent articles in the bond market literature argue that the nominal-real covariance is an important driver

of the time-variation in bond prices and in the comovement of stocks and bonds. Campbell, Sunderam,

and Viceira (2017) document a simultaneous change in the sign of the term premium for US Treasuries

and the nominal-real covariance at the turn of the century. Campbell, Pflueger, and Viceira (2015) and

Song (2017) interpret the time-variation in bond risk through changes in monetary policy. We argue that

monetary policy is unlikely to be the main driver of our results. The high and low inflation portfolio are

not differentially exposed to monetary policy shocks. Moreover, the nominal-real covariance predicts returns

also when controlling for different monetary policy regimes. David and Veronesi (2013) contend that it is

the time-varying signaling role of inflation (plus learning) that drives the joint dynamics of stock and bond

5See, e.g., Modigliani and Cohn (1979); Wachter (2006); Gabaix (2008); Bansal and Shaliastovich (2012).
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markets. Kang and Pflueger (2015) find that the nominal-real covariance affects corporate bond yield spreads

through a credit channel. The nominal-real covariance also features prominently in recent term structure

literature that analyzes the implications of the zero lower bound (see, e.g., Gourio and Ngo, 2016; Bilal, 2017;

Bretscher, Hsu, and Tamoni, 2017).

Although we estimate an unconditional inflation risk premium in the bond market that is close to what

we estimate in the stock market, our evidence suggests that the nominal-real covariance is not a strong

time-series predictor of excess bond returns, consistent with Campbell, Sunderam, and Viceira (2017).6

Furthermore, previous papers study the nominal-real covariance as measured by the correlation between the

returns of long-term government bonds and the aggregate stock market. To the best of our knowledge, we

are the first to show that inflation predicts real consumption growth in a time-varying way, and to use this

conditional (and exclusively macroeconomic) relation to measure the nominal-real covariance. We also study

the pricing implications of time-variation in the nominal-real covariance in an asset class not studied before

(the cross-section of stocks) and present new evidence on the relative importance of price and quantities of

risk.

Finally, Gorodnichenko and Weber (2016) show that the conditional volatility of stock returns increases

more for firms with stickier prices after monetary policy shocks. Weber (2015) finds that firms with stickier

prices are more exposed to monetary policy shocks and earn a premium that is fully explained by market

beta, because sticky price firms have more cyclical cash flows and both higher discount rate and cash flow

beta. Although we also find that exposure in cash flows is important, and despite inflation risk and price

stickiness being related, we find that neither exposure to the market nor to monetary policy shocks explains

the variation in inflation premia that we document. Together, these differences suggest that price stickiness

and our inflation-sorted portfolios are subject to different sources of risk.

2. Data

We use monthly inflation (Πt) calculated as the percentage change in the seasonally-adjusted Consumer

Price Index for All Urban Consumers (CPI) available from the U.S. Bureau of Labor Statistics. Monthly per

capita real consumption growth (∆Ct) is calculated using seasonally-adjusted aggregate nominal consumption

expenditures on nondurables and services (from National Income and Product Accounts (NIPA) Table 2.8.5)

combined with population numbers (from NIPA Table 2.6) and price deflator series (from NIPA Table 2.8.4).7

In our asset pricing tests, we use all ordinary common stocks traded on the NYSE, AMEX, and NASDAQ

from CRSP (excluding firms with negative book equity from COMPUSTAT). The CRSP value-weighted

market portfolio, the one-month T-bill return, benchmark asset pricing factors, and industry portfolios are

6Even though in their model, just like in ours, the nominal-real covariance is a key state variable driving risk premia,
Campbell, Sunderam, and Viceira (2017) conclude in Section 5.3 that “bond returns have very limited predictability.”

7In Section 8., we replicate our main result using quarterly consumption data.
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from Kenneth French’s website. Table 1 presents descriptive statistics for the sample period we use in our

tests: July 1962 to December 2014. The start of the sample period coincides with the introduction of AMEX

stocks in the CRSP file and is common to many empirical studies of the cross-section.

3. The Time-Varying Relation Between Inflation and Consumption

To analyze the conditional relation between current inflation and future real consumption growth, we

present in Panel A of Table 2 results from simple OLS regressions of future consumption growth from month

t+ 1 to t+K on inflation over month t:

∆Ct+1:t+K = dK0 + dK1 Πt + et+1:t+K , K = 1, 3, 6, 12. (1)

We see that the unconditional relation between current inflation and future consumption is negative, as

measured by the coefficient estimate for dK1 .8 Thus, an increase in inflation is bad news historically, which

is consistent with evidence in, for instance, Piazzesi and Schneider (2006). However, over our relatively

long sample period, the coefficient on inflation is not significantly different from zero for any horizon K. A

potential explanation for this seeming inconsistency with the existing literature is that the unconditional

regression masks variation over time in the relation between consumption and inflation.

To quantify the magnitude of this time-variation, we run the following two-stage test:

∆Cs+1:s+K = aKt + bKt Πs + es+1:s+K , for s = 1, ..., t−K, (2)

∆Ct+1:t+K = dc,K0 + dc,K1 (âKt + b̂Kt Πt) + et+1:t+K . (3)

In the first stage, Equation (2) regresses consumption growth on lagged inflation over a backward-looking

window using all data available up to month t. Hence, the expanding window s runs from 1 to t − K.

This regression is estimated using weighted least squares (WLS) where weights are given by an exponential

weighting scheme that has a half-life converging to 60 months for large t. The expanding window ensures

that we use as much information as possible, whereas an exponential decay in weights ascertains that the

largest weight is given to the most recent observations. In the second stage, Eq. (3) uses the estimated

coefficients and inflation observed at time t, that is, âKt + b̂Kt Πt, to predict consumption growth from t+ 1 to

t+K. This setup ensures that we use no forward-looking information when we predict consumption growth

in the second stage. The absence of a look-ahead bias is important, because we will later use the estimated

first-stage coefficient bKt to predict various returns in the time-series. Hence, we prefer our simple setup over

more highly parametrized models that require the full sample for estimation, such as a state-space model

with time-varying parameters.

8In the data, we lag inflation by an additional month, to account for the reporting delay of CPI numbers.
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If our two-stage structure correctly models the conditional expectation of consumption growth, we should

find that dc,K0 = 0 and dc,K1 = 1. Panel B of Table 2 presents the results. To test significance, we report

asymptotic Newey-West (with K lags) and bootstrapped t-statistics.9 The estimate of dc,K1 is significantly

larger than zero at all horizons. For no horizon K can we reject the hypothesis that dc,K0 = 0 nor that

dc,K1 = 1, suggesting that the two-stage structure provides an unbiased estimate of the conditional expectation

of consumption growth. Moreover, in the second stage, we capture an economically large share of the variation

in consumption growth, with an R2 that increases from 3% at the one month horizon to 15% at the one year

horizon.

Following the literature on predictive regressions (see, e.g., Welch and Goyal, 2007), we also calculate an

out-of-sample R2 (R2 − OOS). The R2 − OOS measures the improvement from conditioning on inflation

relative to a conditional model that includes only a time-varying constant, aKt , which measures lagged average

consumption growth. We find that the R2 −OOS is similarly increasing from 2% at the one month horizon

to 10% at the one year horizon. We conclude that inflation strongly predicts consumption growth when we

account for the time-varying relation between these macro-variables.

Our main proxy for the nominal-real covariance, which we henceforth denote NRCCt , is the time-varying

coefficient from the first stage regression in Eq. (2) of twelve-month consumption growth on lagged inflation,

b̂12
t . In robustness checks, we consider two alternative proxies for the nominal-real covariance. First, the

time-varying relation between inflation and industrial production growth, denoted NRCIPt , is estimated

by substituting industrial production for consumption in the left-hand side of Eq. (2).10 This alternative

measure effectively treats inflation as a recession state variable of the type advocated in Cochrane (2005) and

Koijen, Lustig, and Van Nieuwerburgh (2017). Second, we consider the measure based on asset prices that is

used in Campbell, Pflueger, and Viceira (2015): the negative of the stock market beta of a long-term treasury

bond, denoted NRC−BBt . We estimate this time-varying beta using a 60-month rolling window regression of

the 10-year constant maturity treasury bond return on the aggregate stock market return.

Fig. 1 plots the three proxies of the nominal-real covariance and shows strong comovement, with corre-

lations around 0.75. Consistent with Campbell, Pflueger, and Viceira (2015), NRC−BBt has changed sign

from negative to positive in the early 2000s. In fact, all three measures have increased markedly since the

turn of the century, as noted also in Bekaert and Wang (2010), Campbell, Sunderam, and Viceira (2017),

and David and Veronesi (2013). In the remainder of this paper, we analyze empirically and theoretically the

asset pricing implications of the time-variation in inflation risk driven by this nominal-real covariance.

9As detailed in Section 1 of the Online Appendix, these standard errors are derived from 1000 block-bootstrap replications
of the coefficient estimates to address concerns about errors-in-variables (EIV) bias.

10Seasonally-adjusted industrial production growth is from the FREDr database of the St. Louis FED.
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4. The Time-Varying Inflation Risk Premium

This section analyzes whether the inflation risk premium varies over time in a manner consistent with the

time-variation in the nominal-real covariance.

4.1. Estimating the Inflation Risk Premium

We first describe our method to estimate the inflation risk premium.

4.1.1. Inflation Betas

At the end of each sample month t, we measure the inflation exposure of firm i by estimating its historical

“beta” of excess returns, Ri,t, with respect to monthly innovations in inflation. Following Fama and Gibbons

(1984), Vassalou (2000) and Campbell and Viceira (2002), we filter out these innovations, denoted uΠ,t, using

an ARMA(1,1)-model. This model empirically captures many of the important dynamics of inflation.11

We estimate historical inflation betas in the same way that we estimate the nominal-real covariance in Eq.

(2): using a WLS regression with exponential weights over an expanding window that uses all observations

from the first month the stock is included in the sample up to month t. We require that stocks have at least

24 out of the last 60 months of returns available. The estimator of a stock’s inflation exposure, βΠ,i,t, is then

given by

(
α̂i,t, β̂Π,i,t

)
= arg min

αi,t,βΠ,i,t

t∑
τ=1

K(τ)
(
Ri,τ − αi,t − βΠ,i,tuΠ,τ

)2
(4)

with weights K(τ) =
exp(−|t− τ | h)∑t−1
τ=1 exp(−|t− τ | h)

. (5)

Using h = log(2)/60, the half-life of the weights K (τ) converges to 60 months for large t, which is consistent

with the standard five-year rolling window used in empirical asset pricing tests. Following Elton, Gruber,

and Urich (1978), Cosemans, Frehen, Schotman, and Bauer (2016), and Levi and Welch (2017), we transform

the estimated β̂Π,i,t using a Vasicek (1973) adjustment

β̂vΠ,i,t = β̂Π,i,t +
varTS(β̂Π,i,t)[

varTS(β̂Π,i,t) + varCS(β̂Π,i,t)
] [meanCS(β̂Π,i,t)− β̂Π,i,t

]
. (6)

Thus, each β̂vΠ,i,t is a weighted average of the stock’s beta estimated in the time-series and the average of

all betas in the cross-section of month t, meanCS(β̂Π,i,t). The former receives a larger weight when it is

estimated more precisely, that is, when the square of the standard error of the estimated beta, varTS , is

small relative to the cross-sectional variance of betas, varCS . From this point forward, inflation betas refer

11For example, Ang et al. (2007) write: “The motivation for the [ARMA(1,1)] model derives from a long tradition in rational
expectations macroeconomics (see Hamilton, 1985) and finance (see Fama, 1975) that models inflation as the sum of expected
inflation and noise. If expected inflation follows an AR(1) process, then the reduced-form model for inflation is given by an
ARMA(1,1) model. The model also nicely fits the slowly decaying autocorrelogram of inflation.”
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to the WLS and Vasicek-adjusted betas and we drop the hat and superscript v. Section 8. presents results

for a variety of alternative specifications that test the robustness of these methodological choices.

4.1.2. Inflation Portfolios

Each month in our sample we create thirty value-weighted portfolios by two-way sorting all stocks at the

intersection of ten inflation beta deciles and three size groups. The size groups are defined by the 20th and

50th percentile of NYSE market capitalization at the end of the previous month (the Micro, Small, and Big

stocks of Fama and French, 2008). We then collapse the thirty portfolios into ten size-controlled inflation

beta-sorted portfolios by averaging over the three size groups in each inflation beta decile. On the one hand,

the smallest of stocks are illiquid, not in the set of stocks typically held by institutions that care most about

inflation (such as pension funds), and their betas are harder to estimate. On the other hand, Ang, Brière, and

Signori (2012) find that the best inflation hedgers in the CRSP file are the smallest stocks. To avoid favoring

either hypothesis, we give equal weight to each size group in the inflation risk premium. Also, controlling for

size in this way makes exposures to the market and other risk factors more homogeneous across portfolios.12

With a burn-in period of 60 months, this leaves us with a sample of post-ranking returns from July 1967 to

December 2014.

4.1.3. The Inflation Risk Premium

We use three standard approaches to measure the inflation risk premium (IPt). The first estimate of the

inflation risk premium is the difference in return between the High and Low inflation beta decile portfolio

(denoted IPHLt ).

The second estimate of the inflation risk premium is the return of a Breeden, Gibbons, and Litzenberger

(1989) maximum correlation mimicking portfolio (denoted IPMC
t ). We construct this portfolio by projecting

inflation innovations on the returns of the ten inflation beta-sorted portfolios, as they should contain a large

share of the information in uΠ,t that is relevant for the cross-section of stock returns. Table OA.1 of the

Online Appendix presents the weights and confirms that the portfolios contain relevant inflation information.

Finally, each month we run a cross-sectional regression of individual stock returns on lagged inflation

beta, controlling for market capitalization, book-to-market, and momentum (see, e.g., Fama and French,

2008; Chordia, Goyal, and Shanken, 2015). The time-series of estimated slope coefficients on lagged inflation

beta represents our third estimate of the inflation risk premium (denoted IPCSt ).

4.1.4. Ex Post Inflation Exposures

We present in Table 3 descriptive statistics for the set of ten inflation beta-sorted portfolios, as well as the

three estimates of the inflation risk premium: IPHLt , IPMC
t and IPCSt . Panel A reports inflation exposures

12In Section 8., we show that our conclusions on the time-variation in inflation risk premia extend when we perform a single
sort of stocks on inflation beta, without controlling for size.
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estimated with a simple OLS regression of portfolio returns on inflation innovations over the full sample.

Analyzing whether these ex post exposures are large, economically and statistically, is important to asses

whether inflation is a useless factor in the sense of Kan and Zhang (1999) and also serves as a reality check of

the estimation procedure. We see that the ex post exposures line up almost monotonically from High to Low.

The dispersion is wide, with a large post-ranking beta of 3.00 for IPHLt . A beta of three translates to an

incremental monthly return of 76 basis points on average when uΠ,t increases by one standard deviation. For

comparison, the CRSP value-weighted market portfolio, with an inflation beta of -1.96, loses 49 basis points

on average for the same increase in uΠ,t. To accommodate comparison and interpretation, we have scaled

the alternative measures of the inflation risk premium, IPMC
t and IPCSt , to have identical ex post inflation

exposure to IPHLt . For these alternative estimates of the inflation risk premium, the ex post exposure is also

strongly significant.

Fig. 2 plots the post-ranking inflation beta one month, one year, two years, five years, and ten years after

sorting. To do so, we fix the portfolio composition at the sorting date t and calculate monthly value-weighted

returns up to ten years after.13 We then run a regression of monthly returns in t+ 1, t+ 12, t+ 24, t+ 60,

and t + 120 on contemporaneous (with the returns) innovations in inflation. In this way, we mimic the ex

post monthly inflation exposure for an investor that rebalances infrequently with respect to inflation beta.

We see that post-ranking inflation beta is increasing in pre-ranking beta up to ten years after the sort. The

post-ranking beta for IPHLt falls from 3.00 one month after sorting to a still large and significant 1.68 ten

years after sorting.14 We conclude that our sort on ex ante inflation betas is powerful, because inflation betas

are predictable many years ahead. Moreover, there is large cross-sectional dispersion in inflation risk, which

is instrumental in identifying the inflation risk premium in the stock market.

We find that our ARMA(1,1)-inflation shocks are strongly correlated at 0.59 with first-differences in

breakeven inflation, which is the difference between the yields of nominal and real ten year constant maturity

treasury bonds (available from FREDr since 2003). Furthermore, Panel A of Table 4 shows that our sort

(on exposures to ARMA(1,1)-innovations in inflation) also creates large ex post exposures to first-differences

in breakeven inflation, which we denote ∆BEt. The coefficient in a regression of returns of portfolios sorted

on inflation beta on ∆BEt increases monotonically in the inflation beta of the portfolios. The High-minus-

Low difference in ∆BEt-exposure is 9.79 with a t-statistic of 4.12. In Panel B, we sort individual stocks into

deciles based on their exposure to ∆BEt. We see that ex post exposure to ∆BEt increases monotonically

in ex ante exposure. More importantly, the High-minus-Low difference in ∆BEt-exposure is not much larger

than in Panel A at 12.47 (t = 4.82). Moreover, the correlation coefficient between the returns of the two

13When a stock leaves the sample, we reallocate its market cap to the remaining stocks in a given portfolio.
14This finding is seemingly inconsistent with the conclusion in Ang, Brière, and Signori (2012) that inflation betas are hard

to estimate out-of-sample. However, their conclusion is based on a smaller sample of S&P500 stocks from 1990 to 2009. In the
Appendix to their paper, the authors report results that are consistent with ours for a sort using all stocks in the CRSP universe
from 1967 to 2009.
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High-minus-Low portfolios is 0.86, which suggests strong comovement between the two series.

4.2. The Inflation Risk Premium Over Subsamples

We present in Panels B and C of Table 3, respectively, the inflation risk premium over the full sample

as well as in two subsamples split around 2002. This split is motivated by the fact that the nominal-real

covariance, NRCCt , increased above its historical mean during 2002, without falling below its mean again

until the end of the sample (see Fig. 1). We present annualized average excess returns, Sharpe ratio, and

CAPM alpha. We show in Section 8. that our main conclusions are robust to controlling for a broad set of

benchmark asset pricing factors.

Over the full sample, average returns for the inflation beta-sorted portfolios are decreasing in inflation

beta from 9.49% for Low to 5.26% for High. This dispersion translates to a marginally significant return

for IPHLt equal to -4.23% (t = −2.08). This effect is similar in both magnitude and significance for IPMC
t

and IPCSt as well as in alpha. This unconditional inflation risk premium translates to a Sharpe ratio around

-0.35, which is in the same order of absolute magnitude as the Sharpe ratio of the aggregate stock market.

The last column of the table presents the p-value from the monotonicity test of Patton and Timmermann

(2010), where the null hypothesis is a non-decreasing relation of returns in inflation beta. For average returns,

Sharpe ratios, and alphas, this null is marginally rejected.

Note that this relatively modest and only marginally significant unconditional estimate of the inflation

risk premium does not imply that the inflation risk premium is economically unimportant. Rather, we argue

that this unconditional estimate masks important variation over time that is driven by the nominal-real

covariance and, in particular, its recent reversal. To see this, we show in Panel C that the inflation risk

premium is considerably larger in the pre-2002 subsample, and strongly statistically significant. Average

returns for IPHLt , IPMC
t , and IPCSt are -7.49%, -5.85% and -6.81%, respectively, with t-statistics that all

pass the data-mining corrected cutoff of three proposed in Harvey, Liu, and Zhu (2016). These average

returns translate to a price of risk below -0.50 as measured by the Sharpe ratio, well above the aggregate

stock market (in absolute value). Average returns are almost monotonically decreasing in inflation beta from

9.33% for the Low portfolio to 1.84% for the High portfolio. Consequently, the null of a non-decreasing

relation is comfortably rejected at a p-value of 0.005. We see similar results for CAPM alphas, suggesting

that the one-factor CAPM does not price the cross-section of inflation portfolios in this subsample.

Post-2002, the inflation risk premium changes dramatically. Average returns are now increasing in in-

flation beta, resulting in an average return of 5.42% for the High-minus-Low portfolio and 3.49% for the

cross-sectional regression portfolio. Although these estimates are non-negligible economically, they are not

statistically significant over the short sample of twelve years. Moreover, the alternative estimate of the infla-

tion risk premium, IPMC
t , is virtually zero at -0.06% and all three CAPM alphas are small and insignificant.

Thus, the evidence suggests that the inflation risk premium is relatively small post-2002 and, if anything,
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positive, which is markedly different from the period pre-2002.

The last panel of the table presents the post-2002 minus pre-2002 differences. Average returns and alphas

are monotonically decreasing from High to Low from 13.53% to 0.62% and 4.28% to -5.13%, respectively.

Although the effects for IPHLt , IPMC
t , and IPCSt are not always significant, these differences are economically

large and the monotonicity tests comfortably reject (at p-values below 0.01) the null of a non-increasing

relation between the average or CAPM-adjusted (post-2002 minus pre-2002 difference in) return and inflation

beta. Table OA.2 of the Online Appendix shows a slightly larger increase in the inflation risk premium when

we split the sample in months where NRCCt is above versus below its mean.

In short, we find that the inflation risk premium has increased markedly over time, consistent with the

reversal in the nominal-real covariance from negative (on average since the 1960s) to positive (since the early

2000s).

4.3. The Inflation Risk Premium Conditional on the Nominal-Real Covariance

Because a sample split provides only a crude measure of the amount of time-variation in the inflation

risk premium, we now turn to predictive regressions. We regress excess returns of the inflation portfolios

(compounded over horizons K of one, three, and twelve months) on NRCCt using:15

Rp,t+1:t+K = L0 + LNRCNRC
C
t + εt+1:t+K . (7)

For each horizon, Panel A of Table 5 presents the estimated coefficients (annualized), both asymptotic Newey-

West (with K lags) and bootstrapped (see Section 1 of the Online Appendix) t-statistics, and the adjusted R2

for the individual decile portfolios and the three estimates of the inflation risk premium (IPHLt , IPMC
t , and

IPCSt ). We also present the p-values from Patton and Timmermann (2010) monotonicity tests. NRCCt is

standardized to have mean equal to zero and standard deviation equal to one to accommodate interpretation.

Thus, L0 measures the average excess return of the respective portfolio, that is, the unconditional inflation

risk premium, whereas LNRC measures the increase in annualized portfolio return for a one standard deviation

increase in the nominal-real covariance.

We find that the effect of NRCCt on the inflation risk premium is positive, economically large and

statistically significant (based on both asymptotic and bootstrap inference). For a one standard deviation

increase in the nominal-real covariance, the inflation risk premium as estimated using IPHLt , IPMC
t , and

IPCSt increases by about 3% to 4% for K = 1. This increase is relative to an unconditional inflation risk

premium of about -4%. The effect strengthens at longer horizons, growing to about 4% to 5% for K = 12.

The R2 are also increasing in horizon, from around 0.5% for K = 1 to over 6.5% for K = 12. Finally, looking

15To see that these regressions use no forward-looking information, recall that NRCCt is the slope coefficient b12
t in the

regression of Eq. (2): ∆Cs+1:s+12 = a12
t + b12

t Πs + es+1:s+12,with s = 1, ..., t − 12. Consistent with the fact that b12
t moves

slowly over time, our results are insensitive to lagging the predictor by an additional month to control for a reporting delay in
consumption data.
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at the decile portfolios, we see that LNRC is increasing monotonically from Low to High inflation beta, such

that the null of non-monotonicity is comfortably rejected.

We conclude that the inflation risk premium is strongly time-varying with the nominal-real covariance.

The economic intuition for this result is that high inflation beta stocks are attractive to hedge consumption

risk when inflation predicts consumption with a negative sign as it did historically. However, these same stocks

are not attractive as a hedge anymore, and could even expose investors to additional consumption risk, once

the nominal-real covariance starts increasing, as it does towards the end of our sample, for instance. As a

result, the returns of high versus low inflation beta stocks should be increasing in the nominal-real covariance,

which is what we find.

Panel A of Table OA.3 of the Online Appendix shows that this conclusion is robust for two alternative

measures of the nominal-real covariance, namely the time-varying relation between inflation and indus-

trial production growth (NRCIPt ) and the negative of the stock market beta of a long-term treasury bond

(NRC−BBt ). Each alternative measure predicts the inflation risk premium with a positive coefficient that

is comparable in magnitude, significance, and horizon pattern to what we have seen before. Panel B of

Table OA.3 shows that the nominal-real covariance predicts the inflation risk premium with a positive sign in

both the first and second half of our sample period, although the predictive relation is stronger in the latter

subsample. This result indicates that the time-variation in the inflation risk premium that we uncover is not

exclusively driven by the recent reversal in the nominal-real covariance. Moreover, when we end our sample

in 2007, before interest rates reached the zero lower bound (ZLB), we find virtually identical effects to what

we find in the full sample up to 2014. Thus, the time-variation that we uncover cannot be fully driven by

asset pricing mechanisms that rely on interest rates at or close to the ZLB, such as those proposed in, for

instance, Gourio and Ngo (2016), Bilal (2017) and Bretscher, Hsu, and Tamoni (2017).

