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Abstract

We show that inflation risk is priced in stock returns and that inflation risk premia in the cross-
section and the aggregate market vary over time, even changing sign as in the early 2000s. This
time variation is due to both price and quantities of inflation risk changing over time. Using a
consumption-based asset pricing model, we argue that inflation risk is priced because inflation
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inflation betas can account for the size, variability, predictability and sign reversals in inflation
risk premia.
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1. Introduction

We show that inflation risk is priced in stock returns and that both the price and quantities of inflation risk
are strongly time-varying, even changing sign over our sample from 1962 to 2014. We argue that inflation
is risky because it predicts real consumption growth in a time-varying way. Positive shocks to inflation
sometimes contain bad news for future consumption, whereas at other times they contain good news. We
provide new empirical evidence, for both the cross-section of stock returns and the aggregate stock market,
and develop an equilibrium model to argue that it is the time-variation in the predictive content of inflation
that drives the observed time-variation in the price and quantities of inflation risk.

To quantify the predictive content of inflation at a given point in time, we define the nominal-real co-
variance as the slope coefficient in a conditional (that is, rolling) regression of real consumption growth on
lagged inflation. We find that this nominal-real covariance is an economically strong and statistically sig-
nificant predictor of the inflation risk premium in the cross-section of stocks. We measure the quantity of
inflation risk of stocks by their conditional inflation beta, that is, the slope coefficient in a rolling regression
of returns on inflation shocks. A one standard deviation increase in the nominal-real covariance predicts an
increase in annualized expected return of 5.3% for a high-minus-low portfolio constructed by sorting stocks
in deciles according to their inflation beta. Given an unconditional average return for the high-minus-low
inflation beta portfolio of -4.2%, this increase implies that the inflation risk premium can switch sign.

To understand why, consider periods when the nominal-real covariance is negative, such as during the
1970s. In such periods, higher inflation is a bad state of nature as it predicts lower future consumption
growth. As a result, high inflation beta stocks are attractive to hedge against bad states and therefore
command lower premia. In contrast, in periods when the nominal-real covariance is positive, such as since
the early 2000s, a positive shock to inflation contains good news for future consumption. Now, stocks with
lower inflation betas are more attractive to hedge and the inflation risk premium switches sign.

We provide further evidence for this explanation by running pooled predictive regressions for the returns
of ten inflation beta-sorted portfolios on their conditional inflation betas, the nominal-real covariance, and
an interaction term. We find that the interaction term predicts returns well, whereas the other two (non-
interaction) terms do not. Thus, understanding the cross-section of inflation risk premia requires knowledge
not only of the relative magnitude of inflation betas across stocks, but also of the nominal-real covariance at
each point in time.

To understand how variation in quantities and price of inflation risk interact to determine inflation risk
premia, we decompose conditional inflation betas into portfolio-specific and time-specific components in
our pooled regressions. We present three results that are new to the literature. First, the cross-sectional
distribution of inflation risk premia widens and compresses over time due to variation in the price of inflation

risk. This result follows from the fact that the interaction between the portfolio-specific component of inflation



betas and the nominal-real covariance fully captures the time-series predictability of the high-minus-low
inflation beta portfolio return. Time-variation in the relative quantities of inflation risk (inflation betas) in
the cross-section does not add any information.

Second, quantities of inflation risk vary over time with the nominal-real covariance. This time-variation is
largely common across stocks. Pairwise correlations between the inflation betas of any two decile portfolios
and between any decile portfolio and the aggregate stock market are well above 90%.

Third, the aggregate stock market risk premium contains an inflation component that is time-varying,
due to time-variation in both the price and quantity of inflation risk in the aggregate market. This conclusion
follows from the fact that the interaction between the inflation beta of the market portfolio and the nominal-
real covariance predicts market returns, whereas neither the nominal-real covariance nor the market’s inflation
beta predict returns in isolation. The joint effect of the price and quantity of inflation risk is large: when the
inflation beta of the market portfolio and the nominal-real covariance are both one standard deviation below
their mean, the market risk premium equals 13.6%, more than double its unconditional mean. The intuition
is that the aggregate stock market is riskier when it comoves negatively with inflation shocks that contain
bad news for future consumption growth.

To provide a theoretical foundation for this empirical evidence, we develop a consumption-based equilib-
rium model. Our model takes the joint stochastic processes for consumption, inflation, and the nominal-real
covariance as given, while asset prices are determined endogenously through the Euler equation of a repre-
sentative agent. There are three key ingredients in our model. The first ingredient is that the representative
agent has Epstein-Zin-Weil (EZ) utility. The second ingredient is that inflation is persistent.! The third
ingredient is that, as in the data, inflation shocks predict future real consumption growth in a time-varying
way that allows for sign reversals.? It is this third ingredient that is new to the literature.

Because EZ preferences are not time-separable, marginal utility depends not only on current consumption
growth, as in the classic consumption-CAPM, but also on the entire future path of consumption. Since
inflation shocks predict future consumption growth, inflation shocks represent shocks to marginal utility
and are therefore priced. When the nominal-real covariance is positive, the price of inflation risk is also
positive, because higher inflation today represents a good state of nature as future consumption growth is
expected to be higher. As the nominal-real covariance changes sign over time, so does the price of inflation
risk. To study the cross-section of stock returns, we model dividends as being exogenous and exposed to
the same sources of risk as consumption. Because inflation shocks predict the future path of dividends with

sign and magnitude depending on the nominal-real covariance, the endogenous quantities of inflation risk

!nflation persistence is widely documented in the literature (see, e.g., Fuhrer and Moore, 1995; Stock and Watson, 2005;
Campbell and Viceira, 2002; Ang, Bekaert, and Wei, 2007).

2 Although interesting, our aim is not to explain the source of this predictability. Rather, our aim is to explain the asset
pricing implications from exogenous variation in the predictive relation between inflation and consumption growth. See Duffee
(2018) for a survey and the challenges in explaining the time-variation in the nominal-real covariance.



of stocks are also functions of the nominal-real covariance. Our proposed calibration shows that the model
can quantitatively reproduce the empirical results discussed above, including the size and time-variation of
the price and quantities of inflation risk in the cross-section of stocks, and their relation to the nominal-real
covariance. Inflation persistence is key in allowing us to quantitatively match the relatively high inflation
risk premium observed in the data, as a more persistent inflation has a longer-lasting effect on the future
path of expected consumption and hence on marginal utility.

Empirically, we find that the cross-section of inflation betas is wide, which is instrumental in identifying
the inflation risk premium. Our evidence suggests that the cross-sectional variation in inflation betas is mainly
driven by variation in inflation exposure in cash flows rather than in discount rates. There is heterogeneity in
inflation betas both across and within industries. Industry affiliation is an important determinant of inflation
risk unconditionally. On average, the best inflation hedgers are oil, gold, and mining stocks. However,
inflation risk is also priced in a time-varying way within industries, even outside the best inflation-hedging
industries. This finding is new to the literature and motivates us to abstract from industry effects in our
model.

Our empirical results are robust. We consider alternative measures of the nominal-real covariance, using
either the covariance between inflation and industrial production or the stock market beta of a long-term
bond. We analyze alternative ways to measure inflation risk premia, estimating a maximum correlation
mimicking portfolio (Breeden, Gibbons, and Litzenberger, 1989) and a Fama and MacBeth (1973) cross-
sectional regression for individual stocks. We use different methods to estimate inflation risk, for instance, by
filtering inflation shocks using first-differences or an AR(1)-process instead of an ARMA(1,1)-process, which
is our main specification. We also consider a truly out-of-sample exercise using real-time vintage inflation,
similar to Ang, Brie¢re, and Signori (2012). We find that our inflation beta-sorted portfolios are not only
exposed to shocks in realized inflation but also to changes in breakeven inflation from TIPS. Finally, our
results carry through when we control for benchmark predictors or exposure to benchmark asset pricing
factors.?

We contribute to the empirical literature on inflation by providing a rich set of new facts concerning
inflation risk premia in the stock market. Measures of the inflation risk premium have had a natural starting
point in the yield curve. With the development of sophisticated no-arbitrage term structure models and the
emergence of inflation-linked bonds, estimates of the inflation risk premium in the bond market have become

more reliable and widely available.* Another conventional way to estimate the inflation risk premium is to

3The benchmark predictors are the dividend yield, term spread, default spread, and the consumption-wealth ratio of Lettau
and Ludvigson (2001a,b). The benchmark factors are MKT, SMB, HML, WML, RMW, and CMA combined in the CAPM
(Sharpe, 1964; Lintner, 1965; Mossin, 1966) and the multi-factor models of Fama and French (1993), Carhart (1997), and Fama
and French (2015).

4See, e.g., Ang and Piazzesi (2003); Ang, Piazzesi, and Wei (2006); Ang, Bekaert, and Wei (2007, 2008); Dai, Singleton, and
Yang (2007); Le, Singleton, and Dai (2010); Le and Singleton (2010); Haubrich, Pennacchi, and Ritchken (2012); Giirkaynak,
Sack, and Wright (2010); Chen, Liu, and Cheng (2010); Campbell, Sunderam, and Viceira (2017).



study the joint time-series behavior of inflation and aggregate market returns.’

Similar to us, Chen, Roll, and Ross (1986), Ferson and Harvey (1991), and Ang, Briére, and Signori
(2012) estimate the inflation risk premium in the cross-section of stocks. However, these papers focus on the
unconditional asset pricing implications of inflation risk. The typical point estimate is a negative inflation
risk premium that is not statistically significant and varies considerably across sample periods. We provide
a natural explanation for this evidence, which is a time-varying inflation risk premium that can change sign.
We also contribute to this literature by studying the macroeconomic mechanism behind this time-variation,
both empirically and in an equilibrium model.

Our model builds on the mathematics and economic intuition of the long-run risk model of Bansal and
Yaron (2004), but the economic sources of risk are different. We contribute to the long-run risk literature
in several ways. First, we use directly observable inflation as a predictor of consumption instead of an
unobserved long-run risk component that must be inferred from asset prices using the model’s assumptions.
The observability of inflation thus resolves one of the main limitations of the long-run risk model. Our reliance
on observables is advantageous also relative to other consumption-based models that contain varying degrees
of “dark matter” (Chen, Dou, and Kogan, 2015; Cochrane, 2017). Second, predictability of consumption
using inflation, and inflation persistence itself, both operate at business cycle frequency. In contrast, long-
run risk operates at substantially lower frequencies. In addition, inflation shocks have a higher variance
than long-run risk shocks. The combination of higher volatility and lower persistence of inflation shocks
makes the inflation premium comparable in magnitude to the premium earned by the low volatility, but high
persistence, long-run risk shocks. Third, because inflation is less persistent than long-run risk, the timing
premium that agents are willing to pay for the early resolution of uncertainty in our model is considerably
lower than in the long-run risk model by about 50%, which alleviates the criticism of Epstein, Farhi, and
Strzalecki (2014). Finally, inflation predicts consumption growth in a time-varying way as determined by the
nominal-real covariance, while the predictability of consumption with long-run risk is constant over time.

Recent articles in the bond market literature argue that the nominal-real covariance is an important driver
of the time-variation in bond prices and in the comovement of stocks and bonds. Campbell, Sunderam,
and Viceira (2017) document a simultaneous change in the sign of the term premium for US Treasuries
and the nominal-real covariance at the turn of the century. Campbell, Pflueger, and Viceira (2015) and
Song (2017) interpret the time-variation in bond risk through changes in monetary policy. We argue that
monetary policy is unlikely to be the main driver of our results. The high and low inflation portfolio are
not differentially exposed to monetary policy shocks. Moreover, the nominal-real covariance predicts returns
also when controlling for different monetary policy regimes. David and Veronesi (2013) contend that it is

the time-varying signaling role of inflation (plus learning) that drives the joint dynamics of stock and bond

5See, e.g., Modigliani and Cohn (1979); Wachter (2006); Gabaix (2008); Bansal and Shaliastovich (2012).



markets. Kang and Pflueger (2015) find that the nominal-real covariance affects corporate bond yield spreads
through a credit channel. The nominal-real covariance also features prominently in recent term structure
literature that analyzes the implications of the zero lower bound (see, e.g., Gourio and Ngo, 2016; Bilal, 2017;
Bretscher, Hsu, and Tamoni, 2017).

Although we estimate an unconditional inflation risk premium in the bond market that is close to what
we estimate in the stock market, our evidence suggests that the nominal-real covariance is not a strong
time-series predictor of excess bond returns, consistent with Campbell, Sunderam, and Viceira (2017).6
Furthermore, previous papers study the nominal-real covariance as measured by the correlation between the
returns of long-term government bonds and the aggregate stock market. To the best of our knowledge, we
are the first to show that inflation predicts real consumption growth in a time-varying way, and to use this
conditional (and exclusively macroeconomic) relation to measure the nominal-real covariance. We also study
the pricing implications of time-variation in the nominal-real covariance in an asset class not studied before
(the cross-section of stocks) and present new evidence on the relative importance of price and quantities of
risk.

Finally, Gorodnichenko and Weber (2016) show that the conditional volatility of stock returns increases
more for firms with stickier prices after monetary policy shocks. Weber (2015) finds that firms with stickier
prices are more exposed to monetary policy shocks and earn a premium that is fully explained by market
beta, because sticky price firms have more cyclical cash flows and both higher discount rate and cash flow
beta. Although we also find that exposure in cash flows is important, and despite inflation risk and price
stickiness being related, we find that neither exposure to the market nor to monetary policy shocks explains
the variation in inflation premia that we document. Together, these differences suggest that price stickiness

and our inflation-sorted portfolios are subject to different sources of risk.

2. Data

We use monthly inflation (II;) calculated as the percentage change in the seasonally-adjusted Consumer
Price Index for All Urban Consumers (CPI) available from the U.S. Bureau of Labor Statistics. Monthly per
capita real consumption growth (AC}) is calculated using seasonally-adjusted aggregate nominal consumption
expenditures on nondurables and services (from National Income and Product Accounts (NIPA) Table 2.8.5)
combined with population numbers (from NIPA Table 2.6) and price deflator series (from NIPA Table 2.8.4).7
In our asset pricing tests, we use all ordinary common stocks traded on the NYSE, AMEX, and NASDAQ
from CRSP (excluding firms with negative book equity from COMPUSTAT). The CRSP value-weighted

market portfolio, the one-month T-bill return, benchmark asset pricing factors, and industry portfolios are

SEven though in their model, just like in ours, the nominal-real covariance is a key state variable driving risk premia,
Campbell, Sunderam, and Viceira (2017) conclude in Section 5.3 that “bond returns have very limited predictability.”
"In Section 8., we replicate our main result using quarterly consumption data.



from Kenneth French’s website. Table 1 presents descriptive statistics for the sample period we use in our
tests: July 1962 to December 2014. The start of the sample period coincides with the introduction of AMEX

stocks in the CRSP file and is common to many empirical studies of the cross-section.

3. The Time-Varying Relation Between Inflation and Consumption

To analyze the conditional relation between current inflation and future real consumption growth, we
present in Panel A of Table 2 results from simple OLS regressions of future consumption growth from month

t+ 1 to t + K on inflation over month ¢:
ACi144K = dé( + d{(Ht +ererx, K =1,3,6,12. (1)

We see that the unconditional relation between current inflation and future consumption is negative, as
measured by the coefficient estimate for d&.® Thus, an increase in inflation is bad news historically, which
is consistent with evidence in, for instance, Piazzesi and Schneider (2006). However, over our relatively
long sample period, the coefficient on inflation is not significantly different from zero for any horizon K. A
potential explanation for this seeming inconsistency with the existing literature is that the unconditional
regression masks variation over time in the relation between consumption and inflation.

To quantify the magnitude of this time-variation, we run the following two-stage test:

ACsi1.545 = atK + bfﬂs +esi1stk, for s=1,..,t— K, (2)
ACii1qyx = dS’K + di’K(atK + b{{Ht) + etttk (3)

In the first stage, Equation (2) regresses consumption growth on lagged inflation over a backward-looking
window using all data available up to month ¢. Hence, the expanding window s runs from 1 to t — K.
This regression is estimated using weighted least squares (WLS) where weights are given by an exponential
weighting scheme that has a half-life converging to 60 months for large ¢t. The expanding window ensures
that we use as much information as possible, whereas an exponential decay in weights ascertains that the
largest weight is given to the most recent observations. In the second stage, Eq. (3) uses the estimated
coefficients and inflation observed at time ¢, that is, gf\( + I;f? II;, to predict consumption growth from ¢+ 1 to
t + K. This setup ensures that we use no forward-looking information when we predict consumption growth
in the second stage. The absence of a look-ahead bias is important, because we will later use the estimated
first-stage coefficient bf to predict various returns in the time-series. Hence, we prefer our simple setup over
more highly parametrized models that require the full sample for estimation, such as a state-space model

with time-varying parameters.

8In the data, we lag inflation by an additional month, to account for the reporting delay of CPI numbers.



If our two-stage structure correctly models the conditional expectation of consumption growth, we should
find that dS’K = 0 and di’K = 1. Panel B of Table 2 presents the results. To test significance, we report
asymptotic Newey-West (with K lags) and bootstrapped t-statistics.” The estimate of d({’K is significantly
larger than zero at all horizons. For no horizon K can we reject the hypothesis that dS’K = 0 nor that
di’K = 1, suggesting that the two-stage structure provides an unbiased estimate of the conditional expectation
of consumption growth. Moreover, in the second stage, we capture an economically large share of the variation
in consumption growth, with an R? that increases from 3% at the one month horizon to 15% at the one year
horizon.

Following the literature on predictive regressions (see, e.g., Welch and Goyal, 2007), we also calculate an
out-of-sample R? (R? — 00S). The R? — OOS measures the improvement from conditioning on inflation
relative to a conditional model that includes only a time-varying constant, a€, which measures lagged average
consumption growth. We find that the R? — OOS is similarly increasing from 2% at the one month horizon
to 10% at the one year horizon. We conclude that inflation strongly predicts consumption growth when we
account for the time-varying relation between these macro-variables.

Our main proxy for the nominal-real covariance, which we henceforth denote N RC'tC , is the time-varying
coefficient from the first stage regression in Eq. (2) of twelve-month consumption growth on lagged inflation,
b/%\Q. In robustness checks, we consider two alternative proxies for the nominal-real covariance. First, the
time-varying relation between inflation and industrial production growth, denoted NRC/?| is estimated
by substituting industrial production for consumption in the left-hand side of Eq. (2).!° This alternative
measure effectively treats inflation as a recession state variable of the type advocated in Cochrane (2005) and
Koijen, Lustig, and Van Nieuwerburgh (2017). Second, we consider the measure based on asset prices that is
used in Campbell, Pflueger, and Viceira (2015): the negative of the stock market beta of a long-term treasury
bond, denoted N RC} BB We estimate this time-varying beta using a 60-month rolling window regression of
the 10-year constant maturity treasury bond return on the aggregate stock market return.

Fig. 1 plots the three proxies of the nominal-real covariance and shows strong comovement, with corre-
lations around 0.75. Consistent with Campbell, Pflueger, and Viceira (2015), NRC, BB has changed sign
from negative to positive in the early 2000s. In fact, all three measures have increased markedly since the
turn of the century, as noted also in Bekaert and Wang (2010), Campbell, Sunderam, and Viceira (2017),
and David and Veronesi (2013). In the remainder of this paper, we analyze empirically and theoretically the

asset pricing implications of the time-variation in inflation risk driven by this nominal-real covariance.

9As detailed in Section 1 of the Online Appendix, these standard errors are derived from 1000 block-bootstrap replications
of the coefficient estimates to address concerns about errors-in-variables (EIV) bias.
10Seasonally-adjusted industrial production growth is from the FRED® database of the St. Louis FED.



4. The Time-Varying Inflation Risk Premium

This section analyzes whether the inflation risk premium varies over time in a manner consistent with the

time-variation in the nominal-real covariance.

4.1. Estimating the Inflation Risk Premium

We first describe our method to estimate the inflation risk premium.

4.1.1. Inflation Betas

At the end of each sample month ¢, we measure the inflation exposure of firm ¢ by estimating its historical
“beta” of excess returns, R;;, with respect to monthly innovations in inflation. Following Fama and Gibbons
(1984), Vassalou (2000) and Campbell and Viceira (2002), we filter out these innovations, denoted ury ¢, using
an ARMA (1,1)-model. This model empirically captures many of the important dynamics of inflation.*!

We estimate historical inflation betas in the same way that we estimate the nominal-real covariance in Eq.
(2): using a WLS regression with exponential weights over an expanding window that uses all observations
from the first month the stock is included in the sample up to month ¢. We require that stocks have at least

24 out of the last 60 months of returns available. The estimator of a stock’s inflation exposure, By ; ;, is then

given by

t
. . 2
(ai,ta 5H,i7t) = argmin Z K(7) (Ri,f — Qi — BH,i,tuH,T) (4)

ai,t;ﬁn,i,t =1
exp(—|t — 7| h)
-1
S exp(—[t — 7| h)

Using h = log(2)/60, the half-life of the weights K (7) converges to 60 months for large ¢, which is consistent

with weights K (1) . (5)

with the standard five-year rolling window used in empirical asset pricing tests. Following Elton, Gruber,
and Urich (1978), Cosemans, Frehen, Schotman, and Bauer (2016), and Levi and Welch (2017), we transform
the estimated ,éfh\t using a Vasicek (1973) adjustment

— varTs(ﬂ/H-:) 7 -
Briiz = Pris + — — [meancs(ﬁn,i’t) B ﬁn’i’t] ' (6)
[varTs(BHJ—’t) + UQTCS(BH,i,t)}

Thus, each ﬁﬂ” is a weighted average of the stock’s beta estimated in the time-series and the average of
all betas in the cross-section of month ¢, meancs(ﬁ/nzg). The former receives a larger weight when it is
estimated more precisely, that is, when the square of the standard error of the estimated beta, varpg, is

small relative to the cross-sectional variance of betas, varcg. From this point forward, inflation betas refer

U For example, Ang et al. (2007) write: “The motivation for the [ARMA(1,1)] model derives from a long tradition in rational
expectations macroeconomics (see Hamilton, 1985) and finance (see Fama, 1975) that models inflation as the sum of expected
inflation and noise. If expected inflation follows an AR(1) process, then the reduced-form model for inflation is given by an
ARMA(1,1) model. The model also nicely fits the slowly decaying autocorrelogram of inflation.”



to the WLS and Vasicek-adjusted betas and we drop the hat and superscript v. Section 8. presents results

for a variety of alternative specifications that test the robustness of these methodological choices.

4.1.2. Inflation Portfolios

Each month in our sample we create thirty value-weighted portfolios by two-way sorting all stocks at the
intersection of ten inflation beta deciles and three size groups. The size groups are defined by the 20th and
50th percentile of NYSE market capitalization at the end of the previous month (the Micro, Small, and Big
stocks of Fama and French, 2008). We then collapse the thirty portfolios into ten size-controlled inflation
beta-sorted portfolios by averaging over the three size groups in each inflation beta decile. On the one hand,
the smallest of stocks are illiquid, not in the set of stocks typically held by institutions that care most about
inflation (such as pension funds), and their betas are harder to estimate. On the other hand, Ang, Briére, and
Signori (2012) find that the best inflation hedgers in the CRSP file are the smallest stocks. To avoid favoring
either hypothesis, we give equal weight to each size group in the inflation risk premium. Also, controlling for
size in this way makes exposures to the market and other risk factors more homogeneous across portfolios.'?
With a burn-in period of 60 months, this leaves us with a sample of post-ranking returns from July 1967 to

December 2014.

4.1.3. The Inflation Risk Premium

We use three standard approaches to measure the inflation risk premium (IP;). The first estimate of the
inflation risk premium is the difference in return between the High and Low inflation beta decile portfolio
(denoted IPHL).

