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Abstract 

 
This paper develops a model of financial institutions that borrow short term and invest in long-

term assets that can be traded in frictionless markets. Because these financial intermediaries 

perform maturity transformation, they are subject to potential runs. We derive distinct liquidity, 

collateral, and asset liquidation constraints, which determine whether a run can occur as a result 

of changing market expectations. We show that the extent to which borrowers can ward off an 

individual run depends on whether it has sufficient liquidity, collateral, and asset liquidation 

capacity. These determinants are endogenous and depend on the borrower’s balance sheet, in 

terms of asset market exposure and leverage, and on fundamentals, such as productivity and size. 

Moreover, systemic runs are possible if shocks to the valuation of collateral held by outside 

investors are sufficiently strong and uniform, and if the system as a whole is exposed to high 

short-term funding risk. 
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1 Introduction

This paper develops a model of financial institutions funded by short-term

borrowing and investing in long-term marketable assets. We show that such

institutions are subject to the threat of runs similar to those faced by com-

mercial banks and study the conditions under which runs can occur. The

analysis derives liquidity, collateral, and asset liquidation constraints for such

institutions that depend on whether the run is on an individual institution

only or is systemic. When these constraints are violated, runs can occur.

Institutions threatened by a run can liquidate assets through market sales

to raise cash or increase the collateral they offer to attract emergency lending.

For both these reactions, the institution’s asset base compared to its borrow-

ing exposure is decisive. In our steady-state model, these two key variables

are endogenous, but not pinned down uniquely. The ability to survive a run

depends on these two variables, as well as on exogenous parameters such as

the institution’s profitability and size.

Our work builds on the theory of commercial bank instability developed

by Diamond and Dybvig (1983), Qi (1994), and others. As pointed out

by Gorton and Metrick (2012), there are important similarities between the

fragility of commercial banks that borrow unsecured deposits and hold non-

marketable loan portfolios, and of “securitized” or “shadow” banks, which

borrow in repo or other short-term funding markets against marketable secu-

rities as collateral.2 In particular, repo markets performmaturity transforma-

tion by allowing investors with uncertain liquidity needs to lend short-term

against longer term, less liquid securities. We provide a formal model of such

shadow banking to identify the determinants of equilibrium profits, liquidity,

collateral, and asset market prices that support such maturity transformation

during normal times, and examine its fragility.

This paper uses the model developed in Martin, Skeie, and von Thadden

(2010), which focuses on the market microstructure of short-term funding

markets and compares the impact of different market structures on the pos-

sibility of runs, but ignores asset markets. The present paper simplifies the

2See Pozsar, Adrian, Ashcraft, and Boesky (2010) for a detailed discussion of the role

of shadow banking in the recent financial crisis.
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microstructure, but introduces asset market activity and analyzes its impact

on market fragility. The interdependency between the asset side and liability

side of a borrower’s balance sheet determines the borrower’s fragility and in

aggregate determines market fragility.

In contrast to Diamond and Dybvig (1983), we study an infinite-horizon

model. A key benefit is that profits are endogenous, so that we can make

predictions about how the model’s structural parameters affect the stability

of the steady state via the endogenously generated liquidity, rather than

performing comparative statics with respect to exogenous liquidity levels. Qi

(1994) also considers an infinite-horizon model, but his financial institutions

do not make any profits.3 Interest rates are not driven down to zero-profit

levels in the equilibrium of our model, because borrowers with liquidity of

their own must have an incentive to borrow rather than using their own funds

for investing in their activities. Since investing own funds is profitable, so

must be borrowing. This equilibrium argument for positive profits has been

developed in Martin, Skeie, and von Thadden (2010) and relies on a tradeoff

between the use of external and internal funds, which are endogenous in our

infinite-horizon model, but would need to be exogenously specified in a static

model.

A further key difference to Diamond-Dybvig (1983) is the existence of

asset markets in our model. This is a feature that our model shares with

Diamond (1997), who introduces an asset market with limited participation

into the Diamond-Dybvig model and shows that banking co-exists with mar-

ket activity in equilibrium and shows how both types of activities influence

each other. In our model, as in several others,4 asset market participation

is restricted to sophisticated borrowers (the “banks" in the Diamond-Dybvig

world), which rules out the type of coexistence problem studied by Diamond

(1997). Differently from that paper, our focus is on the role of asset markets

in runs.

In this respect our work is similar to the small literature, led by Allen and

3Other recent infinite-horizon models of banking instability such as He and Xiong (2012)

or Segura and Suarez (2012) also generate positive equilibrium profits, but do not consider

their interaction with asset markets and fire sales, which is the focus of the present paper.
4Such as Acharya, Shin, and Yorulmazer (2011) or Allen and Gale (2004a).
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Gale (2004a, 2004b), that introduces Walrasian markets into the Diamond-

Dybvig model.5 Allen and Gale (2004a, 2004b) note that the liquidity ob-

tained from asset markets (or equivalently, perfect future markets for state-

contingent consumption) complements that obtained through intermediaries

and study its limits because of insufficient cash in the market or market in-

completeness. Differently from that literature, we consider the use of assets

as collateral to support borrowing. Much of our analysis is concerned with

expectation-based runs on individual borrowers, and our question is to what

extent asset markets can overcome such breakdowns of short-term borrowing

markets. A well-functioning asset market makes it possible for a distressed

borrower to sell assets and thus obtain emergency liquidity. However, the

existence of these markets makes it possible for borrowers to also use them

in good times in order to bring consumption forward in time. This type of

activity corresponds to securitization: the steady-state sale of assets by a fi-

nancial institution that could otherwise be kept on balance sheet, motivated

by the desire to generate cash before the assets mature.6 An important re-

sult of our paper is that securitization (net asset sales) weakens a borrower’s

balance sheet because it reduces the assets available to raise cash in case of

emergency, either through liquidation or additional secured short-term bor-

rowing. The model therefore predicts that borrowers that securitize less will

be less fragile.

This view on securitization resembles Parlour and Plantin’s (2007) argu-

ment that liquid asset markets may not be socially optimal, because they

facilitate securitization without providing incentives to monitor the quality

of the assets sold. In our model, liquid asset markets are beneficial because

they can provide liquidity when individual borrowers are under stress, but

they can create fragility if their use erodes the borrower’s asset base too

much.

5An excellent introduction into this literature is the broad survey by Allen and Gale

(2007).
6Securitization typically involves both the pooling and tranching of assets and the sale

of the resulting securities. In this paper, we focus on the latter, which has been a major

factor in the financial crisis of 2007, as argued forcefully by Acharya, Schnabl, and Suarez

(2013). We abstract from issues such as pooling and tranching (see DeMarzo, 2005, Martin

and Parigi, 2013) and consider only homogenous assets.
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The liquidity of a borrower’s balance sheet plays a key role in our model

as we derive a kind of “pecking order” of means by which borrowers can

react to an attempted run. First, borrowers can use equilibrium free cash

flow and investment (inside liquidity in the terminology of Bolton, Santos

and Scheinkman (2011)) as a buffer. If these are insufficient, they can reduce

borrowing levels and attract some emergency lending by posting more collat-

eral. If the run is on a single borrower only and if the borrower cannot raise

enough outside liquidity through higher collateralization, the borrower can

sell his assets in a final attempt to generate liquidity. How much asset sales

can help, however, depends on various factors, including the strength of the

borrower’s balance sheet and the market price of assets. Importantly, with a

well-functioning asset market, borrowers can make themselves run-proof by

a judicious choice of balance sheet structure. In Section 4, we characterize

these structures explicitly.

Healthy borrows are willing to pay for the assets of distressed borrowers

up to the opportunity cost of their funds. As more assets are sold, the price

of assets declines, and it becomes more difficult for a distressed borrower to

raise cash. The more borrowers simultaneously are in distress and attempt

to sell their assets at the same time, the more difficult does this become

because of the limited cash in the market (Allen and Gale, 1994). In Section

5, we focus on the extreme case of a market-wide run, where the asset market

collapses completely because no borrower is available to buy assets.

Because liquidity is seriously impaired in a systemic crisis, it turns out

that at the systemic level collateral is decisive for the survival of borrowers.