5. Origins of the Time-Varying Inflation Risk Premium

To understand the drivers of the time-variation in the inflation risk premium, we next analyze (i) the

relative contribution of the price versus quantities of inflation risk in our inflation beta-sorted decile portfolios,

(ii) the importance of industry affiliation, and (iii) the relative contribution of cash flows versus discount rates

to inflation exposure.

5.1. Price and Quantities of Inflation Risk

Fig. 3 shows the time variation in inflation beta for the High and Low decile portfolios, the difference

between these two betas, and the average inflation beta of all ten portfolios.16 These inflation betas are

estimated by applying Eqs. (4) and (5) to the post-ranking returns of each portfolio.

16The average beta is almost perfectly correlated (at 0.99) with the inflation beta of the CRSP value-weighted market
portfolio.
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We see that there is considerable variation in inflation betas over time. For instance, the sudden increase

in inflation betas around the turn of the century, consistent with the reversal in the nominal-real covariance,

stands out. The correlation between the inflation beta of the High and Low portfolios is 0.93, and both

share a correlation of 0.98 with the cross-sectional average of all ten inflation betas. Moreover, although the

High-minus-Low inflation beta is large and positive on average (and for most of the sample), the standard

deviation of the High-minus-Low beta is much smaller than the standard deviation of either portfolio’s beta

in isolation (1.36 versus around 3.50). These results imply that time variation in the quantity of inflation

risk is mostly common across portfolios (and in the stock market, more generally). This result is new to

the literature and provides important information for our understanding of the inflation risk premium in the

stock market.

To see this and quantify the relative contribution of quantities versus price of risk, we run pooled regres-

sions of returns of the inflation beta-sorted decile portfolios, p = High, 2, ..., Low on inflation beta (βΠ,p,t),

the nominal-real covariance (NRCCt ), and an interaction term:

Rp,t+1:t+K = L0 + LβΠ
βΠ,p,t + LNRCNRC

C
t + LβΠ×NRC(βΠ,p,t ×NRCCt ) + εp,t+1:t+K . (8)

Panel A of Table 6 presents the estimated coefficients (annualized) and t-statistics using asymptotic standard

errors calculated following Driscoll and Kraay (1998), which are robust to heteroscedasticity and rather

general forms of cross-sectional and temporal dependence when the time dimension becomes large. We focus

on the annual horizon (K = 12) and present consistent evidence for shorter horizons in Table OA.4 of the

Online Appendix. To accommodate interpretation, NRCCt is standardized in the time-series (as in Table 5)

and βΠ,p,t is demeaned in the pool, that is, its mean across portfolios and time is zero.

In column one, we do not include the interaction term (set LβΠ×NRC = 0) and find that neither inflation

beta nor the nominal-real covariance is a significant predictor of returns in the pool of inflation beta-sorted

portfolios. The R2 is also low at 0.71%. In column two, we include the interaction term and see a large

increase in the R2 to 8.80%. The estimated coefficient on the interaction term is large and significant at 2.36

(t = 3.63). This estimate indicates that expected returns are decreasing in inflation beta when the nominal-

real covariance is negative, but increasing when it is positive. This result is in line with the large negative

inflation risk premium we find in the subsample pre-2002, and the small positive inflation risk premium

post-2002.

To further quantify the interaction effect between inflation beta and the nominal-real covariance, Panel

B presents predicted risk premia in four distinct cases when: i) inflation beta is at plus or minus one

(pooled) standard deviation from its mean and ii) the nominal-real covariance is at plus or minus one (time-

series) standard deviation from its mean. These predictions effectively evaluate the joint significance of

the coefficients, thus alleviating concerns about correlation in the independent variables. We present both
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asymptotic and bootstrapped t-statistics.17

We find that the predicted risk premium is largest at 16.56% (with a bootstrapped t-statistic > 3) for the

case in which a portfolio has a low inflation beta and the nominal-real covariance is also low. This finding

is intuitive: a portfolio of stocks is most risky when it comoves negatively with inflation shocks that contain

bad news about future consumption growth. The predicted risk premium is also positive, but smaller at

7.65% (tboot = 1.65), when both inflation beta and the nominal-real covariance are high. When inflation beta

is high (low) and the nominal-real covariance is low (high), predicted premia are close to zero. To interpret

these predictions, note that the difference in expected returns between high and low inflation beta is positive

when the nominal-real covariance is high and negative when the nominal-real covariance is low. This finding

is consistent with the idea that the stocks that are most attractive to hedge high marginal utility states

are those that have low (high) returns when inflation increases and the nominal-real covariance is positive

(negative). This difference is largest in magnitude and significance when the nominal-real covariance is low,

because in this case the covariance between inflation and future consumption growth is stronger in absolute

terms (the nominal-real covariance at one standard deviation below the mean equals -2.24, which is relative

to -0.51 one standard deviation above the mean).18

We conclude that variation in inflation beta, that is, the quantity of inflation risk, contains important

information about returns when combined with the nominal-real covariance. We further decompose inflation

beta into two components: (i) a portfolio-specific component that captures cross-sectional variation in uncon-

ditional average inflation betas, β̂Π,p = T−1
∑T
t=1 βΠ,p,t; and, (ii) a time-specific component that captures

time-series variation in the cross-sectional average inflation beta, β̂Π,t = 10−1
∑10
p=1 βΠ,p,t.

In column three, we see that the interaction between the portfolio-specific component of inflation beta

and the nominal-real covariance (β̂Π,p×NRCCt ) contains independent information about returns in the pool

(relative to the individual effects of inflation beta and the nominal-real covariance). The coefficient estimate

for the interaction term is 2.45 (t = 2.80). Setting the quantity of inflation risk equal to the unconditional

spread in inflation beta between the High and Low inflation beta portfolios, a one standard deviation increase

in the nominal-real covariance translates to a large and significant increase of 5.53% in the spread in expected

returns between the High and Low portfolio (5.53 = L
β̂Π,p×NRC

×σNRC×( ̂βΠ,High−β̂Π,Low) = 2.45×1×2.26,

tboot = 2.17).19 The R2 in column three is only 1.40%, which implies that this specification still misses

17For details on the bootstrap procedure, see Section 1 of the Online Appendix.
18Although the magnitude of the difference between high and low inflation beta may seem large, at −17.05% when the

nominal-real covariance is low versus 10.98% when it is high, these effects are foreshadowed by the sorts we report in Table 3.
The difference between the High and Low inflation beta portfolio is −7.49 pre-2002 and 5.42% post-2002, and the 2002 cutoff
only approximately splits the sample in low versus high nominal-real covariance months.

19This marginal effect is consistent with the regressions in Table 5, which ask whether variation in the nominal-real covariance
predicts High-minus-Low returns over time. The pooled specification in column three similarly asks whether the nominal-real
covariance explains variation over time in the relative return of high versus low inflation beta portfolios, because the product

β̂Π,p×NRCCt varies monotonically from High to Low at each point in time due to the unconditional variation in inflation betas.
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variation in inflation betas that is relevant for the pool of inflation risk premia.

The missing variation is time-variation in the cross-sectional average inflation beta. To see this, column

four shows that the interaction between the time-specific component of inflation betas and the nominal-real

covariance (β̂Π,t ×NRCCt ) contains relevant information about returns, given the large R2 of 8.26% in this

specification. The coefficient estimate is 2.45 (t = 3.45), which translates to a large and significant increase of

6.92% in the difference in expected return between periods of low (that is, the nominal-real covariance is one

standard deviation below its mean) and average nominal-real covariance, when the cross-sectional average

inflation beta decreases by one standard deviation (6.92 = L
β̂Π,t×NRC

×−σ
β̂Π,t
×−σNRC = 2.45×−2.83×−1,

tboot = 2.14). The intuition for this result is that at a time when the average inflation beta in the cross-

section is low, the average stock is especially risky when the nominal-real covariance is negative (and a shock

to inflation signals lower future growth).

In the last column of Panel A in Table 6, we include the two components of inflation beta (interacted

with NRCCt ) simultaneously. The R2 equals 8.80%, just like the model in column two, which includes the

interaction term between not-decomposed inflation betas and the nominal-real covariance, βΠ,p,t ×NRCCt .

This result suggests that the portfolio- and time-specific components of inflation betas together capture all the

relevant variation in inflation betas for risk premia.20 Unconditional differences in the quantity of inflation

risk, combined with the nominal-real covariance, drive the widening and compressing of the cross-section

of inflation risk premia over time. With inflation betas held constant, this time-variation is thus driven by

variation in the price of inflation risk.21 Time-variation in the average inflation beta, combined with the

nominal-real covariance, determines the level of inflation risk premia in the cross-section. This last result

suggests that the aggregate stock market risk premium contains an inflation component that is time-varying

due to both the price and quantity of inflation risk.

To test this suggestion, we run time-series regressions of CRSP value-weighted market (excess) returns

on the market’s inflation beta, the nominal-real covariance, and an interaction term:

Rm,t+1:t+12 = L0,m + LβΠ,mβΠ,m,t + LNRC,mNRC
C
t + LβΠ×NRC,m(βΠ,m,t ×NRCCt ) + εt+1:t+12, (9)

where βΠ,m,t is estimated by regressing market returns on inflation innovations following Eq. (4).22 We

present the results in Table 7. To accommodate interpretation, NRCCt is standardized and βΠ,m,t is demeaned

in the time-series (as in Table 6).

20By implication, variation in inflation betas that is portfolio×time-specific, that is, variation that is not captured by a
portfolio or a time fixed effect, contains no information for risk premia in the pool of inflation beta-sorted portfolios.

21Previous evidence in Table 5 is consistent with this conclusion. To see why, recall that the inflation risk premium estimated
using cross-sectional regressions, IPCSt , represents the return of a portfolio strategy with an ex ante inflation beta fixed at one
(Fama, 1976). Hence any variation in the returns of IPCSt must follow from variation in the price of inflation risk.

22In Table OA.5 of the Online Appendix we present similar results when we proxy for the market portfolio using the average
of the ten decile portfolios.
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In Panel A, we see that the market’s inflation beta and the nominal-real covariance do not predict market

returns in isolation. However, including their interaction term (βΠ,m,t×NRCCt ) increases the R2 from close

to zero to 8.59%. The coefficient estimate on the interaction term is economically large and significant at

2.85% (t = 3.55). Similar to Panel B of Table 6 we also present the predicted market risk premium in four

distinct cases. When both the nominal-real covariance and the market’s inflation beta are low (that is, large

and negative), stocks are most risky, and the predicted market risk premium is 13.61% (t = 4.08), which

is about double its unconditional mean. Furthermore, the difference in the predicted market risk premium

when the market’s inflation beta goes from low to high (i.e, from one standard deviation below the market’s

mean inflation beta to one standard deviation above) equals 6.65% when the nominal-real covariance is high

but -17.64% when the nominal-real covariance is low.

In Panel B, we present non-parametric estimates of the market risk premium, which are similar in absolute

and relative magnitude to those reported in Panel A in all four cases. These estimates are calculated by

averaging realized excess market returns in sample months t + 1 when the market’s inflation beta and the

nominal-real covariance in month t are either below the 40th or above the 60th percentile. In conclusion,

the results in Table 7 confirm that the interaction between the market’s inflation beta and the nominal-real

covariance contains information about future market returns.

In Table OA.6 of the Online Appendix, we find that the interaction term between inflation beta and the

nominal-real covariance, βΠ,p,t × NRCCt , remains large and significant in a pooled regression that controls

for market beta as well as the interaction between market beta and the nominal-real covariance. The same

result obtains for the portfolio- and time-specific components of inflation betas. We conclude that variation

in market betas does not fully explain the variation in risk premia we uncover.

5.2. Industry Affiliation and Inflation Risk

Having seen that inflation betas vary persistently and considerably over time and in the cross-section of

stocks, we ask to what extent our results are driven by across-industry variation in inflation risk and returns.

Among others, Boudoukh, Richardson, and Whitelaw (1994) and Ang, Brière, and Signori (2012) show that

inflation betas vary across industries.

To start, we construct long-short industry factors using the top and bottom K = 1, ..., 5 industries as

ranked by their unconditional full sample exposure to innovations in inflation. Consistent with common

intuition, Panel A of Table 8 shows that coal, oil, and gold are among the best unconditional inflation hedges

while meals, textiles and clothes are among the worst.23 In every sample month, we then sort individual

stocks into decile portfolios based on their rolling exposure to each industry factor, leaving out all stocks that

belong to those top and bottom K industries. In Panel B of Table 8, we first show that the High-minus-Low

23Table OA.7 of the Online Appendix shows that similar industries are also among the best (worst) conditional inflation
hedges and that the industry decomposition is quite stable over time.
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returns from these sorts are significantly exposed ex post to ARMA(1,1)-innovations in inflation for all K. In

the remainder of Panel B, we see that the nominal-real covariance significantly predicts the returns of these

High-minus-Low portfolios in the time-series, again for all K.

These results confirm that inflation betas vary across industries and that such variation contributes to

time-variation in returns. However, these results do not fully separate the across-industry from the within-

industry contribution to the variation in inflation premia that we uncover in Section 4.. To isolate these

within- and across-industry components, we calculate the inflation beta of each of the 48 industries from

Kenneth French’s website as the value-weighted average inflation beta of all stocks in that industry (estimated

conditionally as in Eqs. (4) and (5)). We exclude industry-months that contain fewer than ten stocks. To

obtain the across-industry component, we sort the industries into quintile portfolios, such that each across-

industry portfolio contains nine or ten value-weighted industries. Using this sort, we calculate equal-weighted

across-industry quintile returns. For the within-industry component, we first construct five value-weighted

portfolios within each industry by splitting at the quintiles of ranked inflation betas. This gives us a total

of 48-by-5 value-weighted portfolios. Within-industry quintile portfolio returns are then calculated as the

equal-weighted average over the 48 industries. Table 9 presents the predictive regression of twelve-month

compounded returns from each of these sorts on the nominal-real covariance. The last column presents the

aggregate within-industry (across-industry) effect calculated as the difference between the High and Low

within-industry (across-industry) inflation beta portfolio.

The unconditional inflation risk premium, as estimated by the intercept in the predictive regression, is

negative for both the within- and across-industry sort. This unconditional premium is larger in magnitude

across-industry (at -3.36% with t = −1.95) than within-industry (at -1.73% with t = −1.55). The coefficient

estimate for the nominal-real covariance is positive, economically large and significant for both sorts at

4.63% (t = 2.70) across-industry and 3.24% (t = 3.29) within-industry. Both coefficient estimates follow

from monotonic effects from High to Low inflation beta and translate to an R2 that is slightly over 10%.

Monotonicity in the across-industry sort is important, because it suggests that our results are not solely

driven by industries that are highly exposed to a particular component of aggregate inflation, such as oil.

The within-industry result suggests that variation in inflation risk is priced in a time-varying way independent

of the industry to which a stock belongs.

We conclude that although inflation risk certainly varies across industries, this variation is not crucial for

generating the time-variation in inflation risk premia that we find.

5.3. Inflation Risk in Cash Flows Versus Discount Rates

In this section, we ask whether the cross-sectional variation in inflation risk in our portfolios is driven

by cash flows or discount rates. We use the vector autoregression (VAR) approach of Campbell (1991) and

Campbell and Vuolteenaho (2004) to decompose the unexpected component of inflation portfolios’ monthly
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returns into discount rate and cash flow news, Rp,t+1 − Et[Rp,t+1] = −NDR,t+1 + NCF,t+1. With this

decomposition in hand, inflation beta, measured as the coefficient in a regression of Rp,t+1 − Et[Rp,t+1] on

ARMA(1,1)-innovations in inflation uΠ,t+1, can be decomposed into a discount rate inflation beta plus a cash

flow inflation beta:

βΠ =
Cov(Rp,t+1 − Et[Rp,t+1], uΠ,t+1)

V ar(uΠ,t+1)
(10)

=
Cov(−NDR,t+1, uΠ,t+1)

V ar(uΠ,t+1)
+
Cov(NCF,t+1, uΠ,t+1)

V ar(uΠ,t+1)
(11)

= β−DRΠ + βCFΠ . (12)

We consider three different specifications that include different state variables in the VAR. For the first

specification, we use the state variables of Campbell and Vuolteenaho (2004), which are the the term spread,

the market price-earnings ratio, and the value spread. For the second, we use the market dividend yield,

default spread and term spread (following, e.g., Maio and Santa-Clara, 2012; Boons, 2016). For the third,

we add the nominal-real covariance to the first specification. To ensure that the VAR models are correctly

specified, we additionally include in all three specifications the dividend yield of the respective inflation

beta-sorted portfolio as a state variable.24

Table 10 reports the inflation beta, βΠ, and its decomposition into β−DRΠ and βCFΠ , for the High and Low

inflation beta portfolios. The table also shows the share of the variance of Rp,t+1 − Et[Rp,t+1] explained by

−NDR,t+1, NCF,t+1, and twice their covariance.25 Consistent with the evidence discussed in Section 4.1.4.,

we find a large difference in inflation exposure in unexpected returns between the High and Low portfolios.

All three specifications have a High-minus-Low beta, βΠ,High − βΠ,Low, close to 1.8. The discount rate

component of beta, β−DRΠ , is negative for the High and Low portfolios. In contrast, the cash flow component

βCFΠ is positive for the High portfolio but negative for the Low one. It follows that in the inflation beta

of the High-minus-Low portfolio, the discount rate component of the High and Low components offset each

other, while the cash flow components reinforce each other. In the last row of the table, we present the

fraction of the High-minus-Low inflation beta that can be attributed to exposure to cash flows, (βCFΠ,High −

βCFΠ,Low)/(βΠ,High − βΠ,Low). In specification two, this fraction equals 80%. In specifications one and three,

this fraction is above 100%, which implies that the discount rate component actually reduces the spread

in inflation betas in the cross-section of stocks. Thus, the evidence suggests that the inflation beta of the

High-minus-Low portfolio is largely driven by exposure to cash flows. Importantly, this conclusion applies

even though the relative contribution to the variance of returns (column labeled “% Var”) attributed to

discount rate and cash flow news varies considerably across the three specifications.

24See Campbell and Ammer, 1993; Engsted, Pedersen, and Tanggaard, 2012.
25To reduce noise, the High and Low portfolios in this section are top and bottom terciles. These terciles simply average

returns over the top and bottom three deciles of our original inflation beta-sorted portfolios.
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6. Model

To motivate our empirical findings, we model the processes for consumption, inflation and the nominal-real

covariance as exogenous, generating the time-varying predictability of consumption with inflation uncovered in

the data in Section 3.. The model then produces - via pricing through the Euler equation of a representative

agent with Epstein-Zin utility - equilibrium quantities of inflation risk for the cross-section of stocks and

the aggregate market, together with a market price of inflation risk. These quantities and prices behave

qualitatively and quantitatively like the ones we find empirically in Sections 4. to 5..26

6.1. Exogenous Processes and Stochastic Discount Factor

The exogenous processes for real consumption growth (∆ct+1), inflation (πt+1), the nominal-real covari-

ance (ϕt+1), and real dividend growth for asset i (∆di,t+1) are given by

πt+1 = µπ + ρπ (πt − µπ) + ξπut + φπut+1, (13)

∆ct+1 = µc + ρc (πt − µπ) + ξcϕt−1ut + σcηt+1, (14)

ϕt+1 = ϕ0 + v (ϕt − ϕ0) + σwwt+1, (15)

∆di,t+1 = µi + ρi (πt − µπ) + ξiϕt−1ut + σiηt+1, (16)

ut, ηt, wt ∼ iid N (0, 1) . (17)

Consistent with our empirical analysis, inflation in Eq. (13) is an ARMA( 1,1)-process with innovation

uΠ,t+1 ≡ φπut+1. Inflation and inflation shocks affect the real economy via expected consumption growth

in Eq. (14). Inflation predicts consumption growth unconditionally and in a time-invariant way with sign

and magnitude determined by ρc. In contrast, the inflation shock ut predicts consumption growth in a time-

varying manner, where the sign and magnitude of the predictability are given by ξcϕt−1. The nominal-real

covariance, ϕt, follows the mean-reverting process given in Eq. (15) and can change sign over time. Dividends

in Eq. (16) are subject to the same risks as consumption, but with potentially different exposures. The shocks

ut+1, ηt+1 and wt+1 are i.i.d. standard normal.

The representative agent has Epstein-Zin utility, which yields the (log) stochastic discount factor (SDF)

mt+1 = θ log δ − θ

ψ
∆ct+1 − (1− θ) rc,t+1, (18)

where rc,t+1 is the (log) return on the wealth portfolio, that is, the claim on aggregate consumption; δ ∈ (0, 1)

is the discount rate; ψ > 0 is the elasticity of intertemporal substitution (EIS); and θ = (1− γ) / (1− 1/ψ),

with γ > 0 the coefficient of relative risk aversion.

26Detailed derivations for all the results presented in this section can be found in Section 2 of the Online Appendix.
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6.2. The Nominal-Real Covariance

The nominal-real covariance, ϕt, plays a dual role in our model. It determines (i) the time variation in

the predictability of consumption with inflation and (ii) the stochastic volatility of expected consumption

growth.

To see that the nominal-real covariance determines the time variation in the predictability of consumption,

we run in the model the same two-stage procedure that we run in the data in Eqs. (2) and (3). The model-

implied coefficient on inflation in the first-stage regression (2) is

bKt =
Covt

(∑K
j=1 ∆ct+1+j , πt+1

)
V art (πt+1)

= ρchK +
ξc
φπ
ϕt, (19)

where hK is a constant that depends on the prediction horizon K and parameters of the inflation process.27

If ξc 6= 0, Eq. (19) shows that inflation predicts cumulative consumption growth in a time varying manner

determined by ϕt. Eq. (19) clarifies why we call ϕt the nominal-real covariance. Under the null of the

model, ϕt is a linear transformation of b̂12
t = NRCCt , the same variable we use in the data to measure the

nominal-real covariance. The second stage regression in Eq. (3) also holds exactly in the model with dc,K0 = 0

and dc,K1 = 1 (for any K and any calibration of the model).

To see that the nominal-real covariance also plays the role of stochastic volatility of expected consumption

growth, it is instructive to compare our model to the long-run risk model of Bansal and Yaron (2004).

Replacing πt − µπ with long-run risk and setting ξπ = ξc = ξi = 0, we recover the basic version of the long-

run risk model that does not have stochastic volatility. Thus, the new elements in our model, in addition to

considering inflation instead of long-run risk, are the terms ξπut, ξcϕt−1ut and ξiϕt−1ut in Eqs. (13), (14)

and (16). In the version of the long-run risk model with stochastic volatility, there is a single mean-reverting

process that drives the stochastic volatilities of both expected and unexpected consumption growth (where we

recall that long-run risk is exactly equal to expected consumption growth). In our model, we have stochastic

volatility for neither inflation nor unexpected consumption growth, but we do have stochastic volatility for

expected consumption growth through the term ξcϕt−1ut.
28

27Using changes in inflation (πt+1 − πt) or inflation innovations (uΠ,t+1) instead of inflation in Eq. (19) gives bKt that are
also afine in ϕt. When standardized to have mean zero and variance one, these different measures of the nominal-real covariance
are identical. Empirically, using inflation shocks (for instance, from an ARMA(1,1)-process) instead of inflation (Πt) in Eqs.
(2) and (3) gives similar estimates of the nominal-real covariance b12

t with correlations above 90%.
28An additional advantage of modeling ϕt (instead of ϕ2

t as in the long-run risk literature) as an AR(1) process is that
volatilities are guaranteed to always be positive.
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6.3. The Price of Inflation Risk

To understand the asset pricing implications of the model, we study innovations in the SDF by using a

decomposition similar to that in Campbell, Giglio, Polk, and Turley (2018):

mt+1 − Etmt+1 = −γ (Et+1 − Et) ∆ct+1 − (1− θ)κ1 (Et+1 − Et)wct+1 (20)

= −γNC,t+1 − (1− θ)κ1

((
1− 1

ψ

)
NPATH,t+1 +

θκ2
1

2
NRISK,t+1

)
, (21)

where we define

NC,t+1 ≡ (Et+1 − Et) ∆ct+1,

NPATH,t+1 ≡ (Et+1 − Et)
∞∑
j=0

κj1Et+1+j [∆ct+2+j ] ,

NRISK,t+1 ≡ (Et+1 − Et)
∞∑
j=0

κj1V art+1+j (wct+2+j) ,

and κ1 is an approximation constant generally close to one. Eq. (20) decomposes news to the SDF into

news to contemporaneous consumption growth (NC,t+1 = (Et+1 − Et) ∆ct+1) and news to the (log) wealth

consumption ratio ((Et+1 − Et)wct+1). Eq. (21) further decomposes news to the wealth consumption ratio

into NPATH,t+1, which is news about the future expected path of consumption, and NRISK,t+1, which is

“news about risk” (revisions in the future conditional variance of the wealth-consumption ratio).