The second estimate of the inflation risk premium is the return of a Breeden, Gibbons, and Litzenberger
(1989) maximum correlation mimicking portfolio (denoted IPM¢). We construct this portfolio by projecting
inflation innovations on the returns of the ten inflation beta-sorted portfolios, as they should contain a large
share of the information in uy; that is relevant for the cross-section of stock returns. Table OA.1 of the
Online Appendix presents the weights and confirms that the portfolios contain relevant inflation information.

Finally, each month we run a cross-sectional regression of individual stock returns on lagged inflation
beta, controlling for market capitalization, book-to-market, and momentum (see, e.g., Fama and French,
2008; Chordia, Goyal, and Shanken, 2015). The time-series of estimated slope coefficients on lagged inflation

beta represents our third estimate of the inflation risk premium (denoted I PF%).

4.1.4. Ex Post Inflation Exposures
We present in Table 3 descriptive statistics for the set of ten inflation beta-sorted portfolios, as well as the

three estimates of the inflation risk premium: IPfZ TPMC and IPFS. Panel A reports inflation exposures

121 Section 8., we show that our conclusions on the time-variation in inflation risk premia extend when we perform a single
sort of stocks on inflation beta, without controlling for size.



estimated with a simple OLS regression of portfolio returns on inflation innovations over the full sample.
Analyzing whether these ex post exposures are large, economically and statistically, is important to asses
whether inflation is a useless factor in the sense of Kan and Zhang (1999) and also serves as a reality check of
the estimation procedure. We see that the ex post exposures line up almost monotonically from High to Low.
The dispersion is wide, with a large post-ranking beta of 3.00 for IPHL. A beta of three translates to an
incremental monthly return of 76 basis points on average when upy; increases by one standard deviation. For
comparison, the CRSP value-weighted market portfolio, with an inflation beta of -1.96, loses 49 basis points
on average for the same increase in ur¢. To accommodate comparison and interpretation, we have scaled
the alternative measures of the inflation risk premium, IPM¢ and IPF?, to have identical ex post inflation
exposure to I PIE. For these alternative estimates of the inflation risk premium, the ex post exposure is also
strongly significant.

Fig. 2 plots the post-ranking inflation beta one month, one year, two years, five years, and ten years after
sorting. To do so, we fix the portfolio composition at the sorting date ¢t and calculate monthly value-weighted
returns up to ten years after.!®> We then run a regression of monthly returns in ¢t 4+ 1, ¢ + 12, t 4 24, ¢ + 60,
and ¢ + 120 on contemporaneous (with the returns) innovations in inflation. In this way, we mimic the ex
post monthly inflation exposure for an investor that rebalances infrequently with respect to inflation beta.
We see that post-ranking inflation beta is increasing in pre-ranking beta up to ten years after the sort. The
post-ranking beta for IPHL falls from 3.00 one month after sorting to a still large and significant 1.68 ten
years after sorting.'* We conclude that our sort on ex ante inflation betas is powerful, because inflation betas
are predictable many years ahead. Moreover, there is large cross-sectional dispersion in inflation risk, which
is instrumental in identifying the inflation risk premium in the stock market.

We find that our ARMA(1,1)-inflation shocks are strongly correlated at 0.59 with first-differences in
breakeven inflation, which is the difference between the yields of nominal and real ten year constant maturity
treasury bonds (available from FRED® since 2003). Furthermore, Panel A of Table 4 shows that our sort
(on exposures to ARMA(1,1)-innovations in inflation) also creates large ex post exposures to first-differences
in breakeven inflation, which we denote ABE;. The coefficient in a regression of returns of portfolios sorted
on inflation beta on ABFE; increases monotonically in the inflation beta of the portfolios. The High-minus-
Low difference in ABFE;-exposure is 9.79 with a t-statistic of 4.12. In Panel B, we sort individual stocks into
deciles based on their exposure to ABE;. We see that ex post exposure to ABE; increases monotonically
in ex ante exposure. More importantly, the High-minus-Low difference in A B E;-exposure is not much larger

than in Panel A at 12.47 (¢t = 4.82). Moreover, the correlation coefficient between the returns of the two

13When a stock leaves the sample, we reallocate its market cap to the remaining stocks in a given portfolio.

14 This finding is seemingly inconsistent with the conclusion in Ang, Briere, and Signori (2012) that inflation betas are hard
to estimate out-of-sample. However, their conclusion is based on a smaller sample of S&P500 stocks from 1990 to 2009. In the
Appendix to their paper, the authors report results that are consistent with ours for a sort using all stocks in the CRSP universe
from 1967 to 2009.
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High-minus-Low portfolios is 0.86, which suggests strong comovement between the two series.

4.2. The Inflation Risk Premium Over Subsamples

We present in Panels B and C of Table 3, respectively, the inflation risk premium over the full sample
as well as in two subsamples split around 2002. This split is motivated by the fact that the nominal-real
covariance, NRCE, increased above its historical mean during 2002, without falling below its mean again
until the end of the sample (see Fig. 1). We present annualized average excess returns, Sharpe ratio, and
CAPM alpha. We show in Section 8. that our main conclusions are robust to controlling for a broad set of
benchmark asset pricing factors.

Over the full sample, average returns for the inflation beta-sorted portfolios are decreasing in inflation
beta from 9.49% for Low to 5.26% for High. This dispersion translates to a marginally significant return
for IPHE equal to -4.23% (t = —2.08). This effect is similar in both magnitude and significance for 1PM¢
and IPC® as well as in alpha. This unconditional inflation risk premium translates to a Sharpe ratio around
-0.35, which is in the same order of absolute magnitude as the Sharpe ratio of the aggregate stock market.
The last column of the table presents the p-value from the monotonicity test of Patton and Timmermann
(2010), where the null hypothesis is a non-decreasing relation of returns in inflation beta. For average returns,
Sharpe ratios, and alphas, this null is marginally rejected.

Note that this relatively modest and only marginally significant unconditional estimate of the inflation
risk premium does not imply that the inflation risk premium is economically unimportant. Rather, we argue
that this unconditional estimate masks important variation over time that is driven by the nominal-real
covariance and, in particular, its recent reversal. To see this, we show in Panel C that the inflation risk
premium is considerably larger in the pre-2002 subsample, and strongly statistically significant. Average
returns for IPHEL TPMC and TIPS are -7.49%, -5.85% and -6.81%, respectively, with t-statistics that all
pass the data-mining corrected cutoff of three proposed in Harvey, Liu, and Zhu (2016). These average
returns translate to a price of risk below -0.50 as measured by the Sharpe ratio, well above the aggregate
stock market (in absolute value). Average returns are almost monotonically decreasing in inflation beta from
9.33% for the Low portfolio to 1.84% for the High portfolio. Consequently, the null of a non-decreasing
relation is comfortably rejected at a p-value of 0.005. We see similar results for CAPM alphas, suggesting
that the one-factor CAPM does not price the cross-section of inflation portfolios in this subsample.

Post-2002, the inflation risk premium changes dramatically. Average returns are now increasing in in-
flation beta, resulting in an average return of 5.42% for the High-minus-Low portfolio and 3.49% for the
cross-sectional regression portfolio. Although these estimates are non-negligible economically, they are not
statistically significant over the short sample of twelve years. Moreover, the alternative estimate of the infla-
tion risk premium, [ PtM © is virtually zero at -0.06% and all three CAPM alphas are small and insignificant.

Thus, the evidence suggests that the inflation risk premium is relatively small post-2002 and, if anything,
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positive, which is markedly different from the period pre-2002.

The last panel of the table presents the post-2002 minus pre-2002 differences. Average returns and alphas
are monotonically decreasing from High to Low from 13.53% to 0.62% and 4.28% to -5.13%, respectively.
Although the effects for IPHL TPMY and IPF? are not always significant, these differences are economically
large and the monotonicity tests comfortably reject (at p-values below 0.01) the null of a non-increasing
relation between the average or CAPM-adjusted (post-2002 minus pre-2002 difference in) return and inflation
beta. Table OA.2 of the Online Appendix shows a slightly larger increase in the inflation risk premium when
we split the sample in months where N RC’tC is above versus below its mean.

In short, we find that the inflation risk premium has increased markedly over time, consistent with the
reversal in the nominal-real covariance from negative (on average since the 1960s) to positive (since the early

2000s).

4.83. The Inflation Risk Premium Conditional on the Nominal-Real Covariance

Because a sample split provides only a crude measure of the amount of time-variation in the inflation
risk premium, we now turn to predictive regressions. We regress excess returns of the inflation portfolios

(compounded over horizons K of one, three, and twelve months) on N RCtC using:1®
Ry iv104x = Lo + LNRCNRCtC + Etr1tt+ K- (7)

For each horizon, Panel A of Table 5 presents the estimated coefficients (annualized), both asymptotic Newey-
West (with K lags) and bootstrapped (see Section 1 of the Online Appendix) t-statistics, and the adjusted R?
for the individual decile portfolios and the three estimates of the inflation risk premium (IPHL, IPMC and
IPF%). We also present the p-values from Patton and Timmermann (2010) monotonicity tests. NRCE is
standardized to have mean equal to zero and standard deviation equal to one to accommodate interpretation.
Thus, Ly measures the average excess return of the respective portfolio, that is, the unconditional inflation
risk premium, whereas L y gc measures the increase in annualized portfolio return for a one standard deviation
increase in the nominal-real covariance.

We find that the effect of NRCE on the inflation risk premium is positive, economically large and
statistically significant (based on both asymptotic and bootstrap inference). For a one standard deviation
increase in the nominal-real covariance, the inflation risk premium as estimated using [ PtH L PtM ¢ and
IPFS increases by about 3% to 4% for K = 1. This increase is relative to an unconditional inflation risk
premium of about -4%. The effect strengthens at longer horizons, growing to about 4% to 5% for K = 12.

The R? are also increasing in horizon, from around 0.5% for K = 1 to over 6.5% for K = 12. Finally, looking

15Ty see that these regressions use no forward-looking information, recall that NRC,/C is the slope coefficient b%Q in the
regression of Eq. (2): ACs41:5+12 = a%Q + btul'ls + est1:s4+12, with s = 1,...,t — 12. Consistent with the fact that b%Q moves
slowly over time, our results are insensitive to lagging the predictor by an additional month to control for a reporting delay in
consumption data.
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at the decile portfolios, we see that Lygrc is increasing monotonically from Low to High inflation beta, such
that the null of non-monotonicity is comfortably rejected.

We conclude that the inflation risk premium is strongly time-varying with the nominal-real covariance.
The economic intuition for this result is that high inflation beta stocks are attractive to hedge consumption
risk when inflation predicts consumption with a negative sign as it did historically. However, these same stocks
are not attractive as a hedge anymore, and could even expose investors to additional consumption risk, once
the nominal-real covariance starts increasing, as it does towards the end of our sample, for instance. As a
result, the returns of high versus low inflation beta stocks should be increasing in the nominal-real covariance,
which is what we find.

Panel A of Table OA.3 of the Online Appendix shows that this conclusion is robust for two alternative
measures of the nominal-real covariance, namely the time-varying relation between inflation and indus-
trial production growth (NRC/?) and the negative of the stock market beta of a long-term treasury bond
(NRC;BP). Each alternative measure predicts the inflation risk premium with a positive coefficient that
is comparable in magnitude, significance, and horizon pattern to what we have seen before. Panel B of
Table OA.3 shows that the nominal-real covariance predicts the inflation risk premium with a positive sign in
both the first and second half of our sample period, although the predictive relation is stronger in the latter
subsample. This result indicates that the time-variation in the inflation risk premium that we uncover is not
exclusively driven by the recent reversal in the nominal-real covariance. Moreover, when we end our sample
in 2007, before interest rates reached the zero lower bound (ZLB), we find virtually identical effects to what
we find in the full sample up to 2014. Thus, the time-variation that we uncover cannot be fully driven by
asset pricing mechanisms that rely on interest rates at or close to the ZLB, such as those proposed in, for

instance, Gourio and Ngo (2016), Bilal (2017) and Bretscher, Hsu, and Tamoni (2017).

5. Origins of the Time-Varying Inflation Risk Premium

To understand the drivers of the time-variation in the inflation risk premium, we next analyze (i) the
relative contribution of the price versus quantities of inflation risk in our inflation beta-sorted decile portfolios,
(ii) the importance of industry affiliation, and (iii) the relative contribution of cash flows versus discount rates

to inflation exposure.

5.1. Price and Quantities of Inflation Risk

Fig. 3 shows the time variation in inflation beta for the High and Low decile portfolios, the difference
between these two betas, and the average inflation beta of all ten portfolios.!® These inflation betas are

estimated by applying Eqgs. (4) and (5) to the post-ranking returns of each portfolio.

16The average beta is almost perfectly correlated (at 0.99) with the inflation beta of the CRSP value-weighted market
portfolio.
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We see that there is considerable variation in inflation betas over time. For instance, the sudden increase
in inflation betas around the turn of the century, consistent with the reversal in the nominal-real covariance,
stands out. The correlation between the inflation beta of the High and Low portfolios is 0.93, and both
share a correlation of 0.98 with the cross-sectional average of all ten inflation betas. Moreover, although the
High-minus-Low inflation beta is large and positive on average (and for most of the sample), the standard
deviation of the High-minus-Low beta is much smaller than the standard deviation of either portfolio’s beta
in isolation (1.36 versus around 3.50). These results imply that time variation in the quantity of inflation
risk is mostly common across portfolios (and in the stock market, more generally). This result is new to
the literature and provides important information for our understanding of the inflation risk premium in the
stock market.

To see this and quantify the relative contribution of quantities versus price of risk, we run pooled regres-
sions of returns of the inflation beta-sorted decile portfolios, p = High,2, ..., Low on inflation beta (5H,p,t),

the nominal-real covariance (NRC{), and an interaction term:

Ry 1w+ = Lo+ Lg, B ps + LnreNRCE + L wnre (B X NRCY) + ep ik (8)

Panel A of Table 6 presents the estimated coefficients (annualized) and ¢-statistics using asymptotic standard
errors calculated following Driscoll and Kraay (1998), which are robust to heteroscedasticity and rather
general forms of cross-sectional and temporal dependence when the time dimension becomes large. We focus
on the annual horizon (K = 12) and present consistent evidence for shorter horizons in Table OA.4 of the
Online Appendix. To accommodate interpretation, NRCE is standardized in the time-series (as in Table 5)
and Sy, is demeaned in the pool, that is, its mean across portfolios and time is zero.

In column one, we do not include the interaction term (set Lz xnrc = 0) and find that neither inflation
beta nor the nominal-real covariance is a significant predictor of returns in the pool of inflation beta-sorted
portfolios. The R? is also low at 0.71%. In column two, we include the interaction term and see a large
increase in the R? to 8.80%. The estimated coefficient on the interaction term is large and significant at 2.36
(t = 3.63). This estimate indicates that expected returns are decreasing in inflation beta when the nominal-
real covariance is negative, but increasing when it is positive. This result is in line with the large negative
inflation risk premium we find in the subsample pre-2002, and the small positive inflation risk premium
post-2002.

To further quantify the interaction effect between inflation beta and the nominal-real covariance, Panel
B presents predicted risk premia in four distinct cases when: i) inflation beta is at plus or minus one
(pooled) standard deviation from its mean and ii) the nominal-real covariance is at plus or minus one (time-
series) standard deviation from its mean. These predictions effectively evaluate the joint significance of

the coefficients, thus alleviating concerns about correlation in the independent variables. We present both

14



asymptotic and bootstrapped t-statistics.!”

We find that the predicted risk premium is largest at 16.56% (with a bootstrapped t-statistic > 3) for the
case in which a portfolio has a low inflation beta and the nominal-real covariance is also low. This finding
is intuitive: a portfolio of stocks is most risky when it comoves negatively with inflation shocks that contain
bad news about future consumption growth. The predicted risk premium is also positive, but smaller at
7.65% (tpoot = 1.65), when both inflation beta and the nominal-real covariance are high. When inflation beta
is high (low) and the nominal-real covariance is low (high), predicted premia are close to zero. To interpret
these predictions, note that the difference in expected returns between high and low inflation beta is positive
when the nominal-real covariance is high and negative when the nominal-real covariance is low. This finding
is consistent with the idea that the stocks that are most attractive to hedge high marginal utility states
are those that have low (high) returns when inflation increases and the nominal-real covariance is positive
(negative). This difference is largest in magnitude and significance when the nominal-real covariance is low,
because in this case the covariance between inflation and future consumption growth is stronger in absolute
terms (the nominal-real covariance at one standard deviation below the mean equals -2.24, which is relative
to -0.51 one standard deviation above the mean).!®

We conclude that variation in inflation beta, that is, the quantity of inflation risk, contains important
information about returns when combined with the nominal-real covariance. We further decompose inflation
beta into two components: (i) a portfolio-specific component that captures cross-sectional variation in uncon-
ditional average inflation betas, 511/;, =71 Zthl Brp+; and, (ii) a time-specific component that captures
time-series variation in the cross-sectional average inflation beta, ﬂ/n\t =101 2;021 Brip.t-

In column three, we see that the interaction between the portfolio-specific component of inflation beta
and the nominal-real covariance (BH/\p x NRCE) contains independent information about returns in the pool
(relative to the individual effects of inflation beta and the nominal-real covariance). The coefficient estimate
for the interaction term is 2.45 (¢t = 2.80). Setting the quantity of inflation risk equal to the unconditional
spread in inflation beta between the High and Low inflation beta portfolios, a one standard deviation increase
in the nominal-real covariance translates to a large and significant increase of 5.53% in the spread in expected
returns between the High and Low portfolio (5.53 = L — X ONRC X (B;{Tgh —Bﬁ)) =2.45x1x2.26,

Bu,p X NRC
thoot = 2.17).1% The R? in column three is only 1.40%, which implies that this specification still misses

L7For details on the bootstrap procedure, see Section 1 of the Online Appendix.

18 Although the magnitude of the difference between high and low inflation beta may seem large, at —17.05% when the
nominal-real covariance is low versus 10.98% when it is high, these effects are foreshadowed by the sorts we report in Table 3.
The difference between the High and Low inflation beta portfolio is —7.49 pre-2002 and 5.42% post-2002, and the 2002 cutoff
only approximately splits the sample in low versus high nominal-real covariance months.

19This marginal effect is consistent with the regressions in Table 5, which ask whether variation in the nominal-real covariance
predicts High-minus-Low returns over time. The pooled specification in column three similarly asks whether the nominal-real
covariance explains variation over time in the relative return of high versus low inflation beta portfolios, because the product

Br,p X NRCtC varies monotonically from High to Low at each point in time due to the unconditional variation in inflation betas.
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variation in inflation betas that is relevant for the pool of inflation risk premia.

The missing variation is time-variation in the cross-sectional average inflation beta. To see this, column
four shows that the interaction between the time-specific component of inflation betas and the nominal-real
covariance (B/l—-[\t x NRCE) contains relevant information about returns, given the large R? of 8.26% in this
specification. The coefficient estimate is 2.45 (¢t = 3.45), which translates to a large and significant increase of
6.92% in the difference in expected return between periods of low (that is, the nominal-real covariance is one
standard deviation below its mean) and average nominal-real covariance, when the cross-sectional average

inflation beta decreases by one standard deviation (6.92 = L -— X

Bu i xNRC tX*UNRC:2-45><*2-83X*1,

—05—
thoot = 2.14). The intuition for this result is that at a time when the average inflation beta in the cross-
section is low, the average stock is especially risky when the nominal-real covariance is negative (and a shock
to inflation signals lower future growth).

In the last column of Panel A in Table 6, we include the two components of inflation beta (interacted
with NRCE) simultaneously. The R? equals 8.80%, just like the model in column two, which includes the
interaction term between not-decomposed inflation betas and the nominal-real covariance, By, ; X N RCF.
This result suggests that the portfolio- and time-specific components of inflation betas together capture all the
relevant variation in inflation betas for risk premia.?? Unconditional differences in the quantity of inflation
risk, combined with the nominal-real covariance, drive the widening and compressing of the cross-section
of inflation risk premia over time. With inflation betas held constant, this time-variation is thus driven by
variation in the price of inflation risk.2! Time-variation in the average inflation beta, combined with the
nominal-real covariance, determines the level of inflation risk premia in the cross-section. This last result
suggests that the aggregate stock market risk premium contains an inflation component that is time-varying
due to both the price and quantity of inflation risk.

To test this suggestion, we run time-series regressions of CRSP value-weighted market (excess) returns

on the market’s inflation beta, the nominal-real covariance, and an interaction term:

Ry tv1:0412 = Lom + Ly mBrme + Lnre,mNRCY + L xNRCm(Brims X NRCE) + es14412,  (9)

where Sy, is estimated by regressing market returns on inflation innovations following Eq. (4).22 We
present the results in Table 7. To accommodate interpretation, N RCE is standardized and Br1,m, ¢ is demeaned

in the time-series (as in Table 6).

20By implication, variation in inflation betas that is portfolioxtime-specific, that is, variation that is not captured by a
portfolio or a time fixed effect, contains no information for risk premia in the pool of inflation beta-sorted portfolios.

21Previous evidence in Table 5 is consistent with this conclusion. To see why, recall that the inflation risk premium estimated
using cross-sectional regressions, IP,/CS, represents the return of a portfolio strategy with an ex ante inflation beta fixed at one
(Fama, 1976). Hence any variation in the returns of IPtCS must follow from variation in the price of inflation risk.

22In Table OA.5 of the Online Appendix we present similar results when we proxy for the market portfolio using the average
of the ten decile portfolios.
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In Panel A, we see that the market’s inflation beta and the nominal-real covariance do not predict market
returns in isolation. However, including their interaction term (B, , X N RCE) increases the R? from close
to zero to 8.59%. The coefficient estimate on the interaction term is economically large and significant at
2.85% (t = 3.55). Similar to Panel B of Table 6 we also present the predicted market risk premium in four
distinct cases. When both the nominal-real covariance and the market’s inflation beta are low (that is, large
and negative), stocks are most risky, and the predicted market risk premium is 13.61% (¢ = 4.08), which
is about double its unconditional mean. Furthermore, the difference in the predicted market risk premium
when the market’s inflation beta goes from low to high (i.e, from one standard deviation below the market’s
mean inflation beta to one standard deviation above) equals 6.65% when the nominal-real covariance is high
but -17.64% when the nominal-real covariance is low.

In Panel B, we present non-parametric estimates of the market risk premium, which are similar in absolute
and relative magnitude to those reported in Panel A in all four cases. These estimates are calculated by
averaging realized excess market returns in sample months ¢ + 1 when the market’s inflation beta and the
nominal-real covariance in month t are either below the 40th or above the 60th percentile. In conclusion,
the results in Table 7 confirm that the interaction between the market’s inflation beta and the nominal-real
covariance contains information about future market returns.

In Table OA.6 of the Online Appendix, we find that the interaction term between inflation beta and the
nominal-real covariance, Sy, X N RCY, remains large and significant in a pooled regression that controls
for market beta as well as the interaction between market beta and the nominal-real covariance. The same
result obtains for the portfolio- and time-specific components of inflation betas. We conclude that variation

in market betas does not fully explain the variation in risk premia we uncover.

5.2. Industry Affiliation and Inflation Risk

Having seen that inflation betas vary persistently and considerably over time and in the cross-section of
stocks, we ask to what extent our results are driven by across-industry variation in inflation risk and returns.
Among others, Boudoukh, Richardson, and Whitelaw (1994) and Ang, Briére, and Signori (2012) show that
inflation betas vary across industries.