We show that if shocks to the asset values of all borrowers are sufficiently

strong and correlated, a run on all borrowers is possible as a self-fulfilling

expectation. In this case, ex post liquidity interventions by the lender of

last resort are required to prevent complete market collapse. Ex ante, this

can be avoided by the appropriate regulation of borrowers’ balance sheets

in terms of asset market exposure and short-term borrowing. In Section 6,

we discuss the regulatory consequences of our analysis in the context of the

current policy debate.

It is instructive to compare our results on endogenous liquidity to those

of the literature on banking fragility and asset markets in which either a form
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of “inside” or “outside” liquidity is exogenously given in a starting period

and limited by a short-horizon ending period.

The importance of inside liquidity in financial stress has recently been

emphasized by Bolton, Santos and Scheinkman (2011), who show that use

of inside liquidity can be an inefficient source of paying off short-term claims

because this reduces the amount of a bank’s balance sheet that can be used

for productive purposes. This inefficiency exists also in our model. Yet, in our

infinite-horizon framework the composition of a borrower’s balance sheet and

hence her “inside liquidity” available to pay out at short notice is endogenous,

and it comprises free cash flow that can be shifted from consumption to

repayment at no efficiency loss.

Allen and Gale (1998) discuss fire sales of assets in a setting with exoge-

nous outside liquidity. As in that paper, in our systemic run scenario, low

enough collateral values imply a fire-sale collapse of asset prices below funda-

mental value, which cannot be prevented by the endogenous amount of cash

in the market. Allen and Gale (1998) assume an exogenous amount of outside

speculators’ wealth, which, if large enough, will prevent extreme asset price

drops. A lack of asset markets in which speculators can buy fire sale assets

implies fewer runs because the depositors cannot receive any value on assets

directly — in effect, the collateral value that can be received by depositors in

a run is always zero.

Fecht (2004) extends Diamond (1997) to examine how the degree of house-

hold segmentation to direct investment opportunities can lead to either a

banking-dominated financial system or an asset-market dominated system.

He shows that contagion from an individual bank run does not occur in ei-

ther a banking system or market system, but can occur in a hybrid mix of

banking and markets because of a contagious dry-up of liquidity. We ex-

tend this analysis by arguing that contagion can be an important systemic

phenomenon, but show that functioning asset markets can provide support

to individual financial intermediaries threatened by a run by reallocating

liquidity when the bank is forced to sell off assets.

Gorton and Huang (2004) argue that a liquid asset market requires banks

to rely on their long-term assets to provide full liquidity as a buffer against

the threat of a run, which imposes an inefficiency in a static model. However,
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we show that with an infinite-horizon, financial intermediaries have a buffer

of liquidity in addition to their long term assets because they naturally have

a constant source of new liquidity - new lenders in each period and the

adjustment of investment to draw forward liquidity from future profits, which

are both inherently sources of cash.

2 The Model

The model is a simplified version of Martin, Skeie and von Thadden (2010),

augmented by asset markets. The economy lasts forever and does not have

an initial date. At each date , a continuum of mass  of “young” investors is

born. Investors live for three dates and are born with an endowment of 1 unit

of goods that they can invest at date . They have no endowment thereafter.

Investors’ preferences for the timing of consumption are unknown when born

at date . At date +1, investors learn their type. “Impatient” investors need

cash at date +1, while “patient” investors do not need cash until date +2.

The information about the investors’ type and age is private, i.e. cannot be

observed by the market. Ex ante, the probability of being impatient is .

We assume that the fraction of impatient agents in each generation is also 

(the Law of Large Numbers).

In practice, money market investors, such as MMMFs, may learn about

longer term investment opportunities and wish to redeploy their cash or

they may need to generate cash to satisfy sudden outflows from their own

investors. We model this preference for liquidity as Diamond and Dybvig

(1983) by assuming that the utility from payments (1 2) over the two-

period horizon is given by

(1 2) =

½
1(1) with prob. 

2(2) with prob. 1− 
(1)

with 1 and 2 strictly increasing.
7

7We do not require the traditional consumption-smoothing motive of the Diamond-

Dybvig literature (concave ) here. Financial investors as modelled here may well be

risk-averse, but this assumption is not necessary for our analysis. In order to prove that

optimal contracts are one-period (which we assume here right away) one needs further
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Everybody in the economy has access to a one-period storage technology,

which can be thought of as cash and returns 1 for each unit invested.

The economy is also populated by  ≥ 3 infinitely-lived risk-neutral

agents called borrowers and indexed by  ∈ {1 }.8 The borrowers rep-
resent, for example, securities dealers or hedge funds. Borrowers have access

to an investment technology, which we think of as investment in, and pos-

sibly the creation of, securities. These investments pay off only after some

delay, but they can be sold on a perfect asset market that we describe below.

The investments are subject to decreasing returns, which we model simply

by assuming that there is a limit beyond which the investment provides no

returns. Hence, investing  units at date  yields½


 if  ≤ 
 if  ≥ 

(2)

with   1 at date +2 for all  and yields nothing at date +1. To simplify

the analysis, we assume that the return on these investments is riskless. In

order to have a role for collateral in our model, we assume that the return is

not verifiable. This means that investors cannot be sure that a borrower has

indeed realized 
 from his past investment. Although this is a probability

zero event, a borrower who has received funds from investors can claim that

he cannot repay the investors.

If at each date, borrowers consume 
 ≥ 0, their objective at each date

 is to maximize the sum of discounted expected consumption
P∞

= 
−

 ,

where   1. In order to make the problem interesting, we assume that bor-

rowers are sufficiently patient and their long-term investment is sufficiently

profitable:

2  1 (3)

for all . Without assumption (3), borrowers would prefer to consume all their

liquid funds immediately, rather than invest. This would leave borrowers

without any protection against runs, as in Qi (1994).

assumptions. Strict concavity can be used, but is not the only possible assumption (see

Martin, Skeie, von Thadden, 2012).
8We exclude the case  = 2 in order to avoid trivial monopolization problems if one

borrower does not participate in asset markets.
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Investment returns can only be realized by borrowers because they have

a comparative advantage in managing security portfolios. Investors could

realize a smaller return of  from these assets, with   1 for all . 
reflects different skills in valuing or managing the assets, possible restrictions

on investors’ portfolio composition, transactions and timing costs, and simi-

lar asymmetries. We allow  to depend on the borrower, reflecting potential

differences in the portfolio of collateral that different borrowers seek to fi-

nance, and allow it to depend on  since the outside value of such portfolios

may change over time.

Borrowers can use investor funds to invest in securities. To make the

model interesting, we must assume that each period the total investment

capacity
P

 strictly exceeds the investors’ cash available for investment,  .

Without this assumption, there would be no competition among borrowers

for investor funds. Borrowers could extract all the surplus from investors by

simply offering to pay the storage return of 1 each period, and there would

be no instabilities or runs. To simplify the analysis, we assume the slightly

stronger condition that no single borrower is pivotal:X
 6=

   (4)

for all .

These investments are liquid in the sense that there exist competitive

markets for the resulting assets. At each date , borrower  has −1 in

existing investments that will yield 
−1
 in + 1. These assets can be sold

to other borrowers (“securitized") at the price . We assume that this market

is frictionless, so that a borrower  6=  who buys the amount 0 ≤ 
 ≤ −1

from borrower  will realize 

 in +1.

9 Conversely, if borrower  sells the

amount 
 of assets this yields 





 in cash. We have


 =

X





9By considering frictionless secondary markets, we bias our results against runs and in

favor of market stability (see Skeie 2008). For example, if we instead assumed that other

borrowers could realize only b   from borrower ’s assets, the analysis would be

similar, but the conditions for no runs to be possible would be tighter. See Martin, Skeie

and von Thadden (2010) or Acharya, Gale and Yorulmazer (2011) for such analyses.
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where we define 
 = 0.

To simplify the exposition, we assume that only borrowers have access to

this market.10 There are  such markets, one for each borrower’s assets,11

and the market prices  are determined as competitive equilibrium prices.

Each period, borrowers compete for investors’ funds. Since borrowers

have a fixed investment capacity, they cannot borrow unlimited amounts, but

must condition their contract offers on the amount of funds they receive. We

capture this conditionality by a limit 
, up to which the borrower wants to

borrow at the terms indicated. Since investors live for two periods, contracts

should in principle extend over two periods, and because of the liquidity

shocks they must have a short-term liquidation component. In Martin, Skeie

and von Thadden (2010) we show that this short-term component forces

contracts to be completely short-term.12 Given this result, we simplify the

analysis here by assuming that borrowers only offer one-period contracts.