Using Eq. (14), news to contemporaneous consumption growth can be written as NC,t+1 = σcηt+1, which

shows that NC,t+1 depends on the consumption shock ηt+1, but not on any of the other shocks. NC,t+1

enters the SDF by standard consumption-CAPM logic. NPATH,t+1 and NRISK,t+1 enter the SDF because

with non-time separable utility, today’s marginal utility depends not only on contemporaneous consumption

growth but also on its entire future path. As can be seen directly from their definition, NPATH,t+1 and

NRISK,t+1 depend only on future consumption growth and not on contemporaneous consumption growth, so

they do not depend on the consumption shock ηt+1. It follows that news to the wealth-consumption ratio

arises not from changes in contemporaneous consumption but exclusively from changes in wealth, that is,

from changes in the pricing of the aggregate consumption claim.

When the EIS is greater than one, which we assume, the intertemporal substitution effect dominates

the wealth effect. Positive news to the expected path of consumption growth (NPATH,t+1 > 0) leads the

representative agent to invest more in the aggregate wealth portfolio, increasing its price and hence also the

wealth-consumption ratio. NPATH,t+1 depends only on the inflation shock, uΠ,t+1(= φπut+1), because by Eq.

(14) it is the only shock that provides news about expected consumption growth (shocks to the nominal-real

covariance that affect expected consumption growth at t arrive at t− 1, so they provide no news). Using Eq.

(13), we find that

NPATH,t+1 =

(
ρcφπ

1− ρπκ1
+

ρcκ1ξπ
1− ρπκ1

+ ξcϕt

)
uΠ,t+1

φπ
. (22)
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Eq. (22) will be key to understanding the inflation risk premium. The first two terms inside the parenthesis

in Eq. (22) arise through the term ρc (πt − µπ) in Eq. (14). The first term reflects that news to inflation

is news to expected consumption growth. The second term reflects a more indirect channel: in Eq. (13), ut

predicts future inflation πt+1, which in turn predicts expected consumption growth one period later. Both of

these effects reflect the unconditional (non-time-varying) effect of inflation on consumption and are stronger

when inflation has a larger or longer-lasting impact on future consumption, which is when inflation is more

persistent (higher ρπ), more volatile (higher φπ or ξπ), or more predictive of consumption (higher ρc).

The third term in Eq. (22) reflects the conditional (time-varying) relation between consumption and

inflation. It appears because the term ξcϕt−1ut in Eq. (14) is part of expected consumption growth. Inflation

shocks can be good or bad news for the expected path of consumption. When ξc/φπ > 0, a positive inflation

shock (uΠ,t+1 > 0) is good news for the path of expected consumption if and only if ϕt > 0, just as in the

data and our model calibration below. The volatility of NPATH,t+1 increases when ξc is higher and when ϕt

is more volatile (higher σw). The persistence of NPATH,t+1 increases when ϕt is more persistent (higher v).

When the representative agent has a preference for early resolution of uncertainty (θ < 0), which we

assume, news about risk increasing (NRISK,t+1 > 0) represents a bad state of nature. Even though the

expected path of consumption growth remains unchanged, the consumption claim has become riskier. In

equilibrium, today’s price of the wealth portfolio must go down for the representative agent to be willing to

hold the riskier consumption claim, which results in a lower wealth-consumption ratio and a higher marginal

utility. NRISK,t+1 depends only on the nominal-real covariance shock wt+1, because NRISK,t+1 is a function

of conditional second moments only and the nominal-real covariance is the only source of heteroskedasticity.

Because each shock ηt+1,uΠ,t+1, and wt+1 drives a separate news component of the SDF, we can give an

intuitive interpretation for the price of risk for each of them. Innovations to the SDF as a function of shocks

and their respective prices of risk are

mt+1 − Et [mt+1] = −ληηt+1 − λu,tuΠ,t+1 − λw,twt+1 − λ2w

(
w2
t+1 − 1
√

2

)
where the shocks ηt+1, uΠ,t+1, wt+1, and

(
w2
t+1 − 1

)
/
√

2 are all mean zero and uncorrelated (but not

independent) from each other.

Comparing to Eq. (21), and using Eq. (22), we can identify the price of inflation risk λu,t in

λu,tuΠ,t+1 = κ1

(
γ − 1

ψ

)
NPATH,t+1 = κ1

(
γ − 1

ψ

)(
ρc (φπ + κ1ξπ)

1− ρπκ1
+ ξcϕt

)
uΠ,t+1

φπ
. (23)

The price of inflation risk λu,t is, by definition, the compensation that the representative agent requires to

hold one unit of inflation risk (uΠ,t+1-risk). Our model provides the economic interpretation that inflation

risk is priced because inflation shocks provide news to the expected future path of consumption growth, and

changes in this path change the marginal utility of the representative agent. In addition, the model provides
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an equilibrium explanation for why the price of inflation risk moves over time together with the nominal real

covariance. When ϕt > 0, the representative agent requires positive compensation for bearing inflation risk,

because positive inflation shocks contain good news about future consumption growth. Since higher future

consumption growth is a good state of nature, inflation has a positive covariance with marginal utility. On the

other hand, if ϕt < 0, the representative agent is willing to accept lower expected returns to hold inflation

risk, because inflation shocks come with bad news about future consumption growth, making inflation a

good consumption and marginal utility hedge. Since λu,t is proportional to NPATH,t+1, its dependence on

parameters is the same as for NPATH,t+1, already discussed above. In addition to NPATH,t+1, λu,t also

depends on preference parameters. In particular, because inflation shocks generate risk over the entire future

path of expected consumption growth, a stronger preference for early resolution of uncertainty (higher γ or

ψ) magnifies the effect of news about the expected path of consumption on the price of inflation risk.

The same logic that we used for inflation can be used to find the prices of risk for consumption and

nominal-real covariance shocks and to interpret them, respectively, as coming from news to contemporaneous

consumption, NC,t+1, and from news about risk, NRISK,t+1. Nominal-real covariance risk (wt-risk) is priced

because of both of the roles that the nominal-real covariance plays in this model (it controls the time

variation in the predictability of consumption with inflation and it also drives the stochastic volatility of

expected consumption growth). However, the nominal-real covariance interacts with inflation risk (uΠ,t-risk)

only due to its role in the predictability of consumption with inflation, and not because of its role in inducing

stochastic volatility.29

6.4. The Quantity of Inflation Risk and Inflation Betas

A Campbell-Shiller approximation implies that (log) returns for asset i, ri,t+1, can be written as

ri,t+1 = κi,0 + κi,1pdi,t+1 − pdi,t + ∆di,t+1, (24)

where pdi,t is the (log) price-dividend ratio of i, and κi,0, κi,1 are approximation constants with κi,1 generally

close to one.30 Decomposing news to returns in a manner similar to the SDF, we have

(Et+1 − Et) ri,t+1 = κi,1 (Et+1 − Et) pdi,t+1 + (Et+1 − Et) ∆di,t+1

= κi,1

(
N i
PATH,t+1 +N i

m,t+1 +
1

2
N i
RISK,t+1

)
+N i

D,t+1, (25)

29Section 2 of the Online Appendix has expressions and a deeper discussion of consumption and nominal-real covariance
risks, which we omit here since our main focus is on inflation risk.

30Eq. (24) and all formulas below apply also to the consumption portfolio (with i = c) if we replace pdi,t, ∆di,t, κi,0 and
κi,1 with wct, ∆ct, κ0 and κ1, respectively.
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where

N i
PATH,t+1 ≡ (Et+1 − Et)

∞∑
q=0

κqi,1Et+1+q [∆di,t+2+q] ,

N i
m,t+1 ≡ (Et+1 − Et)

∞∑
q=0

κqi,1Et+1+q [mt+2+q] ,

N i
RISK,t+1 ≡ (Et+1 − Et)

∞∑
q=0

κqi,1V art+1+q [mt+2+q + κi,1pdi,t+1 + ∆di,t+1] ,

N i
D,t+1 ≡ (Et+1 − Et) ∆di,t+1.

Using the same line of reasoning used to interpret Eq. (21), we find that N i
PATH,t+1, which is news to the

expected future path of dividends of asset i, depends only on the inflation shock uΠ,t+1; N i
RISK,t+1, which

is news to the conditional future variance of mt+1 + κi,1pdi,t+1 + ∆di,t+1, depends only on the nominal-real

covariance shock wt+1; and N i
D,t+1, which is news to contemporaneous dividend growth of asset i, depends

only on the consumption shock ηt+1. In addition to these three news components, news to the returns of

asset i also depends on N i
m,t+1, which is news to the expected path of the SDF (news to expected discount

rates). This news depends on the inflation shock, uΠ,t+1, and the nominal-real covariance shock, wt+1. In

news for returns, N i
m,t+1 enters because positive news to the future expected path of the SDF (N i

m,t+1 > 0)

is positive news for today’s returns: future marginal utility is expected to be higher, so the same stream of

dividends is more valuable, pushing up the price-dividend ratio and realized returns.31

The quantity of inflation risk of asset i is given by its inflation beta. As in our empirical analysis, the

inflation beta βΠ,i,t is defined as the coefficient in a regression of returns, ri,t+1, on inflation shocks, uΠ,t+1,

conditional on time t information. Using Eq. (25), we have

βΠ,i,t ≡
Covt (uΠ,t+1, ri,t+1)

V art (ut+1)
= κi,1Covt

(
uΠ,t+1, N

i
m,t+1

)
+ κi,1Covt

(
uΠ,t+1, N

i
PATH,t+1

)
. (26)

Intuitively, when news to the path of either dividends, N i
PATH,t+1, or discount rates, N i

m,t+1, covary more

with inflation shocks, the price of asset i is more exposed to inflation and the quantity of inflation risk

increases. The reason that news to only expected dividends and expected discount rates enter βΠ,i,t is

that inflation shocks only affect the expected paths of dividends and discount rates, but not their higher

(conditional) moments. N i
RISK,t+1 and N i

D,t+1 are uncorrelated to inflation shocks uΠ,t+1, so they do not

contribute to βΠ,i,t.

31Given that the risk free rate is defined by rf,t = −Et [mt+1] − 1
2
V art (mt+1), this news component is related to, but not

the same as, news to the path of risk-free rate. N i
m,t+1 is different for different assets because the expected path of the SDF is

discounted by the asset specific constant κi,1.
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Computing the covariances in Eq. (26), we find that32

βΠ,i,t = −κi,1
φπ
ψ

(
ρc (κi,1ξπ + φπ)

1− κi,1ρπ
+ ξcϕt

)
︸ ︷︷ ︸

Covt(uΠ,t+1,Nim,t+1)

+ κi,1φπ

(
ρi (κi,1ξπ + φπ)

1− κi,1ρπ
+ ξiϕt

)
︸ ︷︷ ︸

Covt(uΠ,t+1,NiPATH,t+1)

. (27)

The intuition behind the dependence of βΠ,i,t on preference parameters and parameters of the exogenous

processes in Eqs. (13) to (16) is similar to the intuition for the terms in Eq. (23) discussed earlier. More

importantly, all time variation in βΠ,i,t comes from ϕt.

6.5. Risk Premia of Inflation Beta-Sorted Portfolios

The risk premium on asset i is

− Covt (mt+1, ri,t+1) = λu,tβΠ,i,t + λw,tβw,i,t + λ2wβ2w,i + ληβη,i, (28)

where the inflation risk premium component is

λu,tβΠ,i,t = κ1

(
γ − 1

ψ

)(
φπ + κ1ξπ
1− κ1ρπ

ρc + ξcϕt

)
︸ ︷︷ ︸

λu,t

κi,1φπ

(
φπ + κi,1ξπ
1− κi,1ρπ

(
ρi −

ρc
ψ

)
+

(
ξi −

ξc
ψ

)
ϕt

)
︸ ︷︷ ︸

βΠ,i,t

. (29)

Because the price of inflation risk, λu,t, and the quantity of inflation risk, βΠ,i,t, are each linear functions

of the nominal real covariance, the inflation risk premium is quadratic in ϕt. The inflation risk premium is

positive when λu,t and βΠ,i,t have the same sign. If λu,t and βΠ,i,t are both negative, the returns of asset i

comove negatively with inflation shocks that contain bad news for future growth. If λu,t and βΠ,i,t are both

positive, the returns of asset i comove positively with inflation shocks that contain good news. In both cases,

the payoff of asset i is low in bad times and high in good times, exacerbating consumption risk. In order

for the representative agent to be willing to hold asset i in equilibrium, the inflation risk premium must be

positive. If λu,t and βΠ,i,t have different signs, the opposite is true. Asset i has high payoff in bad states and

low payoff in good states, and the representative agent is willing to accept a negative premium to hold this

asset because it provides a consumption hedge.

To derive the model-implied inflation risk premium from the cross-section of stock returns, we model two

assets that represent the High (H) and Low (L) inflation beta portfolios from our empirical analysis. The

High-minus-Low inflation beta, βu,HL,t, is simply the difference βu,Ht − βu,Lt, because betas are linear in

returns (see Eq. (26)). If κH,1 ≈ κL,1, as is the case in any reasonable calibration of the model, a good

32Using changes in inflation (πt+1 − πt) or inflation levels (πt+1) instead of inflation innovations in Eq. (26) also give βΠ,i,t
that are afine in ϕt and differ from each other only in scaling. Thus, as in the data (see Section 8. and Table OA.13 in the
Online Appendix), these different ways to measure inflation risk capture the same time-variation driven by the nominal-real
covariance.
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approximation for βu,HL,t is

βu,HL,t = Covt
(
uΠ,t+1, N

H
PATH,t+1

)
− Covt

(
uΠ,t+1, N

L
PATH,t+1

)
=

φπ + ξπ
1− ρπ

(ρH − ρL) + (ξH − ξL)ϕt (30)

with associated inflation risk premium λu,tβu,HL,t = λu,t
(
βu,Ht − βu,Lt

)
. The High-minus-Low inflation

beta is determined by how differently inflation shocks covary with news to the expected path of divi-

dends for asset H versus asset L. The assumption that κH,1 ≈ κL,1 makes the discount-rate components

κH,1Covt
(
uΠ,t+1, N

H
m,t+1

)
and κL,1Covt

(
uΠ,t+1, N

L
m,t+1

)
of βu,H,t and βu,L,t identical, so they cancel out

when taking the difference.

7. Calibration

Table 11 shows the calibrated parameters of the model and Table 12 shows the empirical and model-

implied moments that we target.33 The model has 26 parameters (3 preference parameters; 11 parameters

for the joint process of inflation, consumption and the nominal-real covariance; and 4 parameters for each of

the three stocks we model) and we consider 37 moments from Tables 1 to 7.

For preferences, we use δ = 0.99, ψ = 2 and γ = 15, which are within the range of values commonly used

in similar studies.34 We calibrate the exogenous processes for inflation, consumption and the nominal-real

covariance in Eqs. (13) to (15) to match the summary statistics of Tables 1 and the predictability regressions

of Table 2 for K = 12. The model-implied moments for πt and ∆ct match the data well. The one exception

is the standard deviation of ∆ct, which at 2.49% is somewhat higher than the 1.13% in the data. This value

is within the range of values used in other studies, however.35 The relatively high volatility of ∆ct is needed

to match the relatively high volatility and persistence of the nominal-real covariance under the parsimonious

AR(1) specification for ϕt. We prioritize matching moments of the nominal-real covariance, because that

is the mechanism we propose to explain the time-variation in the inflation risk premium. In any case, by

standard consumption-CAPM logic, whether the standard deviation of consumption is 1.13% or 2.49% has

little impact on asset prices, even with γ = 15. The AR(1) coefficient for ∆ct is essentially zero in the

model and small (point estimate −16.84%) and not statistically significant in the data at the 1%-level. The

moments concerning the inflation shock uΠ,t also match the summary statistics of Table 1 well. In the model,

the mean and AR(1) coefficient of the inflation shock uΠ,t are equal to zero by assumption (for any choice of

parameters), as is the correlation between uΠ,t and ∆ct. In the data, the values of these three moments are

close to zero and not statistically significant at the 5%-level.36

33We solve for all moments in closed form. Formulas are in Section 2 of the Online Appendix.
34For example, in a closely related model, Bansal and Shaliastovich (2012) use ψ = 1.81 and γ = 20.9.
35For example, Bansal and Yaron (2004) use a standard deviation of ∆ct of 2.93%.
36The correlation between consumption and inflation is negative in monthly data but usually positive for samples that use
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From Panel A of Table 2, we match the coefficients du,12
0 and du,12

1 together with the low R2, which

guarantees that our model has the same low degree of unconditional predictability as the data. We also

match the coefficients dc,12
0 and dc,12

1 and the higher R2 of Panel B, which shows that the model has the same

strong conditional predictability as the data. As mentioned before, we design our exogenous processes so

that dc,K0 = 0 and dc,K1 = 1 for any calibration of the model and any K, consistent with the failure to reject

the hypothesis that dc,K0 = 0 and dc,K1 = 1 in the data. In addition to the moments in Table 2, we match

the volatility and AR(1) coefficient of the nominal-real covariance, as measured by the first-stage coefficient

b12
t = NRCCt from equation (3).

From Table 3, we match the first and second moments of returns and inflation betas for the two inflation

portfolios with the highest and lowest inflation betas. Matching the returns of the High and Low portfolios

ensures that the size of the inflation risk premium is consistent with the data. Matching the first moment

of betas gives the appropriate mean quantity of inflation risk, while matching the second moment of betas

gives the same degree of time-variation in the quantity of risk as in the data. Matching the mean returns

and inflation betas of the High and Low portfolios automatically implies that we match the mean return and

inflation beta of the High-minus-Low inflation beta-sorted portfolio, IPHLt , which for both returns and betas

is simply their difference. Together, matching the inflation beta and returns for IPHLt implies that the price

of inflation risk in the model is consistent with the data. The model also matches two patterns from Fig. 3:

the correlation between βΠ,H,t and βΠ,L,t is high (0.93 in the data and 1 in the model), and the volatility of

the inflation beta of the IPHLt portfolio is around one third of the volatility of the inflation betas of either the

High or Low portfolio. From Table 5, we match the coefficient LNRC for the IPHLt portfolio at the one-year

horizon (K = 12), which shows that the model is capable of reproducing the empirical predictability in the

price of inflation risk with the nominal-real covariance.

When we calibrate the aggregate market portfolio to have the same quantity of inflation risk as in the

data, the model-implied aggregate stock market risk premium contains an inflation component that has the

same magnitude and time-variation properties as the data. To calibrate the quantity of inflation risk of the

market, we match the mean and standard deviation of the market’s inflation beta, βΠ,m,t, as well as its

correlation with βΠ,H,t and βΠ,L,t. Once we have a calibrated βΠ,m,t, we use the NRCCt implied by the

model to run regression (9). We find that the key coefficient on the interaction term βΠ,m,t ×NRCCt is 2.69

in the model, which is close to the empirical value of 2.85 in Table 7.

Last, the calibration we propose generates a timing premium for the early resolution of uncertainty

that is considerably lower than in the long-run risk model, thus mitigating the criticism in Epstein, Farhi,

and Strzalecki (2014). The timing premium is defined as the maximum share of consumption that the

quarterly or annual data. Our model allows for parameter combinations that give either sign for this correlation, although what
matters most for asset pricing is the predictive relation between inflation and consumption rather than the contemporaneous
correlation.
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representative agent is willing to forego every period to resolve all uncertainty at t = 1. The first column in

Table OA.8 of the Online Appendix shows that for our calibration the timing premium is 14.8%, less than

half the 31% timing premium in the baseline calibration of the long-run risk model.37 The last two columns

of Table OA.8 show the low timing premium in our model arises because inflation is not as persistent as

long-run risk, and not because of the persistence or volatility characteristics of the nominal-real covariance

process ϕt.

8. Robustness checks

We discuss a range of robustness checks for which we report results in Section 3 of the Online Appendix.

Benchmark Asset Pricing Factors and Predictors

We test whether the inflation risk premium and its variation with the nominal-real covariance are robust

to controlling for the factors in the CAPM, Fama-French three- and five-factor models (FF3M, FF5M), and

the Carhart four-factor model (FFCM). First, we include these factors as control variables when estimating

stocks’ ex ante inflation exposures using Eq. (4). Table OA.10 presents the predictive regressions for these

alternative estimates of the inflation risk premium. We see that both the unconditional inflation risk premium

(as measured by the intercept of the predictive regression) as well as the coefficient on the nominal-real

covariance are robust, both in magnitude and significance.

Next, we control for these benchmark factors ex post in the predictive regression in Eq. (7). Table OA.11

shows that the unconditionally negative inflation risk premium is captured in the FFCM and FF5M. In

contrast, we find that the coefficient on the nominal-real covariance remains economically large and at least

marginally significant in all models. We thus conclude that time-variation in the inflation risk premium is

not due to exposure to benchmark factors, neither ex ante nor ex post.

Table OA.12 runs the predictive regressions of Eq. (7) controlling for standard Intertemporal CAPM

predictors: dividend yield (DY), default spread (DS), and term spread (TS) as well as the consumption-wealth

ratio (CAY). We find that the inflation risk premium varies significantly with the nominal-real covariance even

after controlling for these benchmark predictors and conclude that the nominal-real covariance represents a

new source of conditioning information.

Alternative Measures of Inflation and Sorting Procedures

Table OA.13 analyzes alternative measures of inflation risk. We consider raw inflation; an AR(1)-

innovation in inflation; the monthly change in annual inflation; and, real-time vintage CPI inflation. The

latter test represents a truly out-of-sample exercise, as we skip a month after portfolio formation to take

37For comparison, an i.i.d. model has a premium of 10%, the long-run risk model without stochastic volatility has a premium
of 29%, and the long run-risk model with stochastic volatility and preference parameters equal to the ones we use (γ = 15 and
ψ = 2) has a premium of 44% (Table OA.9 in the Online Appendix).
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into account the reporting delay in inflation data. Focusing on predictability of the High-minus-Low infla-

tion beta-sorted portfolio return, we find that our benchmark ARMA(1,1) specification represents a lower

bound. Two alternative measures provide particularly strong evidence for time-variation in the inflation

risk premium with the nominal-real covariance. Using raw inflation or real-time inflation, the R2 more than

doubles to about 15% with a coefficient estimate that is over 7% and a t-statistic over three. Moreover, the

unconditional inflation risk premium is negative in all cases.

Table OA.14 shows that our results are also robust to changes in the method of estimating inflation

betas. We again focus on High-minus-Low portfolios that are constructed by sorting stocks on inflation betas

estimated using (i) weighted least squares plus shrinkage (WLS) or ordinary least squares (OLS); (ii) a sort

where each portfolio comes from a double sort on inflation beta and size (Size) or a single sort on beta (No

Size), and (iii) ARMA(1,1) innovations in inflation (ARMA) or raw inflation (Inflation). In all cases, the

coefficient on the nominal-real covariance is positive, economically large, and at least marginally significant.

In three out of eight cases, the t-statistic on the nominal-real covariance is well above three. Finally, Table

OA.15 replicates our main analysis using quarterly data. We find that the High-minus-Low inflation risk

premium (estimated by sorting stocks on exposure in quarterly returns to ARMA(1,1)-innovations in quarterly

inflation) is similarly predictably by the nominal-real covariance (estimated as the rolling coefficient in a

regression of quarterly consumption growth on lagged quarterly inflation).

Time-Varying Inflation Betas

In the model of Section 6., inflation betas are linear in the nominal-real covariance. To check if our results

are robust to this specification of inflation betas, we adjust Eq. (4) as follows:

(
α̂p,t, β̂Π,p,t

)
= arg min
αp,t,β0

Π,p,t,β
1
Π,p,t

t∑
τ=1

K(τ)
(
Ri,τ − αp,t − (β0

Π,p,t + β1
Π,p,tNRC

C
t−1)uΠ,τ

)2
. (31)

We find that the linear conditional inflation betas for each decile portfolio p, βΠ,p,t = β0
Π,p,t+β1

Π,p,tNRC
C
t−1,

are highly correlated to the betas we use in Section 5.1. (at a correlation of 0.79 on average). Moreover,

Table OA.16 shows that the results from our pooled regressions are, if anything, stronger than what we report

already in Table 6. Both unconditional variation in inflation betas across portfolios as well as time-variation

in the average inflation beta interact with the nominal-real covariance to generate large and significant time-

variation in the returns of inflation beta-sorted portfolios.

Monetary Policy (Risk)

We perform two tests to assess the impact of monetary policy on our results. First, Campbell, Pflueger,

and Viceira (2015) link time-variation in the nominal-real covariance to three periods: the period of rising

inflation up to the first quarter of 1977, the inflation-fighting period under Volcker and Greenspan up to the

last quarter of 2000, and the recent period of increased central bank transparency, gradualism, and renewed

attention to output stabilization. Table OA.17 shows that our conclusions on the interaction between inflation
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beta and the nominal-real covariance are robust to including in the pooled regression a dummy for each of

these subperiods. This finding highlights that our empirical evidence on the inflation risk premium is richer

than a sample split into long-lasting monetary policy regimes.