To start, we construct long-short industry factors using the top and bottom K = 1,...,5 industries as
ranked by their unconditional full sample exposure to innovations in inflation. Consistent with common
intuition, Panel A of Table 8 shows that coal, oil, and gold are among the best unconditional inflation hedges
while meals, textiles and clothes are among the worst.?? In every sample month, we then sort individual
stocks into decile portfolios based on their rolling exposure to each industry factor, leaving out all stocks that

belong to those top and bottom K industries. In Panel B of Table 8, we first show that the High-minus-Low

23Table OA.7 of the Online Appendix shows that similar industries are also among the best (worst) conditional inflation
hedges and that the industry decomposition is quite stable over time.
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returns from these sorts are significantly exposed ex post to ARMA(1,1)-innovations in inflation for all K. In
the remainder of Panel B, we see that the nominal-real covariance significantly predicts the returns of these
High-minus-Low portfolios in the time-series, again for all K.

These results confirm that inflation betas vary across industries and that such variation contributes to
time-variation in returns. However, these results do not fully separate the across-industry from the within-
industry contribution to the variation in inflation premia that we uncover in Section 4.. To isolate these
within- and across-industry components, we calculate the inflation beta of each of the 48 industries from
Kenneth French’s website as the value-weighted average inflation beta of all stocks in that industry (estimated
conditionally as in Egs. (4) and (5)). We exclude industry-months that contain fewer than ten stocks. To
obtain the across-industry component, we sort the industries into quintile portfolios, such that each across-
industry portfolio contains nine or ten value-weighted industries. Using this sort, we calculate equal-weighted
across-industry quintile returns. For the within-industry component, we first construct five value-weighted
portfolios within each industry by splitting at the quintiles of ranked inflation betas. This gives us a total
of 48-by-5 value-weighted portfolios. Within-industry quintile portfolio returns are then calculated as the
equal-weighted average over the 48 industries. Table 9 presents the predictive regression of twelve-month
compounded returns from each of these sorts on the nominal-real covariance. The last column presents the
aggregate within-industry (across-industry) effect calculated as the difference between the High and Low
within-industry (across-industry) inflation beta portfolio.

The unconditional inflation risk premium, as estimated by the intercept in the predictive regression, is
negative for both the within- and across-industry sort. This unconditional premium is larger in magnitude
across-industry (at -3.36% with ¢ = —1.95) than within-industry (at -1.73% with ¢t = —1.55). The coefficient
estimate for the nominal-real covariance is positive, economically large and significant for both sorts at
4.63% (t = 2.70) across-industry and 3.24% (¢ = 3.29) within-industry. Both coefficient estimates follow
from monotonic effects from High to Low inflation beta and translate to an R? that is slightly over 10%.
Monotonicity in the across-industry sort is important, because it suggests that our results are not solely
driven by industries that are highly exposed to a particular component of aggregate inflation, such as oil.
The within-industry result suggests that variation in inflation risk is priced in a time-varying way independent
of the industry to which a stock belongs.

We conclude that although inflation risk certainly varies across industries, this variation is not crucial for

generating the time-variation in inflation risk premia that we find.

5.8. Inflation Risk in Cash Flows Versus Discount Rates

In this section, we ask whether the cross-sectional variation in inflation risk in our portfolios is driven
by cash flows or discount rates. We use the vector autoregression (VAR) approach of Campbell (1991) and

Campbell and Vuolteenaho (2004) to decompose the unexpected component of inflation portfolios’ monthly
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returns into discount rate and cash flow news, R, ;41 — Ey[Rpi+1] = —Npri+1 + Nore+1. With this
decomposition in hand, inflation beta, measured as the coefficient in a regression of Ry 11 — E; [Rp,t+1] on
ARMA(1,1)-innovations in inflation w41, can be decomposed into a discount rate inflation beta plus a cash

flow inflation beta:

~ Cov(Ry 141 — B[Ry p41]s uret1)

= 10

fn Var(um,i+1) (10)

_ Cov(—=Nprt1,umi+1)  Cov(Nepst, Ut it1) (11)
Var(um,i+1) Var(um,i+1)

= s+ Bh". (12)

We consider three different specifications that include different state variables in the VAR. For the first
specification, we use the state variables of Campbell and Vuolteenaho (2004), which are the the term spread,
the market price-earnings ratio, and the value spread. For the second, we use the market dividend yield,
default spread and term spread (following, e.g., Maio and Santa-Clara, 2012; Boons, 2016). For the third,
we add the nominal-real covariance to the first specification. To ensure that the VAR models are correctly
specified, we additionally include in all three specifications the dividend yield of the respective inflation
beta-sorted portfolio as a state variable.?*

Table 10 reports the inflation beta, Sy, and its decomposition into ﬂﬁD R and ,BgF , for the High and Low
inflation beta portfolios. The table also shows the share of the variance of Ry, 111 — E[R) +1] explained by
—NpRr,t+1, NcF+1, and twice their covariance.?’ Consistent with the evidence discussed in Section 4.1.4.,
we find a large difference in inflation exposure in unexpected returns between the High and Low portfolios.

All three specifications have a High-minus-Low beta, B gi0n — 811 ows close to 1.8. The discount rate
component of beta, ﬁﬁD R is negative for the High and Low portfolios. In contrast, the cash flow component
BSF is positive for the High portfolio but negative for the Low one. It follows that in the inflation beta
of the High-minus-Low portfolio, the discount rate component of the High and Low components offset each
other, while the cash flow components reinforce each other. In the last row of the table, we present the
fraction of the High-minus-Low inflation beta that can be attributed to exposure to cash flows, (Bﬁf;ﬂgh —

giow)/(ﬁﬂ,Hig/L — Bn,Low)- In specification two, this fraction equals 80%. In specifications one and three,
this fraction is above 100%, which implies that the discount rate component actually reduces the spread
in inflation betas in the cross-section of stocks. Thus, the evidence suggests that the inflation beta of the
High-minus-Low portfolio is largely driven by exposure to cash flows. Importantly, this conclusion applies
even though the relative contribution to the variance of returns (column labeled “% Var”) attributed to

discount rate and cash flow news varies considerably across the three specifications.

24See Campbell and Ammer, 1993; Engsted, Pedersen, and Tanggaard, 2012.
25To reduce noise, the High and Low portfolios in this section are top and bottom terciles. These terciles simply average
returns over the top and bottom three deciles of our original inflation beta-sorted portfolios.
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6. Model

To motivate our empirical findings, we model the processes for consumption, inflation and the nominal-real
covariance as exogenous, generating the time-varying predictability of consumption with inflation uncovered in
the data in Section 3.. The model then produces - via pricing through the Euler equation of a representative
agent with Epstein-Zin utility - equilibrium quantities of inflation risk for the cross-section of stocks and
the aggregate market, together with a market price of inflation risk. These quantities and prices behave

qualitatively and quantitatively like the ones we find empirically in Sections 4. to 5..26

6.1. Exogenous Processes and Stochastic Discount Factor

The exogenous processes for real consumption growth (Aci41), inflation (7¢41), the nominal-real covari-

ance (@), and real dividend growth for asset i (Ad; 1) are given by

Ter1 = P + Pr (T — pr) + Eqtle + Prtira, (13)
Acirr = o+ pe (T — fir) + Ecpy_1ue + ety (14)
Pry1 = o T V(P — po) + owry1, (15)
Adijpy1 = pt; + p; (T — p) + §pp 1t + 04, (16)
wt, My, we ~ 4id N (0,1). (17)

Consistent with our empirical analysis, inflation in Eq. (13) is an ARMA( 1,1)-process with innovation
Um,t+1 = @rut+1. Inflation and inflation shocks affect the real economy via expected consumption growth
in Eq. (14). Inflation predicts consumption growth unconditionally and in a time-invariant way with sign
and magnitude determined by p.. In contrast, the inflation shock u; predicts consumption growth in a time-
varying manner, where the sign and magnitude of the predictability are given by £.p,_;. The nominal-real
covariance, @,, follows the mean-reverting process given in Eq. (15) and can change sign over time. Dividends
in Eq. (16) are subject to the same risks as consumption, but with potentially different exposures. The shocks
Uty1, My 1 and wiyq are ii.d. standard normal.

The representative agent has Epstein-Zin utility, which yields the (log) stochastic discount factor (SDF)

6
miy1 = 910g6 — JACHJ — (1 — 9) Tet+1, (18)

where 7. ;11 is the (log) return on the wealth portfolio, that is, the claim on aggregate consumption; § € (0, 1)
is the discount rate; ¢ > 0 is the elasticity of intertemporal substitution (EIS); and 6 = (1 —+) /(1 — 1/9),

with v > 0 the coeflicient of relative risk aversion.

26Detailed derivations for all the results presented in this section can be found in Section 2 of the Online Appendix.
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0.2. The Nominal-Real Covariance

The nominal-real covariance, ¢,, plays a dual role in our model. It determines (i) the time variation in
the predictability of consumption with inflation and (iz) the stochastic volatility of expected consumption
growth.

To see that the nominal-real covariance determines the time variation in the predictability of consumption,
we run in the model the same two-stage procedure that we run in the data in Egs. (2) and (3). The model-
implied coefficient on inflation in the first-stage regression (2) is

Covt (Zf:l Aci14y, 7Tt+1) £,

bE = = p.hr + %@, 19
¢ Vary (m41) Peltic Q%th 1)

where hg is a constant that depends on the prediction horizon K and parameters of the inflation process.

27

If £, # 0, Eq. (19) shows that inflation predicts cumulative consumption growth in a time varying manner
determined by ¢,. Eq. (19) clarifies why we call ¢, the nominal-real covariance. Under the null of the
model, ¢, is a linear transformation of b/,}\Q = NRCY, the same variable we use in the data to measure the
nominal-real covariance. The second stage regression in Eq. (3) also holds exactly in the model with dS’K =0
and d™ =1 (for any K and any calibration of the model).

To see that the nominal-real covariance also plays the role of stochastic volatility of expected consumption
growth, it is instructive to compare our model to the long-run risk model of Bansal and Yaron (2004).
Replacing m; — p,, with long-run risk and setting £, = &, = £, = 0, we recover the basic version of the long-
run risk model that does not have stochastic volatility. Thus, the new elements in our model, in addition to
considering inflation instead of long-run risk, are the terms & u, £, _qus and &, _qus in Eqgs. (13), (14)
and (16). In the version of the long-run risk model with stochastic volatility, there is a single mean-reverting
process that drives the stochastic volatilities of both expected and unexpected consumption growth (where we
recall that long-run risk is exactly equal to expected consumption growth). In our model, we have stochastic
volatility for neither inflation nor unexpected consumption growth, but we do have stochastic volatility for

expected consumption growth through the term &, ju;.28

27Using changes in inflation (m¢+1 — 7¢) or inflation innovations (ury ¢41) instead of inflation in Eq. (19) gives b/ that are
also afine in ¢,. When standardized to have mean zero and variance one, these different measures of the nominal-real covariance
are identical. Empirically, using inflation shocks (for instance, from an ARMA(1,1)-process) instead of inflation (II¢) in Egs.
(2) and (3) gives similar estimates of the nominal-real covariance b} with correlations above 90%.

28 An additional advantage of modeling ¢, (instead of »? as in the long-run risk literature) as an AR(1) process is that
volatilities are guaranteed to always be positive.
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6.3. The Price of Inflation Risk
To understand the asset pricing implications of the model, we study innovations in the SDF by using a

decomposition similar to that in Campbell, Giglio, Polk, and Turley (2018):

mt+1 — Etmt+1 = 7"}/ (Et+1 — Et) Act+1 — (]. — 0) K1 (Et+1 — Et) U)Ct+1 (20)
1 0k3?
= —YNeyt1— (1 —=0)rk ((1 - ¢) NparHt41 + 71 NRISK,t+1> , (21)

where we define

Neiy1 = (Ety1 — Et) Acpyr,
oo
NPATH,t+1 = (Et+1 - Et) Z Hlet+1+j [A0t+2+j] ,
j=0
& .
Nriskit1 = (B — Ey) Z riVarypiyy (weepayg)
j=0

and k; is an approximation constant generally close to one. Eq. (20) decomposes news to the SDF into
news to contemporaneous consumption growth (Nc 11 = (Eiy1 — Et) Aciyr) and news to the (log) wealth
consumption ratio ((Et+1 — Ft) werr1). Eq. (21) further decomposes news to the wealth consumption ratio
into Nparm,++1, which is news about the future expected path of consumption, and Ngrrsk ++1, which is
“news about risk” (revisions in the future conditional variance of the wealth-consumption ratio).

Using Eq. (14), news to contemporaneous consumption growth can be written as N¢ ;1 = 0cn; 1, which
shows that Nc 11 depends on the consumption shock 7;,,, but not on any of the other shocks. Ng 41
enters the SDF by standard consumption-CAPM logic. Nparw,+1 and Ngrsk ++1 enter the SDF because
with non-time separable utility, today’s marginal utility depends not only on contemporaneous consumption
growth but also on its entire future path. As can be seen directly from their definition, Nparg,y1 and
Nrisk,++1 depend only on future consumption growth and not on contemporaneous consumption growth, so
they do not depend on the consumption shock 7,,,. It follows that news to the wealth-consumption ratio
arises not from changes in contemporaneous consumption but exclusively from changes in wealth, that is,
from changes in the pricing of the aggregate consumption claim.

When the EIS is greater than one, which we assume, the intertemporal substitution effect dominates
the wealth effect. Positive news to the expected path of consumption growth (Nparmi+1 > 0) leads the
representative agent to invest more in the aggregate wealth portfolio, increasing its price and hence also the
wealth-consumption ratio. Np a1 +1 depends only on the inflation shock, ury 1+1(= ¢, ui41), because by Eq.
(14) it is the only shock that provides news about expected consumption growth (shocks to the nominal-real
covariance that affect expected consumption growth at ¢ arrive at ¢ — 1, so they provide no news). Using Eq.

(13), we find that

. (22)

Pr K1€n urg
NpaTH 141 :< Pe Perind Ecpr Lt

1- Prk1 1- Prk1 ¢7‘r
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Eq. (22) will be key to understanding the inflation risk premium. The first two terms inside the parenthesis
in Eq. (22) arise through the term p, (m; — p,;) in Eq. (14). The first term reflects that news to inflation
is news to expected consumption growth. The second term reflects a more indirect channel: in Eq. (13), u;
predicts future inflation 7441, which in turn predicts expected consumption growth one period later. Both of
these effects reflect the unconditional (non-time-varying) effect of inflation on consumption and are stronger
when inflation has a larger or longer-lasting impact on future consumption, which is when inflation is more
persistent (higher p, ), more volatile (higher ¢, or £, ), or more predictive of consumption (higher p,).

The third term in Eq. (22) reflects the conditional (time-varying) relation between consumption and
inflation. It appears because the term £, ¢, _;us in Eq. (14) is part of expected consumption growth. Inflation
shocks can be good or bad news for the expected path of consumption. When £,/¢,. > 0, a positive inflation
shock (w41 > 0) is good news for the path of expected consumption if and only if ¢, > 0, just as in the
data and our model calibration below. The volatility of Npa7m 41 increases when &, is higher and when ¢,
is more volatile (higher ¢,,). The persistence of Nparm 41 increases when ¢, is more persistent (higher v).

When the representative agent has a preference for early resolution of uncertainty (0 < 0), which we
assume, news about risk increasing (Ngrsk,+1 > 0) represents a bad state of nature. Even though the
expected path of consumption growth remains unchanged, the consumption claim has become riskier. In
equilibrium, today’s price of the wealth portfolio must go down for the representative agent to be willing to
hold the riskier consumption claim, which results in a lower wealth-consumption ratio and a higher marginal
utility. Nrrsk,++1 depends only on the nominal-real covariance shock w1, because Ngrsx ++1 is a function
of conditional second moments only and the nominal-real covariance is the only source of heteroskedasticity.

Because each shock 7, 1,um 11, and wy;1 drives a separate news component of the SDF, we can give an
intuitive interpretation for the price of risk for each of them. Innovations to the SDF as a function of shocks

and their respective prices of risk are
2
wi, —1
Myr1 — By [Mag1] = =AM — At U1 — Awt Wit 1 — A2w (Hl>
V2
where the shocks 7,1, um 41, weyr, and (wtz_H — 1) /V/2 are all mean zero and uncorrelated (but not
independent) from each other.
Comparing to Eq. (21), and using Eq. (22), we can identify the price of inflation risk A, ¢ in

1 1 e (O + K1, ury,
Au UL 41 = K1 <7 — ¢) NpaTH 41 = K1 <7 - ¢) <W + fc%) % (23)

The price of inflation risk A, ; is, by definition, the compensation that the representative agent requires to
hold one unit of inflation risk (ur,+1-risk). Our model provides the economic interpretation that inflation
risk is priced because inflation shocks provide news to the expected future path of consumption growth, and

changes in this path change the marginal utility of the representative agent. In addition, the model provides
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an equilibrium explanation for why the price of inflation risk moves over time together with the nominal real
covariance. When ¢, > 0, the representative agent requires positive compensation for bearing inflation risk,
because positive inflation shocks contain good news about future consumption growth. Since higher future
consumption growth is a good state of nature, inflation has a positive covariance with marginal utility. On the
other hand, if ¢, < 0, the representative agent is willing to accept lower expected returns to hold inflation
risk, because inflation shocks come with bad news about future consumption growth, making inflation a
good consumption and marginal utility hedge. Since A, : is proportional to Nparp ++1, its dependence on
parameters is the same as for Nparm,iy1, already discussed above. In addition to Nparm,i+1, Aus also
depends on preference parameters. In particular, because inflation shocks generate risk over the entire future
path of expected consumption growth, a stronger preference for early resolution of uncertainty (higher v or
1) magnifies the effect of news about the expected path of consumption on the price of inflation risk.

The same logic that we used for inflation can be used to find the prices of risk for consumption and
nominal-real covariance shocks and to interpret them, respectively, as coming from news to contemporaneous
consumption, N¢ 441, and from news about risk, Ngrsx +1. Nominal-real covariance risk (w;-risk) is priced
because of both of the roles that the nominal-real covariance plays in this model (it controls the time
variation in the predictability of consumption with inflation and it also drives the stochastic volatility of
expected consumption growth). However, the nominal-real covariance interacts with inflation risk (ury,.-risk)
only due to its role in the predictability of consumption with inflation, and not because of its role in inducing

stochastic volatility.??

6.4. The Quantity of Inflation Risk and Inflation Betas

A Campbell-Shiller approximation implies that (log) returns for asset 4, r; ¢11, can be written as
Titt1l = Ki0 + Ki10dit+1 — Ddi ¢ + Ady 141, (24)

where pd; ; is the (log) price-dividend ratio of ¢, and k; ¢, ;1 are approximation constants with ;1 generally

close to one.? Decomposing news to returns in a manner similar to the SDF, we have

(Biy1 — E)rite1r = kig (B — EB) pdigy1 + (Brer — Ey) Adgpga

= Kia (NPATH,H—I + N1 + QNRISK,H-I) + Np i1 (25)

29Gection 2 of the Online Appendix has expressions and a deeper discussion of consumption and nominal-real covariance
risks, which we omit here since our main focus is on inflation risk.

30Eq. (24) and all formulas below apply also to the consumption portfolio (with i = ¢) if we replace pd; 1, Ad; ¢, ki0 and
ki1 with wee, Ace, ko and k1, respectively.
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where

o0
(Bvrr = Eo) Y w8 Brvirg [Adiirat]

() _
Nparmiyr =
q=0
oo
i = q
mir1 = (B — Er) Z ki1 Etr14q [mtt21q],
q=0
o0
Nirskat1 = (Eiy1 — Ey) Z Iig)1Va7“t+1+q [Mit2+q + Fi1pdier1 + Adigga],
q=0
Npir1 = (Bepr — Ey) Adi i

Using the same line of reasoning used to interpret Eq. (21), we find that N};ATH’HD which is news to the
expected future path of dividends of asset i, depends only on the inflation shock um ++1; Nkg K.t+1, Which
is news to the conditional future variance of m¢4+1 + ki, 19d; 1+1 + Ad; ¢+1, depends only on the nominal-real
covariance shock w;41; and NE,t 41, Which is news to contemporaneous dividend growth of asset i, depends
only on the consumption shock 7,,,. In addition to these three news components, news to the returns of
asset i also depends on an’t 41, which is news to the expected path of the SDF (news to expected discount
rates). This news depends on the inflation shock, w41, and the nominal-real covariance shock, wiyi. In
news for returns, N)\ ;.| enters because positive news to the future expected path of the SDF (N, ., > 0)
is positive news for today’s returns: future marginal utility is expected to be higher, so the same stream of
dividends is more valuable, pushing up the price-dividend ratio and realized returns.3!

The quantity of inflation risk of asset i is given by its inflation beta. As in our empirical analysis, the

inflation beta Sy ; ; is defined as the coefficient in a regression of returns, 7; ++1, on inflation shocks, um ¢+1,

conditional on time ¢ information. Using Eq. (25), we have

Covy (UTT 441, T 441 ) )
Brie = t‘/(a?"tﬂt(—:lzt—’&-lljt—i_ - ki1 Covy (urtes1, Ny py1) + #i1Covs (unt et Nparpggr) - (26)

Intuitively, when news to the path of either dividends, N& 4 i.+1, Or discount rates, N}, 141, covary more
with inflation shocks, the price of asset i is more exposed to inflation and the quantity of inflation risk
increases. The reason that news to only expected dividends and expected discount rates enter Sy, , is
that inflation shocks only affect the expected paths of dividends and discount rates, but not their higher
(conditional) moments. N}uww“ and Nﬁtﬂ are uncorrelated to inflation shocks u ¢41, so they do not

contribute to By ; ;.

31Given that the risk free rate is defined by rie = —E [mega] — %Vart (m¢41), this news component is related to, but not

the same as, news to the path of risk-free rate. an +11 1s different for different assets because the expected path of the SDF is
discounted by the asset specific constant ;1.
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Computing the covariances in Eq. (26), we find that3?

b (P (Kinl, + ¢r) pi (ki1 + é,)
= —ky ' , 1S ™ i i 1S ™ ) ) 27
BH,l,t Kiz w 1 — KilPy + fcspt +tkK ;1¢7r 1— Ki 1Py + fz‘)ot ( )
Cove (um,e41,N], ,41) Cove (ur, 41, Nparm o 11)

The intuition behind the dependence of By, , on preference parameters and parameters of the exogenous
processes in Egs. (13) to (16) is similar to the intuition for the terms in Eq. (23) discussed earlier. More

importantly, all time variation in By ; , comes from ¢,.

6.5. Risk Premia of Inflation Beta-Sorted Portfolios

The risk premium on asset @ is

— Cov (M1, Ti041) = AutBrie + Aot Buie T A2wBow,i + AnByis (28)

where the inflation risk premium component is

AutBrie = K1 <’Y - 1) <MPC + fc%) Ki1Qr ((z)w—’_ﬁ“&r (Pz‘ - Pc) + (51' - §C> Sﬁt>~ (29)

(0 1—K1p, 1= Ki1pa

Au,t Bn,i,t

Because the price of inflation risk, A, and the quantity of inflation risk, By ;,, are each linear functions
of the nominal real covariance, the inflation risk premium is quadratic in ¢,. The inflation risk premium is
positive when A, ¢ and By ;, have the same sign. If A, ; and Sy ;, are both negative, the returns of asset i
comove negatively with inflation shocks that contain bad news for future growth. If A, ; and By ; , are both
positive, the returns of asset ¢ comove positively with inflation shocks that contain good news. In both cases,
the payoff of asset i is low in bad times and high in good times, exacerbating consumption risk. In order
for the representative agent to be willing to hold asset ¢ in equilibrium, the inflation risk premium must be
positive. If A, ; and By ; , have different signs, the opposite is true. Asset ¢ has high payoff in bad states and
low payoff in good states, and the representative agent is willing to accept a negative premium to hold this
asset because it provides a consumption hedge.