Such contracts promise to repay  at date + 1 for each dollar borrowed at

date . Hence, if borrower  attracts funds  from young investors at date ,

then he can expect to repay 

 at date +1 and to roll over the remaining

(1− )

 for another period.

Furthermore, since investment returns are non-verifiable, borrowers must

post collateral. The collateral posted must be sufficient to incentivize bor-

rowers to repay or, if one interprets the borrowing as repo transactions, to

honor the repurchase leg of the repo transaction. At time , the borrower

wants to roll over (1−)−1 −1 in loans from patient middle-aged investors

and attract  from young investors. The borrower can offer collateral of

10The assumption that final investors cannot participate in the asset market does not

affect the analysis of single-borrower runs, because borrowers are more efficient in using

the assets and thus will be the only ones to trade. It simplifies the analysis of aggregate

runs because, instead of shutting down, this market could then operate at low prices,

depending on the collateral constraint (see Section 5).
11If we assume instead that all borrowers essentially operate the same assets, only dif-

fering in their skill (leading to different ’s), our analysis of Sections 4 and 5 does not

change. The analysis of partial runs, not considered in this paper, would change slightly.
12More precisely, optimal long-term contracts cannot do better than a sequence of simple

short-term loans. If  are the  -period repayment promises with liquidation option,

 = 1 2, then 2 = 21, where 1 =  is the one-period gross interest rate. The reason

for this result is that liquidity shocks are non-contractible.
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two kinds: assets created last period and maturing in  + 1 (“seasoned col-

lateral"), and assets created by this period’s investment (“fresh collateral").

To simplify the presentation, we assume that borrowers collateralize all their

loans by an equally weighted mix of the two types of collateral: if a loan of

size 1 is collateralized at the rate , then the collateral is composed of
1
2


units of seasoned collateral and fresh collateral each.13

Hence, if the one-period gross interest rate is , then the borrower will

repay a loan (i.e. redeem his collateral) next period instead of keeping his

cash, if the value of the collateral to the borrower next period is greater than

the total repayment promise:

1

2
 +

1

2
 ≥ 

⇔ 1

2
(1 + ) ≥  (5)

We will abstract from more complicated considerations of default and

ex post bargaining, and simply assume that collateral must satisfy the re-

payment constraint (5).14 To summarize, borrowing contracts are triples

(  

 


) ∈ R3+,  = 1  , where  is the repayment made by borrower 

next period if the investor demands repayment (otherwise the loan is rolled

over to the next period), 
 the maximum amount for which this offer is

valid, and  is the amount of collateral posted per unit borrowed.

To simplify the presentation we assume that borrowers do not hold cash.15

Hence, if patient investors roll over their funding when middle-aged, then the

13This assumption makes sense in steady-state, because then the borrower has the same

amount of both types of collateral (−1 =  = ). It is a simplification because collater-

alization rates could in principle depend on the type of collateral.Our whole analysis holds

more generally, but the exposition becomes more cumbersome.
14See, e.g., Hart and Moore (1998) or von Thadden, Berglöf and Roland (2010) for more

complex models of default and renegotiation. We also abstract from reputational or other

dynamic concerns, which would trade off the possible loss of future access to investor funds

against current cash gains.
15It can easily be shown that holding cash is not optimal, because in the absence of

shocks cash holdings are strictly dominated by real investment or immediate consumption.

If there were a sufficiently large positive probability of runs in steady state, this would be

different, because then cash would have value as a buffer. See our discussion in Section 6.
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borrower’s expected (per-period) profit (or free cash flow) at date  is

 = (
−2
 −−1

 ) +
X


−1
  + 


 −

X






+ − −1 −1 − (1− )−1 −2 −2 −   (6)

The first term on the RHS of equation (6), (
−2
 − −1

 ), represents

the return from maturing assets the borrower invested in at  − 2, net of
the assets sold at date  − 1. The second term, P 

−1
 , is the return

from maturing assets the borrower purchased last period. The third and

forth terms, 

 and

P
 





, are the proceeds of asset sales and the cost

of asset purchases in the current period, respectively. The next three terms

represent new borrowing, , expected repayment to middle-aged investors,

−1 −1 , and expected repayment to old-aged investors, (1−)−2 −1 −2 ,

respectively.  ≤  represents new investment.

The timing of events within each period is as follows. At each date  ∈
(−∞∞),

1. investments of −2 mature, young investors receive their endowments,
2. borrowers  = 1  offer contracts to investors,

3. new and patient middle-aged investors decide which of the contracts

to choose, if any,

4. the  asset markets open, borrowers can trade,

5. if borrower  is unable to repay all investors who demand repayment,

he must declare bankruptcy. Otherwise, borrowers repay, invest  ,

consume, and continue.

In order to have a simple coherent institutional framework, we assume

that borrowers fund securities using a delivery versus payment settlement

mechanism, meaning that the transfer of the securities and the funds happen

simultaneously. The settlement is triggered by the sender of securities and

cash is automatically deducted from the account of the institutions receiv-

ing the securities and credited to the account of the institution sending the
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securities. This is how Fedwirer Securities Service works, for example. This

framework is consistent with standard collateralized borrowing and with repo

transactions, in which the collateral actually changes ownership.

The assumption that borrowers who cannot repay at stage 5 are bankrupt

simplifies the analysis without much loss of generality. Given the investors’

preferences in (1), it is clear that there is no scope for rescheduling the

financing from investors. Hence, if a borrower runs out of cash he must be

funded by his competitors if he wants to survive. Such arrangements may be

possible, but we view them as equivalent to bankruptcy.16

3 Steady-states

As a benchmark, this section characterizes steady-state equilibrium alloca-

tions, i.e. allocations in which contracting, trading, and investment decisions

are individually optimal, feasible, and time-independent. As usual, we ex-

press all quantities per unit mass of investors.

Let  ≥ 0 be the total amount of funds raised by borrower  each period
from young investors. We assume that the Law of Large Numbers also holds

at the borrower level: each period the realized fraction of impatient investors

at each borrower is . Hence, in every period, each borrower obtains funds

 from young investors and faces  middle-aged investors and (1−) old

investors for repayment. Thus there is no uncertainty about borrowers’ cash

flows, and each borrower’s realized profit is equal to his expected profit.

A steady state equilibrium is a collection of (     ) for each

borrower , where  is collateral,  the repayment promise, and  the market

price for assets of borrower , such that no borrower and investor would prefer

another funding and investment policy, given the behavior of all others, and

asset markets clear.17 Aggregate feasibility requires
P

 ≤  .

16The distressed takeover of Bear Stearns by JP Morgan Chase in March 2008 is a case

in point.
17For simplicity, we can ignore the bound  in the description of the steady state,

where it can be thought of as being set to  = .
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For the discussion of steady states it is useful to define

 =  −
X


 (7)

 is borrower ’s net loss of future revenues from asset purchases and

sales each period. Using this notation, the steady-state version of borrower

’s profits (6) is

 = ( − 1) −  +  −
X


 − ( + (1− )2 − 1) (8)

The following proposition summarizes some insights from Martin, Skeie

and von Thadden (2010) and extends them to the present model of short-

term borrowing with asset markets. It characterizes the steady states that

will serve as the benchmark for our analysis.

Proposition 1 There are steady state equilibria in which all borrowers make

strictly positive profits . In all such steady states,

• all investors roll over their loans according to their liquidity needs,
• investment is maximal:  = ,

• the gross interest rate is  =  = 1,

• borrowing satisfies P  =  ,

 ≤ 1 + 

1− + 
 (9)

and is otherwise indeterminate,

• collateral  satisfies
2

(1 + )
≤  ≤ 2

(1− + )
(10)

and is otherwise indeterminate.
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• the asset market price is  = ,

• asset sales and purchases are non-negative, satisfy

 ≤  − 1

2
(1− + ) (11)

2 
2

1− 
( − 1) − (1− + ) (12)

and are otherwise indeterminate.