Next, we analyze whether monetary policy risk can drive our results. Table OA.18 presents the exposures

of our inflation-beta sorted portfolios to Romer and Romer (2004) monetary policy shocks and changes in

the federal funds rate (also used in, e.g., Neuhierl and Weber, 2017; Velikov, 2017). Whereas exposure to

changes in the federal funds rate is typically negative and significant, there is no clear pattern from High

to Low inflation beta, neither in the full sample nor within any of the three monetary policy regimes. As a

result, exposures for the High-minus-Low portfolio (IPHLt ) are small and insignificant. Similar results obtain

for the Romer and Romer (2004) shocks. We conclude that monetary policy risk is unlikely to explain the

variation in the inflation risk premium that we uncover. This conclusion is consistent with Velikov (2017),

who argues that exposure to monetary policy shocks is transient and best observed in high frequency stock

returns. In contrast, our exposures to inflation risk are persistent.

Bond Returns

Although our focus is on the inflation risk premium in the stock market, we can examine whether similar

results apply in the bond market. We use returns on constant maturity Treasury bonds (with maturities

from one to thirty years) in excess of the one-month T-bill return. In Panel A of Table OA.19, we see

that average excess returns are increasing in maturity, whereas inflation beta is decreasing in maturity.

The ten-minus-one-year maturity difference in average excess return is 1.44%. Dividing this number by

the ten-minus-one-year difference in inflation beta gives an estimate of the unconditional price of inflation

risk: 1.44/(−1.16) = −1.24%. This price is close to what we estimate in the stock market in Table 3:

−4.23/3.00 = −1.41%.

Having said that, the evidence in Panel B shows that the nominal-real covariance is not a strong predictor

of excess bond returns in the time-series. We report coefficient estimates from a regression of annual excess

bond returns on the lagged nominal-real covariance. Depending on maturity, a one standard deviation

increase in the nominal-real covariance predicts an increase in excess bond return between -0.81% and -

0.41%. Although non-negligible economically, the estimated coefficient is only statistically significant at the

1%-level for the one-year maturity bond and at the 10%-level for the two-year maturity bond.

9. Conclusion

We show that inflation risk is priced in the stock market in a time-varying way. We study a key driver

of this time-variation: the nominal-real covariance, which is the time-varying relation between inflation and

real future consumption growth.

Our main empirical finding is that the inflation risk premium increases by a large and significant 5.3% for

a standard deviation increase in the nominal-real covariance. Given an unconditional inflation risk premium
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of -4.2%, this result implies that the inflation risk premium can change sign. The economic intuition is that

when inflation predicts consumption growth with a negative sign as it did for example in the 1970s, stocks

with a high inflation beta are attractive as a hedge against bad states of nature and thus command relatively

low expected returns. When inflation predicts consumption growth with a positive sign, as it did since the

early 2000s, high inflation beta stocks are risky (as they covary negatively with marginal utility) and the

inflation risk premium switches sign.

By decomposing the time variation in the inflation risk premium into variation in the price and quantity

of risk, we obtain a rich set of results that are new to the literature. The time-variation in the inflation

risk premium between high and low inflation beta stocks is driven by time-variation in the price of inflation

risk. Quantities do matter for the average inflation risk premium across stocks, however. The reason is that

time-variation in the quantity of inflation risk is largely common across stocks. Consequently, the market

risk premium contains an inflation component that is time-varying due to both the price and quantity of risk.

We develop an equilibrium model that builds on the empirical observation that inflation today predicts

real consumption growth in the future in a time-varying way. In the model, this time-variation is controlled

by the nominal-real covariance, which allows us to closely match the observed dynamics in the price and

quantities of inflation risk in both the cross-section of stocks and the aggregate market. Our theoretical

contribution is to extend the long-run risk framework by using an observable state variable that is related to

future consumption growth in a time-varying way.
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Figure 1: Alternative Measures of the Nominal-Real Covariance

We present three measures of the nominal-real covariance. The first is the coefficient in a rolling regression of twelve-
month consumption growth on lagged inflation (NRCCt ). The second measure substitutes industrial production for
consumption (NRCIPt ). These measures are plotted on the left axis and NRCIPt is divided by four to preserve
scaling. The third measure is the negative of the stock market beta of the 10-year constant maturity treasury bond
(NRC−BBt , right axis).
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Figure 2: Post-Ranking Inflation Beta After Sorting

We plot the monthly post-ranking inflation beta for the High-minus-Low portfolio one month, one year, two years, five
years, and ten years after sorting. The legend includes the estimated inflation beta and *,**,*** indicate statistical
significance at the 10, 5, and 1%-level using Newey-West(1) standard errors.
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Figure 3: Post-Ranking Inflation Betas over Time
We present the inflation beta of the High, Low, and High-minus-Low inflation beta decile portfolio as well as the average inflation
beta over the ten portfolios.
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Table 1: Descriptive Statistics
This table presents descriptive statistics in annualized percentages for CPI inflation (Πt), ARMA(1,1)-innovations in inflation
(uΠ,t), consumption growth (∆Ct), the aggregate stock market excess return (Rm,t), and the one month T-bill return (Rf,t).
AR(1) is the first-order autocorrelation coefficient. The sample period is from July 1962 to December 2014.

Πt uΠ,t ∆Ct Rm,t Rf,t

Mean 3.93 0.11 1.97 6.45 4.85
St. dev. 1.11 0.85 1.13 15.44 0.89
AR(1) 62.47 15.35 -16.84 7.47 96.90

Correlations

Πt 1 79.03 -17.75 -13.35 50.35
uΠ,t 1 -17.41 -11.72 15.35
∆Ct 1 17.45 1.26
Rm,t 1 -8.68
Rf,t 1
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Table 2: Unconditional and Conditional Predictive Regressions of Consumption Growth on Inflation
In this table we present predictive regressions of consumption growth, ∆Ct+1:t+K over horizons K = 1, 3, 6, 12, on lagged

inflation, Πt, from July 1967 to December 2014. Panel A presents an unconditional regression: ∆Ct+1:t+K = du,K0 + du,K1 Πt +
et+1:t+K . Panel B presents a two-stage conditional regression. In the first stage, we regress consumption growth on lagged
inflation over a backward looking rolling window: ∆Cs+1:s+K = aKt + bKt Πs + es+1:s+K , for s = 1, ..., t −K. Combining the
estimated coefficients with inflation in month t, we then predict future consumption growth in the full time series: ∆Ct+1:t+K =

dc,K0 + dc,K1 (âKt + b̂Kt Πt) + et+1:t+K . For this conditional setup, we present also an out-of-sample R2, which compares the
performance of the conditional model that includes inflation with a conditional model that includes only a constant. To be

precise, R2 − OOS = 1 − V ar(∆Ct+1:t+K−(âKt +b̂Kt Πt))

V ar(∆Ct+1:t+K−â
∗,K
t )

, where â∗,Kt is estimated through a backward-looking regressing of

consumption growth on a constant at each point in time (thus setting bKt = 0 in the first stage). In both panels, we report
t-statistics using Newey-West standard errors with K lags. In Panel B, we also report block-bootstrapped t-statistics using
standard errors calculated as the standard deviation of coefficient estimates in 1000 bootstrap replications. We report these

t-statistics for two null hypotheses: H0 : dc,K1 = 0 and H0 : dc,K1 = 1. R2’s are reported in percentage points.

Panel A: Unconditional Panel B: Conditional

Horizon K 1 3 6 12 1 3 6 12

du,K0 0.00 0.01 0.01 0.02 dc,K0 0.00 0.00 0.00 0.00

t (9.10) (8.73) (7.78) (7.52) t (0.76) (0.15) (0.07) (0.10)

tboot (0.42) (0.09) (0.04) (0.05)

du,K1 -0.07 -0.15 -0.20 -0.50 dc,K1 0.77 0.84 0.84 0.81

t(du,K1 = 0) (-1.37) (-1.08) (-0.77) (-1.06) t(dc,K1 = 0) (4.74) (5.60) (5.30) (4.56)

tboot(d
c,K
1 = 0) (2.57) (2.74) (2.24) (1.77)

t(dc,K1 = 1) (-1.44) (-1.04) (-1.01) (-1.06)

tboot(d
c,K
1 = 1) (-0.78) (-0.51) (-0.43) (-0.41)

R2 0.26 0.76 0.44 1.12 R2 3.29 10.29 13.28 14.92
R2 −OOS 1.80 4.60 6.70 10.41
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Table 4: Exposures to Breakeven Inflation
This table presents the exposure of inflation beta-sorted portfolios to first-differences in breakeven inflation (denoted ∆BEt).
Breakeven inflation is the difference between the yield on a ten year constant maturity nominal Treasury bond and its TIPS
equivalent. The exposures are estimated with the OLS time-series regression Rp,t = ap + βBE,p∆BEt + ep,t. In Panel A, we
use the returns of portfolios sorted on exposure to ARMA(1,1)-innovations in inflation (uΠ,t), as in Table 3. In Panel B, we
use the returns of decile portfolios sorted on exposure to ∆BEt. The exposure of each stock to ∆BE is estimated with an OLS
regression over a 60 month rolling window. We report the coefficients βBE,p (with t-statistics in parentheses) and the R2 for
each of the regressions. The sample for both panels is January 2003 (when TIPS data becomes available) to December 2014.

High 2 3 4 5 6 7 8 9 Low IPHLt

Panel A: Portfolios sorted on exposure to ARMA(1,1)-innovations in inflation (uΠ,t)

βBE,p 17.84 11.43 9.36 9.31 9.68 8.52 8.87 8.09 6.98 8.05 9.79
(2.25) (1.73) (1.46) (1.49) (1.66) (1.45) (1.49) (1.42) (1.08) (1.13) (4.12)

R2 13.09 7.46 5.60 6.07 6.85 5.61 6.76 5.46 3.95 4.20 11.87

Panel B: Portfolios sorted on exposure to changes in breakeven inflation (∆BEt)

βBE,p 21.09 16.88 15.38 12.82 12.86 10.53 9.27 7.29 8.19 8.61 12.47
(2.22) (1.93) (1.98) (1.54) (1.63) (1.60) (1.38) (1.09) (1.31) (1.03) (4.82)

R2 16.40 13.66 13.35 10.43 11.21 9.88 7.58 5.28 7.09 5.08 20.01
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Table 6: Time-Varying Inflation Risk Premia in Pooled Regressions
Panel A of this table presents the estimated coefficients (with asymptotic Driscoll and Kraay (1998) standard errors in paren-
theses) from pooled predictive regressions of annual returns of the inflation beta-sorted decile portfolios on their lagged inflation
beta (βΠ,p,t), the nominal-real covariance (NRCCt ), and an interaction term: Rp,t+1:t+12 = L0 +LβΠ

βΠ,p,t +LNRCNRC
C
t +

LβΠ×NRC(βΠ,p,t×NRCCt )+εp,t+1:t+12. In Model [1], we set LβΠ×NRC = 0, whereas Model [2] estimates all three coefficients
freely. For the latter model, Panel B presents the predicted risk premia (with asymptotic and bootstrapped standard errors
in parentheses) in four distinct cases. That is, when βΠ,p,t and NRCCt are at plus or minus one standard deviation from
their respective means in the pool. Models [3] to [5] in Panel A analyze which components of inflation betas interact with the
nominal-real covariance. Model [3] replaces the interaction term, βΠ,p,t×NRCCt , with the interaction between the nominal-real

covariance and the portfolio-specific component of inflation betas, β̂Π,p = T−1
∑T
t=1 βΠ,p,t. Model [4] replaces the interaction

term, βΠ,p,t × NRCCt , with the interaction between the nominal-real covariance and the time-specific component of inflation

betas, β̂Π,t = 10−1
∑10
p=1 βΠ,p,t. Model [5] includes both component-wise interaction terms. To accommodate interpretation,

NRCCt is standardized in the time series to have mean zero and standard deviation equal to one, whereas βΠ,p,t is demeaned
in the pool. The sample period is July 1967 to December 2014.

Panel A: Coefficient Estimates Panel B: Predicted Risk Premia from [2]

Model [1] [2] [3] [4] [5] High NRCCt Low NRCCt

L0 8.48 5.10 8.48 4.96 5.00 High βΠ,p,t 7.65 -0.50
t (3.48) (2.06) (3.48) (1.96) (1.97) t (2.02) (-0.11)
LβΠ

0.51 -0.51 0.56 -0.62 -0.57 tboot (1.65) (-0.09)
t (0.50) (-0.65) (0.56) (-0.77) (-0.70) Low βΠ,p,t -3.33 16.56
LNRC -2.09 -2.93 -2.17 -2.86 -2.92 t (-0.54) (4.09)
t (-0.64) (-1.09) (-0.66) (-1.06) (-1.09) tboot (-0.52) (3.18)
LβΠ×NRC 2.36 Diff 10.98 -17.05
t (3.63) t (1.90) (-2.69)
LβΠ,p×NRC 2.45 2.17 tboot (1.40) (-2.27)

t (2.80) (2.50)
LβΠ,t×NRC 2.45 2.43

t (3.45) (3.42)
R2 0.71 8.80 1.40 8.26 8.80
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Table 7: The Nominal-Real Covariance and the Market Risk Premium (MRP)
Panel A of this table presents coefficient estimates from time-series predictive regressions of CRSP value-weighted excess stock
market returns on the market’s inflation beta (βΠ,m,t), the nominal-real covariance (NRCCt ), and their interaction. The right

block of results in Panel A presents the predicted MRP from Model [2] in four cases, that is, when βΠ,m,t and NRCCt equal
plus or minus one standard deviation from their respective means. We present this regression for the twelve-month horizon and
standard errors are Newey-West(12). To accommodate interpretation, NRCCt is standardized and βΠ,m,t is demeaned. Panel
B presents non-parametric estimates of the MRP in four similar cases. These estimates are calculated by averaging realized
excess market returns in sample months t+ 1 when βΠ,m,t and NRCCt in month t are either below the 40th or above the 60th

percentile. The sample period is July 1967 to December 2014.

Panel A: Time-Series Predictive Regression

Coefficient Estimates Predicted MRP from [2]
Model [1] [2] High NRCCt Low NRCCt

L0,m 6.39 3.02 High βΠ,m,t 4.57 -4.03
t (2.95) (1.26) t (1.46) (-0.68)
LβΠ,m 0.28 -1.29 Low βΠ,m,t -2.08 13.61
t (0.23) (-1.16) t (-0.41) (4.08)
LNRC,m -1.14 -1.77 Diff 6.65 -17.64
t (-0.39) (-0.72) t (1.50) (-2.54)
LβΠ×NRC,m 2.85
t (3.55)
R2 -0.08 8.59

Panel B: Non-Parametric Estimates of the MRP

NRCCt ≥ P60 NRCCt ≤ P40

βΠ,m,t ≥ P60 8.10 -2.06
t (1.77) (-0.25)
βΠ,m,t ≤ P40 4.01 16.14
t (0.50) (3.03)
Diff 4.09 -18.20
t (0.44) (-1.84)
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Table 8: Sorting Stocks on Exposure to Inflation-Hedging Industry Factors
For this table, we rank 48 industries on their full sample, unconditional exposure to ARMA(1,1)-innovations in inflation (uΠ,t).
From this ranking, we construct long-short industry factors that equal-weight the top (bottom) K industries, where K ranges
from one to five. We then sort individual stocks in decile portfolios on their (60 month rolling window) exposure to these
industry factors. We leave out all stocks that belong to the top and bottom K industries, which are presented in Panel A. We
then construct a High-minus-Low decile portfolio using the market-value weighted portfolios of the stocks with the highest and
lowest exposures to the Kth industry factor. For each of these K sorts, we present in Panel B: the ex post, or post-ranking,
exposure to uΠ,t; and, the estimates from a predictive regression at the annual horizon of the High-minus-Low portfolio returns
on the lagged nominal-real covariance (see Eq. (7) of the paper).

K 1 2 3 4 5

Panel A: The Five Best and Worst Inflation Hedging Industries

Top 1 Coal Coal Coal Coal Coal
(Best Hedges) 2 Oil Oil Oil Oil

3 Gold Gold Gold
4 Mines Mines
5 Agriculture

Bottom 1 Meals Meals Meals Meals Meals
(Worst Hedges) 2 Textiles Textiles Textiles Textiles

3 Clothes Clothes Clothes
4 Transportation Transportation
5 Personal Svcs.

Panel B: Inflation Exposure and Predictability of Industry-Sorted Portfolios

βΠ,post 5.18 4.70 4.41 4.27 4.21
(4.99) (4.57) (4.33) (4.49) (4.32)

L0 -4.10 -4.97 -5.27 -4.78 -5.05
(-1.36) (-2.17) (-2.30) (-2.12) (-2.20)

LNRC 9.03 5.86 6.01 6.26 5.64
(3.16) (2.77) (3.01) (3.19) (2.96)

R2 12.13 8.72 9.15 9.94 8.04
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Table 9: The Inflation Risk Premium Within- and Across-Industry
This table presents time-series predictive regressions for two alternative inflation risk premia (derived from a within- and an
across-industry sort) on the lagged nominal-real covariance. For the across-industry sort, we calculate the inflation beta of
each of 48 industries as the value-weighted average inflation beta of all stocks in that industry. We sort the industries into
quintile portfolios, such that each across-industry quintile portfolio contains either 9 or 10 industries, which we equal-weight
to calculate returns. For the within-industry sort, we first construct five value-weighted stock portfolios within each of the 48
industries by splitting at the quintiles of ranked inflation betas of the stocks within that industry. This gives us a total of 48-by-5
value-weighted portfolios. Within-industry quintile portfolio returns are then calculated as the equal-weighted average over the
48 industries. The aggregate across- and within-industry effects are presented in the last column as the difference between the
High and Low across- and within-industry portfolio returns, respectively. For each portfolio, we present coefficient estimates
from the predictive regression of twelve-month compounded future returns on the lagged nominal-real covariance (as in Table
5).

Panel A: Across-Industry

High 2.00 3.00 4.00 Low High-Low
βΠ industries βΠ industries

L0 5.93 6.99 7.94 5.78 9.29 -3.36
t (2.98) (3.29) (3.57) (2.41) (3.62) (-1.95)
LNRC 0.69 -0.67 -1.23 -1.51 -3.94 4.63
t (0.30) (-0.28) (-0.48) (-0.54) (-1.30) (2.70)
R2 -0.02 -0.05 0.22 0.38 2.95 10.03

Panel B: Within-Industry

High 2.00 3.00 4.00 Low High-Low
βΠ stocks βΠ stocks

L0 6.56 7.16 7.78 7.89 8.28 -1.73
t (2.58) (2.93) (3.54) (3.33) (3.42) (-1.55)
LNRC 0.27 0.15 -1.09 -2.10 -2.97 3.24
t (0.09) (0.05) (-0.41) (-0.75) (-1.07) (3.29)
R2 -0.17 -0.17 0.14 0.86 1.74 10.81
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Table 10: Inflation Risk in Cash Flows Versus Discount Rates
We use the procedure in Campbell and Vuolteenaho (2004) to decompose the unexpected return of the High and Low inflation
beta-sorted portfolios into discount rate and cash flow news: Rt+1 − Et(Rt+1) = −NDR,t+1 + NCF,t+1. We regress each of

these components separately on ARMA(1,1)-innovations in inflation (uΠ,t) to decompose inflation betas: βΠ = β−DRΠ + βCFΠ .
We consider three sets of state variables. In the first set, we include the term spread (TS), price-earnings ratio (PE), and value
spread (V S). The second set includes the dividend yield (DY ), default spread (DS) and TS. In the third set, we add the
nominal-real covariance (NRCC) to the first specification. To ensure that the VAR-models are correctly specified, we include in
all three specifications the dividend yield of the respective inflation beta-sorted portfolio (DYH/L) as a state variable. We report
below the estimated exposures. The t-statistics use either Newey-West standard errors with one lag (tNW ) or standard errors
simulated under the null of no stock return predictability as in Campbell (1991) (tsim). In this simulation, we allow (innovations
in) the state variables and inflation to be correlated, just like in the data. For each portfolio, we also report the resulting return
variance decomposition (column % Var) that shows the share of return variance explained by (the negative of) discount rate
news, cash flow news, and two times their covariance. In the last row, we report the fraction of the High-minus-Low difference
in inflation beta coming from exposure in cash flows.

Model 1: TS, PE, V S,DYH/L Model 2: DYMKT , DS, TS,DYH/L Model 3: NRCC , TS, PE, V S,DYH/L

βΠ tNW tsim % Var βΠ tNW tsim % Var βΠ tNW tsim % Var

High Rt+1 − Et[Rt+1] -0.89 (-0.54) (-0.83) 1.00 -0.94 (-0.57) (-0.90) 1.00 -0.87 (-0.52) (-0.81) 1.00
−NDR,t+1 -1.78 (-1.57) (-1.94) 0.43 -1.66 (-1.32) (-1.06) 0.57 -2.82 (-2.14) (-2.84) 0.87
NCF,t+1 0.89 (1.24) (0.66) 0.34 0.71 (1.01) (0.39) 0.32 1.95 (1.67) (1.40) 1.08
2× Cov(−NDR,t+1, NCF,t+1) 0.23 0.11 -0.95

Low Rt+1 − Et[Rt+1] -2.71 (-1.65) (-2.58) 1.00 -2.73 (-1.66) (-2.60) 1.00 -2.70 (-1.65) (-2.57) 1.00
−NDR,t+1 -1.20 (-1.66) (-1.29) 0.37 -2.02 (-3.73) (-0.17) 0.37 -1.05 (-1.40) (-0.88) 0.35
NCF,t+1 -1.51 (-1.45) (-1.15) 0.42 -0.71 (-0.48) (-0.06) 0.62 -1.65 (-1.70) (-1.13) 0.39
2× Cov(−NDR,t+1, NCF,t+1) 0.22 0.02 0.26
βCFΠ,High−β

CF
Π,Low

βΠ,High−βΠ,Low
1.32 0.80 1.96
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Table 11: Calibrated Parameters of the Model
This table reports the configuration of the parameters used in the calibration of the model. The model is calibrated on a monthly
decision interval.

Preferences
Discount factor δ 0.99
Elasticity of intertemporal substitution ψ 2
Risk aversion coefficient γ 15

Inflation
Mean of inflation rate µπ 0.0033
Inflation AR(1) coefficient ρπ 0.7992
Inflation MA(1) coefficients φπ -0.0025

ξπ 7.30× 10−4

Consumption
Mean of real consumption growth µc 0.0016
Exposure of expected consumption to inflation ρc -0.0521
Volatility of consumption-specific shocks σc 0.0020
Consumption exposure to inflation shocks ξc -0.1983

Nominal-real covariance
Mean of nominal-real covariance ϕ0 -0.0062
Persistence of nominal-real covariance ν 0.9963
Volatility of nominal-real covariance σw 0.0029

High inflation beta portfolio
Mean of dividend growth µH 3.44× 10−4

Exposure of expected dividends to inflation ρH -0.2345
Exposure to consumption-specific shocks σH 0.0318
Exposure to inflation shocks ξH 0.1942

Low inflation beta portfolio
Mean of dividend growth µL 0.0060
Exposure of expected dividends to inflation ρL 0.6989
Exposure to consumption-specific shocks σL -0.0517
Exposure to inflation shocks ξL 0.1082

Aggregate Market
Mean of dividend growth µMKT 1.72× 10−4

Exposure of expected dividends to inflation ρMKT 0.7099
Exposure to consumption-specific shocks σMKT 0.0337
Exposure to inflation shocks ξMKT -0.3076
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Table 12: Calibrated Moments
This table shows that the model can match means and standard deviations of returns and betas, as well as the slope coefficient
from regressing returns on the High-minus-Low portfolio (as well as the aggregate market portfolio) on the nominal-real covari-
ance.

Data Model

Descriptive Statistics
πt uπ,t ∆ct πt uπ,t ∆ct

Mean 3.93 0.11 1.97 3.93 0.00 1.97
St. dev. 1.11 0.85 1.13 1.11 0.85 2.49
AR(1) 62.47 15.35 -16.84 62.47 0.00 0.19

Correlations
πt 1 79.03 -17.75 1 76.71 -8.10
uπ,t 1 -17.41 1 0.00
∆ct 1 1

Predictve Regressions of Consumption Growth on Inflation

Uncond. Cond. Uncond. Cond.

d12
0 0.02 0.00 0.02 0.00
d12

1 -0.50 0.81 -0.50 1.00
R2 1.12 14.92 0.41 15.40

AR(1) NRCCt 99.63 99.63
St. dev. NRCCt 0.87 0.79

Characterizing Inflation Beta-Sorted Portfolios

High Low High Low

Mean βu,it -0.02 -3.02 -0.02 -3.04
St. dev. βu,it 3.61 3.25 4.03 2.86

Mean Ret. 5.26 9.49 5.28 9.42
St. dev. 22.72 21.78 22.74 18.97

Characterizing Inflation Risk Premium (IPHLt )

St. dev βu,HLt 1.36 1.00
LNRC,IPHLt

5.38 5.41

The NRC and the Market Risk Premium

Mean βu,mt -1.96 -1.95
St. dev. βu,mt 2.19 2.85
corr(βu,H , βu,m) 95.75 100.00
corr(βu,L, βu,m) 97.12 100.00
LβΠ×NRC,m 2.85 2.69
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Online Appendix to
“Time-Varying Inflation Risk

and Stock Returns”

In this Online Appendix, we present more detail for the block-bootstrap procedure as well as the derivation

of our model. We finally report results from a variety of robustness checks.