To derive the model-implied inflation risk premium from the cross-section of stock returns, we model two
assets that represent the High (H) and Low (L) inflation beta portfolios from our empirical analysis. The
High-minus-Low inflation beta, 8,  ;, is simply the difference 3, ¢ — B3, .+, because betas are linear in

returns (see Eq. (26)). If kg1 =~ K1, as is the case in any reasonable calibration of the model, a good

32Using changes in inflation (741 — m¢) or inflation levels (74 1) instead of inflation innovations in Eq. (26) also give By ; ;
that are afine in ¢, and differ from each other only in scaling. Thus, as in the data (see Section 8. and Table OA.13 in the
Online Appendix), these different ways to measure inflation risk capture the same time-variation driven by the nominal-real
covariance.
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approximation for 3, y ; is

Bu,HL,t = Coy (UH,t+1aNJIjATH,t+1) — Cov (un¢+1, NngTH,tH)
Or +&x
= 4, (r—rr)+Eu — &) v (30)

i
with associated inflation risk premium Ay 8, gr; = Aut (Bu,Ht — Bu!Lt). The High-minus-Low inflation
beta is determined by how differently inflation shocks covary with news to the expected path of divi-
dends for asset H versus asset L. The assumption that kg1 ~ k1 makes the discount-rate components
k1 Covy (uriqr, N, y1) and kg1 Covy (UH,tJrl»N#L,tH) of 8, g and B, 1, identical, so they cancel out

when taking the difference.

7. Calibration

Table 11 shows the calibrated parameters of the model and Table 12 shows the empirical and model-
implied moments that we target.>® The model has 26 parameters (3 preference parameters; 11 parameters
for the joint process of inflation, consumption and the nominal-real covariance; and 4 parameters for each of
the three stocks we model) and we consider 37 moments from Tables 1 to 7.

For preferences, we use 6 = 0.99, ¢ = 2 and v = 15, which are within the range of values commonly used
in similar studies.?* We calibrate the exogenous processes for inflation, consumption and the nominal-real
covariance in Egs. (13) to (15) to match the summary statistics of Tables 1 and the predictability regressions
of Table 2 for K = 12. The model-implied moments for 7; and Ac; match the data well. The one exception
is the standard deviation of Acy, which at 2.49% is somewhat higher than the 1.13% in the data. This value
is within the range of values used in other studies, however.?> The relatively high volatility of Ac; is needed
to match the relatively high volatility and persistence of the nominal-real covariance under the parsimonious
AR(1) specification for ¢,. We prioritize matching moments of the nominal-real covariance, because that
is the mechanism we propose to explain the time-variation in the inflation risk premium. In any case, by
standard consumption-CAPM logic, whether the standard deviation of consumption is 1.13% or 2.49% has
little impact on asset prices, even with v = 15. The AR(1) coefficient for Ac; is essentially zero in the
model and small (point estimate —16.84%) and not statistically significant in the data at the 1%-level. The
moments concerning the inflation shock uy ; also match the summary statistics of Table 1 well. In the model,
the mean and AR(1) coefficient of the inflation shock uyy; are equal to zero by assumption (for any choice of
parameters), as is the correlation between ur; and Ac,. In the data, the values of these three moments are

close to zero and not statistically significant at the 5%-level.36

33We solve for all moments in closed form. Formulas are in Section 2 of the Online Appendix.

34For example, in a closely related model, Bansal and Shaliastovich (2012) use ¥ = 1.81 and v = 20.9.

35For example, Bansal and Yaron (2004) use a standard deviation of Ac; of 2.93%.

36The correlation between consumption and inflation is negative in monthly data but usually positive for samples that use
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From Panel A of Table 2, we match the coefficients df'*> and d}"'* together with the low R?, which
guarantees that our model has the same low degree of unconditional predictability as the data. We also
match the coefficients df)’m and d''? and the higher R? of Panel B, which shows that the model has the same
strong conditional predictability as the data. As mentioned before, we design our exogenous processes so
that dS’K =0 and df"K = 1 for any calibration of the model and any K, consistent with the failure to reject
the hypothesis that dS’K = 0 and d({’K = 1 in the data. In addition to the moments in Table 2, we match
the volatility and AR(1) coefficient of the nominal-real covariance, as measured by the first-stage coefficient
b2 = NRCE from equation (3).

From Table 3, we match the first and second moments of returns and inflation betas for the two inflation
portfolios with the highest and lowest inflation betas. Matching the returns of the High and Low portfolios
ensures that the size of the inflation risk premium is consistent with the data. Matching the first moment
of betas gives the appropriate mean quantity of inflation risk, while matching the second moment of betas
gives the same degree of time-variation in the quantity of risk as in the data. Matching the mean returns
and inflation betas of the High and Low portfolios automatically implies that we match the mean return and
inflation beta of the High-minus-Low inflation beta-sorted portfolio, I P/X, which for both returns and betas
is simply their difference. Together, matching the inflation beta and returns for I P/¥ implies that the price
of inflation risk in the model is consistent with the data. The model also matches two patterns from Fig. 3:
the correlation between By, and By 1, is high (0.93 in the data and 1 in the model), and the volatility of
the inflation beta of the I P~ portfolio is around one third of the volatility of the inflation betas of either the
High or Low portfolio. From Table 5, we match the coefficient Lxrc for the IPHL portfolio at the one-year
horizon (K = 12), which shows that the model is capable of reproducing the empirical predictability in the
price of inflation risk with the nominal-real covariance.

When we calibrate the aggregate market portfolio to have the same quantity of inflation risk as in the
data, the model-implied aggregate stock market risk premium contains an inflation component that has the
same magnitude and time-variation properties as the data. To calibrate the quantity of inflation risk of the
market, we match the mean and standard deviation of the market’s inflation beta, Sy, ;, as well as its
correlation with Sy g, and By ;. Once we have a calibrated By ,, ;, we use the NRCE implied by the
model to run regression (9). We find that the key coefficient on the interaction term S, , x NRC{ is 2.69
in the model, which is close to the empirical value of 2.85 in Table 7.

Last, the calibration we propose generates a timing premium for the early resolution of uncertainty
that is considerably lower than in the long-run risk model, thus mitigating the criticism in Epstein, Farhi,

and Strzalecki (2014). The timing premium is defined as the maximum share of consumption that the

quarterly or annual data. Our model allows for parameter combinations that give either sign for this correlation, although what
matters most for asset pricing is the predictive relation between inflation and consumption rather than the contemporaneous
correlation.
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representative agent is willing to forego every period to resolve all uncertainty at ¢ = 1. The first column in
Table OA.8 of the Online Appendix shows that for our calibration the timing premium is 14.8%, less than
half the 31% timing premium in the baseline calibration of the long-run risk model.?” The last two columns
of Table OA.8 show the low timing premium in our model arises because inflation is not as persistent as
long-run risk, and not because of the persistence or volatility characteristics of the nominal-real covariance

Pprocess ;.

8. Robustness checks

We discuss a range of robustness checks for which we report results in Section 3 of the Online Appendix.

Benchmark Asset Pricing Factors and Predictors

We test whether the inflation risk premium and its variation with the nominal-real covariance are robust
to controlling for the factors in the CAPM, Fama-French three- and five-factor models (FF3M, FF5M), and
the Carhart four-factor model (FFCM). First, we include these factors as control variables when estimating
stocks’ ex ante inflation exposures using Eq. (4). Table OA.10 presents the predictive regressions for these
alternative estimates of the inflation risk premium. We see that both the unconditional inflation risk premium
(as measured by the intercept of the predictive regression) as well as the coefficient on the nominal-real
covariance are robust, both in magnitude and significance.

Next, we control for these benchmark factors ex post in the predictive regression in Eq. (7). Table OA.11
shows that the unconditionally negative inflation risk premium is captured in the FFCM and FF5M. In
contrast, we find that the coefficient on the nominal-real covariance remains economically large and at least
marginally significant in all models. We thus conclude that time-variation in the inflation risk premium is
not due to exposure to benchmark factors, neither ex ante nor ex post.

Table OA.12 runs the predictive regressions of Eq. (7) controlling for standard Intertemporal CAPM
predictors: dividend yield (DY), default spread (DS), and term spread (TS) as well as the consumption-wealth
ratio (CAY). We find that the inflation risk premium varies significantly with the nominal-real covariance even
after controlling for these benchmark predictors and conclude that the nominal-real covariance represents a

new source of conditioning information.

Alternative Measures of Inflation and Sorting Procedures
Table OA.13 analyzes alternative measures of inflation risk. We consider raw inflation; an AR(1)-
innovation in inflation; the monthly change in annual inflation; and, real-time vintage CPI inflation. The

latter test represents a truly out-of-sample exercise, as we skip a month after portfolio formation to take

37For comparison, an i.i.d. model has a premium of 10%, the long-run risk model without stochastic volatility has a premium
of 29%, and the long run-risk model with stochastic volatility and preference parameters equal to the ones we use (y = 15 and
1 = 2) has a premium of 44% (Table OA.9 in the Online Appendix).
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into account the reporting delay in inflation data. Focusing on predictability of the High-minus-Low infla-
tion beta-sorted portfolio return, we find that our benchmark ARMA(1,1) specification represents a lower
bound. Two alternative measures provide particularly strong evidence for time-variation in the inflation
risk premium with the nominal-real covariance. Using raw inflation or real-time inflation, the R? more than
doubles to about 15% with a coefficient estimate that is over 7% and a t-statistic over three. Moreover, the
unconditional inflation risk premium is negative in all cases.

Table OA.14 shows that our results are also robust to changes in the method of estimating inflation
betas. We again focus on High-minus-Low portfolios that are constructed by sorting stocks on inflation betas
estimated using (i) weighted least squares plus shrinkage (WLS) or ordinary least squares (OLS); (ii) a sort
where each portfolio comes from a double sort on inflation beta and size (Size) or a single sort on beta (No
Size), and (iii) ARMA(1,1) innovations in inflation (ARMA) or raw inflation (Inflation). In all cases, the
coefficient on the nominal-real covariance is positive, economically large, and at least marginally significant.
In three out of eight cases, the t-statistic on the nominal-real covariance is well above three. Finally, Table
OA.15 replicates our main analysis using quarterly data. We find that the High-minus-Low inflation risk
premium (estimated by sorting stocks on exposure in quarterly returns to ARMA (1,1)-innovations in quarterly
inflation) is similarly predictably by the nominal-real covariance (estimated as the rolling coefficient in a

regression of quarterly consumption growth on lagged quarterly inflation).
Time-Varying Inflation Betas
In the model of Section 6., inflation betas are linear in the nominal-real covariance. To check if our results

are robust to this specification of inflation betas, we adjust Eq. (4) as follows:

t
. . 2
(O‘p,tv ﬁn,m) = arg min Z K(7) (Ri,r — Qpt — (/B%,p,t + 5%1,p,tNRCtC;1)UH,T) . (31)

9] 1
apxt7ﬂn)p,t7ﬁn_’pyt =1

We find that the linear conditional inflation betas for each decile portfolio p, By, = B%’p’t + ﬁllq)p)tNRCﬁl,
are highly correlated to the betas we use in Section 5.1. (at a correlation of 0.79 on average). Moreover,
Table OA.16 shows that the results from our pooled regressions are, if anything, stronger than what we report
already in Table 6. Both unconditional variation in inflation betas across portfolios as well as time-variation
in the average inflation beta interact with the nominal-real covariance to generate large and significant time-

variation in the returns of inflation beta-sorted portfolios.

Monetary Policy (Risk)

We perform two tests to assess the impact of monetary policy on our results. First, Campbell, Pflueger,
and Viceira (2015) link time-variation in the nominal-real covariance to three periods: the period of rising
inflation up to the first quarter of 1977, the inflation-fighting period under Volcker and Greenspan up to the
last quarter of 2000, and the recent period of increased central bank transparency, gradualism, and renewed

attention to output stabilization. Table OA.17 shows that our conclusions on the interaction between inflation
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beta and the nominal-real covariance are robust to including in the pooled regression a dummy for each of
these subperiods. This finding highlights that our empirical evidence on the inflation risk premium is richer
than a sample split into long-lasting monetary policy regimes.

Next, we analyze whether monetary policy risk can drive our results. Table OA.18 presents the exposures
of our inflation-beta sorted portfolios to Romer and Romer (2004) monetary policy shocks and changes in
the federal funds rate (also used in, e.g., Neuhierl and Weber, 2017; Velikov, 2017). Whereas exposure to
changes in the federal funds rate is typically negative and significant, there is no clear pattern from High
to Low inflation beta, neither in the full sample nor within any of the three monetary policy regimes. As a
result, exposures for the High-minus-Low portfolio (I P//¥) are small and insignificant. Similar results obtain
for the Romer and Romer (2004) shocks. We conclude that monetary policy risk is unlikely to explain the
variation in the inflation risk premium that we uncover. This conclusion is consistent with Velikov (2017),
who argues that exposure to monetary policy shocks is transient and best observed in high frequency stock

returns. In contrast, our exposures to inflation risk are persistent.

Bond Returns

Although our focus is on the inflation risk premium in the stock market, we can examine whether similar
results apply in the bond market. We use returns on constant maturity Treasury bonds (with maturities
from one to thirty years) in excess of the one-month T-bill return. In Panel A of Table OA.19, we see
that average excess returns are increasing in maturity, whereas inflation beta is decreasing in maturity.
The ten-minus-one-year maturity difference in average excess return is 1.44%. Dividing this number by
the ten-minus-one-year difference in inflation beta gives an estimate of the unconditional price of inflation
risk: 1.44/(—1.16) = —1.24%. This price is close to what we estimate in the stock market in Table 3:
—4.23/3.00 = —1.41%.

Having said that, the evidence in Panel B shows that the nominal-real covariance is not a strong predictor
of excess bond returns in the time-series. We report coefficient estimates from a regression of annual excess
bond returns on the lagged nominal-real covariance. Depending on maturity, a one standard deviation
increase in the nominal-real covariance predicts an increase in excess bond return between -0.81% and -
0.41%. Although non-negligible economically, the estimated coefficient is only statistically significant at the

1%-level for the one-year maturity bond and at the 10%-level for the two-year maturity bond.

9. Conclusion

We show that inflation risk is priced in the stock market in a time-varying way. We study a key driver
of this time-variation: the nominal-real covariance, which is the time-varying relation between inflation and
real future consumption growth.

Our main empirical finding is that the inflation risk premium increases by a large and significant 5.3% for

a standard deviation increase in the nominal-real covariance. Given an unconditional inflation risk premium

31



of -4.2%, this result implies that the inflation risk premium can change sign. The economic intuition is that
when inflation predicts consumption growth with a negative sign as it did for example in the 1970s, stocks
with a high inflation beta are attractive as a hedge against bad states of nature and thus command relatively
low expected returns. When inflation predicts consumption growth with a positive sign, as it did since the
early 2000s, high inflation beta stocks are risky (as they covary negatively with marginal utility) and the
inflation risk premium switches sign.

By decomposing the time variation in the inflation risk premium into variation in the price and quantity
of risk, we obtain a rich set of results that are new to the literature. The time-variation in the inflation
risk premium between high and low inflation beta stocks is driven by time-variation in the price of inflation
risk. Quantities do matter for the average inflation risk premium across stocks, however. The reason is that
time-variation in the quantity of inflation risk is largely common across stocks. Consequently, the market
risk premium contains an inflation component that is time-varying due to both the price and quantity of risk.

We develop an equilibrium model that builds on the empirical observation that inflation today predicts
real consumption growth in the future in a time-varying way. In the model, this time-variation is controlled
by the nominal-real covariance, which allows us to closely match the observed dynamics in the price and
quantities of inflation risk in both the cross-section of stocks and the aggregate market. Our theoretical
contribution is to extend the long-run risk framework by using an observable state variable that is related to

future consumption growth in a time-varying way.
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Figure 1: Alternative Measures of the Nominal-Real Covariance

We present three measures of the nominal-real covariance. The first is the coefficient in a rolling regression of twelve-
month consumption growth on lagged inflation (N RCE ). The second measure substitutes industrial production for
consumption (N RC{F ). These measures are plotted on the left axis and N RCIF is divided by four to preserve
scaling. The third measure is the negative of the stock market beta of the 10-year constant maturity treasury bond
(NRC; BB right axis).
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Figure 2: Post-Ranking Inflation Beta After Sorting

We plot the monthly post-ranking inflation beta for the High-minus-Low portfolio one month, one year, two years, five
years, and ten years after sorting. The legend includes the estimated inflation beta and * ** *** indicate statistical
significance at the 10, 5, and 1%-level using Newey-West(1) standard errors.
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Figure 3: Post-Ranking Inflation Betas over Time
We present the inflation beta of the High, Low, and High-minus-Low inflation beta decile portfolio as well as the average inflation

beta over the ten portfolios.
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Table 1: Descriptive Statistics

This table presents descriptive statistics in annualized percentages for CPI inflation (II¢), ARMA(1,1)-innovations in inflation
(um,:), consumption growth (ACt), the aggregate stock market excess return (Rm,¢), and the one month T-bill return (Ry ;).
AR(1) is the first-order autocorrelation coefficient. The sample period is from July 1962 to December 2014.

IT, UTL,¢ ACy Rm,t Rf,t

Mean 393 011 197 645 485
St. dev. 1.11 085 1.13 1544 0.89
AR(1) 6247 1535 -16.84 7.47  96.90

Correlations
II,; 1 79.03 -17.75 -13.35 50.35
Ur¢ 1 -17.41 -11.72 15.35
AC 1 17.45 1.26
Ryt 1 -8.68
Ry 1
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Table 2: Unconditional and Conditional Predictive Regressions of Consumption Growth on Inflation

In this table we present predictive regressions of consumption growth, AC}41.44x over horizons K = 1,3,6,12, on lagged
inflation, II;, from July 1967 to December 2014. Panel A presents an unconditional regression: ACyy1:.44x = dg‘K + dif’KHt +
et+1:44+ K- Panel B presents a two-stage conditional regression. In the first stage, we regress consumption growth on lagged
inflation over a backward looking rolling window: ACs 154K = atK + btKHS + est1:s+K, for s =1,...,t — K. Combining the
estimated coefficients with inflation in month ¢, we then predict future consumption growth in the full time series: ACi41.44 K =

dS’K + di"K(af( + b{(l_[t) + ery1.44 /- For this conditional setup, we present also an out-of-sample R?, which compares the

performance of the conditional model that includes inflation with a conditional model that includes only a constant. To be

precise, RZ2 — O0S = 1 — VaT(ACt“:HK_(a{(ibLKH”)), where af’K is estimated through a backward-looking regressing of
Var(ACiy1utr—ap ™)

consumption growth on a constant at each point in time (thus setting b{( = 0 in the first stage). In both panels, we report

t-statistics using Newey-West standard errors with K lags. In Panel B, we also report block-bootstrapped t-statistics using

standard errors calculated as the standard deviation of coefficient estimates in 1000 bootstrap replications. We report these

t-statistics for two null hypotheses: Hy : di’K =0and Hp : d‘i’K = 1. R®’s are reported in percentage points.

Panel A: Unconditional Panel B: Conditional

Horizon K 1 3 6 12 1 3 6 12

de’ 0.00 001  0.01 0.02 g’ 0.00  0.00  0.00  0.00

t (9.10)  (8.73) (7.78) (7.52) t (0.76)  (0.15)  (0.07)  (0.10)
thoot (0.42)  (0.09)  (0.04) (0.05)

der 0.07  -015  -0.20  -0.50 ds’ 077 084 084 081

td“® =0) (-1.37) (-1.08) (-0.77) (-1.06) Hdo" = 0) (4.74)  (5.60) (5.30)  (4.56)
thoot (AT =0)  (257)  (2.74)  (2.24)  (1.77)

Hds™ = 1) (-1.44) (-1.04) (-1.01) (-1.06)
= ) (051) (- (-

thoot (S =1)  (-0.78)  (-0.51 0.43) (-0.41)
R? 0.26 0.76 0.44 1.12 R2 329 1029 1328  14.92
R? - 008 1.80 4.60 6.70 10.41
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Table 4: Exposures to Breakeven Inflation

This table presents the exposure of inflation beta-sorted portfolios to first-differences in breakeven inflation (denoted ABE}).
Breakeven inflation is the difference between the yield on a ten year constant maturity nominal Treasury bond and its TIPS
equivalent. The exposures are estimated with the OLS time-series regression Rp ¢ = ap + Bpp ,ABE: + €p¢. In Panel A, we
use the returns of portfolios sorted on exposure to ARMA(1,1)-innovations in inflation (urr,;), as in Table 3. In Panel B, we
use the returns of decile portfolios sorted on exposure to ABE;. The exposure of each stock to ABFE is estimated with an OLS
regression over a 60 month rolling window. We report the coefficients Bz , (With t-statistics in parentheses) and the R? for
each of the regressions. The sample for both panels is January 2003 (when TIPS data becomes available) to December 2014.

High 2 3 4 5 6 7 8 9 Low [IPHL

Panel A: Portfolios sorted on exposure to ARMA(1,1)-innovations in inflation (ur )

Bppp, 1784 1143 936 931  9.68 852 887 809 698 805  9.79
(2.25)  (1.73) (1.46) (1.49) (1.66) (1.45) (1.49) (1.42) (1.08) (1.13) (4.12)
R? 13.09 746 560 607 685 561 676 546  3.95 420 1187

Panel B: Portfolios sorted on exposure to changes in breakeven inflation (ABE})

Bpp, 2109 1688 1538 1282 1286 1053 9.27 7.29 819 861 1247
(2.22)  (1.93) (1.98) (L.54) (1.63) (1.60) (1.38) (1.09) (1.31) (1.03) (4.82)
R? 1640 13.66 13.35 1043 1121 988  7.58 528  7.09 508  20.01
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Table 6: Time-Varying Inflation Risk Premia in Pooled Regressions

Panel A of this table presents the estimated coefficients (with asymptotic Driscoll and Kraay (1998) standard errors in paren-
theses) from pooled predictive regressions of annual returns of the inflation beta-sorted decile portfolios on their lagged inflation
beta (5H,p,t>7 the nominal-real covariance (NRCtC)7 and an interaction term: Rp ¢4 1:¢412 = Lo + Lﬂnﬁn,p,t + LNRCNRCtC +
LgyxNre (B p,t X NRC’tC) +éep,t+1:t+12. In Model [1], we set Lg « nrc = 0, whereas Model [2] estimates all three coefficients
freely. For the latter model, Panel B presents the predicted risk premia (with asymptotic and bootstrapped standard errors
in parentheses) in four distinct cases. That is, when Br,p,s and NRCtC are at plus or minus one standard deviation from
their respective means in the pool. Models [3] to [5] in Panel A analyze which components of inflation betas interact with the
nominal-real covariance. Model [3] replaces the interaction term, By , ; X N RCE, with the interaction between the nominal-real

covariance and the portfolio-specific component of inflation betas, B/H\,p =71 Z?:l Bri,p,¢- Model [4] replaces the interaction
term, Bn,p,t x NRCE, with the interaction between the nominal-real covariance and the time-specific component of inflation
betas, B/H\,t =101 21170:1 Br1,p.t- Model [5] includes both component-wise interaction terms. To accommodate interpretation,

NRC’tC is standardized in the time series to have mean zero and standard deviation equal to one, whereas By , ; is demeaned
in the pool. The sample period is July 1967 to December 2014.