The proof is given in the appendix. Along the lines of the proof in Martin,

Skeie and von Thadden (2010) one can actually show the stronger statement

that all steady state equilibria are either of the form described in the propo-

sition or have zero profits with inefficient investment levels    for all

active borrowers (there may be borrowers who are not active or who invest

only internal funds). Such zero-profit equilibria may exist in some parameter

configurations, but don’t have to. Even if they do exist, such equilibria have

little practical interest (given the large profits in practice) and have little

theoretical interest for our analysis of the interplay between inside liquidity

(  0) and outside liquidity in the case of investor runs. We therefore

ignore these equilibria in the sequel and use the steady states identified in

Proposition 1 as a benchmark for the rest of the analysis.

To understand why profits are positive, note that because of assumptions

(3) and (4) the marginal return of investment is high if a borrower invests only

borrowed funds. At such a high rate, investment is preferred to consumption.

As investment increases, marginal return of investment eventually decreases

and a borrower prefers to consume additional funds. Under our assumptions,

this occurs for borrower  when  is reached. So the borrower consumes every

period and wants to equalize the return of internal and external funds.

The same logic would apply if we had a concave production technol-

ogy that did not have a kink. Let  denote that technology, and suppose

2 0()  1, which corresponds to assumptions (3) and (4). In equi-

librium, borrowers would invest their own funds until they reach a level of

investment ∗, where 2 0(∗) = 1, so that the marginal return of consump-
tion and investment are equal. At that level of investment, the borrower
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would want to equalize the return of internal and external funds and profits

would be positive.

Condition (10) restricts collateralization rates in two directions. The

left-hand side is the repayment constraint (5), evaluated at the equilibrium

interest rate. Intuitively, collateral must be sufficient to incentivize the bor-

rower to repay. The right-hand side reflects the requirement that the total

amount of collateral put up in equilibrium cannot be larger than the total

amount of assets available, which is 2. These two inequalities are compat-

ible because of condition (9), which puts a cap on steady-state borrowing.

Intuitively, borrowing cannot be too high, if it is to be collateralized in an

incentive-compatible way.

Condition (11) states that the borrower can only sell assets that she

does not use as collateral. The right-hand side of (11) is non-negative by

(10). Finally, condition (12) is the equilibrium version of the condition  

0, using (8). Conditions (11) and (12) limit steady-state asset sales and

purchases without ruling them out, because it is easy to see that the two

conditions are satisfied for  =  = 0.

The steady states of Proposition 1 all feature maximum investment and

the same interest rate  and asset prices , but they can differ in their

borrowing , collateral , and the securitization . Investors are unaffected

by such variations because collateral is never consumed, markets clear, and

their return from lending is constant at − 1. However, borrower profits are
affected.

Using the equilibriun interest rate  in (8) the borrower’s period profit is

 = ( − 1) − (1− ) − 1

2
(1− +  − 2) (13)

Hence, for each borrower steady state profits are decreasing in borrowing

 and in his own securitization  and are thus (partially) Pareto-ranked.

In fact, the best steady states for borrower  are those in which  =  = 0,

i.e. steady states in which she does not borrow and does not sell assets at

all. However, zero borrowing by all borrowers is inconsistent with equilib-

rium. Absent borrowing, all investors would earn the storage rate of return

of 0. In an equilibrium without borrowing, all active borrowers must make

strictly positive profits because they invest their own funds and because of
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(3). Hence, an individual borrower can offer investors a small positive return

of , consume the loan, and repay next period out of her equilibrium profits.

This makes her strictly better off if (1 + )  1.18

It is important to realize that borrowers have no incentive to change

their borrowing or their securitization in any given steady-state equilibrium,

but that they prefer other steady states. Hence, Proposition 1 is consistent

with the notion that borrowers can be “trapped” in an equilibrium with

high borrowing, high securitization, and low profits. Therefore, to the extent

that period profits act as a buffer against adverse shocks, as we show in the

following sections, borrowers with larger borrowing levels or higher levels of

securitization will be more fragile.

Securitization has the advantage of bringing profits from the borrowers’

asset portfolios forward, thus liberating these funds for consumption or new

investment. However, since the assets are sold at their fairly discounted price,

these sales lead to inefficient equilibrium outcomes. Equation (8) shows that

in steady state, the marginal loss from not keeping these assets on the book,

, more than outweighs the marginal gain, which is  = . If borrowers

are not in distress, where they are forced to sell assets (as will be the case

in the next sections), this reduces individual steady-state profits. In the

aggregate, however, asset sales in our model simply involve a set of transfers.

Aggregate profits,

 =
X


 =
X


( − 1) − 1

2
(1− +  − 2) (14)

are unaffected by securitization.

It is interesting to briefly contrast asset sales between borrowers in our

model with interbank transactions in a standard Diamond-Dybvig model.

In a standard Diamond-Dybvig model, an interbank market prevents banks

from providing partial insurance against liquidity shocks. A standard arbi-

trage argument forces the bank return at date 1 to be the same as the return

of the storage technology and the return at date 2 to be the same as the

return of the long term technology. In contrast, in models with infinite hori-

zon, a different arbitrage argument forces the return on a two-period loan to

18Note that the borrower may not be able to invest the additional amount borrowed

because she may be capacity constrained.
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be equal to the return on two back-to-back one-period loads, when borrow-

ers cannot distinguish between young and middle-aged investors. Note also

that in infinite horizon models such as ours, there is no investment in the

storage technology. Instead, the return from − 2 assets are used to provide
consumption for middle-aged investors at date . Adding assets sales does

not affect this result. As we show below, however, introducing asset sales

has important consequences when we consider runs.

4 Single-Borrower Runs

In the next two sections, we study under what conditions runs can occur

and thus to what extent the steady state of Proposition 1 is fragile. This

depends on whether only a single borrower is concerned or whether the run

is systemic. We investigate the former scenario in this section and study

systemic runs in Section 5.

As in much of the classic rational expectations literature, we study unan-

ticipated runs that arise from pure coordination failures.19 Since mechanic

runs are trivial, we assume that such coordination failures are triggered by

sunspots, to which borrowers can adjust the whole contract offer as a re-

sponse. The assumption is that behavior until date  is as in Proposition

1, but that a sunspot occurs at the beginning of the period and indicates

that borrower  should not receive funding. In terms of the model, such a

sunspot can be the observation of a low value of . As seen in Proposition 1,

 does not affect steady state activity because collateral is never liquidated

in equilibrium. However, if the liquidation value falls below the thresholds

we derive below, this may lead investors to coordinate on new expectations,

which then become self-fulfilling if the investor must liquidate assets.

The question is whether this borrower can withstand the collective re-

fusal of all their middle-aged investors to renew funding and of their young

investors to provide fresh funds.20 Specifically, in a run all investors believe

19For a discussion see Section 6.
20Note that in our infinite-horizon model, there are two sources of instability: middle-

aged investors may not roll over their funding and new investors may not provide fresh

funds. The former corresponds to the classical Diamond-Dybvig problem, the latter arises
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that i) no middle-aged investors renew their funding to borrower , so the

borrower must pay [ + (1− )2]  to middle-aged and old investors, and

ii) no new young investors lend to the borrower. We ask whether such beliefs

can be self-fulfilling in a collective deviation from the steady state.

Since the Law of One Price holds in steady state by Proposition 1, a

trivial coordination failure may induce all investors of a given borrower to

switch to another borrower out of indifference. This looks like a “run” but

is completely arbitrary. We will therefore assume that investors if indifferent

lend to the borrower they are financing in steady state. Hence, in order for

a collective deviation from the steady state to occur we impose the stronger

requirement that the individual incentives to do so must be strict.

In this section, we first derive a steady-state liquidity constraint. If in

steady state the borrower has enough liquidity on hand or can generate it by

reducing investment to repay all claims in the event of a run, the borrower has

no risk of defaulting and investors have no incentive to join in a run. If this

steady-state liquidity constraint is violated, runs are ruled out if the borrower

either has enough assets to guarantee his additional borrowing through a

sufficiently large haircut, or if he can raise enough additional cash in an

emergency sale of his assets on the secondary market. The former possibility

is addressed in subsection 4.2 by deriving a collateral constraint, the latter

possibility in subsection 4.3 by deriving an emergency liquidation constraint.

If any of these three constraints hold, runs cannot occur in equilibrium.