1 Bootstrap Algorithm

The block-bootstrap algorithm associated to the regressions of Tables 2, 5 and 6 in the paper consists of

the following steps.

1. In each replication m = 1, . . . , 1000, we construct pseudo-samples for both consumption growth and

inflation by drawing with replacement Tm overlapping two-year blocks from:

{∆Cmt+1:t+24,Π
m
t+1:t+24}, t = sm1 , s

m
2 , . . . , s

m
Tm (OA.1)

where the time indices, sm1 , s
m
2 , . . . , s

m
Tm

, are drawn randomly from the original time sequence 1, . . . , T .

The two-year block size is chosen to preserve the (auto-) correlation between consumption growth and

inflation in the data and to respect the estimation setup in Eqs. (2) and (3) of the paper. Additionally,

it is a way to conserve the size of the cross-section in the resampled CRSP file (see Step 3 below). We

join these blocks to construct a monthly time series matching the length of the sample from July 1967

to December 2014.

2. For m = 1, . . . , 1000, we run the two-stage tests described in Section 3. for the artificial data:

∆Cmt+1:t+K = dc,Km,0 + dc,Km,1(âKm,t + b̂Km,tΠ
m
t ) + emt+1:t+K , where (OA.2)

∆Cms+1:s+K = aKm,t + bKm,tΠ
m
s + ems+1:s+K , s = 1, ..., t−K, (OA.3)

and save the estimates dc,Km,0, dc,Km,1, and bKm,t, for K = 1, 3, 6, 12. The bootstrapped standard errors

reported in Table 2 are calculated as the standard deviation of dc,Km,0 and dc,Km,1 over the 1000 bootstrap

replications. The bootstrap estimates, b12
m,t, represents the artificial nominal-real covariance that is

going to be used to get the bootstrapped standard errors for the remaining tables of the paper.

3. Using the same time indexes sm1 , s
m
2 , . . . , s

m
Tm

, we re-sample all firms i = 1, . . . , I in the CRSP file. To

be consistent with the data, we bootstrap both returns, Rt+1 = {R1,t+1, R2,t+1, . . . , RI,t+1}′, and firm

characteristics, Zt = {MVt, BMt,MOMt}, with, e.g., MVt = {MV1,t,MV2,t, . . . ,MVI,t}′, such that:

{Rmt+1:t+24, Z
m
t:t+24−1}, t = sm1 , s

m
2 , . . . , s

m
Tm . (OA.4)
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Notice that the characteristics are lagged by one month just like in the data. We join these blocks to

construct 1000 artificial CRSP files matching the length of our sample.

4. In each replication, we estimate at the end of month t and for each artificial stock i its exposure to

ARMA(1,1)-innovations in inflation, denoted umΠ,t+1. The ARMA model is estimated for the inflation

series described in Step 1. The inflation betas are estimated using the WLS-Vasicek procedure described

in Section 4.1.1. of the paper. We require that an artificial stock return series has at least 24 out of

the last 60 months of returns available to estimate inflation beta, βmΠ,i,t. Since many stocks have some

missing returns in the CRSP file, due to late introduction or early exit, the overlapping block-bootstrap

reduces the number of firms that satisfy this requirement relative to the data. However, we end up with

about two-thirds of the number of firms that we use in the data in each bootstrapped cross-section.

5. For m = 1, . . . , 1000 and at the end of each month t, we then sort the artificial stocks on these inflation

betas and their market values to construct the ten value-weighted size-controlled inflation beta-sorted

portfolios that feature prominently in the paper, Rmp,t+1 = {RmHigh,t+1, R
m
2,t+1, . . . , R

m
Low,t+1}. The three

bootstrap estimates of the inflation risk premium are constructed as follows. First, we take the high-

minus-low spreading portfolio from this sort: Rm
IPHLt ,t+1

= RmHigh,t+1 − RmLow,t+1. Second, we regress

the artificial ARMA(1,1)-innovations in inflation, umΠ,t+1, on the inflation sorted portfolios to construct

the maximum correlation inflation-mimicking portfolio:

umΠ,t+1 = interceptm + weights′m ×Rmp,t+1 + emt+1, (OA.5)

such that Rm
IPMCt ,t+1

is the portfolio return weights′m × Rmp,t+1. Finally, we run a cross-sectional

regression of returns on lagged inflation betas, where we control for the firm characteristics:

Rmi,t+1 = lm,0,t + lm,Π,tβ
m
Π,i,t + lZ,tZ

m
n,t + umt+1. (OA.6)

The time series of coefficient estimates, lm,Π,t, represents our third estimate of the inflation risk premium

Rm
IPCSt ,t+1

.

6. For each replication, we then run the predictive regression described in Section 4.2. of the paper. That

is, we regress returns on the artificial inflation portfolios and risk premia (compounded over horizons

K = 1, 3, 12 months) on the lagged nominal-real covariance (i.e., the bootstrap coefficient estimate b12
m,t

from Step 2 above) using:

Rmp,t+1:t+K = Lm,0 + Lm,NRCb
12
m,t + εmt+1:t+K . (OA.7)

Note that the timing in the different steps of the bootstrap is consistent with the data, so that the left-

hand side returns are observed strictly after the consumption and inflation numbers used to estimate

the right-hand side nominal-real covariance. We use the standard deviation of the estimates Lm,0 and

2



Lm,NRC over the 1000 bootstrap replications as the standard error for the predictive regressions of

Tables 5.

7. Finally, we run the pooled predictive regressions described in Section 5.1. of the paper. That is, we

regress returns on the artificial inflation beta-sorted decile portfolios, p = High, 2, 3, ..., Low on their

time-varying inflation betas (βmΠ,p,t), the nominal-real covariance, and an interaction:

Rmp,t+1:t+K = Lm,0 + Lm,βΠ
βmΠ,p,t + Lm,NRCb

12
m,t + Lm,βΠ×NRC(βmΠ,p,t × b12

m,t) + εmt+1:t+K . (OA.8)

Because this regression includes an interaction term, the bootstrap may contain samples m that suffer

from multicollinearity. To address this problem, we evaluate the joint significance of the variables

by performing inference on the predicted risk premia when βmΠ,p,t and b12
m,t are at plus or minus one

standard deviation from their respective means in the block-bootstrapped sample. We use the standard

deviation of these predicted risk premia to calculate the t-statistics for the estimates report in Panel B

of Table 6.

2 Model Derivations

This section present detailed derivations of our model results, including expressions for the moments that

we target in our calibration.

2.1 Setup

The representative agent has preferences given by the recursive utility function of Epstein and Zin (1989)

and Kreps and Porteus (1978),

Ut (Wt) =

(
(1− δ)C1−1/ψ

t + δEt
[
Ut+1(Wt+1)1−γ] 1−1/ψ

1−γ

) 1
1−1/ψ

,

where Wt is real aggregate wealth and Ct is real aggregate consumption. The constant δ ∈ (0, 1) is the

discount rate, γ > 0 is the coefficient of relative risk aversion and ψ > 0 is the elasticity of intertemporal

substitution (EIS). The first order condition for the representative agent’s problem implies that the gross

return Ri,t+1 on any tradable asset i satisfies the Euler equation

1 = Et [Mt+1Ri,t+1] ,

with a stochastic discount factor Mt+1 given by

mt+1 ≡ logMt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1) rc,t+1, (OA.9)

where

θ =
1− γ
1− 1

ψ

, (OA.10)
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and lowercase letters denote logarithms, so that ∆ct = lnCt − lnCt−1 and rc,t = log (Rc,t). The processes

for real consumption growth, ∆ct, inflation, πt, the nominal-real covariance, ϕt, and real dividend growth

for asset i, ∆di,t, are exogenous and given by

πt+1 = µπ + ρπ (πt − µπ) + φπut+1 + ξπut, (OA.11)

∆ct+1 = µc + ρc (πt − µπ) + σcηt+1 + ξcϕt−1ut, (OA.12)

ϕt+1 = ϕ0 + v (ϕt − ϕ0) + σwwt+1, (OA.13)

∆di,t+1 = µi + ρi (πt − µπ) + σiηt+1 + ξiϕt−1ut, (OA.14)

ut, ηt, wt iid standard normal.

2.2 The Nominal-Real Covariance

The covariance between time-(t+ 1) inflation and consumption conditional on times t and t− 1 are

Covt (∆ct+1, πt+1) = 0,

Covt−1 (∆ct+1, πt+1) = φπρc (ξπ + φπρπ) + ξc (ρπφπ + ξπ)ϕt−1.

Conditional predictability of consumption growth with inflation is given by

Covt (∆ct+1+j , πt+1) =

 φ2
πρc + φπξcϕt , if j = 1

φπρcρ
j−2
π (ξπ + φπρπ) , if j > 1

,

and, using that

V art (πt+1) = φ2
π,

we get

bKt =
Covt

(∑K
j=1 ∆ct+1+j , πt+1

)
V art (πt+1)

=

(
1 +

(
ξπ
φπ

+ ρπ

)
ρK−1
π − 1

ρπ − 1

)
ρc +

ξc
φπ
ϕt

= hK +
ξc
φπ
ϕt, (OA.15)

where we have defined

hK ≡
(

1 +

(
ξπ
φπ

+ ρπ

)
ρK−1
π − 1

ρπ − 1

)
ρc. (OA.16)

Our main measure of the nominal-real covariance is

NRCCt ≡ b12
t . (OA.17)
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2.3 Coefficients of the Wealth-Consumption Ratio

To price assets, we conjecture (and later verify) that the log wealth-consumption ratio is linear quadratic

in the state variables πt, ϕt, and ut and has the following form

wct = A0 +A1 (πt − µπ) +A2ϕt−1ut +A3ut +A4 (ϕt − ϕ0) +A5

(
ϕ2
t − E

[
ϕ2
t

])
, (OA.18)

and that the price-dividend ratio for asset i is

pdi,t = Di,0 +Di,1 (πt − µπ) +Di,2ϕt−1ut +Di,3ut +Di,4 (ϕt − ϕ0) +Di,5

(
ϕ2
t − E

[
ϕ2
t

])
, (OA.19)

where

E
[
ϕ2
t

]
= ϕ2

0 +
σ2
w

1− v2
,

is the unconditional mean of ϕ2
t . A Campbell-Shiller approximation gives returns on the aggregate consump-

tion claim (the wealth portfolio), rc,t+1, and returns on any asset i, ri,t+1,

rc,t+1 = κ0 + κ1wct+1 − wct + ∆ct+1, (OA.20)

ri,t+1 = κi,0 + κi,1pdi,t+1 − pdi,t + ∆di,t+1, (OA.21)

with approximations constants

κ1 =
eE[wct]

eE[wct] + 1
, (OA.22)

κ0 = log
(
eE[wct] + 1

)
− eE[wct]

eE[wct] + 1
E [wct] , (OA.23)

κi,1 =
eE[pdi,t]

eE[pdi,t] + 1
, (OA.24)

κi,0 = log
(
eE[pdi,t] + 1

)
− eE[pdi,t]

eE[pdi,t] + 1
E [pdi,t] . (OA.25)

Using equations (OA.20), and (OA.9), we get

mt+1 + rc,t+1 = θ (log δ + κ0) + θ

(
1− 1

ψ

)
∆ct+1 + θ (κ1wct+1 − wct) . (OA.26)

The Euler equation for any asset i (including i = c) with lognormal returns is

0 = Et [mt+1 + ri,t+1] +
1

2
V art [mt+1 + ri,t+1] . (OA.27)

Plugging equation (OA.26) into (OA.27) with i = c, and evaluating conditional means and variances, the

Euler equation for the consumption claim (i = c) can be expressed as

0 = C0 + C1 (πt − µπ) + C2ϕt−1ut + C3ut + C4 (ϕt − ϕ0) + C5

(
ϕ2
t − E

[
ϕ2
t

])
,
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where Ci are constants that depend on A0, A1, A2, A3 , A4, A5. In order for the Euler equation to be satisfied

at all times, the coefficients Ci must be identically zero, which yields the following system of equations in

A0, A1, A2, A3, A4 , A5:

(πt − µπ) : 0 =

(
1− 1

ψ

)
ρc −A1 (1− κ1ρπ) , (OA.28)

(
ϕt−1ut

)
: 0 =

(
1− 1

ψ

)
ξc −A2, (OA.29)

(ut) : 0 = κ1ξπA1 −A3, (OA.30)

(ϕt − ϕ0) : 0 = θκ2
1A2 (A3 + φπA1) + (vκ1 − 1)A4, (OA.31)

+
(
2vθκ2

1σ
2
w

)
A4A5 − 2κ1ϕ0v (v − 1)

(
2θκ1σ

2
wA5 + 1

)
A5(

ϕ2
t − E

[
ϕ2
t

])
: 0 =

θκ2
1

2

(
A2

2 + 4v2σ2
wA

2
5

)
−A5

(
1− v2κ1

)
, (OA.32)

(const) : 0 =
θ2

2

(
1

ψ
− 1

)2

σ2
c −

θ

ψ
µc + θ (κ1 − 1)A0 + θ (κ0 + µc + ln δ)

+
1

2
θ2κ2

1

(
(A3 + ϕ0A2 + φπA1)

2
+ σ2

w

(
(A4 + 2ϕ0A5)

2
+ 2σ2

wA
2
5

))
+

θ2κ2
1σ

2
w

2 (1− v2)

(
A2

2 + 4v2σ2
wA

2
5

)
. (OA.33)

We solve for A1, A2, A3, A4, A5 in terms of A0

A1 =

(
1− 1

ψ

)
ρc

1− κ1ρπ
, (OA.34)

A2 =

(
1− 1

ψ

)
ξc, (OA.35)

A3 =

(
1− 1

ψ

)
κ1ξπρc

1− κ1ρπ
, (OA.36)

A4 =
A2θκ

2
1 (A1φπ +A3) + 2κ1ϕ0v (1− v)

(
1 + 2θκ1σ

2
wA5

)
A5

1− κ1v (1 + 2θκ1σ2
wA5)

, (OA.37)

A5 =
1− v2κ1

θ (2vκ1σw)
2

1−

√
1−

(
2 (1− γ) vκ2

1σwξc
1− v2κ1

)2
 , (OA.38)

where we pick the negative root in the expression for A5 (which comes from solving a quadratic equation)

so that ξc = 0 implies the intuitive economic restriction that the nominal-real covariance ϕt has no effect on

the wealth-consumption ratio when it does not affect consumption. Then we solve for A0 numerically using

equations (OA.23), (OA.22) and (OA.33).

2.4 Coefficients of the Price-Dividend Ratio

The calculation is analogous to that for the Ai but instead of using the Euler equation for rc,t, we use

the one for ri,t. The Euler equation for asset i can be expressed as

0 = Fi,0 + Fi,1 (πt − µπ) + Fi,2ϕt−1ut + Fi,3ut + Fi,4 (ϕt − ϕ0) + Fi,5
(
ϕ2
t − E

[
ϕ2
t

])
, (OA.39)
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where Fi,j are constants that depend on Di,0, Di,1, Di,2, Di,3, Di,4, Di,5. In order for the Euler equation to

be satisfied, the coefficients Fi,j must be identically zero, which yields the following system of five equations

in the five unknowns Di,1, Di,2, Di,3, Di,4, Di,5

(πt − µπ) : 0 = ρi −Di,1 (1− κi,1ρπ)

+ (θ − 1) (ρc +A1 (κ1ρπ − 1))− θ

ψ
ρc, (OA.40)(

ϕt−1ut
)

: 0 = ξi −Di,2 + (θ − 1) (ξc −A2)− θ

ψ
ξc, (OA.41)

(ut) : 0 = (θ − 1) (κ1ξπA1 −A3) + ξπκi,1Di,1 −Di,3, (OA.42)

(ϕt − ϕ0) : 0 = 2Di,5vκi,1ϕ0 (1− v)−Di,4 (1− vκi,1)

− (A4 − κ1v (A4 + 2A5ϕ0 (1− v))) (θ − 1)

+ (κi,1Di,2 + κ1A2 (θ − 1)) (κi,1Di,3 + κ1A3 (θ − 1))

+φπ (κi,1Di,2 + κ1A2 (θ − 1)) (κi,1Di,1 + κ1A1 (θ − 1))

+2vσ2
w (κi,1Di,4 + κ1A4 (θ − 1)) (κi,1Di,5 + κ1A5 (θ − 1))

−4vϕ0σ
2
w (κi,1Di,5 + κ1A5 (θ − 1))

2
(v − 1) , (OA.43)(

ϕ2
t − E

[
ϕ2
t

])
: 0 =

(
2v2σ2

wκ
2
i,1

)
D2
i,5

+
(
v2κi,1

(
4κ1σ

2
wA5 (θ − 1) + 1

)
− 1
)
Di,5

+
1

2
(κi,1Di,2 − κ1A2 + θκ1A2)

2

+A5 (θ − 1)
(
v2κ1

(
2κ1σ

2
wA5 (θ − 1) + 1

)
− 1
)
, (OA.44)
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and one equation for Di,0

(1− κi,1)Di,0 = κi,0 + µi + θ ln δ − θ

ψ
µc + (θ − 1) (κ0 + µc −A0 (1− κ1))

+
1

2

(
σi + σc

(
θ − θ

ψ
− 1

))2

+
1

2
φ2
π (κi,1Di,1 + (θ − 1)κ1A1)

2

+
1

2
κ1σ

2
wA4 (θ − 1) (2κi,1Di,4 + κ1 (θ − 1) (A4 + 4 (1− v)ϕ0A5))

+σ2
w

(
2ϕ2

0

(
1− v2

)
+ σ2

w

)
(κi,1Di,5 + κ1A5 (θ − 1))

2

+κi,1ϕ0 (κi,1Di,2 + (θ − 1)κ1A2) (φπDi,1 +Di,3)

+κ1 (θ − 1)ϕ0 (κi,1Di,2 + (θ − 1)κ1A2) (A3 + φπA1)

+
1

2
κi,1 (κi,1Di,3 + (θ − 1)κ1A3) (2φπDi,1 +Di,3)

+
1

2
κ1 (θ − 1) (κi,1Di,3 + (θ − 1)κ1A3) (A3 + 2φπA1)

+
1

2

(
ϕ2

0 +
σ2
w

1− v2

)
κ2

1 (θ − 1)
2 (
A2

2 + 4v2σ2
wA

2
5

)
+

(
ϕ2

0 +
σ2
w

1− v2

)
κi,1κ1 (θ − 1)

(
A2Di,2 + 4v2σ2

wA5Di,5

)
+κ2

i,1

(
D2
i,2 + 4v2σ2

wD
2
i,5

)
+

1

2
σ2
wκi,1Di,4κi,1 (4ϕ0Di,5 +Di,4)

+σ2
wκi,1σ

2
wκ1ϕ0 (θ − 1) (A4Di,5 +A5Di,4)

+2σ2
wvκ

2
1ϕ0A4A5 (θ − 1)

2
. (OA.45)

We solve for Di,j for j = 1, 2, 3, 4, 5 in terms of Di,0 in closed form, picking the negative root in the solution

of the quadratic equation for Di,5, as we did for the solution of the system of equations for Ai. We then solve

for Di,0 numerically using equations (OA.25), (OA.24) and (OA.45).

2.5 Conditional Pricing

We first write the SDF in terms of state variables
(
πt − µπ, ϕt−1ut, ut, ϕt − ϕ0, ϕ

2
t − E

[
ϕ2
t

])
and innova-

tions
(
ut+1, wt+1,

w2
t+1−1√

2
, ηt+1

)
. Note that the innovations are mean zero, variance one and orthogonal to

each other (even though wt+1 and w2
t+1 are not independent) since

Et
[
wt+1

(
w2
t+1 − 1

)]
= Et

[
w3
t+1

]
− Et [wt+1] = 0.
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The innovation to the SDF is

mt+1 − Et [mt+1] = κ1 (θ − 1) (φπA1 + ϕtA2 +A3)ut+1

+κ1σw (θ − 1) (A4 + 2ϕ0A5 (1− v) + 2vA5ϕt)wt+1

+
√

2κ1σ
2
w (θ − 1)A5

(
w2
t+1 − 1
√

2

)
+

(
θ

(
1− 1

ψ

)
− 1

)
σcηt+1. (OA.46)

We can then write

mt+1 − Et [mt+1] = −λu,tut+1 − λw,twt+1 − λ2w

(
w2
t+1 − 1
√

2

)
− ληηt+1,

where the prices of risk for
(
ut+1, wt+1,

w2
t+1−1√

2
, ηt+1

)
are

λu,t ≡ −Covt (mt+1, ut+1)

V art (ut+1)

= −κ1 (θ − 1) (φπA1 + ϕtA2 +A3)

= κ1

(
γ − 1

ψ

)(
ρc (φπ + κ1ξπ)

1− ρπκ1
+ ξcϕt

)
, (OA.47)

λw,t ≡ −Covt (mt+1, wt+1)

V art (wt+1)

= −κ1σw (θ − 1) (A4 + 2ϕ0A5 (1− v) + 2vA5ϕt) , (OA.48)

λ2w ≡ −
Covt

(
mt+1,

(
w2
t+1 − 1

)
/
√

2
)

V art
((
w2
t+1 − 1

)
/
√

2
)

= −
√

2κ1σ
2
w (θ − 1)A5, (OA.49)

λη ≡ −
Covt

(
mt+1, ηt+1

)
V art

(
ηt+1

)
= γσc. (OA.50)

For returns of asset i, we have

ri,t+1 = Et [ri,t+1] + βu,itut+1 + βw,iwt+1 + β2w,i

(
w2
t+1 − 1
√

2

)
+ βη,iηt+1, (OA.51)

where the conditional return is

Et [ri,t+1] = κi,0 + µi −Di,0 (1− κi,1)

+ (ρi −Di,1 (1− κi,1ρπ)) (πt − µπ)

−ut (Di,3 − ξπκi,1Di,1) + (ξi −Di,2)ϕt−1ut

+ (2Di,5vκi,1ϕ0 (1− v)−Di,4 (1− vκi,1)) (ϕt − ϕ0)

−Di,5

(
1− v2κi,1

) (
ϕ2
t − E

[
ϕ2
t

])
, (OA.52)
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and the quantities of risk are given by the betas

βu,it ≡
Covt (ut+1, ri,t+1)

V art (ut+1)

= κi,1 (φπDi,1 +Di,2ϕt +Di,3)

= κi,1

((
ρi
ρc
− 1

ψ

)
(φπ + ξπκi,1) ρc

1− ρπκi,1
+

(
ξi
ξc
− 1

ψ

)
ξcϕt

)
, (OA.53)

βw,it ≡
Covt (wt+1, ri,t+1)

V art (wt+1)

= κi,1σw (Di,4 + 2ϕ0Di,5 (1− v) + 2vDi,5ϕt) , (OA.54)

β2w,i ≡
Covt

((
w2
t+1 − 1

)
/
√

2, ri,t+1

)
V art

((
w2
t+1 − 1

)
/
√

2
)

=
√

2κi,1σ
2
wDi,5, (OA.55)

βη,i ≡
Covt

(
ηt+1, ri,t+1

)
V art

(
ηt+1

)
= σi. (OA.56)

Expected excess returns for asset i can then be written

−Covt (mt+1, ri,t+1) = −Et [(mt+1 − Et [mt+1]) (ri,t+1 − Et [ri,t+1])]

= λu,tβu,it + λw,tβw,it + λ2wβ2w,i + ληβη,i.

Of course, we can always set i = c and study the consumption portfolio:

rc,t+1 = Et [rc,t+1] + βu,ctut+1 + βw,ctwt+1 + β2w,c

(
w2
t+1 − 1
√

2

)
+ βη,cηt+1,

where

Et [rc,t+1] = κ0 + µc −A0 (1− κ1)

+ (ρc −A1 (1− κ1ρπ)) (πt − µπ)

+ (ξπκ1A1 −A3)ut

+ (ξc −A2)ϕt−1ut

+ (2vκ1ϕ0 (1− v)A5 − (1− vκ1)A4) (ϕt − ϕ0)

−A5

(
1− v2κ1

) (
ϕ2
t − E

[
ϕ2
t

])
,

10



and where the quantities of risk are given by the betas

βu,ct =
Covt (ut+1, rc,t+1)

V art (ut+1)

= κ1 (φπA1 +A2ϕt +A3) ,

βw,ct =
Covt (wt+1, rc,t+1)

V art (wt+1)

= κ1σw ((A4 + 2ϕ0A5 (1− v)) + 2vA5ϕt) ,

β2w,c =
Covt

((
w2
t+1 − 1

)
/
√

2, rc,t+1

)
V art

((
w2
t+1 − 1

)
/
√

2
)

=
√

2κ1σ
2
wA5,

βη,c =
Covt

(
ηt+1, rc,t+1

)
V art

(
ηt+1

)
= σc.