Panel A: Coefficient Estimates Panel B: Predicted Risk Premia from [2]
Model 1] 2] 3] [4] [5] High NRCE Low NRCE
Lo 848 510 848 496  5.00 High By, 7.65 -0.50
t (3.48) (2.06) (3.48) (1.96) (1.97) t (2.02) (-0.11)
Lﬁn 0.51 -0.51 0.56 -0.62 -0.57 thoot (1.65) (-0.09)
t (0.50)  (-0.65) (0.56) (-0.77) (-0.70)  Low fip., -3.33 16.56
Lyre 209 -293 217  -286  -2.92 t (-0.54) (4.09)
t (-0.64) (-1.09) (-0.66) (-1.06) (-1.09) thoot (-0.52) (3.18)
Lg, xNRC 2.36 Diff 10.98 -17.05
t (3.63) t (1.90) (-2.69)
Lg, xNRC 2.45 2.17 thoot (1.40) (-2.27)
t (2.80) (2.50)

Lgy xNRC 2.45 2.43

t (3.45)  (3.42)

R? 0.71 8.80 1.40 8.26 8.80
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Table 7: The Nominal-Real Covariance and the Market Risk Premium (MRP)

Panel A of this table presents coefficient estimates from time-series predictive regressions of CRSP value-weighted excess stock
market returns on the market’s inflation beta (Byy,,, ), the nominal-real covariance (NRCF), and their interaction. The right
block of results in Panel A presents the predicted MRP from Model [2] in four cases, that is, when Bri,m,: and NRCtC equal
plus or minus one standard deviation from their respective means. We present this regression for the twelve-month horizon and
standard errors are Newey-West(12). To accommodate interpretation, NRCE is standardized and Bri,m,: is demeaned. Panel
B presents non-parametric estimates of the MRP in four similar cases. These estimates are calculated by averaging realized
excess market returns in sample months ¢ + 1 when By ,,, , and NRCE in month ¢ are either below the 40t or above the 60"
percentile. The sample period is July 1967 to December 2014.

Panel A: Time-Series Predictive Regression

Coefficient Estimates Predicted MRP from [2]

Model 1] 2] High NRCC  Low NRCC
Lom 6.39 3.02 High B ., 457 4.03
t (2.95) (1.26) t (1.46) (-0.68)
Lg,m 0.28 -1.29 Low i1 s -2.08 13.61
t (0.23) (-1.16) t (-0.41) (4.08)
LNRCm -1.14 177 Diff 6.65 -17.64
t (-0.39) (-0.72) t (1.50) (-2.54)
Lg_ «NRC,m 2.85

¢ (3.55)

R? -0.08 8.59

Panel B: Non-Parametric Estimates of the MRP

NRCE > Psy NRCE < Py

Biims > Poo 8.10 -2.06
t (1.77) (-0.25)
Bims < Puo 4.01 16.14
t (0.50) (3.03)
Diff 4.09 -18.20
t (0.44) (-1.84)
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Table 8: Sorting Stocks on Exposure to Inflation-Hedging Industry Factors

For this table, we rank 48 industries on their full sample, unconditional exposure to ARMA (1,1)-innovations in inflation (ur ).
From this ranking, we construct long-short industry factors that equal-weight the top (bottom) K industries, where K ranges
from one to five. We then sort individual stocks in decile portfolios on their (60 month rolling window) exposure to these
industry factors. We leave out all stocks that belong to the top and bottom K industries, which are presented in Panel A. We
then construct a High-minus-Low decile portfolio using the market-value weighted portfolios of the stocks with the highest and
lowest exposures to the Kth industry factor. For each of these K sorts, we present in Panel B: the ex post, or post-ranking,
exposure to ugy,¢; and, the estimates from a predictive regression at the annual horizon of the High-minus-Low portfolio returns
on the lagged nominal-real covariance (see Eq. (7) of the paper).

K 1 2 3 4 5

Panel A: The Five Best and Worst Inflation Hedging Industries

Top 1 Coal Coal Coal Coal Coal
(Best Hedges) 2 0il 0il 0il 0il

3 Gold Gold Gold

4 Mines Mines

5 Agriculture
Bottom 1 Meals Meals Meals Meals Meals
(Worst Hedges) 2 Textiles Textiles Textiles Textiles

3 Clothes Clothes Clothes

4 Transportation Transportation

5 Personal Svcs.

Panel B: Inflation Exposure and Predictability of Industry-Sorted Portfolios

Brpost 518 4.70 441 4.27 4.21
(4.99)  (4.57) (4.33) (4.49) (4.32)
Lo -4.10 -4.97 -5.27 -4.78 -5.05
(-1.36)  (-2.17)  (-2.30) (-2.12) (-2.20)
Lyrc 9.03 5.86 6.01 6.26 5.64
(3.16)  (2.77) (3.01) (3.19) (2.96)
R? 12.13 8.72 9.15 9.94 8.04
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Table 9: The Inflation Risk Premium Within- and Across-Industry

This table presents time-series predictive regressions for two alternative inflation risk premia (derived from a within- and an
across-industry sort) on the lagged nominal-real covariance. For the across-industry sort, we calculate the inflation beta of
each of 48 industries as the value-weighted average inflation beta of all stocks in that industry. We sort the industries into
quintile portfolios, such that each across-industry quintile portfolio contains either 9 or 10 industries, which we equal-weight
to calculate returns. For the within-industry sort, we first construct five value-weighted stock portfolios within each of the 48
industries by splitting at the quintiles of ranked inflation betas of the stocks within that industry. This gives us a total of 48-by-5
value-weighted portfolios. Within-industry quintile portfolio returns are then calculated as the equal-weighted average over the
48 industries. The aggregate across- and within-industry effects are presented in the last column as the difference between the
High and Low across- and within-industry portfolio returns, respectively. For each portfolio, we present coefficient estimates
from the predictive regression of twelve-month compounded future returns on the lagged nominal-real covariance (as in Table

5).

Panel A: Across-Industry

High 2.00 3.00 4.00 Low High-Low
By industries By industries
Lo 5.93 6.99 7.94 5.78 9.29 -3.36
t (2.98) (329) (3.57)  (2.41) (3.62) (-1.95)
Lyrc 0.69 -0.67 -1.23 -1.51 -3.94 4.63
t (0.30) (-0.28)  (-0.48) (-0.54) (-1.30) (2.70)
R? -0.02 -0.05 0.22 0.38 2.95 10.03
Panel B: Within-Industry
High 2.00 3.00 4.00 Low High-Low
By stocks By stocks

Lo 6.56 7.16 7.78 7.89 8.28 -1.73
t (2.58) (2.93) (3.54) (3.33) (3.42) (-1.55)
Lygre 0.27 0.15  -1.09  -2.10 2.97 3.24
t (0.09) (0.05) (-0.41) (-0.75) (-1.07) (3.29)
R? -0.17 -0.17 0.14 0.86 1.74 10.81
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Table 10: Inflation Risk in Cash Flows Versus Discount Rates

We use the procedure in Campbell and Vuolteenaho (2004) to decompose the unexpected return of the High and Low inflation
beta-sorted portfolios into discount rate and cash flow news: Rit1 — Et(Ri4+1) = —NpR,t+1 + Ncr,t+1- We regress each of
these components separately on ARMA(1,1)-innovations in inflation (ur¢) to decompose inflation betas: S = ,BﬁDR + ﬁgF
We consider three sets of state variables. In the first set, we include the term spread (T'S), price-earnings ratio (PF), and value
spread (V'S). The second set includes the dividend yield (DY), default spread (DS) and T'S. In the third set, we add the
nominal-real covariance (NRCC) to the first specification. To ensure that the VAR-models are correctly specified, we include in
all three specifications the dividend yield of the respective inflation beta-sorted portfolio (DYy 1) as a state variable. We report
below the estimated exposures. The t-statistics use either Newey-West standard errors with one lag (¢t ) or standard errors
simulated under the null of no stock return predictability as in Campbell (1991) (¢sim ). In this simulation, we allow (innovations
in) the state variables and inflation to be correlated, just like in the data. For each portfolio, we also report the resulting return
variance decomposition (column % Var) that shows the share of return variance explained by (the negative of) discount rate
news, cash flow news, and two times their covariance. In the last row, we report the fraction of the High-minus-Low difference
in inflation beta coming from exposure in cash flows.

Model 1: TS, PE,VS, DYy, Model 2: DYyier, DS.TS, DYy, Model 3: NRCC,TS, PE, VS, DYy,

B tNw tsim % Var By tNw tsim % Var B tNw tsim % Var
High Rey1 — Ee[Resa) 089 (10.54) (-0.83) 100 -094 (-057) (-0.90) 100  -0.87 (-0.52) (-0.81) 1.00
~Nprest 178 (157) (-1.94) 043 -1.66 (-1.32) (-1.06) 057  -2.82 (-2.14) (-2.84) 0.87
Nerist 089 (1.24) (0.66) 034 071 (1.01) (0.39) 032 195 (1.67) (1.40) 1.08
2 x Cov(=Npr,t+1, NcFit1) 0.23 0.11 -0.95
Low  Rit1 — B[Rt 271 (1.65) (-258) 100 273 (-1.66) (-260) 100 270 (-1.65) (-2.57) 1.00
Npre 120 (-1.66) (-1.20) 0.37  -2.02 (-3.73) (-0.17) 037  -1.05 (-1.40) (-0.88) 0.35
Nerast 151 (145) (-115) 042 071 (-048) (-0.06)  0.62  -1.65 (-1.70) (-1.13) 0.39
2 x Cov(—Nppis1: Neris) 0.22 0.02 0.26
Bt tign=Bf Low 1.32 0.80 1.96

Bri.migh=Pn.Low
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Table 11: Calibrated Parameters of the Model
This table reports the configuration of the parameters used in the calibration of the model. The model is calibrated on a monthly
decision interval.

Preferences
Discount factor é 0.99
Elasticity of intertemporal substitution P 2
Risk aversion coefficient vy 15
Inflation
Mean of inflation rate thr 0.0033
Inflation AR(1) coefficient P 0.7992
Inflation MA(1) coefficients o -0.0025
&q 7.30 x 1074
Consumption
Mean of real consumption growth e 0.0016
Exposure of expected consumption to inflation p, -0.0521
Volatility of consumption-specific shocks Oc 0.0020
Consumption exposure to inflation shocks &, -0.1983
Nominal-real covariance
Mean of nominal-real covariance ©o -0.0062
Persistence of nominal-real covariance v 0.9963
Volatility of nominal-real covariance Ow 0.0029
High inflation beta portfolio
Mean of dividend growth 15 %% 3.44 x 1074
Exposure of expected dividends to inflation PH -0.2345
Exposure to consumption-specific shocks oy 0.0318
Exposure to inflation shocks &y 0.1942
Low inflation beta portfolio
Mean of dividend growth I 0.0060
Exposure of expected dividends to inflation oL 0.6989
Exposure to consumption-specific shocks oL -0.0517
Exposure to inflation shocks &r 0.1082
Aggregate Market
Mean of dividend growth Pyrr  1.72x 1074
Exposure of expected dividends to inflation PMKT 0.7099
Exposure to consumption-specific shocks OMKT 0.0337
Exposure to inflation shocks Savrer -0.3076
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Table 12: Calibrated Moments

This table shows that the model can match means and standard deviations of returns and betas, as well as the slope coefficient
from regressing returns on the High-minus-Low portfolio (as well as the aggregate market portfolio) on the nominal-real covari-
ance.

Data Model

Descriptive Statistics

Tt Ur t Acy Tt Ur t Acy
Mean 3.93 0.11 1.97 3.93 0.00 1.97
St. dev. 1.11 0.85 1.13 1.11 0.85 2.49
AR(1) 62.47 15.35 -16.84 62.47 0.00 0.19
Correlations
T 1 79.03 -17.75 1 76.71 -8.10
Ur 1 -1741 1 0.00
ACt 1 1

Predictve Regressions of Consumption Growth on Inflation

Uncond. Cond. Uncond. Cond.
dy? 0.02  0.00 0.02  0.00
di? -0.50 081 -0.50  1.00
R? 112 14.92 0.41  15.40
AR(1) NRCE 99.63 99.63
St. dev. NRCE 0.87 0.79

Characterizing Inflation Beta-Sorted Portfolios

High Low High Low
Mean £, ;; -0.02  -3.02 -0.02  -3.04
St. dev. B, 3.61 3.25 4.03 2.86
Mean Ret. 5.26 9.49 5.28 9.42
St. dev. 22.72  21.78 22.74  18.97

Characterizing Inflation Risk Premium (IPHL)

St. dev By g1 1.36 1.00
Lyre,ippe 5.38 5.41

The NRC and the Market Risk Premium

Mean 3, ,,, -1.96 1.95
St. dev. By e 2.19 2.85
cor(By, 1> Bum) 95.75 100.00
corr(By.1s Bum) 97.12 100.00
LN RC.m 2.85 2.69
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Online Appendix to
“Time-Varying Inflation Risk
and Stock Returns”

In this Online Appendix, we present more detail for the block-bootstrap procedure as well as the derivation

of our model. We finally report results from a variety of robustness checks.

1 Bootstrap Algorithm

The block-bootstrap algorithm associated to the regressions of Tables 2, 5 and 6 in the paper consists of

the following steps.

1. In each replication m = 1,...,1000, we construct pseudo-samples for both consumption growth and

inflation by drawing with replacement T, overlapping two-year blocks from:
{Acﬂl:t+24’ H?jrlzt+24}v t= 511%7 s;nv ) Sg“nm (OAl)

where the time indices, s7",s3",..., sy , are drawn randomly from the original time sequence 1,...,T".
The two-year block size is chosen to preserve the (auto-) correlation between consumption growth and
inflation in the data and to respect the estimation setup in Egs. (2) and (3) of the paper. Additionally,
it is a way to conserve the size of the cross-section in the resampled CRSP file (see Step 3 below). We
join these blocks to construct a monthly time series matching the length of the sample from July 1967

to December 2014.

2. For m =1,...,1000, we run the two-stage tests described in Section 3. for the artificial data:
A 211:t+K = dfﬁ{g + diﬁ(agt + bg’tH;") +eim where (OA.2)
ACT ik = aﬁ_’t +b£§,tﬂ?+€ﬁ1;s+m s=1,..,t— K, (OA.3)

. c, K c, K K
and save the estimates d , d,, 7, and by, ,

for K = 1,3,6,12. The bootstrapped standard errors

reported in Table 2 are calculated as the standard deviation of df;f(() and dzﬁ over the 1000 bootstrap

12

m.t> represents the artificial nominal-real covariance that is

replications. The bootstrap estimates, b
going to be used to get the bootstrapped standard errors for the remaining tables of the paper.

3. Using the same time indexes s7", s3',...,s7 , we re-sample all firms ¢ = 1,..., I in the CRSP file. To
be consistent with the data, we bootstrap both returns, Ryy1 = {R1 141, R2,441,-- -, Rr+1}, and firm

characteristics, Z, = {MV;, BM;, MOM,}, with, e.g., MV; = {MVy 4, MVay,...,MV;,}', such that:

m m _ m m m
{Rt+1:t+247Zt:t+2471}7 t=151,83,...,87, - (OA4)



Notice that the characteristics are lagged by one month just like in the data. We join these blocks to
construct 1000 artificial CRSP files matching the length of our sample.

. In each replication, we estimate at the end of month ¢ and for each artificial stock i its exposure to
ARMA(1,1)-innovations in inflation, denoted ufj,,,;. The ARMA model is estimated for the inflation
series described in Step 1. The inflation betas are estimated using the WLS-Vasicek procedure described
in Section 4.1.1. of the paper. We require that an artificial stock return series has at least 24 out of
the last 60 months of returns available to estimate inflation beta, Sy ; ;. Since many stocks have some
missing returns in the CRSP file, due to late introduction or early exit, the overlapping block-bootstrap
reduces the number of firms that satisfy this requirement relative to the data. However, we end up with
about two-thirds of the number of firms that we use in the data in each bootstrapped cross-section.

. Form =1,...,1000 and at the end of each month ¢, we then sort the artificial stocks on these inflation
betas and their market values to construct the ten value-weighted size-controlled inflation beta-sorted
portfolios that feature prominently in the paper, R} 1 = { R} p, 11, B84 15 - - Rgy 441} The three

bootstrap estimates of the inflation risk premium are constructed as follows. First, we take the high-

m

minus-low spreading portfolio from this sort: RYp,u. , 41
t b

= RYignt+1 — Blow41- Second, we regress
the artificial ARMA(1,1)-innovations in inflation, ufy ,, ;, on the inflation sorted portfolios to construct

the maximum correlation inflation-mimicking portfolio:
Uty 441 = intercepty, +weights,, x Ry +efy, (OA.5)

such that R’I”PtMC’ o1 is the portfolio return weights], x R}, 11. Finally, we run a cross-sectional

regression of returns on lagged inflation betas, where we control for the firm characteristics:
T A lm,H,tﬂﬁL,z',t +lzaZy' +uiy- (OA.6)

The time series of coefficient estimates, [, 11.+, represents our third estimate of the inflation risk premium
RrInPtCS,t-ﬁ-l'

. For each replication, we then run the predictive regression described in Section 4.2. of the paper. That
is, we regress returns on the artificial inflation portfolios and risk premia (compounded over horizons

K =1,3,12 months) on the lagged nominal-real covariance (i.e., the bootstrap coefficient estimate b},it

from Step 2 above) using:
Rz?t+1:t+K = Lm70 + LM,NRcb}n%t + gﬁ-l:t-&-K' (OA-7)

Note that the timing in the different steps of the bootstrap is consistent with the data, so that the left-
hand side returns are observed strictly after the consumption and inflation numbers used to estimate

the right-hand side nominal-real covariance. We use the standard deviation of the estimates L,, ¢ and



Ly, nre over the 1000 bootstrap replications as the standard error for the predictive regressions of
Tables 5.

7. Finally, we run the pooled predictive regressions described in Section 5.1. of the paper. That is, we
regress returns on the artificial inflation beta-sorted decile portfolios, p = High,2,3, ..., Low on their

time-varying inflation betas (8} » +), the nominal-real covariance, and an interaction:
s

RZ,Lt—H:t-}-K = Lmo+ Lmvﬁn/@?ﬁp,t + Lm,NRcbvlr?,t + LmanXNRC(ﬂgl,p,t X birf,t) + 5?-15-1:“-}(- (OA-8)

Because this regression includes an interaction term, the bootstrap may contain samples m that suffer
from multicollinearity. To address this problem, we evaluate the joint significance of the variables
by performing inference on the predicted risk premia when 5?,;7,15 and b}n%t are at plus or minus one
standard deviation from their respective means in the block-bootstrapped sample. We use the standard
deviation of these predicted risk premia to calculate the t-statistics for the estimates report in Panel B

of Table 6.

2 Model Derivations

This section present detailed derivations of our model results, including expressions for the moments that

we target in our calibration.

2.1 Setup

The representative agent has preferences given by the recursive utility function of Epstein and Zin (1989)

and Kreps and Porteus (1978),

B 1—1/% ﬁ
U, (W) = ((1 —8)CF MY £ OB, [Up (Wign)' ] ) ,

where W; is real aggregate wealth and Cy is real aggregate consumption. The constant § € (0,1) is the
discount rate, v > 0 is the coefficient of relative risk aversion and ¥ > 0 is the elasticity of intertemporal
substitution (EIS). The first order condition for the representative agent’s problem implies that the gross

return R; ;41 on any tradable asset ¢ satisfies the Euler equation
1=FE;[Mi11R; 141],

with a stochastic discount factor My, given by

0
M1 = log My = 0logd — EACH—I + (0 = 1) re i1, (OA.9)
where
1 —
0=—7, (OA.10)
=3



and lowercase letters denote logarithms, so that Ac; = InC; — InCy_1 and r.; = log (Rc+). The processes
for real consumption growth, Ac;, inflation, m;, the nominal-real covariance, ¢,, and real dividend growth

for asset i, Ad; ;, are exogenous and given by

Tip1 = Mo+ pr (Mo — p) + Oruepr + Erue, (OA.11)
Acirr = ot pe (Mo — pir) + 0etyr + Eer 1, (OA.12)
Prp1 = PoTU(or— @o) + owWist, (OA.13)
Adigrr = py+p (Mo — i) + 0inyyy + &0 U, (OA.14)

ut, Ny, W iid standard normal.

2.2 The Nominal-Real Covariance

The covariance between time-(¢ + 1) inflation and consumption conditional on times ¢ and ¢t — 1 are

Covy (Aciyr,mi41) = 0,

CO’Utfl (Act+17 7Tt+1) = (bﬂ'pc (577 —+ (bﬂ’pﬂ') + gc (pﬂ'qsﬂ' + 571’) Pr—1-
Conditional predictability of consumption growth with inflation is given by

Gnpe + brbep , ifj=1
Covy (ACt+1+j, 7Tt+1) = ! ,

GnPelk 2 (Ex + Gnpr) i >1
and, using that
Vary (mi41) = 62,
we get

K
Couvy (ijl Acit144, 7Tt+1>
V(lT’t (71't+1)

Kfl_]_
<1+ i’fﬂ)ﬁ)p )pﬁgcwt
i

Pr — 1 (b‘n'
= hg+ i(pta (OA15)
where we have defined
he= (14 (&4, )i =1 (0A.16)
K = ¢ﬂ- Pr D — 1 Pe- .

Our main measure of the nominal-real covariance is

NRCE = b2 (OA.17)



2.8 Coefficients of the Wealth-Consumption Ratio

To price assets, we conjecture (and later verify) that the log wealth-consumption ratio is linear quadratic

in the state variables 7y, ¢,, and u; and has the following form
wey = Ao+ Ar (1 — i) + Aoy s + Ague + As (0, — o) + A5 (97 — E [#7]) (OA.18)
and that the price-dividend ratio for asset ¢ is
pdit = Dio+ D1 (7 — pr) + Diogy_que + Dizue + Dia (0, — ¢o) + Dis (QD? —-F [gof]) , (OA.19)
where

2 2 T
E [¢}] :<Po+m,

is the unconditional mean of ¢?. A Campbell-Shiller approximation gives returns on the aggregate consump-

tion claim (the wealth portfolio), r. 11, and returns on any asset 4, 7 441,

Tet+l = Ko+ K1WCi41 — wer + Acpqt, (OA.20)

Tittl = Kio+ KiaPditr1 —pdit + Adii1, (OA.21)

with approximations constants

eE[wct]

k1 = 6E[wct] + 1’ (OA22)
we eE[th]

Ko = IOg (GE[ t] + 1) — mE [’lUCt} 5 (OA23)

eElpdi.i]
Kil = B 11 (OA.24)

‘ eElpdi ]
Kio = log (6E[pdz,t} + 1) — WE [pdiﬂg} . (OA25)
Using equations (OA.20), and (OA.9), we get
1

Myy1 + Teir1 = 0 (logd + ko) + 6 (1 — 1/}> Acty1 + 0 (kqwep 1 — wey) (OA.26)

The Euler equation for any asset i (including ¢ = ¢) with lognormal returns is
1
0 = Et [mt+1 + Ti,t+1] + EVart [mt+1 + Ti,t+1] . (OA27)

Plugging equation (OA.26) into (OA.27) with ¢ = ¢, and evaluating conditional means and variances, the

Euler equation for the consumption claim (¢ = ¢) can be expressed as

0=Co+ Ci (¢ — pir) + Coy_yus + Caug + Ca (0, — ) + Cs (97 — E [#7])



where C; are constants that depend on Ay, Ay, As, A3, Ay, As. In order for the Euler equation to be satisfied
at all times, the coefficients C; must be identically zero, which yields the following system of equations in

Ao, Ar, Ao, A, Ay, As:

1
=) 5 0= (13 ) pe= a1 mapy). (0A.28)
1
(proque) = 0= <1 - ¢) §e — Ao, (OA.29)
() @ 0=ri§ A1 — As, (OA.30)
((pt - QOO) : 0= QKEAQ (Ag + ¢7rA1) + (’UKZl - 1) A4, (OA31)
+ (21}9/{%03)) AgAs — 261090 (v — 1) (29%103145 +1) As
03
(gp? —-F [(p?]) ;0= 71 (Ag + 41}203)14%) —As (1 - v2n1) , (OA.32)
9% (1 >, 0
(const) : 0= 5 <¢ - 1) os — @uc—l—@(m —1) Ao+ 0 (ko + p, +1n9)

1
+50°3 (A + oz + 6, 41)° + 0% ((Aa+20045)° +20%43) )
0*k202,

— LW (A2 4 40202 A2) . A.
2(1,1)2)( 2+ 4oy, A7) (OA.33)

We solve for Ay, Ay, Az, Ay, As in terms of Ay

1\
o= (1Y e A.34
! < w) 1- K“lpﬂ'7 (O ’ )
1
A, - <1 B ) €., (OA.35)
()
1Y ki&ep,
gy — (1o 1) ke OA.36
3 < 1/)) 1—rip, ( )
4 - A20K7 (A1, + Az) + 2r1p9v (1 — v) (1 + 20K107, As) A57 (OA.37)
1 — kv (1 + 20k102 A5)
2 - 2 ’
4y = V(g \/1 _ <2(1 g "’2"@1"“’56) , (OA.38)
0 (2vk104) 1—v%6

where we pick the negative root in the expression for A5 (which comes from solving a quadratic equation)
so that £, = 0 implies the intuitive economic restriction that the nominal-real covariance ¢, has no effect on
the wealth-consumption ratio when it does not affect consumption. Then we solve for Ay numerically using

equations (OA.23), (OA.22) and (OA.33).