4.1 Steady-State Liquidity

We first consider the borrower’s liquidity in steady state. In steady state,

at the beginning of the period, on the asset side of his balance sheet the

borrower holds ( − ) units of cash from his own investments at date

 − 2, net of assets sold at date  − 1, and P  units of cash from his

past asset purchases. He also holds securities that will yield ( − )

units of cash at date + 1. Furthermore, in equilibrium the borrower raises

 =  in cash by selling assets at stage 4 of the interaction of this

period and buys assets at a cost of
P

 . Hence, the borrower can

only in infinite-horizon models.
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pay off all outstanding claims in a run without raising additional cash iff

( −) +
X


 +  ≥
£
 + (1− )2

¤
 +

X




⇔  − (1− ) ≥
£
 + (1− )2

¤
 (15)

where we have used (7). Under this strategy, the borrower first reduces her

consumption, and then, if this reduction does not mobilize enough cash, her

investment. Anticipating this, investors have no incentive to deviate from

the steady-state and a run cannot occur.

Re-writing (15) using  = 1 yields the borrower’s “steady-state liquid-

ity constraint”

2(1− ) ≤ 2 − (1− + ) (16)

Condition (16) is violated if  is too large, i.e. if the borrower relies too

much on asset sales to finance current consumption in steady-state. In this

case, he cannot mobilize enough liquidity in equilibrium to stave off a run.

Conversely, if (16) holds, the borrower’s steady state liquidity is sufficient to

repay all outstanding claims in a run. By our assumption that the incentives

to run must be strict, this yields the following result.

Proposition 2 If borrower  satisfies the steady-state liquidity constraint

(16), there are no strict incentives to run on this borrower. Conversely, if

(16) is violated, the borrower does not have sufficient steady-state liquidity to

withstand a run.

Condition (16) is strictly stronger than condition (12) of Proposition 1.

Hence, there are steady states in which the borrower’s balance sheet is so

weak - either through high  on the asset side or high  on the liability side

- that he does not have enough steady-state liquidity to withstand a run.

4.2 Collateral

We now assume that (16) is violated and ask whether the borrower can put

up enough additional collateral to attract the missing liquidity in case of a

run. Under this strategy, he will not buy other borrowers’ assets in order to

19



maximize his available cash and he will not sell any of his own assets in order

to maximize the amount of collateral that he can post.

The amount of missing cash the borrower needs to attract is

 ≡ ( + (1− )2) −( −)−
X


 (17)

= ( + (1− )2) − +  (18)

The total amount of collateral available in a run is the total amount of

invested assets, , that will mature in  + 1. These assets can be used to

attract the cash shortfall . To increase collateralization rates to stave

off the run, the borrower can reduce her borrowing level by adjusting the

borrowing limit b, which effectively allows her to increase the collateral per

unit borrowed. Hence, the maximum possible value of collateral per unit

borrowed is

 =  (19)

There are two different investor groups the borrower can borrow from,

young investors who hold cash and middle-aged investors who hold a loan to

the borrower that may be rolled over.

other investors

invest don’t

invest b 
b

don’t  

Table 1: Payoffs to young investors in an isolated run

Table 1 gives the payoff to an individual young investor at date + 1 as

a function of the collective behavior of all other investors. Since the run is

on this borrower only, the other borrowers operate as in steady state, and

investors can switch to them to invest their cash if they wish to. If the other

investors lend to the borrower (invest), only interest rates matter, and the

investor is paid a gross return b if he finances , and  if he switches. If the

other investors do not finance , the fact that (16) is violated implies that
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the borrower will go bankrupt and thus only collateral matters. Hence, the

run outcome (don’t, don’t) is not a strict equilibrium if and only if


b ≥  (20)

This inequality can be made to hold if and only if it holds for b = .

Note that the borrower can attract as many young investors as necessary to

fund the shortfall  if he has the collateral, because he can compete away

lenders from other borrowers if his offer is sufficiently attractive. Inserting

 from (17) in (19) yields the following collateral constraint.

Proposition 3 If borrower  satisfies the collateral constraint

2 ≤ (1 + )
2 − (1− + ) (21)

there are no strict incentives to run on this borrower. Conversely, if (21)

is violated, the borrower does not have sufficient collateral to withstand a run.

Proof. Condition (21) is (20) evaluated at  = . We already have

shown that this condition is sufficient to prevent a run, because young lenders

will fund the shortfall if it holds. In order to prove necessity, we must examine

the incentives of middle-aged patient investors to roll over their existing loans.

Suppose therefore that condition (21) is violated. From (17), only a

fraction

 ≡ ̄ − 

 [ + (1− )2]
∈ (0 1) (22)

of middle-aged investors can get their money back before the borrower be-

comes illiquid. With probability 1−, patient middle-aged lenders who run

are forced to keep their collateral. Lenders who are able to obtain their cash

back can invest it with another borrower. The payoffs of patient middle-aged

lenders (per unit of funds) are therefore as in the following table.

other lenders

invest don’t

invest b 
b

don’t   + (1− )
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Table 2: Payoffs to middle-aged patient lenders in an isolated run

Table 2 differs from Table 1 in the lower right cell, which reflects the differ-

ent positions of young and patient middle-aged lenders. The outcome (don’t,

don’t) is strictly optimal for the individual patient middle-aged investor if

and only if


b   + (1− ) (23)

This condition holds for all  and b iff it holds for b =  from (19) and

 = 2(1 + ) from (10). Re-writing (23) for these two extreme values

and setting  ≡  yields




 + (1− )2 − + 
(24)

  + (1− )
2

(1 + )
(25)

⇔ 
4

1− +  − 2 + 
2

(26)


3 − 

3
1− + 

+

µ
2

(1 + )

¶µ
1− +  − 2 + 2

1− + 

¶
(27)

⇔ (1− + )
4 

∙
3 − 

3+
2

(1 + )
Ψ

¸
Ψ (28)

where Ψ ≡ (1− +  − 2 + 2).

Since (21) is violated, we have

1− +  − 2 + 
2  

3 (29)

Suppose first that   . By (29), it is enough to show that

(1− + ) ≤ 3( − 

̄
) + (1− +  − 2( − 

̄
)

which is implied by (29), (11), and (10).

Now suppose that  ≤ . (28) is linear in  and holds for 

 = 0 and

for  = . Hence, it holds for all  ≤ .

If the borrower has collateral to attract enough young investors, then he

is safe from runs. In particular, he can replace any middle-aged investor that
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does not want to roll over her loan with a new young investor. Conversely,

if the borrower cannot attract enough young investors, then he cannot with-

stand a run, because middle-aged investors run if young investors choose to

do so.

Condition (21) is implied by the steady-state borrowing restriction (9)

if  is close to 1 and  is small enough, and is stronger if 

 is small and

if  is large. Hence, when the borrower is holding an “adequate” amount

of assets in “normal” times, the collateral constraint is not violated, and it

becomes relevant only in “stress” time (when  is small). Furthermore, the

collateral constraint of borrower  is more likely to be violated if short-term

borrowing  is large, and if profitability  and investment capacity  are

small.

Comparing the steady state liquidity constraint (16) and the collateral

constraint (21) shows under what conditions the posting of additional collat-

eral can provide sufficient additional liquidity.

Lemma 1 The collateral constraint (21) is weaker than the steady-state liq-

uidity constraint (16) iff

  ̄ (30)

Hence, if (30) holds, it is possible that a borrower may have enough col-

lateral to prevent a run even if it does not have sufficient steady-state liquid-

ity. This lemma illustrates some interesting insights of the model. First, by

Proposition 1, collateral quality  does not matter in steady-state, because

investors never liquidate their collateral and therefore do not have to value it.

However, the lemma shows that collateral can play a role to prevent a run.

If the quality of the collateral is high enough, it provides a good liquidity

hedge. In other words, with collateral of high quality ( large), investors

have no concern about the default risk of borrowers. By (30), “high” here is

defined relative to the borrower’s asset market exposure ̄.

The events of 2007 - 2009 suggest that the quality of securities can change

quickly. Before the financial crisis, a wide variety of securities, including pri-

vate label MBS and ABS, could be financed as if their quality was no concern.
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However, in 2007, haircuts for these securities increased dramatically in some

markets, reflecting increased market liquidity concerns (see, e.g., Gorton and

Metrick 2011). Ultimately, in terms of our model, this led to a reversal of

inequality (30), which made it impossible for many players to obtain liquidity

against additional collateral, in particular for those who where heavily en-

gaged in the shadow banking system through asset sales and similar activities

(high ).

For these borrowers only fire sales of their assets remained as an option

to obtain additional liquidity, to the analysis of which we turn now.