Expected excess returns for asset c can then be written

−Covt (mt+1, rc,t+1) = −Et [(mt+1 − Et [mt+1]) (rc,t+1 − Et [rc,t+1])]

= λu,tβu,ct + λw,tβw,ct + λ2wβ2w,c + ληβη,c.

Inflation betas and the price of risk with respect to the shock uΠ,t+1 ≡ φπut+1 are

βΠ,i,t = φπβu,it, (OA.57)

λΠ,t =
λu,t
φπ

. (OA.58)
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2.6 Derivation of equations (20) and (21)

First, we compute innovations for πt+2+j , ϕt+2+j and ϕ2
t+2+j :

πt+2+j = µπ + ρπ (πt+1+j − µπ) + φπut+2+j + ξπut+1+j ,

Et+1+j [πt+2+j ] = µπ + ρπ (πt+1+j − µπ) + ξπut+1+j ,

πt+2+j − Et+1+j [πt+2+j ] = φπut+2+j ,

ϕt+2+j = ϕ0 + v
(
ϕt+1+j − ϕ0

)
+ σwwt+2+j ,

Et+1+j

[
ϕt+2+j

]
= ϕ0 + v

(
ϕt+1+j − ϕ0

)
,

ϕt+2+j − Et+1+j

[
ϕt+2+j

]
= σwwt+2+j ,

ϕ2
t+2+j =

(
ϕ0 + v

(
ϕt+1+j − ϕ0

))2
+ σ2

ww
2
t+2+j

+2
(
ϕ0 + v

(
ϕt+1+j − ϕ0

))
σwwt+2+j ,

Et+1+j

[
ϕ2
t+2+j

]
=

(
ϕ0 + v

(
ϕt+1+j − ϕ0

))2
+ σ2

w,

ϕ2
t+2+j − Et+1+j

[
ϕ2
t+2+j

]
=
√

2σ2
w

(
w2
t+2+j − 1
√

2

)
+2
(
ϕ0 + v

(
ϕt+1+j − ϕ0

))
σwwt+2+j . (OA.59)
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We use these innovations to compute innovations in wct+2+j

wct+2+j = A0 +A1 (πt+2+j − µπ) +A2ϕt+1+jut+2+j +A3ut+2+j

+A4

(
ϕt+2+j − ϕ0

)
+A5

(
ϕ2
t+2+j − E

[
ϕ2
t

])
,

Et+1+j [wct+2+j ] = A0 +A1 (Et+1+j [πt+2+j ]− µπ) +A2Et+1+j

[
ϕt+1+jut+2+j

]
+A3Et+1+j [ut+2+j ] +A4

(
Et+1+j

[
ϕt+2+j

]
− ϕ0

)
+A5

(
Et+1+j

[
ϕ2
t+2+j

]
− E

[
ϕ2
t

])
,

wct+2+j − Et+1+j [wct+2+j ] = A1 (πt+2+j − Et+1+j [πt+2+j ]) +A2ϕt+1+jut+2+j

+A3ut+2+j +A4

(
ϕt+2+j − Et+1+j

[
ϕt+2+j

])
+A5

(
ϕ2
t+2+j − Et+1+j

[
ϕ2
t+2+j

])
= A1 (πt+2+j − Et+1+j [πt+2+j ]) +A2ϕt+1+jut+2+j

+A3ut+2+j +A4

(
ϕt+2+j − Et+1+j

[
ϕt+2+j

])
+A5

(
ϕ2
t+2+j − Et+1+j

[
ϕ2
t+2+j

])
=

(
A1φπ +A2ϕt+1+j +A3

)
ut+2+j

+
(
A4 + 2A5

(
ϕ0 + v

(
ϕt+1+j − ϕ0

)))
σwwt+2+j

+A5

√
2σ2

w

(
w2
t+2+j − 1
√

2

)
. (OA.60)

Innovations in consumption ∆ct+2+j are

∆ct+2+j = µc + ρc (πt+1+j − µπ) + σcηt+2+j + ξcϕt+jut+1+j ,

Et+1+j [∆ct+2+j ] = µc + ρc (πt+1+j − µπ) + ξcϕt+jut+1+j ,

∆ct+2+j − Et+1+j [∆ct+2+j ] = σcηt+2+j . (OA.61)

Since the shocks ut+2+j , wt+2+j , (w2
t+2+j−1)/

√
2 are independent of ηt+2+j , equations (OA.60) and (OA.61)

imply

Covt+1+j (∆ct+2+j , wct+2+j) = 0. (OA.62)

Eq. (OA.26) gives

mt+2+j + rc,t+2+j = θ (log δ + κ0) + θ

(
1− 1

ψ

)
∆ct+2+j + θ (κ1wct+2+j − wct+1+j)

= θ (log δ + κ0)− θwct+1+j + θ

(
1− 1

ψ

)
∆ct+2+j + θκ1wct+2+j . (OA.63)
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Eqs. (OA.61) and (OA.62) then imply

V art+1+j (mt+2+j + rc,t+2+j) = V art+1+j

(
θ

(
1− 1

ψ

)
∆ct+2+j + θκ1wct+2+j

)
= θ2

(
1− 1

ψ

)2

V art+1+j (∆ct+2+j)

+ (θκ1)
2
V art+1+j (wct+2+j)

+2θ2κ1

(
1− 1

ψ

)
Covt+1+j (∆ct+2+j , wct+2+j)

= θ2

(
1− 1

ψ

)2

σ2
c + (θκ1)

2
V art+1+j (wct+2+j) .

The innovations in V art+1+j (mt+2+j + rc,t+2+j) are

(Et+1 − Et)V art+1+j (mt+2+j + rc,t+2+j) = (θκ1)
2

(Et+1 − Et)V art+1+j (wct+2+j) . (OA.64)

Plug (OA.63) evaluated at j = 1 into the first term of the Euler equation (OA.27) evaluated at t+ 2 to get

0 = Et+1 [mt+2 + rc,t+2] +
1

2
V art+1 [mt+2 + rc,t+2] ,

0 = Et+1

[
θ (log δ + κ0) + θ

(
1− 1

ψ

)
∆ct+2 + θ (κ1wct+2 − wct+1)

]
+

1

2
V art+1 [mt+2 + rc,t+2] .

Solving for wct+1 and iterating forward

wct+1 = Et+1

[
log δ + κ0 +

(
1− 1

ψ

)
∆ct+2 + κ1wct+2

]
+

1

2θ
V art+1 [mt+2 + rc,t+2]

= log δ + κ0 +

(
1− 1

ψ

)
Et+1 [∆ct+2] +

1

2θ
V art+1 [mt+2 + rc,t+2] + κ1Et+1 [wct+2]

= log δ + κ0 +

(
1− 1

ψ

)
Et+1 [∆ct+2] +

1

2θ
V art+1 [mt+2 + rc,t+2]

+κ1Et+1

[
log δ + κ0 +

(
1− 1

ψ

)
Et+2 [∆ct+3] +

1

2θ
V art+2 [mt+3 + rc,t+3] + κ1Et+2 [wct+3]

]
= (1 + κ1) (log δ + κ0)

+

(
1− 1

ψ

)
[Et+1 [∆ct+2] + κ1Et+2 [∆ct+3]]

+
1

2θ
Et+1 [V art+1 [mt+2 + rc,t+2] + κ1V art+2 [mt+3 + rc,t+3]]

+κ2
1Et+1 [wct+3]

= ...

= (log δ + κ0)

∞∑
j=0

κj1 +

(
1− 1

ψ

)
Et+1

∞∑
j=0

κj1Et+1+j [∆ct+2+j ]

+
1

2θ
Et+1

∞∑
j=0

κj1V art+1+j [mt+2+j + rc,t+2+j ] + lim
j→∞

κj1Et+1+jwct+2+j . (OA.65)
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Assuming the that the bubble term vanishes and applying (Et+1 − Et) to both sides gives

(Et+1 − Et)wct+1 =

(
1− 1

ψ

)
(Et+1 − Et)

∞∑
j=0

κj1Et+1+j [∆ct+2+j ]

+
1

2θ
(Et+1 − Et)

∞∑
j=0

κj1V art+1+j [mt+2+j + rc,t+2+j ] . (OA.66)

Using (OA.64) in (OA.66) gives

(Et+1 − Et)wct+1 =

(
1− 1

ψ

)
(Et+1 − Et)

∞∑
j=0

κj1Et+1+j [∆ct+2+j ]

+
1

2θ
(Et+1 − Et)

∞∑
j=0

κj1V art+1+j [mt+2+j + rc,t+2+j ]

=

(
1− 1

ψ

)
(Et+1 − Et)

∞∑
j=0

κj1Et+1+j [∆ct+2+j ]

+
θκ2

1

2
(Et+1 − Et)

∞∑
j=0

κj1V art+1+j (wct+2+j) . (OA.67)

Plugging (OA.20) into (OA.9) and using (OA.10) gives

mt+1 = θ log δ − θ

ψ
∆ct+1 − (1− θ) rc,t+1

= θ log δ + (θ − 1)κ0 − (θ − 1)wct − γ∆ct+1 − (1− θ)κ1wct+1.

Applying (Et+1 − Et) to both sides and using (OA.67) gives equations (20)-(21)

mt+1 − Etmt+1 = −γ (Et+1 − Et) ∆ct+1 − (1− θ)κ1 (Et+1 − Et)wct+1

= −γ(Et+1 − Et)∆ct+1

−(1− θ)κ1

((
1− 1

ψ

)
(Et+1 − Et)

∞∑
j=0

κj1Et+1+j [∆ct+2+j ]

+
θκ2

1

2
(Et+1 − Et)

∞∑
j=0

κj1V art+1+j (wct+2+j)

)

= −γNC,t+1 − (1− θ)κ1

((
1− 1

ψ

)
NPATH,t+1 +

θκ2
1

2
NRISK,t+1

)
,

where we define

NC,t+1 ≡ (Et+1 − Et) ∆ct+1,

NPATH,t+1 ≡ (Et+1 − Et)
∞∑
j=0

κj1Et+1+j [∆ct+2+j ] ,

NRISK,t+1 ≡ (Et+1 − Et)
∞∑
j=0

κj1V art+1+j (wct+2+j) .
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2.7 Shocks Driving NC,t+1, NPATH,t+1, and NRISK,t+1

Using equation (14), news to NC,t+1 depends only on the shock ηt+1, such that

− γNC,t+1 = −γσcηt+1. (OA.68)

NPATH,t+1 in equation (22) can be obtained by direct computation using equation (14) and the law of iterated

expectations:

NPATH,t+1 = (Et+1 − Et)
∞∑
j=0

κj1Et+1+j [∆ct+2+j ]

= (Et+1 − Et)
∞∑
j=0

κj1∆ct+2+j

= (Et+1 − Et) ∆ct+2 + (Et+1 − Et)
∞∑
j=1

κj1∆ct+2+j

= (φπρc + ξcϕt)ut+1 +

∞∑
j=1

κj1ρ
j−1
π ρc (ξπ + ρπφπ)ut+1

=

(
φπρc

1− ρπκ1
+ ξcϕt +

ρcκ1ξπ
1− ρπκ1

)
ut+1. (OA.69)

We now show that NRISK,t+1 depends only on the nominal-real covariance shock wt+1. Eqs. (21) and

(OA.46) give

mt+1 − Et [mt+1] = −γNC,t+1 − (1− θ)κ1

((
1− 1

ψ

)
NPATH,t+1 +

θκ2
1

2
NRISK,t+1

)
= κ1 (θ − 1) (φπA1 + ϕtA2 +A3)ut+1

+

(
θ

(
1− 1

ψ

)
− 1

)
σcηt+1

+κ1σw (θ − 1) (A4 + 2ϕ0A5 (1− v) + 2vA5ϕt)wt+1

+
√

2κ1σ
2
w (θ − 1)A5

(
w2
t+1 − 1
√

2

)
.

Solving for
κ3

1

2 θ (θ − 1)NRISK,t+1 gives

+
κ3

1

2
θ (θ − 1)NRISK,t+1 = κ1 (θ − 1) (φπA1 + ϕtA2 +A3)ut+1

− (θ − 1)κ1

(
1− 1

ψ

)
NPATH,t+1

+

(
θ

(
1− 1

ψ

)
− 1

)
σcηt+1 + γNC,t+1

+κ1σw (θ − 1) (A4 + 2ϕ0A5 (1− v) + 2vA5ϕt)wt+1

+
√

2κ1σ
2
w (θ − 1)A5

(
w2
t+1 − 1
√

2

)
.
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Using (OA.34)-(OA.36), (OA.68) and (OA.69), the last equation becomes

κ3
1

2
θ(θ − 1)NRISK,t+1 = κ1σw (θ − 1) (A4 + 2ϕ0A5 (1− v) + 2vA5ϕt)wt+1

+
√

2κ1σ
2
w (θ − 1)A5

(
w2
t+1 − 1
√

2

)
, (OA.70)

which shows NRISK,t+1 depends on the shock wt+1 but neither on ηt+1 nor ut+1. Using equations (OA.34)-

(OA.38) and (OA.47)-(OA.50), equations (OA.68), (OA.69) and (OA.70 ) can be written as

γNC,t+1 = ληηt+1,

κ1 (1− θ)
(

1− 1

ψ

)
NPATH,t+1 = λu,tut+1,

κ3
1

2
θ(θ − 1)NRISK,t+1 = −λw,twt+1 − λ2w

(
w2
t+1 − 1
√

2

)
. (OA.71)

2.8 Derivation of equation (25)

Using equation (OA.21) in equation (OA.27) and solving for pdi,t+1 gives

pdi,t+1 = Et+1 [mt+2 + κi,0 + ∆di,t+2 + κi,1pdi,t+2] +
1

2
V art+1 [mt+2 + κi,1pdi,t+2 + ∆di,t+2] . (OA.72)

Iterating forward, we get

pdi,t+1 = Et+1 [mt+2 + κi,0 + ∆di,t+2] +
1

2
V art+1 [mt+2 + κi,1pdi,t+2 + ∆di,t+2]

+κi,1Et+1 [pdi,t+2]

= Et+1 [mt+2 + κi,0 + ∆di,t+2] +
1

2
V art+1 [mt+2 + κi,1pdi,t+2 + ∆di,t+2]

+κi,1Et+1

[
Et+2 [mt+3 + κi,0 + ∆di,t+3] +

1

2
V art+2 [mt+3 + κi,1pdi,t+3 + ∆di,t+3]

+κi,1Et+2 [pdi,t+3]
]

= Et+1 [mt+2 + κi,0 + ∆di,t+2] + κi,1Et+1Et+2 [mt+3 + κi,0 + ∆di,t+3]

+
1

2
V art+1 [mt+2 + κi,1pdi,t+2 + ∆di,t+2] +

1

2
κi,1Et+1V art+2 [mt+3 + κi,1pdi,t+3 + ∆di,t+3]

+κi,1Et+1 [pdi,t+3]

= ...

= Et+1

∞∑
q=0

κqi,1Et+1+q [mt+2+q + κi,0 + ∆di,t+2+q]

+
1

2
Et+1

∞∑
q=0

κqi,1V art+1+q [mt+2+q + κi,1pdi,t+2+q + ∆di,t+2+q]

+ lim
q→∞

κqi,1Et+1 [pdi,t+2+q] . (OA.73)
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Applying (Et+1 − Et) to both sides and assuming that the bubble term is zero

(Et+1 − Et) pdi,t+1 = (Et+1 − Et)
∞∑
q=0

κqi,1Et+1+q [mt+2+q]

+
1

2
(Et+1 − Et)

∞∑
q=0

κqi,1V art+1+q [mt+2+q] (OA.74)

+ (Et+1 − Et)
∞∑
q=0

κqi,1Et+1+q [∆di,t+2+q]

+
κ2
i,1

2
(Et+1 − Et)

∞∑
q=0

κqi,1V art+1+q [pdi,t+2+q]

+
1

2
(Et+1 − Et)

∞∑
q=0

κqi,1V art+1+q [∆di,t+2+q]

+κi,1 (Et+1 − Et)
∞∑
q=0

κqi,1Covt+1+q [mt+2+q, pdi,t+2+q]

+κi,1 (Et+1 − Et)
∞∑
q=0

κqi,1Covt+1+q [pdi,t+2+q,∆di,t+2+q] . (OA.75)

Applying (Et+1 − Et) to both sides of equation (OA.21) and using equation (OA.75) gives equation (25)

(Et+1 − Et) ri,t+1 = κi,1 (Et+1 − Et) pdi,t+1 + (Et+1 − Et) ∆di,t+1

= κi,1

(
N i
PATH,t+1 +N i

m,t+1 +
1

2
N i
RISK,t+1

)
+N i

D,t+1,
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where we define

N i
PATH,t+1 ≡ (Et+1 − Et)

∞∑
q=0

κqi,1Et+1+q [∆di,t+2+q] ,

N i
m,t+1 ≡ (Et+1 − Et)

∞∑
q=0

κqi,1Et+1+q [mt+2+q] ,

N i
RISK,t+1 ≡ (Et+1 − Et)

∞∑
q=0

κqi,1V art+1+q [mt+2+q + κi,1pdi,t+1 + ∆di,t+1]

=
1

2
(Et+1 − Et)

∞∑
q=0

κqi,1V art+1+q [mt+2+q]

+
κ2
i,1

2
(Et+1 − Et)

∞∑
q=0

κqi,1V art+1+q [pdi,t+2+q]

+
1

2
(Et+1 − Et)

∞∑
q=0

κqi,1V art+1+q [∆di,t+2+q]

+κi,1 (Et+1 − Et)
∞∑
q=0

κqi,1Covt+1+q [mt+2+q, pdi,t+2+q]

+κi,1 (Et+1 − Et)
∞∑
q=0

κqi,1Covt+1+q [pdi,t+2+q,∆di,t+2+q]

+κi,1 (Et+1 − Et)
∞∑
q=0

κqi,1Covt+1+q [mt+2+q,∆di,t+2+q] ,

N i
D,t+1 ≡ (Et+1 − Et) ∆di,t+1.

2.9 Shocks Driving N i
PATH,t+1, N

i
m,t+1, N

i
RISK,t+1 and N i

D,t+1

N i
PATH,t+1 can be computed directly from equations (OA.11)-(OA.14):

N i
PATH,t+1 ≡ (Et+1 − Et)

∞∑
q=0

κqi,1Et+1+q [∆di,t+2+q]

= (Et+1 − Et)
∞∑
q=0

κqi,1
(
µi + ρi (πt+1+q − µπ) + ξiϕt+qut+1+q

)
=

(
ρi (φπ + κi,1ξπ)

1− ρπκi,1
+ ξiϕt

)
ut+1.

and depends only on ut+1. Iterating equation (OA.11) forward

πt+j = µπ + ρπ (πt+j−1 − µπ) + φπut+j + ξπut+j−1

= µπ + ρπ (ρπ (πt+j−2 − µπ) + φπut+j−1 + ξπut+j−2) + φπut+j + ξπut+j−1

= ...

= µπ + ρjπ (πt − µπ) + φπut+j − ρjπφπut +

j−1∑
q=0

ρqπ (ρπφπ + ξπ)ut+j−1−q, (OA.76)
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gives

(Et+1 − Et)πt+1+j =

 φπut+1 , if j = 0

ρj−1
π (ρπφπ + ξπ)ut+1 , if j > 0

.

It follows that

(Et+1 − Et)
∞∑
q=0

κqi,1πt+1+j = (Et+1 − Et)πt+1 + (Et+1 − Et)
∞∑
q=1

κqi,1πt+1+q

=
(
φπ +

κi,1 (ρπφπ + ξπ)

1− κi,1ρπ

)
ut+1. (OA.77)

Using equation (OA.20) in equation (OA.9) gives

Et+1+j [mt+2+j ] = θ log δ + (θ − 1)κ0 − γEt+1+j∆ct+2+j − (θ − 1)wct+1+j

+ (θ − 1)κ1Et+1+jwct+2+j .

Plugging (OA.12) and (OA.18) into the last equation and computing expectations

Et+1+j [mt+2+j ] = θ log δ + (θ − 1)κ0 − γ
(
µc + ρc (πt+1+j − µπ) + ξcϕt+jut+1+j

)
− (θ − 1)

(
A0 +A1 (πt+1+j − µπ) +A2ϕt+jut+1+j +A3ut+1+j

+A4

(
ϕt+1+j − ϕ0

)
+A5

(
ϕ2
t+1+j − E

[
ϕ2
t

]) )
+ (θ − 1)κ1

(
A0 +A1 (ρπ (πt+1+j − µπ) + ξπut+1+j)

+A4

(
Et+1+jϕt+2+j − ϕ0

)
+A5

(
Et+1+jϕ

2
t+2+j − E

[
ϕ2
t

]) )
= θ log δ + (θ − 1)κ0 − γµc − (θ − 1)A0 + (θ − 1)κ1A0

−ρc
ψ

(πt+1+j − µπ)

+

(
(θ − 1) (κ1A1ξπ −A3)− 1

ψ
ξcϕt+j

)
ut+1+j

− (θ − 1)A4

(
ϕt+1+j − ϕ0

)
− (θ − 1)A5

(
ϕ2
t+1+j − E

[
ϕ2
t

])
+ (θ − 1)κ1A4

(
Et+1+jϕt+2+j − ϕ0

)
+ (θ − 1)κ1A5

(
Et+1+jϕ

2
t+2+j − E

[
ϕ2
t

])
. (OA.78)
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N i
m,t+1 can now be computed using equations (OA.77) and (OA.78)

N i
m,t+1 = (Et+1 − Et)

∞∑
q=0

κqi,1Et+1+j [mt+2+j ]

= −ρc
ψ

(Et+1 − Et)
∞∑
q=0

κqi,1πt+1+j

+ (Et+1 − Et)
∞∑
q=0

κqi,1

(
(θ − 1) (κ1A1ξπ −A3)− 1

ψ
ξcϕt+j

)
ut+1+j

+ (Et+1 − Et)
∞∑
q=0

κqi,1
[
− (θ − 1)A4

(
ϕt+1+j − ϕ0

)
− (θ − 1)A5

(
ϕ2
t+1+j − E

[
ϕ2
t

])]
+ (Et+1 − Et)

∞∑
q=0

κqi,1

[
(θ − 1)κ1A4

(
Et+1+jϕt+2+j − ϕ0

)
+ (θ − 1)κ1A5

(
Et+1+jϕ

2
t+2+j − E

[
ϕ2
t

]) ]
= −ρc

ψ

κi,1 (ρπφπ + ξπ)

1− κi,1ρπ
ut+1

+

(
(θ − 1) (κ1A1ξπ −A3)− ρc

ψ
φπ −

1

ψ
ξcϕt

)
ut+1

+ (Et+1 − Et)
∞∑
q=0

κqi,1
[
− (θ − 1)A4

(
ϕt+1+j − ϕ0

)
− (θ − 1)A5

(
ϕ2
t+1+j − E

[
ϕ2
t

])]
+ (Et+1 − Et)

∞∑
q=0

κqi,1

[
(θ − 1)κ1A4

(
Et+1+jϕt+2+j − ϕ0

)
+ (θ − 1)κ1A5

(
Et+1+jϕ

2
t+2+j − E

[
ϕ2
t

]) ]
. (OA.79)

By equation (OA.13), the innovations (Et+1 − Et)ϕt+j+2 and (Et+1 − Et)ϕ2
t+j+2 only depend on the shock

wt+1, so we can write equation (OA.79 ) as

N i
m,t+1 = −ρc

ψ

κi,1 (ρπφπ + ξπ)

1− κi,1ρπ
ut+1

+

(
(θ − 1) (κ1A1ξπ −A3)− ρc

ψ
φπ −

1

ψ
ξcϕt

)
ut+1

+R (wt+1) , (OA.80)

where R (·) is a function of wt+1 but not of
(
ηt+1, ut+1

)
. By direct computation, equation (OA.14) implies

that

N i
D,t+1 ≡ (Et+1 − Et) ∆di,t+1

= σiηt+1, (OA.81)

and thus N i
D,t+1 depends only on the shock ηt+1. Finally, by noting that N i

RISK,t+1 depends only on variances

and covariances and that ϕt is the only source of heteroskedasticity in the model, N i
RISK,t+1 depends only
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on the shock wt+1.

2.10 Regression from Table 7

The goal of this section is to compute the coefficient LβΠ×NRC,m in regression (9) when the regression is

run in the model (instead of in the data, as is done in Table 7).

2.101. Preliminary Calculations

Iterating equation (OA.13) forward, we have that for j > 1

ϕt+j − ϕ0 = v
(
ϕt+j−1 − ϕ0

)
+ σwwt+j

= v2
(
ϕt+j−2 − ϕ0

)
+ vσwwt+j−1 + σwwt+j

= ...