2.4 Coefficients of the Price-Dividend Ratio

The calculation is analogous to that for the A; but instead of using the Euler equation for ., we use

the one for r; ;. The Euler equation for asset ¢ can be expressed as

0=Fyo+ Fi1(m — pip) + Fiop, 1wy + Figug + Fia (0, — o) + Fis (97 — E [¢7]), (OA.39)



where F; ; are constants that depend on D, D; 1, D; 2, D; 3, D;4,D; 5. In order for the Euler equation to
be satisfied, the coefficients F; ; must be identically zero, which yields the following system of five equations

in the five unknowns Di,17 Di)g, Di)g, Di,4; Di’5

(me =) = 0=p; = Di1 (1= ki1p,)

0 =1) (o4 A1 (kap, = 1)) = g (0A.40)
(gotflut) 0= fl — D¢72 -+ (9 - 1) (fc - AQ) - gfc, (OA41)
(Ut) : 0= (0 - 1) (KZlfﬂ_Al - Ag) + gﬂ—ﬂi,lDi,l - Di,37 (OA42)

(o1 —wo) = 0=2D;5vk;10 (1 —v) = Dia (1 —vKi1)
— (A4 — k1v (Ag + 24500 (1 = v))) (0 — 1)
+ (ki1 D2+ Kk1A2 (0 — 1)) (ki1 Dis + k143 (6 — 1))
+ér (ki1 Dia + K142 (0 — 1)) (ki1 D1 + k141 (0 — 1))
+2v02) (ki1 Dia + k1As (0 — 1)) (ki1 D;5 + K1 A5 (0 — 1))
—4vipy02, (ki Dis + k1 As (0 — 1))* (v —1), (OA.43)
(90? —F [90%]) 0= (2U2U12u“§,1) Di2,5
+ (vzm’l (4,%1030145 @-1)+ 1) — 1) D5
-f-1 (ki1Dio — k1A + Ok As)?

2
+A45 (0 — 1) (v’k1 (2610545 (0 — 1) +1) — 1), (OA.44)



and one equation for D; o

%Mﬁ (0 —1) (Ko + e — Ao (1 — 1))

2
eeo-20)

1
5% (RiaDia + (0 = 1) mAr)?

(1—ki1)Dip = Kio+ 4 +0Ind—

+%/<;1012UA4 (0—1)(2ri1Dia+ K1 (0 —1)(As+4(1 —v) pyAs))
+02, (208 (1 = v%) +02) (ki1 Dis + K145 (0 — 1))

+ri 190 (KiaDio+ (0 — 1) k1 A2) (¢, Di1 + D, 3)

+h1 (0 — 1) g (ki1 Di2 + (0 — 1) k1 42) (A3 + ¢ A1)

1
+-ki1(ki1Dis+ (0 — 1) k143) (2¢,.D;1+ D, 3)

2
1
+§Hl (9 — 1) (Hi71Di’3 + (9 — 1) KlAg) (Ag + 2¢7|_A1)
+1 o2+ oh K2 (0 — 1)2 <A2 + do2o? AQ)
2 0 1 _ U2 1 2 w*H
2
+ (gﬁg + 1 iwv2> Ki, 1K1 (9 — 1) (AQD;‘Q + 41]20,‘2UA5D1'75)

+’€§,1 (Di2,2 + 4U2012UD¢2,5)

1
+§Ufuf€i,1Di,4fﬂ71 (4pgDis + Dj4)
+ookin0mk1py (0 — 1) (AaDis + AsD; 4)

1202 vk3pyAsAs (0 — 1) (OA.45)

We solve for D; ; for j =1,2,3,4,5 in terms of D; o in closed form, picking the negative root in the solution
of the quadratic equation for D; 5, as we did for the solution of the system of equations for 4;. We then solve
for D; o numerically using equations (OA.25), (OA.24) and (OA.45).
2.5 Conditional Pricing

We first write the SDF in terms of state variables (my — jur, 0, 1us, us, 0, — 0o, 97 — E [7]) and innova-

2
. w -1 . . .
tions (Ut+1; Wit1, %, My +1>. Note that the innovations are mean zero, variance one and orthogonal to

each other (even though w;;1 and w?,, are not independent) since

Et [’wt+1 (’U.)?_,'_l - 1)} = Et [wi_l] - Et [wt+1] =0.



The innovation to the SDF is

Mmyy1 — By [myya]

We can then write

miy1 — Ky [mt+1] = —/\u,tut+1 - Aw,twt-&-l — A2w (\/5> - /\nm+1,

= K1 (0—1) (A1 + 9 A2 + Az) us s

+r10y (0 — 1) (Ag + 200 A5 (1 — v) + 20A50,) wit1

2. -1
+V2r10% (6 — 1) As (%)

1
+ 9(1_> _1)% .
< v Nt+1
Wiy — 1

-1

2
. . w
where the prices of risk for (Ut+1, Wey1, %, 77t+1) are

)\u,t =

)\Qw

>
3
1l

For returns of asset ¢, we have

wipy — 1
i1 = Ei [rigp1] + By g1 + B Wit + Bowi | — = | + Byiflisrs

where the conditional return is

E, [Ti,t+1] =

. Cov, (mt+17 Ut+1)

Vary (ugs1)
—k1 (0 — 1) (9. A1 + ¢, A2 + A3)
LN [ pe (@ + K1&s
(1 3) (P v
Covy (mys1, wieq)
 Var (wig1)
—k104 (0 — 1) (Ag + 2 As (1 — v) + 20A45¢,) ,
700% (mt_H, (wt2+1 - 1) /ﬂ)
Vary ((wt2+1 - 1) /ﬂ)
—V2k102 (0 — 1) As,
_C’ovt (mt_H, 77t+1)
Varg (77t+1)
YO

V2

Kio+ 1y — Dio(1— ki)
+(p; — Dit (1 = Ki1pr)) (T — pir)

—ut (Di3 —&§kinDin) +(§; — Di2) op_qus

+(2D; 5vKi190 (1 —v) = Dia (1 = vki1)) (¢r — @)

~Dis (L= v*kin) (9} = E[07])

(OA.46)

(OA.47)

(OA.48)

(OA.49)

(OA.50)

(OA.51)

(OA.52)



and the quantities of risk are given by the betas

B, .. = Covt (U1, 15,41)
wit T Vart (Ut+1)

= £i1 (¢xDin + Di2p, + Di3)

pi 1\ (¢ +&Rin)pe & 1
= () S () ),
5 . = Covy (U/t+177“i,t+1)
wHr Vary (wieq)
= Kin0w (Dia +2¢0Di5 (1 —v) +20D; 50,)
- Covy ((wf_i_1 — 1) /2, r¢,t+1)
e Vary (w?, — 1) /V?2)
= V2k;102D; 5,
8, Covy (771:4-1’ Ti,t+1)
’ Var, (77t+1)

= 0.

Expected excess returns for asset ¢ can then be written

—Covy (mt+17 Ti,t+1) = —FE [(mt+1 - E; [mt+1]) (Tz‘,t+1 - E, [V"i,t+1])]

= AutBuit T AwtBuit T A2wBowi + AnBi-

Of course, we can always set ¢ = ¢ and study the consumption portfolio:

2
w -1
Tetr1 = Ey [re 1] + Bu,ctUt+1 + By ctWit1 + Boy ¢ (%) + Bt

where

Eilreer1] = ko + pe — Ao (1 — K1)
+(pe = A1 (1 = K1pg)) (e — pir)
+ (€ k141 — Ag) uy
+(§c — A2) py_yuy
+ (2vk190 (1 = v) As = (1 — vk1) Aa) (@4 — #0)

—As (1= %) (97 = B [¢7]),

10

(OA.53)

(OA.54)

(OA.55)

(OA.56)



and where the quantities of risk are given by the betas

Covy (Ut-s-l, Tc,t+1)
Vart (Ut+1)
= K1 (A1 + Asgp, + A3),

5. . = Covy (Wit1,7ct41)
w.e Vary (wieq)
= K10y (A1 + 20045 (1 —v)) + 20A50,),
5 _ Covy ((w}, — 1) /V2, Te41)
R T ()
= \[2/—@103}/15,
5 _ Covy (77t+1: rc7t+1)
e Vary (77t+1)
= o..

ﬁu,ct

Expected excess returns for asset ¢ can then be written

—Cov, (mt+1; Tc,t+1) = —F [(mt+1 - B [mt+1]) (Tc,t+1 - E; [Tc,t+1])]

= MutBuct + MotBu.ct + AowBawe + Ay -

Inflation betas and the price of risk with respect to the shock um 111 = ¢, ury1 are

BH,i,t = d)ﬂ'ﬂu,itv (OA-57)
Ame = Aq;”. (OA.58)

11



2.6 Derivation of equations (20) and (21)

First, we compute innovations for m¢124, ¢; 404, and <pf+2+j:

Tt+2+j
Ei14j [Teq244]

Tit2+j — Eig14j [Tego4]
Prto+j

Eir14j [¢t+2+j]

Pri2+j — Brvritj [@t+2+j]

2
Pt+2+5

Eit11 [Prea+s])

2 2
Piror; — Bryieg [0rsoys]

P + P (Tet145 — M) + Grltraty + Exllir14y,
fir + P (Teg14j — fr) + €ttt

Grlit+2+j,

o+ (‘Pt+1+j - 800) + OwWit24j,
Yo+ v (‘Pt+1+j - SOO) )

OwWtt2+45,

(w0 +v (Pryrey — 900))2 + oW g
+2 (9o + v (Pr1145 — 0)) Cwitayj,

(o +v (‘Pt+1+j - 800))2 +05,

w? . —1
\/502 t+2+7
v V2

+2 (‘/’0 +wv (‘Pt+1+j - ‘PO)) O Wit 24j- (OA.59)
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We use these innovations to compute innovations in wecgo4;

weprar; = Ao+ Ay (Teratj — i) + Aoy 1y juerary + Asuirog;
+ A1 (Prrary = Po) + As (Pirar,; — B [ef])
Eipiqjwerror] = Ao+ Ay (Bryigg [Terogs] — tr) + AoBrp1gg [0 jterots]
+A3E 14 [uegari] + As (Brsrts [Prrari] — ©0)
+A45 (Bet14j [¢yo4s] — E [01]) 5
Wepoyj = Erprgj [weroy;] = A (Mot — Ergaag [Teretj]) + A2y jtiret
+A3Ut+2+j + Aq (‘Pt+2+j —Eii1yy [‘Pt+2+j])
+As5 (P ror; — Brvie [Pi1215])
= A1 (Mot — Brpivg [Teao]) + A2y Ueray
+Asursots + A1 (Prgar; — Brrieg [Prias])
+As5 (PFvo4; — Brvies [011245])
= (A1, + Aopiiyy + A3) Ury2y;

+ (As + 245 (o + v (Prs14) — P0))) Twlerar

+A45202 Wierey =LY (OA.60)
v V2

Innovations in consumption Aciqo; are

Actyoyi = o+ po (Tea14g — fin) T Tcliyor; +EcPrp jUir14g,
Eip14j [Acivars] = pe+ po (Tes14j — fr) + Py jliity,
Aciiorj — Erpiyj [Aciiot;] = oenpayy (OA.61)

Since the shocks w4, Wit2tj, (W7 gy — 1)/+/2 are independent of N2+ equations (OA.60) and (OA.61)
imply

CO’Ut+1+j (ACt+2+J‘, U)Ct+2+j> =0. (OA62)

Eq. (OA.26) gives

1
Mitotj +Tetrar; = 0(logd+ ko) + 0 (1 - ¢> Aciiotj + 0 (F1werroy) — Wett145)

1
0 (log 0 + ko) — Owep 145 + 6 (1 — w) Aciyoyrj +0riwerroyj.  (OAL63)

13



Egs. (OA.61) and (OA.62) then imply

1
Vargpig (Mo +reprar;) = Vargas (9 (1 - 1!}) Acioyj + 9%1w0t+2+j>

1 2
= 92 (1 - ’(/)) V(l?"t+1+j (Act+2+j)
+(051)° Varey 14 (weeray )

1
+292,‘<;1 <]. - ¢> CO’l)t+1+j (ACt+2+j,wct+2+j)

1\ 2
= 0 (1 - ?/J> o2+ (0r1)° Varygiyj (weepoy;) -

The innovations in Vari145 (Mega45 + 7etro45) are

(Err1 — E) Vareiyy (Mepors + Teprors) = (061)° (Bepr — By) Vargass (weeay ). (OA.64)

Plug (OA.63) evaluated at j = 1 into the first term of the Euler equation (OA.27) evaluated at ¢ + 2 to get

1
0 = Eip1[muse + et + EVaTtH [(Mito + Tetr2)]
1
0 = Ei [9 (logd + ko) + 0 (1 — ZZ’) Aciio + 0 (Kiweipa — wepyr)

1
+§Va7“t+1 [Miga + Tert2] -

Solving for weyy1 and iterating forward

1 1
WCt41 = Et+1 10g6 + Ko + 1—— ACt+2 + R1WCt42 + fVCL’I’H_l [mt+2 + Tc,t+2]
b 20
1 1
= log(S + Ko+ |1— @ Et+1 [ACtJ,_Q] + %VG’/‘HJ [mt+2 + ’I“C,t_;,_g] =+ HlEt+1 [wcH_g]

1 1
= log5 + Ko + <1 — ’1/}) Et+1 [Act+2] + %VGT,H,] [mt+2 + ’r'c)t+2]

1 1
+r1 B {IOg(S + Ko + (1 - 1/}) Eipo[Aciys] + @Vﬁlrwz [Miys + Tett3] + K1 B2 [wepss]

= (1+ k1) (logd + ko)
+ (1 - ;) [Eri1 [Actio] + k1 Epya [Aciys]]

N
20
7B [weeys]

Eip1 [Varg [muye + reiq2] + k1Vareis [myys + e i43)]

= (log6+ro) Y Kl + (1 - > Eri1 Y wl By [Aciiag;]

=0 ¥ =0
1 R ) )
+og L+ D KIVariiag mipar + resvass] + i, K1 B 14wt 21 (OA.65)
=0
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Assuming the that the bubble term vanishes and applying (Fi+1 — E¢) to both sides gives

1 =
(Btr1 — B)wepy = (1 - ¢> (Bt — Et) Z #1 Erp145 [Acito44]
=0

1 o0

29 (Eiy1 — Ey) Z fflvart+1+J [mt+2+j +re t+2+ﬂ .

7=0
Using (OA.64) in (OA.66) gives
1 oo
(Bip1 — B wegpr = (1 - ¢> (Bry1 — Z’i Eiiitj [Actioty]
7=0
Et+1 Z K VC””t+1+] Mit24j + Tetto+s]
7=0
1 .
= (1 - ¢> (Btr1 — Et) Z w1 Bry1tj [Aciioys]
j=0
+9ﬁ(E —E)imjVar i (we i)
2 t+1 ) . 1 t414 t42+35)
i=
Plugging (OA.20) into (OA.9) and using (OA.10) gives
0
myyr = BOlogd — Eﬁctﬂ —(1=0)rc 41

Ologd + (0 — 1) ko — (0 — 1) wey — yAcir1 — (1 — 0) kKqywepy .
Applying (Ey4+1 — E) to both sides and using (OA.67) gives equations (20)-(21)

M1 — Evmypr = —y (B — By) Acipr — (1 — 0) k1 (Brg1 — Ey) wepg
= (B — E)Aci

1 00
_(1 — 0)/{1( <]_ — w) Et+1 Z K Et+1+] ACt+2+]}
7=0

0K32 =
+71 (Et1 — Ev) Z} rVareyig; (wct+2+j)>
=

1 Or2
= —yNg+1— (1 —0) kK1 ((1 - ) Nparmit1 + —-NrrsK.t+1

b 2

where we define

Neiy1 = (Ety1 — Et) Acpyr,
oo
Nparai+r1 = (B — Ey) Z K1 Eip14j [Acipoy],
=0
© .
Nriskis1 = (B — B wlVargay (weeay;) .
=0
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2.7 Shocks Driving NC,t+1; NPATH,t-{—l; and NRISK,t+1

Using equation (14), news to N¢ 41 depends only on the shock 7, ,, such that
— YN t+1 = —V0cNy1- (OA.68)

NparH +1 in equation (22) can be obtained by direct computation using equation (14) and the law of iterated

expectations:

o0
NPATH,t+1 = Et+1 Et E Et+1+j ACt+2+]]

= (B — Et) K] Actiot

Mg i

<.
i
o

= (Bey1 — ) Aces + (Bryn — E) Y Kl Aciiay,

j=1
(¢‘n’pc + fc%) U1 + Z K{pgr_lpc (£7r + p7r¢7r> Ut+1
j=1

Prpe pekrln
(1 —pﬂ.lﬁ +§c t+ 1— ok Ut41- (OA69)

T
We now show that Ngrsk,+1 depends only on the nominal-real covariance shock wi41. Egs. (21) and

(OA.46) give

1 0K?
—yNct41 — (1 —0) Ky ((1 - ¢) NparH 41 + 21NRISK,t+1>

= £1(0—1) (0 A1+ ¢ A2 + Az) urpa
1
+(0 1_E —1) oy
+rh10w (0 — 1) (Ag 4+ 299 A5 (1 — v) + 20A50,) Wi i1

2 -1
+V2k102 (6 — 1) As (“’“\1@) .

M1 — By [myya]

Solving for %?9 (0 — 1) Nrrsk,i+1 gives

3
K
+?19 (9 — 1) NRISK,t+1 = K1 (9 — 1) (¢7TA1 + C,OtAQ + Ag) Ut+1

1
—(0—-1) Ky <1 - 1/’) NparHt+1

1
+ (9 (1 — w) — 1) ocNyy1 +YNe1

+r104 (0 — 1) (Ag + 20045 (1 — v) 4+ 20A50,) Wit

71
+V2k102 (0 — 1) As (“’H\b) .
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Using (OA.34)-(0OA.36), (OA.68) and (OA.69), the last equation becomes

3
%9(9 — 1)NRIS’K,t+1 = K10y (9 - 1) (A4 + 2@0A5 (1 — ’U) + 2’L)A5<pt) W41
+V2k102 (0 — 1) As (“’?“_1> (OA.70)
w \/5 bl .

which shows Ngrsk 141 depends on the shock w41 but neither on 7,,; nor u;1;. Using equations (OA.34)-
(OA.38) and (OA.47)-(OA.50), equations (OA.68), (OA.69) and (OA.70 ) can be written as

YNci+1 = Aglgas
1
k1 (1—6) (1 - 1/1> NpaTHt+1 = Autliyl,
Bt w2, —1
?19(‘9 —DNpiskt+1 = —AwtWer1 — A2w (t’:lﬁ) : (OA.71)

2.8 Derivation of equation (25)

Using equation (OA.21) in equation (OA.27) and solving for pd; ;41 gives
1
pdi 41 = Eppr [Myyo + Ki,o + Ads g2 + Hi,lpdi,t+2] + ivaru-l [Miyo + Ki,1Ps 142 + Ad;y2).  (OA.72)
Iterating forward, we get

pditr1 = Eipi[mepo + Kio+ Ad; 0] + %Vart-i-l [Mit2 + Ki1pdityo + Adj 4]
+ri1 B [pdi 2]
= Eip1[muge + Kio + Ad; 2] + %Vaﬁﬂ [Mygo + Kiapdi 112 + Ad; o]
+ri 1B |:Et+2 [Myys + Kio + Ad; i3] + %Vart+2 [(Mit3 + Kiapdi s + Ad; 43
+ri1 B [pdi,t+3]]
= Eip1[muge + Kio + Ad; 2] + ki1 By Biro [Migs + kio + Ad i13]
+%Va7"t+1 [Mig2 + Ki1pdi s 42 + Adpy0] + %M,1Et+1vart+2 [Mit3 + Kiapdirs + Ad; 43

+ri 1By [pdi 3]

o0
= B ) 8l B [Merorq + Rio + Adi o)
q=0
oo
Ei Z n?,l Varigi4q [Migotq + Ki1pdi t424q + Adi 244
q=0
+ lim ’ig’lEt-&-l [pdi,t+2+q] . (OA73)

q—o0

1

3

17



Applying (E;+1 — E;) to both sides and assuming that the bubble term is zero

(Bryr — E)pdigsr = (Bepr — B) Y k8 Erpagq Migasq)
q=0
1 o0
+5 (Berr = Br) D okl Variagg miyar) (OA.74)
q=0
+ (Ety1 — Ey) Z K1 Brp14q [Adi 11244
q=0
Klz,l = q
t— (Ety1 — Et) ZO ki Variii1q [pdi 4244
q:
1 oo
+5 (B — Br) > kI Variig[Adi o)
q=0
thin (Bryn — E) Y w6 Coviy g [Misorqs pditpoq)
q=0

(oo}
+hi1 (B = B) Y KL Covigrig [pdiiyatg Adigrarg) . (OAT5)

q=0
Applying (Ety1 — Et) to both sides of equation (OA.21) and using equation (OA.75) gives equation (25)

(Biy1 — E)rite1r = kig (Biv1 — E) pdig1 + (Bie1 — Ey) Adi g

‘ ‘ 1 . .
3 1 3 3
Ki1 (NPATH,t+1 + Nppip1 + §NRISK,t+1 +Np i1

18



where we define

9
NPATH,t+1
%
Nm,t+1

)
Nrrsk t41

» i i i i
2.9 Shocks Driving Nparp ¢415 Nim41: Nprisir41 and Np g

N};ATH’t_H can be computed directly from equations (OA.11)-(OA.14):

i
Nparw 41

and depends only on u;y;. Iterating equation (OA.11) forward

Tirj = o+ P (Terjo1 — fr) + Gty + Etiprj1

= g+ P (Pr (Tigj—2 = ) + Drtlegjo1 + Eptligj—2) + Qrtieyj + Eptipj—1

oo
(Btt1 — Et) Z i 1 Bry14q [Adiirayq) s
(Berr = E0) Y K8 Bryirg [mivayg

o0
(Epy1 — Ev) Z wi Vargpirg [Mevarg + Kiapdiren + Adj p1]

1
2

+"%,1

+

+ria (Bir1 — Ey) Z wi1Cov 11 g [Mita1q, Pdity21q]
(o]
+h51 (Bren = Ep) Y w81 C0v 14 [Pdiira4q, Adit24)

q
+ria (Bip1 — Ey) E ki 100014 [Miyoyg, Aditratq],

(oo}
(Bty1 — E) Z K7 1 Bry11q [Adi a4 q]

(Brgr — E) > 6y (i 4 pi (Trgigg — 1) + &Pry gUit144)