4.3 Asset Liquidation

If a borrower does not have sufficient steady-state liquidity or enough collat-

eral to prevent a run, he must turn to emergency liquidation sales of assets.

Selling an amount b,   b ≤ , of assets yields  b in current liquidity

and reduces his cash at date  + 1 by 
b. Note that  is an out-of-

equilibrium asset price, which affects all his asset sales. The borrower’s cash

position during a run at date  therefore is

0 = ( −) +
X


 +  b − ( + (1− )2) (31)

=  −  +  b − ( + (1− )2) (32)

The cash position corresponds to the return on assets held by the borrower

and maturing today, ( − ) +
P

 , plus the proceeds from assets

sale,  b, minus the amounts that must be repaid to running investors (+

(1−)2). Note that the borrower can adjust his asset sales and purchases

in response to the run. Clearly, it is not optimal for a borrower subject to a

run to purchase assets.

If 0  0 the borrower does not have the liquidity to stave off the run

and is bankrupt. If 0 ≥ 0, the borrower can adjust his future funding and
investment and survive the run. Indeed, since after a run the borrower will

have ( − b) in cash and nothing to repay in  + 1, he can continue

operations by investing at date + 1 and save and invest thereafter.

As derived in (17), the amount of cash the borrower must raise in the

asset market is  If in asset market equilibrium  b ≥ , the borrower
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survives the run, if not he will be bankrupt. Whether he can raise enough

cash through the asset sale depends on the cash in the market (Allen and

Gale, 1994), i.e. on the total amount of cash held by all other borrowers, and

on their willingness to buy his assets.

Cash in the market is the cash available to all other borrowers after a

run on borrower  before asset market activity and investment. It consists of

the total returns from 2-period old investments net of the steady-state loan

repayments, plus all new loans including the funds  + (1 − ) that are

not going to borrower  in the run. The cash available to borrower  6=  is

 = ( −) +
X


 − ( + (1− )2 − 1)

Hence, total cash in the market is

 =
X
 6=

 +  + (1− ) (33)

=
X
 6=

( −) +
X
 6=

X


 (34)

−( + (1− )2 − 1) + ( + (1− )2) (35)

Lemma 2 For all ,

   (36)

Proof. By definition,

 =
X




Hence, X


 =
X




which implies thatX


( −
X


) =
X


X


 −
X


X


 (37)

= 0 (38)
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Hence, (34) and (17) imply that

 − =
X


 − 1

2
(1− +  − 2)

which is strictly positive by (14).

(37) - (38) in the above proof show that, as noted in Section 3, individual

net equilibrium exposures to asset market activity wash out in the aggregate:X


 = 0 (39)

Intuitively, a run on borrower  simply means a redistribution of his liq-

uidity to the other borrowers. Hence, (39) implies that the cash in the mar-

ket after a run is sufficient to cover the shortfall of any individual borrower

(Lemma 2). Since in steady state aggregate liquidity is sufficient to repay

all investors and to invest maximally by (14), the same is true for the set

of all borrowers without , because the remaining borrowers have sufficient

investment capacity by (4).

The question is whether this cash can be mobilized to save the borrower.

Proposition 4 If the steady state liquidity constraint (16) is violated, then

asset sales give borrower  sufficient liquidity in a run if and only if his

“emergency liquidation constraint" holds:

2 ≤ (1 + )2  − (1− + ) (40)

Proof. Consider the market for borrower ’s assets when he is run upon. The

benefits to other borrowers from buying these assets are the asset returns in

+1, the cost is the foregone consumption in . Therefore, aggregate demand

for these assets will be 0 if    and maximal if   . Formally,

() =

(
0 if   



if   
(41)

In terms of supply, borrower  must raise . The borrower will be able

to raise enough cash from the asset sale to cover  if and only if

 ≥ 


≡  (42)
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Suppose   . Then either  ≥ , in which case other borrowers do

not purchase ’s assets, or   , in which case the price is too low to save

.

Now suppose that  ≤ . Consider any  such that  ≤   , if it

exists. Then the borrower supplies 


units of his asset, and (41) and Lemma

2 imply that aggregate excess demand on the market is strictly positive.

However, if  =  demand is indeterminate in the range [0


] and supply

is indeterminate in the range [


 ]. By Lemma 2, the market clears, and

the borrower obtains sufficient cash to stave off the run.

Re-writing the condition  ≤  and using (7) in (17) yields

( + (1− )2) − +  ≤ 

Substituting in for  and simplifying yields (40).

Condition (40) is the borrower’s “emergency liquidation constraint”: it

indicates when a borrower can mobilize sufficient liquidity to survive an iso-

lated run, if he liquidates his assets on the secondary market. This constraint

is to be distinguished from the borrower’s “steady state liquidity constraint”

(16), which indicates when the borrower has sufficient liquidity in steady

state if he simply follows his steady state asset market policy.

Note that the right-hand side of (40) is positive by (9). Hence, condition

(40) is satisfied if the borrower’s net exposure to the asset market in steady

state is non-positive, i.e. if  ≤ 0 (no securitization). However, condition
(40) can be violated in equilibrium, because by (3) the right-hand side of (12)

in Proposition 1 is strictly greater than the right-hand side of (40). Hence,

there are steady-state values of  that violate (40).

4.4 A Pecking Order

In fact, the three conditions that determine whether the borrower can stave

off a run are nested in a remarkably simple and intuitive way.

Lemma 3 The steady state liquidity constraint (16) and the collateral con-

straint (21) are both stricter than the emergency liquidation constraint (40).

All three constraints are stricter than the steady state feasibility constraint

(12).
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Proof. (16) implies (40) if  ≥ , which is true because  ≤ 

and  ≤ . (21) implies (40) if (1+)
2 ≤ (1+)2 which holds

because   1. The last statement follows by transitivity because we have

already shown that (40) implies (12).

Lemma 3 implies a kind of “pecking order” of reactions to runs:

• If  and  are sufficiently low, the borrower can mobilize sufficient

liquidity by reducing consumptions (i.e. cutting dividends) and cutting

down on investment.

• For larger  and  the borrower is able to obtain sufficient additional

liquidity through additional collateral if his collateral quality is high

(condition (30)).

• For even larger  and  neither of the above is possible, but the

borrower can raise sufficient additional liquidity through asset sales.

• There are steady states in which  and  are so high that the borrower

is unable to stave off a run.

Note that in the region where both asset sales and collateral can be used

to obtain outside liquidity the borrower is indifferent between the two, since

asset sales occur at a fair price. Hence, the pecking order should be under-

stood in the sense that for increasing  and  the borrower’s options become

more and more limited.

The ordering of the constraints in Lemma 3 makes it possible to summa-

rize the possibility of a run in the following simple proposition.

Proposition 5 A run on a single borrower  is impossible iff his emergency

liquidation constraint (40) holds. Otherwise, neither asset sales nor addi-

tional collateral provide enough liquidity and the run bankrupts the borrower

if it occurs.

The comparative statics of the pivotal constraint (40) are simple and

intuitive. A run is possible if
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• Asset market exposure  is large

• Short-term borrowing  is large

• Borrower size  is small
• Borrower profitability  is small.

In general, condition (40) involves the asset side () and the liability side

() of the borrower’s balance sheet. However, two simple special cases are

worth noting in which the solidity of one side of the balance is sufficient for

stability.

Corollary 1 A run on a single borrower  is impossible if

•  ≤ 0, or
• (1− + ) ≤ 3 .

Proof. The case of  is covered by Lemma 4 because the right-hand side

of (40) is positive. For the second case note that under this condition the

steady-state liquidity constraint (16) holds for all  ≤   (remember that

this is the maximum value  can take).

As noted above, a larger  weakens the borrower’s asset side and reduces

the amount of liquidity available to the borrower in case of emergency. When

 ≤ 0 the borrower’s balance sheet is boosted by his strong net asset position
and there is enough cash in the market to purchase all his assets at a fair

price, by lemma 2. Borrowers can also withstand an isolated run if their

leverage is sufficiently small, since in that case there are relatively few running

investors to pay. The second condition of corollary 1 provides a bound on

the borrower’s leverage, below which he has sufficient steady-state liquidity

to withstand a run.
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5 Systemic Runs

A systemic run is a collective decision by all investors not to lend to any of

the borrowers but rather to hoard their money and store it. In this section

we ask whether and under what conditions such a systemic run can occur and

is individually rational for investors. As in the previous section, we study

unanticipated runs that arise from pure coordination failures. Behavior until

date  is as in Proposition 1 and the question is whether the borrowers can

withstand the collective refusal of all their investors to provide funding. The

two main differences to the analysis of the previous section are that (i) there

is no market for assets if all borrowers are distressed, and (ii) investors who

do not continue to lend as in steady state cannot lend to other borrowers.