= vj (ϕt − ϕ0) + vj−1σwwt+1 + ...+ vσwwt+j−1 + σwwt+j

= vj (ϕt − ϕ0) +

j−1∑
q=0

vqσwwt+j−q. (OA.82)

Squaring both sides gives

ϕ2
t+j =

(
ϕ0 + vj (ϕt − ϕ0)

)2
+ 2

(
ϕ0 + vj (ϕt − ϕ0)

) j−1∑
q=0

vqσwwt+j−q

+

(
j−1∑
q=0

vqσwwt+j−q

)2

. (OA.83)

Taking expectations conditional on time t in equations (OA.76), ( OA.82) and (OA.83) gives

Et [πt+s−1]− µπ =

 πt − µπ , if s = 1

ρs−1
π (πt − µπ) + ρs−2

π ξπut , if s > 1
,

Et
[
ϕt+s−1 − ϕ0

]
=

 ϕt − ϕ0 , if s = 1

vs−1 (ϕt − ϕ0) , if s > 1
,

Et
[
ϕ2
t+s−1 − E

[
ϕ2
t

]]
=

 ϕ2
t − E

[
ϕ2
t

]
, if s = 1(

ϕ0 + vs−1 (ϕt − ϕ0)
)2

+ σ2
w
v2(s−1)−1
ν2−1 − E

[
ϕ2
t

]
, if s > 1

.

Because ϕτ and ut are independent for all t, τ , we have

Et
[
ϕt+s−2ut+s−1

]
=

 ϕt−1ut , if s = 1

0 , if s > 1
.
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Since ut and wt are independent, we have

Cov (πt, ϕt) = 0,

Cov (ut, ϕt) = 0,

Cov
(
ϕt−1ut, ϕt

)
= E

[
ϕt−1ut (ϕt − ϕ0)

]
= E

[
Et
[
ϕt−1ut (ϕt − ϕ0)

]]
= E

[
ϕt−1Et [ut (ϕt − ϕ0)]

]
= E

[
ϕt−1Et [ut]Et [ϕt − ϕ0]

]
= 0, (OA.84)

and

Cov
(
πt, ϕ

2
t

)
= 0,

Cov
(
ut, ϕ

2
t

)
= 0,

Cov
(
ϕt−1ut, (ϕt − ϕ0)

2
)

= Cov
(
ϕt−1ut, ϕ

2
0 − 2ϕ0ϕt + ϕ2

t

)
= Cov

(
ϕt−1ut, ϕ

2
0

)
−2ϕ0Cov

(
ϕt−1ut, ϕt

)
+Cov

(
ϕt−1ut, ϕ

2
t

)
= Cov

(
ϕt−1ut, ϕ

2
t

)
= E

[
ϕt−1ut

(
ϕ2
t − E

[
ϕ2

0

])]
= E

[
ϕt−1Et

[
ut
(
ϕ2
t − E

[
ϕ2

0

])]]
= E

[
ϕt−1Et [ut]Et

[
ϕ2
t − E

[
ϕ2

0

]]]
= 0. (OA.85)

Define θ̃
(12)

t to be the nominal-real covariance θ
(12)
t normalized to have mean equal to zero and standard

deviation equal to one, and β̃u,it to be the inflation beta βu,it minus its unconditional mean:

θ̃
(12)

t ≡
θ

(12)
t − E

[
θ

(12)
t

]
std
(
θ

(12)
t

) ,

β̃u,it ≡ βu,it − E
[
βu,it

]
.
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Using equations (19) , (OA.13) and (OA.53), we find

θ̃
(12)

t =
sign (ξc)

sign (φπ)

√
1− ν2

|σw|
(ϕt − ϕ0) , (OA.86)

β̃u,it = κi,1

(
ξi −

ξc
ψ

)
(ϕt − ϕ0) . (OA.87)

and therefore

β̃u,it × θ̃
(12)

t =
sign (ξc)

sign (φπ)

κi,1
√

1− ν2

|σw|

(
ξi −

ξc
ψ

)
(ϕt − ϕ0)

2
. (OA.88)

2.102. Running the Regression

We let the asset i = m be the asset that represents the aggregate stock market in the model. We can

write (log) returns cumulated from t+ 1 to t+ 12 as the sum of expected and unexpected components as of

time t

rm,t+1:t+12 =

12∑
s=1

rm,t+s

=

12∑
s=1

Et [rm,t+s] +

12∑
s=1

(rm,t+s − Et [rm,t+s]) . (OA.89)

Using equations (OA.28)-(OA.31), (OA.51) and (OA.52) gives

12∑
s=1

Et [rm,t+1:t+12] = R0 +R1 (πt − µπ) +R2ϕt−1ut +R3ut

+R4 (ϕt − ϕ0) +R5

(
ϕ2
t − E

[
ϕ2
t

])
, (OA.90)

12∑
s=1

(rm,t+s − Et [rm,t+s]) =

12∑
s=1

(
βu,m,t+s−1ut+s + βw,mwt+s

)
+

12∑
s=1

(
β2w,m

(
w2
t+s − 1
√

2

)
+ βη,mηt+s

)
(OA.91)

where the constants Ri are given by

R0 = 12 (κm,0 + µm −Dm,0 (1− κm,1)) ,

R1 = (ρm −Dm,1 (1− κm,1ρπ))

(
12∑
s=1

ρs−1
π

)
,

R2 = ξm −Dm,2,

R3 = ξπ

(
κm,1

12∑
s=1

ρs−1
π +

1− ρm
ρπ

(
1−

12∑
s=1

ρs−1
π

))
−Dm,3,

R4 = −2ϕ0vDm,5v
s−2

12∑
s=1

(
1− vs−1 − κm,1v (1− vs)

)
−Dm,4 (1− vκm,1)

(
12∑
s=1

vs−1

)
,

R5 = −Dm,5

(
1− v2κm,1

)( 12∑
s=1

v2(s−1)

)
. (OA.92)
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Defining

εt+1:t+12 ≡
12∑
s=1

(
βu,m,t+s−1ut+s + βw,mwt+s + β2w,m

(
w2
t+s − 1
√

2

)
+ βη,mηt+s

)
,

κt ≡ R1 (πt − µπ) +R2ϕt−1ut +R3ut,

L2 ≡ − 1

κm,1

sign (φπ)

sign (ξc)

|σw|√
1− ν2

R5

ξc/ψ − ξm
, (OA.93)

L1 ≡ R4 + 2R5ϕ0,

L0 ≡ R0 −
σ2
w

1− v2
R5,

and using equations (OA.88), (OA.90) and (OA.91), we can write equation (OA.89) as

rm,t+1:t+12 = L0 + L1 (ϕt − ϕ0) + L2

(
β̃u,mt × θ̃

(12)

t

)
+ κt + εt+1:t+12. (OA.94)

Under the null of the model, running regression (OA.94) with or without including the regressors κt gives

the same estimate L̂0, L̂1, L̂2 for L0, L1, L2 since κt is uncorrelated to the other regressors by equations

(OA.84)-(OA.85), and uncorrelated to the error term by the law of iterated expectations and the fact that

Et [εt+1:t+12] = 0:

E [κtεt+1:t+12] = E [Et [κtεt+1:t+12]]

= E [κtEt [εt+1:t+12]]

= 0.

Since we are interested in L̂2, we therefore run regression (OA.94) in the model without including κt

rm,t+1:t+12 = L0 + L1 (ϕt − ϕ0) + L2

(
β̃u,mt × θ̃

(12)

t

)
+ εt+1:t+12, (OA.95)

and obtain estimates L̂0, L̂1, L̂2. In the data, we run the regression in equation (9) reproduced next for

convenience:

rm,t+1:t+12 = L0,m + LβΠ,mβ̃u,mt + LNRC,mθ̃
(12)

t + LβΠ×NRC,m

(
β̃u,mt × θ̃

(12)

t

)
+ εt+1:t+12. (OA.96)

We now show that, under the null of the model, the estimate L̂βΠ×NRC,m from regression (OA.96) is the

same as the estimate L̂2 obtained from regression (OA.95). By equations (OA.86)-(OA.87),

L0,m + LβΠ,mβ̃u,mt + LNRC,mθ̃
(12)

t = L0,m + LβΠ,mκi,1

(
ξi −

ξc
ψ

)
(ϕt − ϕ0)

+LNRC,m
sign (ξc)

sign (φπ)

√
1− ν2

|σw|
(ϕt − ϕ0)

= L0,m

+

[
LβΠ,mκi,1

(
ξi −

ξc
ψ

)
+ LNRC,m

sign (ξc)

sign (φπ)

√
1− ν2

|σw|

]
(ϕt − ϕ0) ,
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so regression (OA.96) can be written as

rm,t+1:t+12 = L0,m +

[
LβΠ,mκi,1

(
ξi −

ξc
ψ

)
+ LNRC,m

sign (ξc)

sign (φπ)

√
1− ν2

|σw|

]
(ϕt − ϕ0)

+LβΠ×NRC,m

(
β̃u,mt × θ̃

(12)

t

)
+ εt+1:t+12,

where we can then identify

L̂0 = L̂0,m,

L̂1 = L̂βΠ,mκi,1

(
ξi −

ξc
ψ

)
+ L̂NRC,m

sign (ξc)

sign (φπ)

√
1− ν2

|σw|
,

L̂2 = L̂βΠ×NRC,m.

Note that although L̂βΠ,m and L̂NRC,m cannot be separately identified in the model by running regression

(OA.95 ), the coefficient we seek, L̂βΠ×NRC,m, is identified by L̂2. Plugging (OA.93) into (OA.92), we find

L2 = LβΠ×NRC,m

=
1

κm,1

sign (φπ)

sign (ξc)

|σw|√
1− ν2

Dm,5

(
1− v2κm,1

) (∑12
s=1 v

2(s−1)
)

ξc/ψ − ξm
. (OA.97)

Note also that

cov
(
rm,t+1:t+12, β̃u,it × θ̃

(12)

t

)
var

(
β̃u,it × θ̃

(12)

t

) =
cov

(
L1 (ϕt − ϕ0) , β̃u,mt × θ̃

(12)

t

)
var

(
β̃u,it × θ̃

(12)

t

)
+
cov

(
L2, β̃u,mt × θ̃

(12)

t

)
var

(
β̃u,it × θ̃

(12)

t

)
+
cov

(
L0 + κt + εt+1:t+12, β̃u,it × θ̃

(12)

t

)
var

(
β̃u,it × θ̃

(12)

t

)
= L1

cov
(
ϕt − ϕ0, β̃u,it × θ̃

(12)

t

)
var

(
β̃u,it × θ̃

(12)

t

) + L2 +
cov

(
εt+1:t+12, β̃u,it × θ̃

(12)

t

)
var

(
β̃u,it × θ̃

(12)

t

)
=

sign (ξc)

sign (φπ)

κi,1
√

1− ν2

|σw|

(
ξi −

ξc
ψ

)
L1

cov
(
ϕt − ϕ0, (ϕt − ϕ0)

2
)

var
(
β̃u,it × θ̃

(12)

t

)
+L2 +

sign (ξc)

sign (φπ)

κi,1
√

1− ν2

|σw|

(
ξi −

ξc
ψ

) cov
(
εt+1:t+12, (ϕt − ϕ0)

2
)

vvar
(
β̃u,it × θ̃

(12)

t

)
= L2,
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since

cov
(
ϕt − ϕ0, (ϕt − ϕ0)

2
)

= 0,

cov
(
εt+1:t+12, (ϕt − ϕ0)

2
)

var
(

(ϕt − ϕ0)
2
) = 0.

It then follows that LβΠ×NRC,m can actually be computed from a univariate regression of rm,t+1:t+12 on

β̃u,it × θ̃
(12)

t since β̃u,it × θ̃
(12)

t is uncorrelated to the rest of the regressors.

2.11 Unconditional and Conditional Predictability of Consumption with Inflation

We show how to compute, in the model, the coefficients du,K0 , du,K1 , dc,K0 , dc,K1 and the R2 of the regressions

in equations (1) and (3) and Table 2. Using equation (OA.76), we have

∆ct+1+j = µc + ρc (πt+j − µπ) + σcηt+1+j + ξcϕt−1+jut+j

= µc + ρc (πt+j − µπ) + σcηt+1+j + ξcϕt−1+jut+j

= µc + ρc

(
ρjπ (πt − µπ) + φπut+j − ρjπφπut +

j−1∑
q=0

ρqπ (ρπφπ + ξπ)ut+j−1−q

)

+σcηt+1+j + ξc

(
ϕ0 + vj

(
ϕt−1 − ϕ0

)
+

j−1∑
q=0

vqσwwt−1+j−q

)
ut+j , (OA.98)

and therefore

Et [∆ct+1+j ] = µc + ρc

(
ρjπ (πt − µπ) + φπEt [ut+j ]− ρjπφπEt [ut] +

j−1∑
q=0

ρqπ (ρπφπ + ξπ)Et [ut+j−1−q]

)

+σcEt
[
ηt+1+j

]
+ ξc

(
ϕ0 + vj

(
ϕt−1 − ϕ0

)
+

j−1∑
q=0

vqσwEt [wt−1+j−q]

)
Et [ut+j ]

= µc + ρc
(
ρjπ (πt − µπ)− ρjπφπut + (ρπφπ + ξπ)Et [ut+j−1]

)
+ρc

j−1∑
q=1

ρqπ (ρπφπ + ξπ)Et [ut+j−1−q] (OA.99)

= µc + ρc
(
ρjπ (πt − µπ)− ρjπφπut + ρj−1

π (ρπφπ + ξπ)ut
)
. (OA.100)
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Using equations (OA.11)-(OA.13), (OA.98), (OA.100), and the law of total covariance

Cov (∆ct+1+j , πt+1) = E [Covt (∆ct+1+j , πt+1)] + cov (Et [∆ct+1+j ] , Et [πt+1])

=


ρπρcV ar (πt) + ϕ0ξc (ξπ + φπρπ) + ρcξπφπ , if j = 0

φ2
πρc + φπξcϕ0 , if j = 1

φπρcρ
j−2
π (ξπ + φπρπ) , if j > 1

+

 ρπρcV ar (πt) + ρcξπφπ + ϕ0ξc (ξπ + φπρπ) , if j = 0

ρj+1
π ρcV ar (πt) + ρcξπρ

j−1
π (ξπ + 2φπρπ) , if j > 0

=


2 (ρπρcV ar (πt) + ϕ0ξc (ξπ + φπρπ) + ρcφπξπ) , if j = 0

ρcV ar (πt) + ξcϕ0φπ , if j = 1

ρcρ
j−1
π V ar (πt) + ρj−2

π ρcφπξπ , if j > 1

.

It follows that

du,K1 =
Cov

(∑K−1
j=0 ∆ct+1+j , πt

)
V ar (πt)

=

∑K−1
j=0 Cov (∆ct+1+j , πt)

V ar (πt)

=
Cov (∆ct+1, πt)

V ar (πt)
+
Cov (∆ct+2, πt)

V ar (πt)
+

∑K−1
j=2 Cov (∆ct+1+j , πt)

V ar (πt)

=
2 (ρπρcV ar (πt) + ϕ0ξc (ξπ + φπρπ) + ρcφπξπ)

V ar (πt)
+
ρcV ar (πt) + ξcϕ0φπ

V ar (πt)

+

∑K−1
j=2

(
ρcρ

j−1
π V ar (πt) + ρj−2

π ρcφπξπ
)

V ar (πt)

= 2ρπρc + ρc +
ϕ0ξc (φπ + 2φπρπ + 2ξπ) + ρcφπξπ

V ar (πt)

+ρc

K−1∑
j=2

ρj−1
π +

ρcφπξπ
V ar (πt)

K−1∑
j=2

ρj−2
π

= ρc

(
1− ρKπ
1− ρπ

)(
1 +

ξπφπ
V ar (πt)

(
1− ρK−1

π

1− ρKπ

))
+

ξcφπ
V ar (πt)

ϕ0, (OA.101)

and

du,K0 = E

K−1∑
j=0

∆ct+1+j − du,K1 πt


=

K−1∑
j=0

E [∆ct+1+j ]− du,K1 E [πt]

= Kµc − d
u,K
1 µπ. (OA.102)
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Now we turn to the conditional regression of Table 2. Because of the way we constructed bKt , we can write

K−1∑
j=0

∆ct+1+j = aKt + bKt πt + εt+K ,

where, using equations (OA.11) and (OA.100), we have

aKt = Et

 K∑
j=1

∆ct+1+j − bKt πt+1


=

K∑
j=1

Et [∆ct+1+j ]− bKt Et [πt+1]

=

K∑
j=1

(
µc + ρc

(
ρjπ (πt − µπ)− ρjπφπut + ρj−1

π (ρπφπ + ξπ)ut
))

−bKt (µπ + ρπ (πt − µπ) + ξπut)

= Kµc + ρπρc

(
πt − µπ +

ξπ
ρπ
ut

)
1− ρKπ
1− ρπ

−bKt (µπ + ρπ (πt − µπ) + ξπut) . (OA.103)

The residual εt+K is known at time t+K and, because it is a regression residual of the conditional regression,

Et−1 [εt+K ] = 0, (OA.104)

Covt−1

(
aKt + bKt πt, εt+K

)
= 0. (OA.105)

By the law of total covariance and equations (OA.104)-(OA.105), we have

Cov
(
aKt + bKt πt, εt+K

)
= Cov

(
Et−1

[
aKt + bKt πt

]
, Et−1 [εt+K ]

)
+E

[
Covt−1

(
aKt + bKt πt, εt+K

)]
= 0. (OA.106)

Then, using (OA.106), we compute

dc,K1 =
Cov

(∑K−1
j=0 ∆ct+1+j , a

K
t + bKt πt

)
V ar

(
aKt + bKt πt

)
=

Cov
(
aKt + bKt πt + εt+K , a

K
t + bKt πt

)
V ar

(
aKt + bKt πt

)
=

Cov
(
aKt + bKt πt, a

K
t + bKt πt

)
V ar

(
aKt + bKt πt

) +
Cov

(
εt+K , a

K
t + bKt πt

)
V ar

(
aKt + bKt πt

)
=

V ar
(
aKt + bKt πt

)
V ar

(
aKt + bKt πt

) +
Cov

(
εt+K , a

K
t + bKt πt

)
V ar

(
aKt + bKt πt

)
= 1. (OA.107)
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By (OA.103), (OA.107), and the law of iterated expectations,

dc,K0 = E

K−1∑
j=0

∆ct+1+j − dc,K1

(
aKt + bKt πt

)
= E

K−1∑
j=0

∆ct+1+j

− E [aKt ]− E [bKt πt]

= E

K−1∑
j=0

∆ct+1+j

− E
Et

 K∑
j=1

∆ct+1+j − bKt πt+1

− E [bKt πt]

= E

K−1∑
j=0

∆ct+1+j

− E
 K∑
j=1

∆ct+1+j − bKt πt+1

− E [bKt πt]
=

K−1∑
j=0

E [∆ct+1+j ]−
K∑
j=1

E [∆ct+1+j ] + E
[
bKt πt+1

]
− E

[
bKt πt

]
. (OA.108)

Using equations (OA.11)-(OA.13) and (OA.15), equation (OA.108) gives

dc,K0 = Kµc −Kµc + E
[
bKt (πt+1 − πt)

]
= Kµc −Kµc + E

[
Et
[
bKt (πt+1 − πt)

]]
= E

[
bKt (Et [πt+1]− πt)

]
= E

[
bKt (µπ + ρπ (πt − µπ) + ξπut − πt)

]
= E

[(
hK +

ξc
φπ
ϕt

)
((ρπ − 1) (πt − µπ) + ξπut)

]
= E

[
hK +

ξc
φπ
ϕt

]
E [(ρπ − 1) (πt − µπ) + ξπut]

= E

[
hK +

ξc
φπ
ϕt

]
× 0

= 0. (OA.109)
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2.12 Calibrated Moments in Table 12

In this section, we compute the target moments for calibration in Table 12. Using equations (OA.11)-

(OA.13), the moments for consumption and inflation in the ”Descriptive Statistics” part of Table 12 are

E [πt] = µπ,

σ (πt) =

√∣∣ξ2
π + 2ξπρπφπ + φ2

π

∣∣√
1− ρ2

π

,

AR(1) of πt = ρπ +

(
1− ρ2

π

)
ξπφπ

2ξπρπφπ + ξ2
π + φ2

π

,

E [∆ct] = µc,

σ (∆ct) =

√∣∣∣∣σ2
c +

(
2ϕ0ξc +

φπρc
1− ρ2

π

)
φπρc +

(
σ2
w

1− v2
+ ϕ2

0

)
ξ2
c +

ξπρ
2
c (ξπ + 2φπρπ)

1− ρ2
π

∣∣∣∣,
AR(1) of ∆ct =

ρc
(
1− ν2

)
(φπρπ + ξπ)

(
ρc (φπ + ξπρπ) + ξcϕ0

(
1− ρ2

π

))
(1− ρ2

π)
[
(1− ν2) (ρ2

cσ
2 (πt) + (ϕ0ξc (ϕ0ξc + 2φπρc) + σ2

c)) + ξ2
cσ

2
w

] ,
E [uΠ,t] = 0,

σ (uΠ,t) = |φπ| ,

AR(1) of uΠ,t = 0,

corr (πt, uΠ,t) =
|φπ|
σ (πt)

,

corr (πt,∆ct) =
ξπ + ρπφπ

σ (πt)σ (∆ct)

(
ϕ0ξc +

(φπ + ξπρπ) ρc
1− ρ2

π

)
,

corr (∆ct, uΠ,t) = 0.

The moments for the ”Predictve Regressions of Consumption Growth on Inflation” part of Table 12 are given

by equations (OA.102 ), (OA.101), (OA.109) , (OA.107) and by

AR(1) of NRCCt = v,

σ
(
NRCCt

)
=

1√
12

1√
1− v2

∣∣∣∣ξcσwφπ

∣∣∣∣ ,
which follow from using equations (OA.13), (OA.15)-(OA.17). We now compute moments for assets i =

H,L,MKT , where H and L represent in the model the highest and lowest inflation beta portfolios that we

constructed in the data, and MKT is the market portfolio. Taking unconditional expectations in equation

(OA.52) gives mean returns for asset i

E [ri,t] = κi,0 + µi −Di,0 (1− κi,1) .
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Plugging equation (OA.52) into (OA.51) and computing the unconditional variance gives the variance of

returns for asset i, denoted σ2 (ri,t)

σ2 (ri,t) = 2ϕ0φπDi,1Di,2

(
1− ρπκ1,1 + κ2

1,1

)
+ ϕ0 (ξ1ϕ0 + ρ1φπ) (ξ1 − 2Di,2)

+ϕ2
0

(
κ2

1,1 + 1
)
D2
i,2 + ξ1ϕ0ρ1φπ + σ2

1

− φπ
1− ρ2

π

(
2 (1− ρπκ1,1)

(
ρ1φπ +

(
1− ρ2

π

)
ξ1ϕ0

)
D
)

+
φπ

1− ρ2
π

(
φπD

2
i,1

(
κ2

1,1 − 2ρπκ1,1 + 1
)
− ρ2

1φπ
)

+
σ2
w

1− v2

(
(2ϕ0Di,5 +D1,4)

2 (
κ2

1,1 − 2vκ1,1 + 1
)

+ (ξ1 −Di,2)
2

+D2
i,2κ

2
1,1

)
+

2σ4
w

(v2 − 1)
2

(
κ2

1,1 − 2v2κ1,1 + 1
)
D2
i,5

+
1

1− ρ2
π

(
(ρ1 −Di,1 (1− ρπκi,1))

2
)
ξ2
π + ξ2

πκ
2
i,1D

2
i,1

+
2φπ

1− ρ2
π

(
(ρπ − κ1,1) (1− ρπκ1,1)D2

i,1 +
((
κ1,1ρ

2
π − 2ρπ + κ1,1

)
Di,1 + ρ1ρπ

)
ρ1

)
ξπ

−2κ1,1D1,1 (−ϕ0 (ξ1 −Di,2) +D1,3) ξπ +
(
κ2

1,1 + 1
)
D2
i,3

+2
(((

κ2
1,1 + 1

)
Di,2 − ξ1

)
ϕ0 + φπ

((
κ2

1,1 − ρπκ1,1 + 1
)
Di,1 − ρ1

))
Di,3.

The standard deviation of returns is simply σ (ri,t). We find the mean inflation beta for asset i, E
[
βΠ,i,t

]
,

and its standard deviation, σ
(
βΠ,i,t

)
, by taking the mean and standard deviation in equation (OA.53) and

using equation (OA.57)

E
[
βΠ,i,t

]
=

κ1,i

|φπ|
(ϕ0Di,2 + φπDi,1 +Di,3) ,

σ
(
βΠ,i,t

)
=

κi,1√
1− v2

∣∣∣∣σwDi,2

φπ

∣∣∣∣ .
Also using equation (OA.53), the correlation in inflation betas for two assets i, j is

corr
(
βΠ,i,t, βΠ,j,t

)
= sign (Di,2Dj,2) .