(

1
2

q=0

q=0

q=0

o0

=0
2

2

o0

q=0

q=0

oo

q=0

q=0

oo

q=0
NJiJ,t+1 = (Et+1 - Et) Adi,t+1-

q=0

q=0

1-— Prki,l

(Btr1 — Et) Z wi Variieg [Mesatq)
(Bty1 — E) Z ki Varigiyg [pditratgl

(Bryr— B) Y w1 Varg [Adi o)

+§i90t> Ut 1-

19

j—1

Moy + pgr (Trt - luﬂ) + ¢7rut+j - er¢ﬂut + Zpgr (pﬂ'(bﬂ' + 57‘{') Ut+j—1—q>

q=0

(OA.76)



gives
U , itj=0
(Brvr = E) M1y = Priit . j
pg‘(_ (pw(bw + gﬂ') Ut+1 lf.] >0

It follows that

(Et+1 - Et) Z fig717ft+1+j = (Et+1 - Et) T4l + (Et+1 - Et) Z 53717725+1+q
q=0 qg=1
J 2 Pr T &n
= <¢7r 4 Dol PP T o) (prfr + ¢ ))ut+1- (OA.7TT)
1- "{i71p‘n’

Using equation (OA.20) in equation (OA.9) gives

By [miyars] = 0logd+ (0 — 1) ko — YEi14A¢12+5 — (0 — 1) weppiy

+(0 = 1) K1 Ep 14w i24 5

Plugging (OA.12) and (OA.18) into the last equation and computing expectations

Eiprgj[migors] = 0logd+ (0 —1) ko — 7 (e + pe (Tep145 — b)) + EerpjUtr145)
—(0-1) (Ao + AL (Te145 — Bo) + A2y Ui 145 + Asuiyiy
+As (iy14j — o) + As (V4145 — E[07]) )
+(0—1) K1 (Ao + A1 (0 (Tig145 = fr) + Extltr145)

+ A1 (Bri145Peravj — Po) T As (Brp14i9t4a4; — E [#7]) )
= flogd+ (0 — 1)Ko —yu.— (0 —1) Ao+ (0 — 1) k1 Ay

_Pe

" (7Tt+1+j — fir)

+ ((9 —1) (k1 A1, — Az) — ;Ec%ﬂ') Utt1+45

(0 —1) Ay (@t+1+j - SDO) —(0—1) A5 (90§+1+j —FE [@?D
(0 —1) k1 As (Ery14501 194 — P0)
(9 - 1) 51A5 (Et+1+j(pt2+2+j - F [(p%]) . (OA78)

+
_|_
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N}, 441 can now be computed using equations (OA.77) and (OA.78)

N,in,tﬂ = (B — Ey) Z K1 Bv1ag [Miyas]
q=0
= —% (Brvr — B Ykl migay
q=0

© 1

+(Bryr — E) Yl ((9 —1) (k1 Ai&; — As) — w&%ﬂ') Utt1+j
q=0

+(Bepr = E) D)kl [= (0= 1) Ad (prra4s — 00) — (0= 1) A5 (074145 — B [¢7])]
q=0

+ (Eir1 — Ey) Z Ky [ (0 = 1) k1A (Brs145Pir0+; — Po)
q=0

+(0—1)Kk145 (Et+1+j¢§+2+j —FE [ﬁpg])}

_ _Pekin (P + &)
b Iomap
+ ((9 —1) (k1 A1, — A3z) — Pe T 1€c‘#’t> Utt1
(4 (0

+(Bepr = E) Y w1y [= (0= 1) As (rg145 — 20) — (0 = 1) A5 (074145 — E [#7])]
q=0

+ (B — B Y Kl [ (0 = 1) k1 As (Brp145Pi124; — Po)
q=0

+(0 = 1) kads (Broas oo, — E [02)) } (OA.79)

By equation (OA.13), the innovations (E1 — Et) ¢y 4o and (Eyy1 — Ey) 7, only depend on the shock

Wi41, SO we can write equation (OA.79 ) as

_ _& Ri 1 (p7'r¢7'r + 57\')

Ni = Ut41
m,t+1 ,ll) 1— Kil Py +

" (<e — 1) (ri — 4s) = L2, ;m) wo

+R (th) 5 (OASO)

where R (-) is a function of w;41 but not of (1,,1,us41). By direct computation, equation (OA.14) implies

that

NJiJ,tH = (B — E) Adigpqa

= O (OA.81)

and thus Nj, ; , depends only on the shock 7, ;. Finally, by noting that Nj; gz, depends only on variances

and covariances and that ¢, is the only source of heteroskedasticity in the model, Nj; ¢ K,t+1 depends only

21



on the shock wy1.

2.10 Regression from Table 7

The goal of this section is to compute the coefficient Lg_ « Nrc,m in regression (9) when the regression is

run in the model (instead of in the data, as is done in Table 7).

2.101. Preliminary Calculations

Iterating equation (OA.13) forward, we have that for j > 1

Pt4j —Po = U (<Pt+j_1 — <,00) + TwWiyj

2
= v (‘Pt+j—2 —Qp) + VOWWiij1 + TwWiy;

j i—1
= v (o — @) + VT 0w W1 F o F VO Wi -1 + T Wiy

j—1
= v/ (¢ — o) + qugwwtﬁ;q- (OA.82)
q=0
Squaring both sides gives
j—1
90t2+j = (900 + 07 (¢ — @0)) +2 (4/)0 + v’ (¢, — <,00)) Z V10 Wiy j—qg
q=0
2

j—1
+ (Z quwwtﬂ-q) . (OA83)
q=0

Taking expectations conditional on time ¢ in equations (OA.76), ( OA.82) and (OA.83) gives

Tt — Pg , ifs=1

Et [7rt+s—1] — Mg = 1 2 .
pfri (Trt - /U’Tr) + pfri gﬂut 5 if s>1

Y — Yo , ifs=1

Ky [<Pt+s—1 - 900] =
v (g =), ifs>1

07 — E 7] L ifs=1

(0o + 0" (g — 00))  + 02202l B 2] ifs>1

Ey [90%+s—1 —FE [@?H

Because ¢, and u; are independent for all ¢,7, we have

Yp_qup , ifs=1

Ey [@t+572ut+sfl] = 0 fe>1
, if s

22



Since u; and w; are independent, we have

COU (7Tt, @t) = Oa
Cov (ug, ;) = 0,
Cov (g yus,0;) = E e qu (@, — 00))

B

= E[E 01w (@ — ©0)]]
E [<Pt—1Et [us (¢, — ‘PO)H
E|

@1 Er [ue] By [, — @ol]
_— (OA.84)

and
Cov (my,¢7) = 0,

Cov(ut,cpf) = 0,

2
Cov (‘Pt—luta (0 — o) ) Cov (‘Pt—1ut7 80(% = 200y + 90?)

= Cov(p,_qut,¢5)
—2000Cov (r_1ut, ;)
+Cov (¢y_1us, ¢})
= Cov (p,_qut, )
= E[p_yu (9] — E[¢3])]
= B[ 1B [u (9} — B [2])]]
= E[o 1B wl B [6} — E [¢3]]]

_— (OA.85)

~(12
Define 95 ) to be the nominal-real covariance 9%12) normalized to have mean equal to zero and standard

deviation equal to one, and Bu’it to be the inflation beta f3,, ;; minus its unconditional mean:
0%12) _E [0%12)}
AN

std (9§12))

Bu it = Bu,it ) [ﬂu,it] .

0" =
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Using equations (19) , (OA.13) and (OA.53), we find

(e = %0) 5 (OA.86)
Bue = i ( - ) (01— ¢0). (0A87)

and therefore

- - i1V — 12 .
il - ST (Lt onm

2.102. Running the Regression
We let the asset ¢ = m be the asset that represents the aggregate stock market in the model. We can
write (log) returns cumulated from ¢+ 1 to ¢ 4+ 12 as the sum of expected and unexpected components as of

time ¢

Tm,t+1:t4+12 = E T'm,t+s

12

Z Et [Tm,tJrS] + Z (Tm,t+8 - Et [Tm,H»s]) . (OA89)

s=1

Using equations (OA.28)-(0OA.31), (OA.51) and (OA.52) gives

12

Z Ey[rmis14412] = Ro+ Ry (7 — ) + Rowy_que + Rauy
s=1
Ry (0, — o) + Rs (07 — E [#7]) , (OA.90)
12 12
Z (Trmtts — Bt [rmirs]) = Z (Bum.trs1ttts + By mWiss)
s=1 s=1

12 w2  —1
+ (ﬂ w,m (H“)‘) + ﬂ ,mnt s) (OAgl)
2. V2 R

where the constants R; are given by

Ry

12 (Hlm70 + Moy, — Dm,O (1 - HTTL,l)) ’
12

Ri = (pp,— Dm1(1—Emap,)) (Z pi_1> )
s=1

R2 = f - Dm 2,

- ) e

12

Ry = —2puD,, 502 Z (1—v""" = k1o (1 —2%)) = Dypa (1 — vk <Z UM 1) ,

s=1

R5 = Dm 5 (1 - 1) Rm,1 (Z ’1)2(S 1 ) (OA92)
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Defining

12 5
wi, o —1
Et+1:t+12 = Z (6u7m,t+slut+5 + 6w7mwt+8 + BQw,m (H> + Bn,mnt+s) )
s=1 \/i
nw = Ry (71'25 - [Lﬂ.) + Rggot,lut + Rsuy,
1 sign(¢,) |owl Rs
Ly, = — : T , 0OA.93
? K;m,l sign (§c> \% 1- V2 Ec/w - Em ( )
Ll = R4 + 2R5(p0,
T
Ly = Ro— mR&
and using equations (OA.88), (OA.90) and (OA.91), we can write equation (OA.89) as
- ~(12)
Tmt+1:412 = Lo + L1 (¢, — o) + Lo (5u,mt x 6, ) + 24 + €1t 412- (OA.94)

Under the null of the model, running regression (OA.94) with or without including the regressors s gives
the same estimate ﬁo,ﬁl,ﬁg for Lg, L1, Lo since s is uncorrelated to the other regressors by equations

(OA.84)-(OA.85), and uncorrelated to the error term by the law of iterated expectations and the fact that

Ey [e141:4412) = O

Eaciiiirn] = ElE sl
= F [%tEt [€t+1:t+12]]

= 0.

Since we are interested in Ly, we therefore run regression (OA.94) in the model without including s

~ ~(12)
Tmt1412 = Lo + L1 (¢ — ) + Lo (ﬁu,mt X 8 ) + Et41:t412, (OA.95)

and obtain estimates ﬁo,ﬁl,f/g. In the data, we run the regression in equation (9) reproduced next for

convenience:

~ ~(12) ~(12)
Tmt+1:4+12 = Lom + Lgy mByme + LNrC,mb;  + Lg xNRCm (,Bu,mt x 8, ) + Ep41:t412- (OA.96)

We now show that, under the null of the model, the estimate ﬁganRC’m from regression (OA.96) is the

same as the estimate Ly obtained from regression (OA.95). By equations (OA.86)-(OA.87),

- ~(12) .
Lom + Lﬁn,mﬁu,mt + Lnre,mby = Lom+ Lﬁn,m“i,l <§z - i) (: — o)

sign (§,) V1 —1v2

sign (¢z) 0wl

+LNRrc,m (1 — o)

= LO,m

+

] — .2
L i (gi _ i) sign (6,) VT =172
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so regression (OA.96) can be written as

€ sign (§.) v1—v?

Tmt+1:+12 = Lom +

5 ~(12)
+Lg,x NRC,m (ﬁu,mt X 0, ) + Et41:t412,

where we can then identify

IA/O = f/(),mv

- - &, A sign (€,) V1 —v?

Ly = Lg,mkia (fi — =% ) + LNRrCm— = ,
Fn 0 sign (¢r) |owl

Ly = Lg,xNRCm-

L mivi i L m~_ -
it (5 w)* VRO i (0) ol |

®o)

Note that although Iignym and Ly RrRC,m cannot be separately identified in the model by running regression

(OA.95 ), the coefficient we seek, i/BHXNRC,m; is identified by Lo. Plugging (OA.93) into (OA.92), we find

Ly = LpyxNrCm
1 sign(é,) |ow| Pms(l=0%m1) (Ziil U2<s_1>>
K sign (&) V1 — 02 E b6 .
Note also that
cov (Tm,t+1:t+1278u’it X éim)) cov (Ll (@0 = 20) s Bume ¥ éiu))
wr (o) e (Bl

Ccov (L27Bu,mt X éIElQ))
var (B =0,
- ~(12)
cov (Lo + 2 + Etq1:t412, Bu,it X 9t )
var (B x 0,)

~ ~(12)
cov (<Pt — 0 Buit X 04 )

_|_

+

cov <€t+1:t+12,

(OA.97)

)

= L + Ly +

Slgn (fc) ﬁi,lm Ec

var (Bu,it X éilz)) var (,Bwt X éim))

2
cov (wt — @0, (9 — ©o) )

_ S — 2L
sign (¢,) |ow] <£Z 7/’) ' var (Bu,it x 0,

~<12))

+Lo +

sign (o) |ow| ¥

= L27

26

vvar (

sign (&,) kiaV1—1v2 (f §c> cov (Et+1:t+127 (¢ — LPO)Q)
iy ~(12
Bu,it X 915 ))



since

cov (% — g, (0 — 900)2) = 0
2
cov (Et+1:t+127 (¢r — o) )
var (¢, = 90)°)

It then follows that Lg_ xnrc,m can actually be computed from a univariate regression of 7, 141:¢412 on

~(12 ~ ~(12
Bu,it X Qi ) since 3, ;; X Gi ) is uncorrelated to the rest of the regressors.

2.11 Unconditional and Conditional Predictability of Consumption with Inflation

We show how to compute, in the model, the coefficients dg’K, der dS’K, d9™ and the R? of the regressions

in equations (1) and (3) and Table 2. Using equation (OA.76), we have

Aciyirj = o+ e (Tij — fig) + 0eiiays +EePro14jUits

= fetpe (Teag — Br) + TeMpp14j + €1t Uit

j—1
= e+ pe (Pfr (Tt = ) + Sl — Phovgrs + D pL (prtoe + &) Ut+j1q>

q=0
i1
+oeny1y; & <800 + 07 (p41 — wo) + qugwwtlJrjq) Uttyg, (OA.98)
q=0
and therefore
j—1
Ei[Actiaiy] = petpe (Pfr (71 = t1z) + 62 Bt [ury;] — phon Bu [wi] + D pL (prhr +&4) B [utJrjlq])
q=0
i1
+0cEt [yy144] + & <<Po +07 (o1 — o) + >_viowE [wt1+jq]> By [ugy]
q=0
= e+ pe (Ph (7t = i) = Phobpuis + (prbr + &) B [urr 1))
j—-1
e D PL (Prbr +E0) B[t j—1-4) (OA.99)
q=1
= et P (pgr (ﬂ-t - luﬂ’) - p‘77"(¢71'ut + er_l (pﬂ¢7'(' + fﬂ') ut) . (OAlOO)
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Using equations (OA.11)-(OA.13), (OA.98), (OA.100), and the law of total covariance

Cov(Aciy14j,mi41) = E[Covy (Acyiiy, mip1)] + cov (B [Aciyiq], By [miga])

It follows that

and

u, K
dl

PPV ar (me) + 0o (§r + drpr) + plrtoe » ifj=0
= G2pe+ DrEc00 , ifj=1
Gl 2 (Ex + Orpr) , ifj>1

+ pﬂ'pcvar (,/Tt) + pc£ﬂ¢ﬂ" + SD()gc (gw + ¢7rp7r) ’ lf] = O
prtpVar (me) + pelapi ' (§n +20,p,) o i >0

2 (pﬂpcva’r (ﬂ—t) + 90066 (571' + ¢7rp7r) + pc¢7r£7r) ) lf] =0
= pcVaT (ﬂ—t) + §c(po¢7r y lfj =1
PPy Var (m) + pi2pedrbn , ifj>1

Cov (Zf;ol Aciy14g, Wt)
Var (m)
Zsziol COU (ACt+1+j, 7Tt)
Var (m)
Cov (ACt+17 7Tt) Cov (Act+27 7Tt) Zj{:_Ql Cov (Act+l+ja ﬂ-t)
Var (m) Var (m) Var (m)
2 (pﬂ'pcva/r (ﬂ-t) + 4100&0 (f‘n’ + (b‘n'p‘n') + pc¢7‘r§7‘r) + pCVCLT (7Tt) + 50@0‘%
Var (m) Var (m)
i (pepiWar () + p372p,0xEr)
Var (m)
@Ogc (¢7r + 2¢7-rp7-r + 2677) + pc¢7r§7‘r
Var (m)

K-1 o K-1
j—1 crnST
+Pe JZ:; R o ];

1— K 1— K—-1
p (522 ) (1 vty () )+ vty (OA101)

+

2prPe + pe T+

j—2
Pr

I
=

u, K
dO

K-1

u, K
Y Acipagy —di
=0

=

1
= E[Aciiiyy) — i  E[m]

j
= Kp,—di p,. (OA.102)

Il
=
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Now we turn to the conditional regression of Table 2. Because of the way we constructed b, we can write

K—1

K K
E Acii1vj =a; +by T+ ek,
j:

where, using equations (OA.11) and (OA.100), we have

K
K § K
a; = Et ACt+1+j — bt Ti4+1

j=1

Ey [Aciirts) = bf By [mi44]

I
] >

J=1
= (ke + pe (P (0 = ) — Phovpue + ph 7 (prthr + &) ur))
j=1
7btl( (:u’Tr + Pr (ﬂ-t - iu’Tr) + Eﬂ'ut)

= K,uc + PrPec <7Tt — Hr + iﬂ-ut>

s

1—pK
1- Pr
_th< (/J’Tr + Pr (ﬂ't - MTr) + f‘n’ut) .

(OA.103)

The residual ey g is known at time ¢+ K and, because it is a regression residual of the conditional regression,

Et71[5t+K] = 0,

COUt_l ((IEK + bg{’ﬂ't, €t+K) = 0.
By the law of total covariance and equations (OA.104)-(OA.105), we have

Cov (af( + btKﬂ't,EH_K) = Cov (Et_l [af{ + bf(wt] By [Et+K])
+F [Covt,l (atK + bg(ﬂ-t,gtJrK)]

= 0.

Then, using (OA.106), we compute

Cov (Zngol Aciii4j, a0l + btKwt>
Var (af( + btKwt)
Cov (atK + btKﬂ't + sH_K,atK + bf(m)
Var (af( + btKT(t)

Cov (af* + bffmy,af +bfm)  Cov (ergk,af +bfmy)

oK
dy =

Var (af + bfm;) Var (aff + bf )
_ Var (af +0f7m)  Cov (eryi,af +bfmy)
- Var (af +bf ) Var (af +bKm,)

= 1.
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By (OA.103), (OA.107), and the law of iterated expectations,

[k -1
ef = E Aciiitj — 7 (o 4+ b m,)
_j:0
K1 -
= F ACt+1+j —F [atK] —F [bf(ﬂ't]
_jZO .
(K1 T K
= F Act+1+j —F ZACt-i'l-i'j — bfﬂ't—i-l —F [bfﬂ't]
| =0 ] | =t
(k-1 T [ K
= F Act+1+j —F ZACH_LH — bfﬂ'ﬂ.l —F [b{(ﬂ't]
| =0 ] =1
K— K
= E ACt+1+j ZE ACt+1+] + F [b 7Tt+1] - F [b{(TFt] . (OA108)
7=0 j=1

Using equations (OA.11)-(OA.13) and (OA.15), equation (OA.108) gives

dc,K

pe — Kpo + E [bf (w41 — )]

K
Kp,— Kp, + E [E, [btK (741 — )] ]
E [bf (B [Tp41] — Wt)]

E [bff (ttr + o (e = 1) + Eqie = 70)]

FE -<hK-|—
€

j;sot) (pr— 1) (1 — ) + )

E|hx + J@t} El(pr — 1) (e — i) + &rud]

E hK-i-j;C(pt:l x 0

T

(OA.109)
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2.12 Calibrated Moments in Table 12

In this section, we compute the target moments for calibration in Table 12. Using equations (OA.11)-

(OA.13), the moments for consumption and inflation in the ”Descriptive Statistics” part of Table 12 are

D) [Trt] = Mg,
V1€ + 20,6, + 62|
s A
(1 - pgr) £7T¢7T
AR f =
Dot = ot e o 4 €4+ 5
E [Act] = M

o(Ace) = \/

AR(1) of Aey =

¢7Tpc U%u 2 2 €7rpg (57‘(‘ + 2¢77p7r)
U§+(2S00£c+1p2 ¢ﬂpc+ 1 — o2 +%00 §c+ 17p2 )

Pe (1= 12) (0rpr +E&x) (pe (0 +Enpr) + Ecpo (L—p2))
(1—p2) [(1 = 2) (p202 (1) + (pole (Poé. + 20,p.) + 02)) + 202’

E [UH,t] = O,
o(unt) = |9,
AR(1) of ury = 0,
corr (my,un ) = x| ,
’ o (m)
§r t+ P (r +&xpx) P
A — us T ) s T C
corr (Trta Ct) . (ﬂ-t) o (ACt) Ogc + 1 721— ’
corr (Acg,umg) = 0.

The moments for the ”Predictve Regressions of Consumption Growth on Inflation” part of Table 12 are given

by equations (OA.102 ), (OA.101), (OA.109) , (OA.107) and by

AR(1) of NRCE = v,
1 L 10w
\/ﬁ \% 1 - UQ (bﬂ'

which follow from using equations (OA.13), (OA.15)-(OA.17). We now compute moments for assets i =

O'(NRCtC) =

Y

H,L, MKT, where H and L represent in the model the highest and lowest inflation beta portfolios that we
constructed in the data, and M KT is the market portfolio. Taking unconditional expectations in equation

(OA.52) gives mean returns for asset ¢

Elris = rio+p; — Dio (1 — ki) .
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Plugging equation (OA.52) into (OA.51) and computing the unconditional variance gives the variance of

returns for asset 4, denoted o (r; ;)

0% (rie) = 2000xDinDia (1= prrivy +41,1) + 00 (§100 + p16x) (€1 = 2Di2)
¢ (K11 + 1) DIy + &100p1 65 + 07
Pr
1_ 2 (2 (1= prki1) (p1¢7r + (1 - 9727) fﬁ%) D)
P
T 2 (0xD71 (K1 — 2ppin,n + 1) — pio,)
o8
+1_7,Uz ((QSDODi,s + D1,4)2 (“%,1 — 20K1,1 + 1) + (& — Di,2)2 4 D1'272l€%»1>
204
+— (k2 — 2%k + 1 Di2
(02— 1) (K14 11+1) D}y
1
+o e ((P1 =D (1 - Pﬁm,l))2) &+ k7 DYy
2¢. ) )
T ((pr = £12) (1= prira) Diy + (51,005 = 20 + #1.1) Dist + p1pr) p1) &

—2k11D1,1 (=g (§1 — Di2) + D13) &, + (’@%,1 +1) Di2,3

+2(((K3 1 +1) Dig — &) o + b ((K71 — prkirs +1) Dit — py)) Dis.