As we will see, this implies that each borrower’s collateral constraint (21)

becomes weaker and the emergency liquidity constraint (40) becomes tighter.

The steady-state liquidity constraint (16) looses its meaning in this context,

because borrowers cannot access the asset market as in steady state. Hence,

there is only one “liquidity constraint".

5.1 Collateral

If the cash shortfall  without asset market activity defined by (17) is pos-

itive, the borrower can again reduce her borrowing level by changing b, as

in Section 4.2, and thus increase the collateral per unit borrowed. When

young investors consider such a debt offer by a borrower, they now compare

it to the alternative of hoarding their cash, because they cannot lend to other

borrowers. Hence, the game played between young investors is given by the

following modification of Table 1.

other lenders

invest don’t

invest b 
b

don’t 1 1

Table 3: Payoffs to young investors in a systemic run
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Table 3 gives the payoff to an individual young investor at date + 1 as

a function of the collective behavior of all other investors. The difference to

Table 1 is the payoff to not investing, which is now 1 instead of . Here, the

run outcome (don’t, don’t) is not a strict equilibrium if and only if


b ≥ 1

This inequality can be made to hold if and only if it holds for b =  =

 as defined in (19). Again the borrower can attract as many young

lenders as necessary to fund the shortfall  if he has the collateral, because

the alternative to investors is simple storage. With a proof along the lines of

the previous section, we thus obtain the following collateral constraint.

Proposition 6 If borrower  satisfies the systemic collateral constraint

2 ≤ (1 + )
2 − (1− + ) (43)

there are no strict incentives for a systemic run. Conversely, if (43) is vio-

lated for all , then there is not enough collateral in the system to withstand

a systemic run.

The only difference between condition (43) in the systemic case and con-

dition (40) in the isolated-run case is that the latter has the expression (1+)

in the first term on the right side, while the former replaces this expression

with the expression (1 + ). The latter case has the asset being transferred

at a fair market price, which is the discounted value of return , while the

former case has the asset being used as collateral by a group of second-best

users, reflected by . The systemic collateral constraint (43) is weaker

than the collateral constraint (21) for isolated runs, because in a systemic

run the alternative to lending to a particular borrower is less attractive. As

far as collateral is concerned, borrowers therefore find it easier to borrow in

a systemic run than if the run targets them in isolation.

Furthermore, as in the case of isolated runs, condition (43) is implied by

the steady-state borrowing restriction (9) if  is close to 1 and  is small, and

is stronger if  is small and if  is large. Hence, when the borrower is holding

a sufficient amount of assets in “normal” times, the collateral constraint is

not violated, and it becomes relevant only in “stress” time (when  is small).
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5.2 Liquidity

In a market-wide run, borrowers cannot obtain liquidity on the market, be-

cause nobody is ready to buy assets, and the market fails. This is the extreme

case of insufficient cash-in-the-market in Allen and Gale (1994). Borrowers

therefore have the liquidity to withstand the run if and only if they have

sufficient cash on their own, i.e. iff 0 ≥ 0 for b = 0 as defined in (31). In

this case, the borrower can only rely on the return from maturing securities

and neither asset sales nor purchases can occur. Writing this condition out

explicitly yields the following result.

Proposition 7 A borrower  has sufficient liquidity to withstand a systemic

run if and only if

2 ≤ 2 − (1− + ) (44)

Condition (44) is the borrower’s systemic liquidity constraint. It is stricter

than the emergency liquidation constraint (40) of individual borrower runs

by direct inspection; and indeed, clearly liquidity is scarcer in a systemic run.

5.3 Fragility

It is easy to see that condition (44) is stricter than the systemic collateral

constraint (43). Hence, for systemic runs, the liquidity constraint is violated

first, and, unlike in the case of individual runs, the collateral constraint is

the crucial constraint.21

Propositions 6 and 7 therefore imply the following characterization of

systemic fragility.

Proposition 8 A systemic run is possible if and only if the collateral con-

straint (43) is violated for all borrowers, i.e. iff

2  (1 + )
2 − (1− + ) (45)

for all .

21Remember that a systemic run cannot occur if one of the two constraints is satisfied

for one borrower.
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Condition (45) can be read as a condition on the outside collateral value

. Simple rearranging yields

 
1

2

£
2 + (1− + )

¤− 1 (46)

If (44) is violated, the right-hand side of (46) is strictly positive. Hence,

if all the  drop sufficiently low, then (45) holds for each , and a systemic

run can occur. If, as suggested earlier, drops in  produce the sunspots

that make investors lose their faith in the borrowers, then systemic runs are

a possible self-fulfilling prophecy if shocks to the valuation of collateral are

sufficiently strong and uniform across assets.

As discussed in Section 3, equilibrium in our economy requires that total

borrowing is constant at the exogenous level of loanable funds . Proposition

8 therefore implies the following sufficient condition for systemic stability.

Proposition 9 A systemic run at time  is impossible ifX


  ≥ ( − ) (47)

Proof. In a systemic run, all inequalities (45) hold. Adding up and using

(39) yields X


(1− + ) 
X


(1 + )
2

⇔ (1− + ) 
X


(1 + )
2

by point 4 in Proposition 1. Because of (3) and (4), this is impossible if (47)

holds.

Proposition 9 only gives a sufficient condition, but is still of some interest

because it draws attention to the systemic variables that matter for systemic

stability. The proposition implies in particular that systemic runs are impos-

sible if  ≥ .  is the aggregate degree of impatience in the economy; hence,

1−  measures how much funding will be rolled over in equilibrium. If that

amount is very small, the system operates on a short-term basis and is not
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particularly vulnerable with respect to runs. However, if a sufficient amount

of funding is obtained by rolling over short-term funding, i.e. if there is suffi-

cient maturity transformation, is the system in danger of becoming unstable.

If this is the case, ceteris paribus, condition (47) shows that systemic

runs are less likely for smaller funding markets (small ) and for financial

technologies for which liquidation losses cannot be too large ( sufficiently

bounded away from 0).

6 Liquidity Provision and Regulation

In our model, runs are unexpected because sunspots do not occur in equilib-

rium. The model may therefore not appear suitable for policy advice. There

are at least three reasons why this conclusion is premature.

First, in addition to simplifying the analysis, there are serious behavioral

reasons to believe that market participants underestimate the probability

of breakdowns. This is a standard argument in economic psychology (e.g.

Kahneman 2011), and has been argued in the case of the recent financial

crisis, among others, in the “neglected risks” model by Gennaioli, Shleifer,

and Vishny (2012). The very high degrees of leveraged observed before the

panic and the lack of liquidity observed ex post for some institutions would

be consistent with this interpretation.

Second, our model should be thought of as the limiting case of a more

general model where sunspots occur with some probability   0 Since

the more general model would be continuous in , our results carry over to

equilibrium sunspots that occur with sufficiently small probability. This is

the approach in models such as Kiyotaki and Moore (1997), Brunnermeier

and Pedersen (2009) or Uhlig (2010).22

Third, and perhaps most importantly, our results carry over to the model

with   0 even before the limit, in the form of sufficient conditions for

stability. If the liquidity or collateral conditions that we have identified in

Sections 4 and 5 hold, then there are no strict incentives to run in reaction

to sunspots, whenever they occur, on or off the equilibrium. As this is so,

22See Allen and Gale (2004a) for a careful analysis of the limiting process for  → 0,

and Postlewaite and Vives (1986) for an analysis of equilibrium runs.
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steady state behavior will be as described in Proposition 1. Of course, if

these conditions do not hold, rational market participants will adjust their

behavior to the probability of sunspots, and steady states will be different.

Hence, our analysis provides insights into sufficient conditions for stability in

a more general model, even if these are not necessarily necessary.

Given these considerations, we now turn to policy considerations. Our

model has different policy implications for individual and systemic runs. If

individual runs are a policy concern, the model suggests that prudential

regulation, as suggested by Basel III, improves financial stability. In contrast,

addressing the risk of systemic runs requires some lender-of-last-resort tools.