Denote the high-minus-low inflation portfolio by i = IPHL, with returns defined by

rIPHL,t ≡ rH,t − rL,t. (OA.110)
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Eqs. (OA.52) and (OA.51) give

rIPHL,t = rH,t+1 − rL,t+1

= Et
[
rIPHL,t+1

]
+
(
βu,Ht − βu,Lt

)
ut+1

+
(
βw,H − βw,L

)
wt+1 +

(
β2w,H − β2w,L

)(w2
t+1 − 1
√

2

)
+
(
βη,H − βη,L

)
ηt+1,

where

Et
[
rIPHL,t+1

]
= Et [rH,t+1]− Et [rL,t+1]

= κH,0 + µH −DH,0 (1− κH,1)

− (κL,0 + µL −DL,0 (1− κL,1))

+ (ρH −DH,1 (1− κH,1ρπ)− (ρL −DL,1 (1− κL,1ρπ))) (πt − µπ)

− (DH,3 − ξπκH,1DH,1 − (DL,3 − ξπκL,1DL,1))ut

+ (ξH −DH,2 − (ξL −DL,2))ϕt−1ut

+ (2DH,5vκH,1ϕ0 (1− v)−DH,4 (1− vκH,1)) (ϕt − ϕ0)

− (2DL,5vκL,1ϕ0 (1− v)−DL,4 (1− vκL,1)) (ϕt − ϕ0)

−
(
DH,5

(
1− v2κH,1

)
−
(
DL,5

(
1− v2κL,1

))) (
ϕ2
t − E

[
ϕ2
t

])
. (OA.111)

Eq. (OA.53) can be used together with equations (OA.57) and (OA.110) to get

βΠ,IPHL,t =
Cov

(
rIPHL,t, uΠ,t

)
V ar (uΠ,t)

=
1

|φπ|
Cov

(
rIPHL,t, ut

)
V ar (ut)

(OA.112)

=
1

|φπ|
Cov (rH,t − rL,t, uΠ,t)

=
1

|φπ|
Cov (rH,t, uu,t)−

1

|φπ|
Cov (rL,t, uu,t)

=
1

|φπ|
βu,H,t −

1

|φπ|
βu,L,t

= βΠ,H,t − βΠ,L,t (OA.113)

=
κH,1
|φπ|

(φπDH,1 +DH,2ϕt +DH,3)

−κL,1
|φπ|

(φπDL,1 +DL,2ϕt +DL,3) . (OA.114)
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The standard deviation of the inflation beta of IPHL can be found using equation (OA.114)

σ
(
βu,IPHL,t

)
= σ

(
βu,1t − βu,2t

)
=

1√
1− v2

∣∣∣∣σw (D1,2κ1,1 −D2,2κ2,1)

φπ

∣∣∣∣ .
The coefficient LNRC of a regression of the returns of IPHLt on the standardized nominal-real covariance is

LNRC,IPHLt
=

cov
(
rIPHL,t, θ̃

(12)

t

)
var

(
θ̃

(12)

t

)
= cov

(
rIPHL,t, θ̃

(12)

t

)
,

where θ̃
(12)

t is defined in equation (OA.86). Using equations (OA.51), (OA.52), (OA.86), (OA.110) we get

LNRC,IPHLt
= cov

(
rIPHL,t, θ̃

(12)

t

)
= − (1− vκ1,1)

sign (φπ) sign (ξc) |σw|√
1− v2

(2ϕ0D1,5 +D1,4)

+ (1− vκ2,1)
sign (φπ) sign (ξc) |σw|√

1− v2
(2ϕ0D2,5 +D2,4) .

Last, the regression coefficient LβΠ×NRC,m is given in equation (OA.97). The numbers reported in Table 12

are annualized and in percentage points. More precisely, the numbers reported in Table 12 are obtained by

using the formulas above and then by multiplying E [πt], E [uΠ,t], E [∆ct], E [ri,t], LNRC,IPHLt
by 100× 12;

σ (πt), σ (uΠ,t), σ (∆ct), σ (ri,t) by 100 ×
√

12; all correlations, AR(1) coefficients, and R2 by 100; the

coefficient LβΠ×NRC,m by 100 (no need to multiply by 12 because it was obtained using cumulative returns

over 12 months).
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3 Robustness Checks
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Table OA.4: Time-Varying Inflation Risk Premia in Pooled Regressions at Shorter Horizons
This table is similar to Panel A of Table 6 except that results are presented for the one- and three-month horizon. We present
estimated coefficients (with asymptotic Driscoll and Kraay (1998) standard errors in parentheses) from various pooled predictive
regressions of returns on the inflation beta-sorted decile portfolios on their inflation beta (βΠ,p,t), the nominal-real covariance

(NRCCt ), and an interaction. In Model [1], we set LβΠ×NRC = 0, whereas Model [2] estimates all three coefficients freely.
Models [3] to [5] in Panel A analyze which components of inflation betas interact with the nominal-real covariance. Model
[3] replaces the interaction term, βΠ,p,t ×NRCCt , with the interaction between the nominal-real covariance and the portfolio-

specific component of inflation betas, β̂Π,p = T−1
∑T
t=1 βΠ,p,t. Model [4] replaces the interaction term, βΠ,p,t×NRCCt , with the

interaction between the nominal-real covariance and the time-specific component of inflation betas, β̂Π,t = 10−1
∑10
p=1 βΠ,p,t.

Model [5] includes both component-wise interaction terms. To accommodate interpretation, NRCCt is standardized in the time
series to have mean zero and standard deviation equal to one, whereas βΠ,p,t is demeaned in the pool. The sample period is
July 1967 to December 2014.

Horizon K = 1 Month Horizon K = 3 Months
Model [1] [2] [3] [4] [5] [1] [2] [3] [4] [5]

L0 7.97 4.76 7.97 4.55 4.57 8.29 4.82 8.29 4.63 4.66
t (2.69) (1.36) (2.69) (1.24) (1.25) (3.09) (1.66) (3.10) (1.54) (1.55)
LβΠ

-0.22 -1.12 -0.19 -1.24 -1.20 0.11 -0.88 0.15 -1.00 -0.95
t (-0.19) (-0.87) (-0.15) (-0.92) (-0.89) (0.11) (-0.92) (0.15) (-1.01) (-0.96)
LNRC -0.28 -0.96 -0.34 -0.91 -0.96 -1.12 -1.89 -1.19 -1.82 -1.88
t (-0.07) (-0.26) (-0.09) (-0.24) (-0.26) (-0.33) (-0.57) (-0.35) (-0.56) (-0.57)
LβΠ×NRC 2.07 2.27
t (1.88) (2.53)
LβΠ,p×NRC 1.87 1.64 2.21 1.95

t (2.19) (2.01) (2.63) (2.43)
LβΠ,t×NRC 2.21 2.19 2.39 2.37

t (1.80) (1.79) (2.41) (2.39)
R2 0.02 0.69 0.06 0.68 0.71 0.05 2.08 0.21 1.99 2.11
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Table OA.5: The Nominal-Real Covariance and the Average Risk Premium
This table is similar to Table 7 of the paper and presents coefficient estimates from time-series predictive regressions for the
equal-weighted average return over the ten decile portfolios on the inflation beta of this average portfolio (βΠ,avg,t), the nominal-

real covariance (NRCCt ), and an interaction term. We present this regression for the twelve-month horizon and standard errors
are Newey-West(12). To accommodate interpretation, NRCCt is standardized and βΠ,avg,t is demeaned. The sample period is
July 1967 to December 2014.

[1] [2]

L0,avg 8.48 5.06
t (3.47) (1.98)
LβΠ,avg 0.81 -0.45
t (0.75) (-0.51)
LNRC,avg -2.53 -3.04
t (-0.76) (-1.12)
LβΠ×NRC,avg 2.38
t (3.31)
R2 0.90 8.44

Table OA.6: Time-Varying Inflation Risk Premia in Pooled Regressions Controlling for Market Beta
This table is similar to Panel A of Table 6 except that we now also control for each portfolio’s market beta (estimated by
regressing in month t each portfolio’s returns on the CRSP value-weighted market portfolio over an expanding window of
historical returns, similar to the way inflation betas are measured). We present estimated coefficients (with asymptotic Driscoll
and Kraay (1998) standard errors in parentheses) from various pooled predictive regressions. In Model [1], we regress returns
on the inflation beta-sorted decile portfolios on their market beta (βMKT,p,t), the nominal-real covariance (NRCCt ), and their
interaction. In Model [2], we add inflation betas (βΠ,p,t) and their interaction with the nominal-real covariance. In Model [3], we
decompose the inflation beta for the interaction with the nominal-real covariance in the portfolio- and time-specific components:

β̂Π,p = T−1
∑T
t=1 βΠ,p,t and β̂Π,t = 10−1

∑10
p=1 βΠ,p,t. To accommodate interpretation, NRCCt is standardized in the time

series to have mean zero and standard deviation equal to one, whereas βΠ,p,t is demeaned in the pool. The sample period is
July 1967 to December 2014 and we focus on the twelve-month horizon.

Model [1] [2] [3]

L0 6.31 18.22 18.46
(0.60) (1.80) (1.52)

LβMKT 2.02 -12.00 -12.18
(0.20) (-1.19) (-1.05)

LβMKT×NRC -6.46 3.71 3.49
(-0.72) (0.42) (0.39)

LβΠ
-0.82 -0.82

(-0.97) (-0.94)
LNRC 6.10 -6.83 -6.56

(0.60) (-0.66) (-0.63)
LβΠ×NRC 2.61

(3.69)
LβΠ,p×NRC 3.28

(2.34)
LβΠ,t×NRC 2.58

(3.52)
R2 0.53 9.34 9.27
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Table OA.7: Industry Composition of Inflation Beta-Sorted Portfolios
This table presents the industry composition of our portfolios. For this exercise, we use the classification into 48 industries
from Kenneth French’s web site. In each sample month, we calculate for each industry the number of stocks that have inflation
beta below or above the median inflation beta in the full cross-section. We then translate this number to the fraction of an
industry’s total market capitalization with below or above median inflation beta. In the first three columns we report results for
the top 10 inflation hedgers, which are those industries with on average the largest fraction of market cap in the above median
inflation beta portfolio. For these industries we report the average allocation to the above median portfolio (“% of market
cap (βΠ,i,t >median)”) as well as the fraction of total sample months in which the allocation to the above median portfolio
is larger than 50% (“% of months”). Consistent with the evidence in Table 8, we find oil, gold, and mining among the best
conditional inflation hedgers throughout our sample. Over 64% on average of the market capitalization in these industries has an
above median inflation beta, and in over 70% of the months in our sample, over half of the market capitalization of these same
industries is allocated to the above median inflation beta group. It is intuitive that we find utilities among the best conditional
inflation hedgers as well. The next three columns present analogous evidence for the top 10 worst inflation hedgers, which are
those industries with on average the largest fraction of market cap in the below median inflation beta portfolio. Among the
worst inflation hedgers we find meals, clothes, and textiles (as in Table 8), but also banks and insurance.

Top 10 Best Inflation Hedgers Top 10 Worst Inflation Hedgers

Industry % of market cap % of months Industry % of market cap % of months
(βΠ,i,t >median) (βΠ,i,t ≤median)

1 Oil 0.77 0.80 Other 0.82 0.94
2 Gold 0.73 0.76 Books 0.77 0.95
3 Utilities 0.66 0.68 Aerospace 0.76 0.89
4 Mines 0.64 0.70 Banks 0.74 0.84
5 Agriculture 0.62 0.71 Insurance 0.74 0.88
6 Paper 0.61 0.66 Meals 0.73 0.82
7 Computers 0.60 0.67 Lab Equipment 0.72 0.82
8 Steel 0.58 0.59 Clothes 0.71 0.79
9 Smoke 0.58 0.66 Textiles 0.71 0.82
10 Food 0.57 0.59 Personal Services 0.70 0.85
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Table OA.8: The timing premium in our model of the nominal-real covariance
This table shows the size of the timing premium for our model under three parameter configurations. The first column shows the
timing premium under our baseline calibration found in Table 11. We display only the parameters that change across columns,
the rest of the parameters are held fixed at the values shown in Table 11. The second column increases the persistence of inflation
(ρπ) and the degree of predictability that inflation has on future consumption (ρc) so that inflation mimics long-run risk as
calibrated in Bansal et al. (2012) (in Table , the persistence of long-run risk is denoted by a and the degree of predictability that
long-run risk has on future consumption is always −1). In the third column, we modify our baseline calibration by postulating
a nominal-real covariance that is much more persistent (higher ν) and volatile (higher σw).

Inflation has long- More volatile and
Baseline run risk persistence persistent ϕt

ρπ 0.799 0.979 0.799
ρc -0.052 -1 -0.052
ν 0.9963 0.9963 0.999
σw 0.0029 0.0029 0.02

Timing premium 14.8% 59.0% 14.8%

42



Table OA.9: The timing premium in the long-run risk model
This table shows the size of the timing premium in the long-run risk model of Bansal et al. (2012) under three parameter
configurations. The first two columns reproduce the results in Table 1 of Epstein et al. (2014) and show the timing premium in
versions of the long-run risk model with and without stochastic volatility. In the third column, we compute the timing premium
in the long-run risk model with stochastic volatility but replacing the coefficient of relative risk aversion (RRA) and the elasticity
of intertemporal substitution (EIS) by the values of our main calibration in Table 11.

Parameter LLR no stoch. vol. LLR with stoch. vol. Higher RRA and EIS

σ 0.0078 0.0078 0.0078
φ 0.044 0.044 0.044
a 0.9790 0.9790 0.9790
σw 0 0.23× 10−5 0.23× 10−5

ν 0 0.987 0.987
β 0.998 0.998 0.998
RRA 7.5 or 10 7.5 or 10 15
EIS 1.5 1.5 2

Timing premium 23% or 29% 24% or 31% 44.0%
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Table OA.11: Controlling Ex Post for Benchmark Factor Exposure when Predicting the Inflation Risk Premium
This table asks whether our conclusions on the time-varying inflation risk premium extend when we control ex post for exposure
in our estimates of the inflation risk premium to the benchmark asset pricing factors. For this exercise, we regress the returns
of IPHLt , IPMC

t , and IPCSt on the nominal-real covariance (NRCCt ) as well as on contemporaneous exposure to the factors
in the CAPM, FF3M, FFCM, and FF5M. We focus on the annual horizon K = 12 and calculate overlapping twelve-month
compounded returns on both the left- and right-hand side. We presents for each regression the estimated coefficients and the
adjusted R2 (in percentage points). To conserve space, we present t-statistics in parentheses (based on Newey-West standard
errors with K lags) only for the intercept and the coefficient on NRCCt (L0 and LNRC).

CAPM FF3M FFCM FF5M
Rt+1:t+K IPHLt IPMC

t IPCSt IPHLt IPMC
t IPCSt IPHLt IPMC

t IPCSt IPHLt IPMC
t IPCSt

K = 12 L0 -4.98 -3.56 -4.30 -3.85 -2.31 -3.09 0.48 -0.98 -1.43 1.28 0.85 0.32
t (-1.62) (-1.86) (-2.16) (-1.74) (-1.83) (-2.04) (0.21) (-0.68) (-0.91) (0.51) (0.56) (0.21)
LNRC 5.46 3.65 4.56 4.96 3.08 4.01 3.45 2.62 3.43 4.14 2.57 3.46
t (2.21) (2.52) (2.76) (2.07) (2.25) (2.48) (1.64) (2.09) (2.25) (1.66) (1.78) (2.08)
βMKT 0.10 -0.11 0.06 0.16 -0.09 0.08 0.09 -0.11 0.05 -0.01 -0.20 -0.03
βSMB -0.52 -0.31 -0.35 -0.54 -0.32 -0.36 -0.58 -0.35 -0.40
βHML -0.07 -0.12 -0.11 -0.20 -0.16 -0.16 0.32 0.11 0.11
βWML -0.35 -0.11 -0.14
βRMW -0.87 -0.55 -0.68
βCMA -0.52 -0.30 -0.23
R2 7.19 9.57 10.01 15.56 17.66 18.56 22.05 19.00 20.42 35.63 36.27 41.53

Table OA.12: Controlling for Benchmark Predictors when Predicting the Inflation Risk Premium
This table asks whether our conclusions on the time-varying inflation risk premium extend when we control for benchmark
predictors. For this exercise, we regress the returns of IPHLt , IPMC

t , and IPCSt on the nominal-real covariance (NRCCt )
controlling for either the dividend yield (DY), default spread (DS), and term spread (TS) or the consumption-wealth ratio
(CAY). All control variables are standardized. We present the coefficient estimates and, to conserve space, report t-statistics in
parentheses (based on Newey-West standard errors with K lags) only for the intercept and the coefficient on NRCCt (L0 and
LNRC).

Rt+1:t+K IPHLt IPMC
t IPCSt IPHLt IPMC

t IPCSt

K = 12 L0 -4.37 -4.25 -3.94 -4.37 -4.25 -3.94
t (-1.76) (-2.66) (-2.35) (-1.67) (-2.63) (-2.31)
LNRC 7.19 4.50 4.26 5.29 3.46 4.39
t (2.13) (2.30) (1.81) (1.81) (2.00) (2.35)
ζDY 2.34 1.36 -1.63
ζDS 2.53 0.42 2.05
ζTS 3.32 1.05 0.84
ζCAY -0.24 -0.71 -0.30
R2 11.93 8.59 11.82 6.50 7.71 9.55
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Table OA.13: Alternative Measures of Inflation Risk
This table asks whether our results extend for alternative measures of inflation risk. In column one, we repeat our benchmark
specification using ARMA(1,1)-innovations in inflation. In column two, we use raw inflation. In column three, we use an AR(1)-
model to proxy for inflation-innovations. In column four, we use the monthly change in annual inflation. In column five, we
perform a truly out-of-sample exercise using real-time vintage CPI inflation. For this exercise, we skip a month after portfolio
formation, thus taking into account the reporting delay in inflation data. In all cases, we calculate the returns of the High-minus-
Low inflation beta portfolio (IPHLt ). We present coefficient estimates from a regression of returns on the lagged nominal-real
covariance (NRCCt ) at the twelve-month horizon, with corresponding t-statistics in parentheses based on Newey-West standard
errors with K = 12 lags.

ARMA(1,1) Inflation AR(1) Change in Annual Inflation Real time

K = 12 L0 -4.37 -3.89 -3.92 -4.88 -2.06
t (-1.68) (-1.74) (-1.73) (-1.66) (-0.96)
LNRC 5.38 7.35 5.08 6.87 7.84
t (2.22) (3.25) (2.33) (2.56) (3.35)
R2 6.65 14.30 7.26 7.84 16.12

Table OA.14: Alternative Sorting Procedures
Each column in this table presents results from an alternative sorting procedure. We construct a High-minus-Low inflation
beta decile portfolio by sorting stocks on inflation betas estimated using (i) Weighted Least Squares plus Shrinkage (WLS) or
Ordinary Least Squares (OLS), (ii) a sort where each portfolio comes from a double sort on beta and size (Size) or a single
sort on inflation beta (No Size), and (iii) ARMA(1,1) innovations in inflation (ARMA) or inflation itself (Inflation). The table
presents the predictive regression of the inflation risk premium on the nominal-real covariance, as in Table 5 of the paper. The
first column reports the original results as a benchmark.

WLS WLS WLS WLS OLS OLS OLS OLS
Size Size No Size No Size Size Size No Size No Size

ARMA Inflation ARMA Inflation ARMA Inflation ARMA Inflation

L0 -4.37 -3.89 -4.32 -3.07 -3.67 -2.71 -3.11 -1.60
t (-1.68) (-1.74) (-1.50) (-1.27) (-1.46) (-1.18) (-1.10) (-0.60)
LNRC 5.38 7.35 4.80 6.08 5.71 8.52 5.38 8.96
t (2.22) (3.25) (1.78) (2.59) (2.39) (3.80) (2.11) (3.69)
R2 6.65 14.30 4.21 8.61 7.78 17.33 5.29 14.60
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Table OA.15: Predicting the Inflation Risk Premium with the Nominal-Real Covariance (Quarterly data)
This table is similar to Table 5 of the paper, except that we use quarterly instead of monthly data and, for brevity, we focus
on the High-minus-Low inflation risk premium. We construct a High-minus-Low inflation beta portfolio by sorting stocks on
the exposure in quarterly returns to quarterly ARMA(1,1)-innovations in inflation. Moreover, we use quarterly inflation and
quarterly consumption growth to estimate the nominal-real covariance. We then run the regression of Eq. (7). The nominal-real
covariance is standardized and standard errors are Newey-West with K lags.

Rt+1:t+K L0 LNRC R2

K = 1Q -1.99 6.31 2.00
(-0.66) (2.07)

K = 2Q -1.92 6.25 3.90
(-0.67) (2.26)

K = 4Q -1.79 6.67 8.62
(-0.69) (2.80)

Table OA.16: Pooled Regressions: Inflation Betas Linear in the Nominal-Real Covariance
Similar to Panel A of Table 6, this table presents pooled regressions of returns on the inflation beta-sorted decile portfolios on
inflation beta, the nominal-real covariance, and their interaction. In this case, inflation betas are estimated as a linear function
of the nominal-real covariance, that is, βΠ,p,t = β0

Π,p,t + β1
Π,p,tNRC

C
t−1 (see Section 8. for more detail). We present estimated

coefficients (with asymptotic Driscoll and Kraay (1998) standard errors in parentheses) from various pooled predictive regressions.
To accommodate interpretation, NRCCt is standardized and βΠ,p,t is demeaned in the pool. We focus on the twelve-month
horizon.

Model [1] [2] [3] [4] [5]

L0 8.48 5.17 8.48 5.09 5.12
t (3.47) (2.24) (3.47) (2.18) (2.19)
LβΠ

0.45 -0.71 0.49 -0.75 -0.71
t (0.65) (-1.30) (0.71) (-1.34) (-1.25)
LNRC -2.27 -1.69 -2.35 -1.66 -1.73
t (-0.68) (-0.71) (-0.70) (-0.70) (-0.73)
LβΠ×NRC 1.64
t (4.25)
LβΠ,p×NRC 2.72 2.28

t (2.84) (2.45)
LβΠ,t×NRC 1.68 1.67

t (4.13) (4.09)
R2 0.89 11.36 1.60 10.95 11.44
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Table OA.17: Pooled Regressions Controlling for Monetary Policy Regimes
This table is similar to Panel A of Table 6 except that we now include a dummy for each monetary policy regime identified in
Campbell et al. (2015): MPR1 runs from the start of the sample to March 1977, MPR2 runs from April 1977 to December 2000,
and MPR3 runs from January 2001 to December 2014. We present estimated coefficients (with asymptotic Driscoll and Kraay
(1998) standard errors in parentheses) from various pooled predictive regressions. In Model [1], we include only the dummies
for the monetary policy regimes. In Model [2], we add inflation betas (βΠ,p,t) and their interaction with the nominal-real
covariance. In Model [3], we decompose the inflation beta for the interaction with the nominal-real covariance in a portfolio-

and time-specific component: β̂Π,p = T−1
∑T
t=1 βΠ,p,t and β̂Π,t = 10−1

∑10
p=1 βΠ,p,t. To accommodate interpretation, NRCCt

is standardized in the time series to have mean zero and standard deviation equal to one, whereas βΠ,p,t is demeaned in the
pool. We focus on the twelve-month horizon.

Model [1] [2] [3]

MPR1 1.30 -1.17 -1.30
(0.20) (-0.18) (-0.20)

MPR2 10.03 5.54 5.43
(3.89) (1.86) (1.79)

MPR3 11.03 10.16 10.13
(2.18) (1.32) (1.32)

LβΠ
-1.42 -1.48

(-1.41) (-1.42)
LNRC -2.37 -2.37

(-0.79) (-0.79)
LβΠ×NRC 2.12

(3.12)
LβΠ,p×NRC 1.95

(2.13)
LβΠ,t×NRC 2.18

(2.93)
R2 2.72 10.19 10.21
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Table OA.19: Inflation Risk and Predictability in Excess Bond Return
Panel A shows summary statistics and the unconditional (full-sample) inflation exposure βΠ for the excess returns of constant
maturity Treasury bonds. Panel B shows time-series predictive regressions of these excess bond returns on the lagged nominal-
real covariance in Panel B. The nominal-real covariance is lagged by 12 months and is standardized to have mean zero and
variance one. We report for each regression the estimated intercepts L0 and coefficients LNRC with corresponding t-statistics
based on Newey-West standard errors with 12 lags in parenthesis. The sample period is July 1967 to December 2014.

Maturity 1 2 5 7 10 20 30

Panel A: Summary Statistics and Unconditional Inflation Exposure

Avg. Ret. 1.10 1.37 2.19 2.70 2.54 3.35 3.14
St. Dev. 1.65 2.91 5.48 6.68 7.96 10.70 11.97
Sharpe 0.67 0.47 0.40 0.40 0.32 0.31 0.26
βΠ -0.25 -0.43 -0.90 -1.31 -1.41 -2.76 -3.27

(-3.05) (-3.02) (-2.73) (-2.97) (-2.91) (-3.67) (-3.66)

Panel B: Predictability at Annual Horizon

L0 1.12 1.43 2.24 2.77 2.62 3.29 3.04
(5.04) (3.56) (3.09) (3.19) (2.57) (2.43) (2.05)

LNRC -0.65 -0.71 -0.70 -0.61 -0.72 -0.81 -0.41
(-3.01) (-1.86) (-0.99) (-0.68) (-0.64) (-0.56) (-0.24)

R2 11.63 4.60 1.29 0.57 0.56 0.35 -0.07
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