The standard deviation of returns is simply o (r;). We find the mean inflation beta for asset i, E [5H7i’t],
and its standard deviation, o (5H,i,t)7 by taking the mean and standard deviation in equation (OA.53) and

using equation (OA.57)

K1,

E[Bui = |¢’| (poDi2 + ¢-Di1+ Dig3),
Ki1 owD; 2
g (/BH,i,t) \/ﬁ H¢ -

Also using equation (OA.53), the correlation in inflation betas for two assets i, j is
corr (5n,i,t>5n,j,t) = sign (D;2Dj2) .
Denote the high-minus-low inflation portfolio by ¢ = IP7%, with returns defined by

TIPHL ¢ =TH,t —TL,t- (OAIIO)
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Egs. (OA.52) and (OA.51) give

TrpELt = THt+1 — TLt+1

= E [TIPHL7t+1] + (»Bu,Ht - Bu,Lt) Utt1

2 J—
+ (6w,H - Bw,L) W41 + (BQw,H — BQw,L) <U)t+1

)

+ (577H - 5n,L) Nit1s

where

Ey[ripuiyia] = Eilrgas] —

Eyrp,i+1]

= Kpo+pyg—Dao(l—Kma)

— (kLo +pp —

pr— D1 (1 —kwip,) = (pp — Dri (1 —kr1p,))) (T

+(p
—(
+(

+(
= (
=

Dgs—¢

€ —

2D svkH100 (1 —v) = Dy a (1 —vkma)) (¢ —

2Dy,

Dy s (1 — v kg 1) (DL,5 (1 - vsz,l))) (gof —

Dro(l1—£r1))

ka1 Dy — (Drg —&hpaDr)) ue

Dua— (§, — Dr2)) pr_1ut

sVEL 1P (1 —=v) = Dra(1—vkp 1)) (¢ —

Eq. (OA.53) can be used together with equations (OA.57) and (OA.110) to get

Bri,rpHr 4

Cov (TIPHL¢, unjt)

Var (um,)

LCOU (TIPHL,t,’LLt)

|
1
|0
1

el
1
P

ﬂH,H,t
KH,1

|0l

RL,

|0

—Cov (THt, Uy,t) —

Var (ut)

| —Cov (g, —Tr, Um,)

——Cov (rL ¢, Un,t)

1
|0

1
Pk N

= B,

(0.Du1+ Duae,+ Dus)

- (¢xDr1+ Drap; +Dr3).
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The standard deviation of the inflation beta of IP#L can be found using equation (OA.114)

o (ﬁu,IPHL,t) = 0 (5u,1t - ﬁu,Qt)
1 oy (D12k11 — Dagkaq)

Vl_UQ ¢7r

The coefficient LV of a regression of the returns of IPf" on the standardized nominal-real covariance is

~(12)
cov ('I"IPHL7t, 0, )

LNRC,IPtHL = (~(12))
var

0;
7(12)
= cov (rIpHL’t,Gt ),

where 9?2) is defined in equation (OA.86). Using equations (OA.51), (OA.52), (OA.86), (OA.110) we get

=(12)
LNRC,IPtHL = cov(rrpucLy, b,

sign (@) sign (£.) ow|
V1—0?

sign (6y) sign (€,) ol
V1—1v2

Last, the regression coefficient L x Nrc,m is given in equation (OA.97). The numbers reported in Table 12

= - (1 — ’Uﬁl’l) (QQDODLE, + D1’4)

+ (1 - U/i271) (2@0D275 + D2,4) .

are annualized and in percentage points. More precisely, the numbers reported in Table 12 are obtained by
using the formulas above and then by multiplying E'[m|, E [un |, E [Aci|, E[ri¢], Lyge,rpae by 100 x 12;
o (mt), o (ume), o(Ac), o(riy) by 100 x v/12; all correlations, AR(1) coefficients, and R? by 100; the
coefficient Lg_x Nrc,m by 100 (no need to multiply by 12 because it was obtained using cumulative returns

over 12 months).

34



3 Robustness Checks
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Table OA.4: Time-Varying Inflation Risk Premia in Pooled Regressions at Shorter Horizons

This table is similar to Panel A of Table 6 except that results are presented for the one- and three-month horizon. We present
estimated coefficients (with asymptotic Driscoll and Kraay (1998) standard errors in parentheses) from various pooled predictive
regressions of returns on the inflation beta-sorted decile portfolios on their inflation beta (81, ,), the nominal-real covariance
(NRCtC), and an interaction. In Model [1], we set Lg xnrc = 0, whereas Model [2] estimates all three coefficients freely.
Models [3] to [5] in Panel A analyze which components of inflation betas interact with the nominal-real covariance. Model
[3] replaces the interaction term, Br,p,t X NRCtC, with the interaction between the nominal-real covariance and the portfolio-

specific component of inflation betas, By ,, = 71 Z?:l Br1,p,¢- Model [4] replaces the interaction term, fyy , ; X NRCE, with the
interaction between the nominal-real covariance and the time-specific component of inflation betas, ,B/H\t =101 Z;f;l Bri,p,t-

Model [5] includes both component-wise interaction terms. To accommodate interpretation, NRCE is standardized in the time
series to have mean zero and standard deviation equal to one, whereas ﬁl‘[,p,t is demeaned in the pool. The sample period is

July 1967 to December 2014.

Horizon K = 1 Month

Horizon K = 3 Months

Model [1] 2] (3] (4] [5] [1] 2] 3] (4] [5]
Lo 797 476 797 455 457 829 482 829 463  4.66
t (2.69) (1.36) (2.69) (1.24) (1.25) (3.09) (1.66) (3.10) (L.54) (1.55)
Ls, 022 -112  -019 -1.24 -120 011  -0.88  0.15 -1.00 -0.95
t (-0.19) (-0.87) (-0.15) (-0.92) (-0.89) (0.11) (-0.92) (0.15) (-1.01) (-0.96)
Lyre 028  -096 -034 -091 -096 -1.12 -1.89 -1.19  -1.82  -1.88
t (-0.07) (-0.26) (-0.09) (-0.24) (-0.26) (-0.33) (-0.57) (-0.35) (-0.56) (-0.57)
Lg, xNRC 2.07 2.27

t (1.88) (2.53)

Lgy,  xNRC 1.87 1.64 2.21 1.95
t (2.19) (2.01) (2.63) (2.43)
Lg,, ,xNrC 221 219 239 237
t (1.80)  (1.79) (2.41)  (2.39)
R? 002 069 006 068 071 005 208 021 199 211
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Table OA.5: The Nominal-Real Covariance and the Average Risk Premium

This table is similar to Table 7 of the paper and presents coefficient estimates from time-series predictive regressions for the
equal-weighted average return over the ten decile portfolios on the inflation beta of this average portfolio (8 44,¢), the nominal-
real covariance (NRCtC)7 and an interaction term. We present this regression for the twelve-month horizon and standard errors
are Newey-West(12). To accommodate interpretation, NRCtC is standardized and Bry 444, is demeaned. The sample period is
July 1967 to December 2014.

(1] [2]
Lo.avg 848  5.06
t (3.47)  (1.98)
L, avg 0.81  -0.45
t (0.75)  (-0.51)
LN RC.avg 253 -3.04
t (-0.76)  (-1.12)
L «NRC,avg 2.38
t (3.31)
R? 0.90 8.44

Table OA.6: Time-Varying Inflation Risk Premia in Pooled Regressions Controlling for Market Beta

This table is similar to Panel A of Table 6 except that we now also control for each portfolio’s market beta (estimated by
regressing in month ¢ each portfolio’s returns on the CRSP value-weighted market portfolio over an expanding window of
historical returns, similar to the way inflation betas are measured). We present estimated coefficients (with asymptotic Driscoll
and Kraay (1998) standard errors in parentheses) from various pooled predictive regressions. In Model [1], we regress returns
on the inflation beta-sorted decile portfolios on their market beta (85 x1,p (), the nominal-real covariance (NRCY), and their
interaction. In Model [2], we add inflation betas By, ;) and their interaction with the nominal-real covariance. In Model [3], we
decompose the inflation beta for the interaction with the nominal-real covariance in the portfolio- and time-specific components:
6/1-[:, =71 23:1 B, p,+ and ,8/1-; =101 2;021 Bri,p,¢+- To accommodate interpretation, NRCtC is standardized in the time
series to have mean zero and standard deviation equal to one, whereas By p, ; is demeaned in the pool. The sample period is
July 1967 to December 2014 and we focus on the twelve-month horizon.

Model 1] 2] 3]

Lo 6.31 1822 1846
(0.60)  (1.80)  (1.52)

Ls,. oo 202 -1200 -12.18

(0.20)  (-1.19)  (-1.05)
Lg,, coxNrRC 646 371 3.49
(-0.72)  (0.42)  (0.39)

Lg. -0.82  -0.82
(-0.97)  (-0.94)
Lnrc 6.10 -6.83  -6.56
(0.60)  (-0.66) (-0.63)
Lg «NRC 2.61
(3.69)
Lg,  xNRC 3.28
(2.34)
LBnAtXNRC 2.58
' (3.52)
R? 0.53 9.34 9.27
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Table OA.7: Industry Composition of Inflation Beta-Sorted Portfolios

This table presents the industry composition of our portfolios. For this exercise, we use the classification into 48 industries
from Kenneth French’s web site. In each sample month, we calculate for each industry the number of stocks that have inflation
beta below or above the median inflation beta in the full cross-section. We then translate this number to the fraction of an
industry’s total market capitalization with below or above median inflation beta. In the first three columns we report results for
the top 10 inflation hedgers, which are those industries with on average the largest fraction of market cap in the above median
inflation beta portfolio. For these industries we report the average allocation to the above median portfolio (“% of market
cap (By,;,; >median)”) as well as the fraction of total sample months in which the allocation to the above median portfolio
is larger than 50% (“% of months”). Consistent with the evidence in Table 8, we find oil, gold, and mining among the best
conditional inflation hedgers throughout our sample. Over 64% on average of the market capitalization in these industries has an
above median inflation beta, and in over 70% of the months in our sample, over half of the market capitalization of these same
industries is allocated to the above median inflation beta group. It is intuitive that we find utilities among the best conditional
inflation hedgers as well. The next three columns present analogous evidence for the top 10 worst inflation hedgers, which are
those industries with on average the largest fraction of market cap in the below median inflation beta portfolio. Among the
worst inflation hedgers we find meals, clothes, and textiles (as in Table 8), but also banks and insurance.

Top 10 Best Inflation Hedgers Top 10 Worst Inflation Hedgers
Industry % of market cap % of months Industry % of market cap % of months
(Br,;,s >median) (Br,:,; <median)

1 Oil 0.77 0.80 Other 0.82 0.94
2 Gold 0.73 0.76 Books 0.77 0.95
3 Utilities 0.66 0.68 Aerospace 0.76 0.89
4 Mines 0.64 0.70 Banks 0.74 0.84
5  Agriculture 0.62 0.71 Insurance 0.74 0.88
6 Paper 0.61 0.66 Meals 0.73 0.82
7 Computers 0.60 0.67 Lab Equipment 0.72 0.82
8  Steel 0.58 0.59 Clothes 0.71 0.79
9 Smoke 0.58 0.66 Textiles 0.71 0.82
10 Food 0.57 0.59 Personal Services 0.70 0.85
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Table OA.8: The timing premium in our model of the nominal-real covariance

This table shows the size of the timing premium for our model under three parameter configurations. The first column shows the
timing premium under our baseline calibration found in Table 11. We display only the parameters that change across columns,
the rest of the parameters are held fixed at the values shown in Table 11. The second column increases the persistence of inflation
(pr) and the degree of predictability that inflation has on future consumption (p.) so that inflation mimics long-run risk as
calibrated in Bansal et al. (2012) (in Table , the persistence of long-run risk is denoted by a and the degree of predictability that
long-run risk has on future consumption is always —1). In the third column, we modify our baseline calibration by postulating
a nominal-real covariance that is much more persistent (higher v) and volatile (higher o).

Inflation has long-  More volatile and

Baseline run risk persistence persistent ¢,
Pr 0.799 0.979 0.799
Pe -0.052 -1 -0.052
v 0.9963 0.9963 0.999
Ow 0.0029 0.0029 0.02
Timing premium 14.8% 59.0% 14.8%
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Table OA.9: The timing premium in the long-run risk model

This table shows the size of the timing premium in the long-run risk model of Bansal et al. (2012) under three parameter
configurations. The first two columns reproduce the results in Table 1 of Epstein et al. (2014) and show the timing premium in
versions of the long-run risk model with and without stochastic volatility. In the third column, we compute the timing premium
in the long-run risk model with stochastic volatility but replacing the coefficient of relative risk aversion (RRA) and the elasticity

of intertemporal substitution (EIS) by the values of our main calibration in Table 11.

Parameter LLR no stoch. vol. LLR with stoch. vol. Higher RRA and EIS
o 0.0078 0.0078 0.0078

0] 0.044 0.044 0.044

a 0.9790 0.9790 0.9790

Ow 0 0.23 x 107° 0.23 x 107°

v 0 0.987 0.987

8 0.998 0.998 0.998

RRA 7.5 or 10 7.5 or 10 15

EIS 1.5 1.5 2

Timing premium 237 or 297% 247 or 317 44.0%
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Table OA.11: Controlling Ex Post for Benchmark Factor Exposure when Predicting the Inflation Risk Premium
This table asks whether our conclusions on the time-varying inflation risk premium extend when we control ex post for exposure
in our estimates of the inflation risk premium to the benchmark asset pricing factors. For this exercise, we regress the returns
of IPHL TPMC  and IPFS on the nominal-real covariance (NRCE) as well as on contemporaneous exposure to the factors
in the CAPM, FF3M, FFCM, and FF5M. We focus on the annual horizon K = 12 and calculate overlapping twelve-month
compounded returns on both the left- and right-hand side. We presents for each regression the estimated coefficients and the
adjusted R2 (in percentage points). To conserve space, we present t-statistics in parentheses (based on Newey-West standard
errors with K lags) only for the intercept and the coefficient on NRCE (Lo and Lygc).

CAPM FF3M FFCM FF5M
Riiaik IPHL [pMC  [pCs [pHL [pMC [pCS [pHL [pMC  [pCS [pHL [pMC  [pCS
K=12 I 498 -356  -4.30  -385  -231  -3.09 048 -0.98 -143 128 085  0.32
t (-1.62) (-1.86) (-2.16) (-1.74) (-1.83) (-2.04) (0.21) (-0.68) (-0.91) (0.51) (0.56) (0.21)
Lyge 546 365 456 496  3.08 401 345 262 343 414 257 346
¢ (221)  (252)  (276) (2.07) (2.25) (2.48) (1.64) (2.09) (2.25) (1.66) (1.78) (2.08)
Bayrr 010 <011 006 016  -0.09  0.08 009 -0.11 005 -0.01 -0.20 -0.03
Bsms 052 -031  -0.35 -0.54 -0.32  -0.36 -0.58 -0.35  -0.40
Bumi 20.07  -012  -011 -020 -0.16 -0.16 0.2 011  0.11
BwaL 035  -011  -0.14
Bruw 087  -0.55  -0.68
Beonra 052  -0.30  -0.23
R? 719 957 1001 1556 17.66 1856 22.05 19.00 2042 35.63 36.27 41.53

Table OA.12: Controlling for Benchmark Predictors when Predicting the Inflation Risk Premium

This table asks whether our conclusions on the time-varying inflation risk premium extend when we control for benchmark
predictors. For this exercise, we regress the returns of IPtHL7 IPtMC, and IPtCS on the nominal-real covariance (NRth)
controlling for either the dividend yield (DY), default spread (DS), and term spread (TS) or the consumption-wealth ratio
(CAY). All control variables are standardized. We present the coefficient estimates and, to conserve space, report t-statistics in
parentheses (based on Newey-West standard errors with K lags) only for the intercept and the coefficient on N RCtC (Lo and
Lnre)-

Rit1i4k IPHL [pMC  [pCS  [pHL [pMC [pCs

K=12 L 437 <425 -394 437 425 -3.94
t (-1.76)  (-2.66) (-2.35) (-1.67) (-2.63) (-2.31)
Lyre 719 450 426 529 346  4.39
t (2.13)  (2.30) (1.81) (1.81)  (2.00) (2.35)

Coy 234 136  -1.63
Cps 253 042 205

Crs 3.32 1.05 0.84
Coay -0.24 -0.71 -0.30
R? 11.93 8.59 11.82 6.50 7.71 9.55
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Table OA.13: Alternative Measures of Inflation Risk

This table asks whether our results extend for alternative measures of inflation risk. In column one, we repeat our benchmark
specification using ARMA(1,1)-innovations in inflation. In column two, we use raw inflation. In column three, we use an AR(1)-
model to proxy for inflation-innovations. In column four, we use the monthly change in annual inflation. In column five, we
perform a truly out-of-sample exercise using real-time vintage CPI inflation. For this exercise, we skip a month after portfolio
formation, thus taking into account the reporting delay in inflation data. In all cases, we calculate the returns of the High-minus-
Low inflation beta portfolio (I PtH L), We present coefficient estimates from a regression of returns on the lagged nominal-real
covariance (N RCtC ) at the twelve-month horizon, with corresponding t-statistics in parentheses based on Newey-West standard
errors with K = 12 lags.

ARMA(1,1) Inflation AR(1) Change in Annual Inflation Real time

K=12 L -4.37 389 -3.92 -4.88 -2.06
t (-1.68) (-1.74)  (-1.73) (-1.66) (-0.96)
Lyre 5.38 7.35 5.08 6.87 7.84
t (2.22) (3.25)  (2.33) (2.56) (3.35)
R2 6.65 14.30 7.26 7.84 16.12

Table OA.14: Alternative Sorting Procedures

Each column in this table presents results from an alternative sorting procedure. We construct a High-minus-Low inflation
beta decile portfolio by sorting stocks on inflation betas estimated using (i) Weighted Least Squares plus Shrinkage (WLS) or
Ordinary Least Squares (OLS), (ii) a sort where each portfolio comes from a double sort on beta and size (Size) or a single
sort on inflation beta (No Size), and (iii) ARMA(1,1) innovations in inflation (ARMA) or inflation itself (Inflation). The table
presents the predictive regression of the inflation risk premium on the nominal-real covariance, as in Table 5 of the paper. The
first column reports the original results as a benchmark.

WLS WLS WLS WLS OLS OLS OLS OLS
Size Size No Size  No Size Size Size No Size  No Size
ARMA Inflation ARMA Inflation ARMA Inflation ARMA Inflation

Lo -4.37 -3.89 -4.32 -3.07 -3.67 -2.71 -3.11 -1.60
t (-1.68)  (-1.74)  (-1.50)  (-1.27)  (-1.46) (-1.18)  (-1.10)  (-0.60)
Lyrc  5.38 7.35 4.80 6.08 5.71 8.52 5.38 8.96

t (2.22)  (3.25)  (L.78)  (259)  (2.39)  (3.80)  (2.11)  (3.69)
R? 6.65 1430  4.21 8.61 778 17.33 5.29 14.60
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Table OA.15: Predicting the Inflation Risk Premium with the Nominal-Real Covariance (Quarterly data)
This table is similar to Table 5 of the paper, except that we use quarterly instead of monthly data and, for brevity, we focus
on the High-minus-Low inflation risk premium. We construct a High-minus-Low inflation beta portfolio by sorting stocks on
the exposure in quarterly returns to quarterly ARMA(1,1)-innovations in inflation. Moreover, we use quarterly inflation and
quarterly consumption growth to estimate the nominal-real covariance. We then run the regression of Eq. (7). The nominal-real
covariance is standardized and standard errors are Newey-West with K lags.

R4k Ly Lyrc R?

K=10 -199 631 200
(-0.66) (2.07)

K=20 -192 625 390
(-0.67)  (2.26)

K =4Q -1.79 6.67 8.62
(0.69)  (2.80)

Table OA.16: Pooled Regressions: Inflation Betas Linear in the Nominal-Real Covariance

Similar to Panel A of Table 6, this table presents pooled regressions of returns on the inflation beta-sorted decile portfolios on
inflation beta, the nominal-real covariance, and their interaction. In this case, inflation betas are estimated as a linear function
of the nominal-real covariance, that is, 8y, ; = BOH’p’t + Bll-[’p’tNRCtCil (see Section 8. for more detail). We present estimated
coefficients (with asymptotic Driscoll and Kraay (1998) standard errors in parentheses) from various pooled predictive regressions.
To accommodate interpretation, NRCtC is standardized and BH,p,t is demeaned in the pool. We focus on the twelve-month

horizon.

Model 1] 2] 3] 4] [5]
Lo 8.48 5.17 8.48 5.09 5.12
t (3.47)  (2.24) (3.47) (2.18) (2.19)
Lg, 0.45 -0.71 0.49 -0.75  -0.71
t (0.65) (-1.30)  (0.71) (-1.34) (-1.25)
Lyro -2.27  -169 -235  -166  -1.73
t (-0.68) (-0.71) (-0.70) (-0.70) (-0.73)
LBHXNRC 1.64

t (4.25)

Lp,,  xNRC 2.72 2.28
t (2.84) (2.45)
Lg, xNRC 1.68 1.67
t (4.13)  (4.09)
R? 0.89 11.36 1.60 10.95  11.44
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Table OA.17: Pooled Regressions Controlling for Monetary Policy Regimes

This table is similar to Panel A of Table 6 except that we now include a dummy for each monetary policy regime identified in
Campbell et al. (2015): M PR; runs from the start of the sample to March 1977, M PRy runs from April 1977 to December 2000,
and M PR3 runs from January 2001 to December 2014. We present estimated coefficients (with asymptotic Driscoll and Kraay
(1998) standard errors in parentheses) from various pooled predictive regressions. In Model [1], we include only the dummies
for the monetary policy regimes. In Model [2], we add inflation betas (5n,p,t) and their interaction with the nominal-real
covariance. In Model [3], we decompose the inflation beta for the interaction with the nominal-real covariance in a portfolio-
and time-specific component: ,671.—[; =717 B p, and B/H\t =101 Z;gl Br1,p,- To accommodate interpretation, NRCE
is standardized in the time series to have mean zero and standard deviation equal to one, whereas BH,p,t is demeaned in the
pool. We focus on the twelve-month horizon.

Model [1] 2] 3]
MPR, 1.30 -1.17 -1.30
(0.20) (-0.18) (-0.20)
MPR, 10.03 5.54 5.43
(3.89)  (1.86)  (1.79)
MPR;3 11.03 10.16 10.13
(2.18)  (1.32) (1.32)
Lg, 142 -1.48
(-141)  (-1.42)
Lygre -2.37 -2.37
(-0.79)  (-0.79)
LBHXNRC 2.12
(3.12)
Lp, xnRo 1.95
(2.13)
Ls,, .xNRC 2.18
(2.93)
R? 2.72 10.19 10.21
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Table OA.19: Inflation Risk and Predictability in Excess Bond Return

Panel A shows summary statistics and the unconditional (full-sample) inflation exposure B for the excess returns of constant
maturity Treasury bonds. Panel B shows time-series predictive regressions of these excess bond returns on the lagged nominal-
real covariance in Panel B. The nominal-real covariance is lagged by 12 months and is standardized to have mean zero and
variance one. We report for each regression the estimated intercepts Lo and coefficients L yrc with corresponding t-statistics
based on Newey-West standard errors with 12 lags in parenthesis. The sample period is July 1967 to December 2014.

Maturity 1 2 5 7 10 20 30

Panel A: Summary Statistics and Unconditional Inflation Exposure

Avg. Ret. 1.10 1.37 2.19 2.70 2.54 3.35 3.14

St. Dev. 1.65 291 5.48 6.68 7.96 10.70 11.97
Sharpe 0.67 0.47 0.40 0.40 0.32 0.31 0.26
B -0.25 -0.43 -0.90 -1.31 -1.41 -2.76 -3.27

(-3.05) (-3.02) (-2.73) (-2.97) (-2.91) (-3.67) (-3.66)

Panel B: Predictability at Annual Horizon

Lo 112 143 224 277 262 329  3.04
(5.04)  (3.56) (3.09) (3.19) (2.57) (2.43)  (2.05)

Lyre 065 -0.71 -0.70 -061 -0.72 -081  -0.41
(-3.01) (-1.86) (-0.99) (-0.68) (-0.64) (-0.56) (-0.24)

R? 1163 460 129 057 056 035  -0.07
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