In terms of efficiency, runs on individual borrowers only result in a re-

allocation of liquidity, if the emergency liquidation constraint (40) holds, and

not in losses. Hence, regulation may not be required, as it would be enough

to rely on the borrowers’ self interest to operate with borrowing levels and

asset sales consistent with (40). If there are other reasons to be concerned

with individual runs (not modeled in this paper), then the conditions under

which borrowers are immune to individual runs, summarized in Proposition

5, suggest the following policy implications. First, borrowers are immune to

runs if  is sufficiently small. Hence, constraints that require borrowers to

maintain a sufficient stock of assets that they can sell in an emergency will

increase financial stability. The liquidity coverage ratio (LCR), the ratio of

unencumbered, high quality liquid assets to total net cash outflows a bank

would experience within a 30-day time horizon, proposed by Basel III, would

play such a role. Second, runs are related to leverage in our model, so leverage

constraints, a standard prudential tool, will also enhance financial stability

in our model.

In a systemic run, all borrowers must sell assets to survive, and hence

the asset market breaks down. But this is inefficient, as the asset returns

are unaffected and, if the price reflected the assets’ fundamental value, bor-

rowers would be able to survive. This suggests a role for a lender of last

resort. Access to a lender of last resort is a standard tool used to strengthen

the banking sector in the face of financial fragility. Theoretical work has

shown how access to a lender of last resort can prevent bank runs.23 In the

23Diamond and Dybvig (1983) originally showed how deposit insurance can prevent runs
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U.S., the broker-dealers that rely on the tri-party repo market as a source

of short-term funding did not have direct access to the discount window.

This lack of access to emergency liquidity proved destabilizing during the

crisis and motivated the Federal Reserve to introduce the Primary Borrower

Credit Facility (PDCF). Similar concerns about MMMFs, who represent an

important share of investors in the tri-party repo market, motivated the cre-

ation of the Asset-Backed Commercial Paper Money Market Mutual Fund

Liquidity Facility (AMLF), and the Money Market Investor Funding Facility

(MMIFF). These facilities were temporarily created under section 13.3 of the

Federal Reserve Act, which allows the Federal Reserve to lend to a variety

of institutions under unusual and exigent circumstances.

In the context of our model, a “buyer of last resort” could inject the

necessary liquidity in the secondary market by simply purchasing the assets.

Similarly, a lender of last resort can lend cash to borrowers taking the assets

as collateral. This institution would need to be ready to inject
P

, which

is just enough to maintain the price if all borrowers suffer from a run. Note

that the commitment to inject the liquidity is sufficient to prevent systemic

runs and thus to keep all investors on the steady state. In equilibrium the

liquidity injection will not be executed.

Interestingly, comparing Proposition 5 and Proposition 8 shows that in

stress times, when   , the systemic fragility constraints are stricter than

the individual fragility constraints for all . Hence, if regulation wants to

prevent systemic runs, it must impose the stricter restrictions (43) on all

borrowers. This automatically rules out runs on individual borrowers.

In order to rule out systemic runs for sure, the systemic collateral con-

straints (43) must be based on the worst-case scenario of the lower bound of

the support of the shocks . Assessing the support of these distributions is

clearly a difficult task for regulators. If the supports are not clearly bounded

away from 0, i.e. if the valuation of collateral by less sophisticated investors

by taxing to pay for losses when runs occur off the equilibrium path. Martin (2006) shows

how a central bank can provide liquidity as a lender of last resort to prevent runs without

incurring moral hazard that deposit insurance induces. Ashcraft, McAndrews and Skeie

(2011) and Freixas, Martin and Skeie (2011) presents theoretical and empirical evidence

that central bank liquidity provision can reduce interbank liquidity stress in short-term

funding markets as during the financial crisis.
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can get very low in times of stress, then Proposition 9 shows that it may be

optimal to restrict the extent of maturity transformation in the system, for

example by reducing short-term borrowing and requiring that
P

    .

7 Conclusion

We have studied a model of short-term collateralized borrowing and the

conditions under which runs can occur. The framework resembles the infinite-

horizon bank model studied in Qi (1994), but extends that model beyond

the pure theory of commercial banking. We derive a dynamic participation

constraint that must hold for borrowers to agree to purchase securities on

behalf of investors. Under this constraint, borrowers will make profits that

can be mobilized to forestall runs.

A key difference between traditional banks and modern financial inter-

mediaries is that the former mainly hold opaque assets while the latter’s

assets are much more liquid and marketable. The value of collateral and the

liquidity of asset markets therefore become crucial for the liquidity of inter-

mediaries. Runs can be forestalled by mobilizing sufficient liquidity through

asset sales and having sufficiently valuable collateral. This gives rise to two

constraints that can be interpreted as an emergency liquidation constraint

and a collateral constraint. Part of a borrower’s liquidity comes directly from

his steady state cash flow and part from the ability to liquidate illiquid assets.

We show that sales or purchases of assets affect the borrower’s liquidity

in steady state and in case of emergency. In steady state, selling assets

(“securitization") generates liquidity today, but reduces the amount of assets

held by the borrower. The net effect is to reduce the liquidity of the borrower

in each period. Indeed, because of discounting, the price at which assets are

sold today is smaller than the liquidity generated by an equal amount of

securities maturing today. We show, in particular, that a run on a single

borrower cannot happen if all borrowers have zero net purchases of assets in

steady states. In contrast, a run can happen and bankrupt a borrower if the

borrower undertakes sufficiently large net sales of assets in steady state.

Empirically, our comparative statics results are consistent with the find-

ings by Schroth, Suarez, and Taylor (2012) who calibrate a dynamic run
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model to data from the 2007 run on ABCP conduits in the US. During the

period from August to October 2007, the proportion of such conduits that

had more than 10 percent of their paper maturing and did not re-issue new

paper (i.e. had large outflows but no inflows of funds) rose from less than

5 percent to 35 percent. Schroth, Suarez, and Taylor (2012) find that the

calibrated likelihood of such a run for individual conduits is highly sensitive

to its short-term leverage, asset liquidity, and balance sheet strength. The

result on short-term leverage and balance sheet strength is consistent with

the effect of our two key variables  and  in the emergency liquidation con-

straint (40). Asset liquidity has no counterpart in our single-borrower run

scenario, because we assume perfect asset markets there. However, to the

extent that the ABCP market was in a systemic collapse since October 2007,

our analysis of Section 5 suggests that the collapse of collateral values  was

decisive, which corresponds to Schroth et al.’s variable  of asset liquidity.

In the light of our results it is tempting to augment Brunnermeier and

Pedersen’s (2009) distinction between market liquidity and funding liquid-

ity by the notion of “balance sheet liquidity.” If balance sheet liquidity is

sufficient, the borrower either has enough liquidity in steady state or a well

functioning secondary market provides the necessary emergency liquidity if

the run is not systemic. Only if his balance sheet liquidity is insufficient,

either because of too heavy short-term borrowing or too much securitization,

will an individual run bring down the borrower. This resembles the purchase

of Bear Stearns’ assets by JP Morgan Chase in March 2008. However, in a

systemic run, all borrowers become distressed and try to sell assets, which

leads to market collapse. In such a case, the provision of massive amounts

of liquidity by a “buyer of last resort” is the only remedy ex post. This

resembles the market collapse after Lehman’s failure in September 2008 and

the substantial provision of liquidity by the Federal Reserve, notably through

the PDCF.
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Appendix: Proof of Proposition 1

Proof. We first provide a partial characterization of steady states with

positive profits, and then verify that they exist.

A) Suppose there is a steady state with   0 and   0 for at least

one borrower . The characterization proceeds in several steps.

1.  =  for all borrowers   with    0.

Proof: Suppose that    for some   with    0. Let J be the

set of all borrowers  with    and   0. J is not empty because

 ∈ J. All  ∈ J must be saturated, i.e. have  =  (otherwise investors

from  would deviate). Hence, any borrower  ∈ J can deviate to  −  for

0     −  and strictly increase his profit.

This step states that competition forces all borrowers to pay the same

rate of interest.

2. The steady-state interest rate satisfies

(1− )22 +  = 1 (48)

Proof: Consider the borrower  with   0 and   0 who exists by

assumption. For each unit of cash that  receives and invests at date , he

pays back  in +1, generates returns  in +2, and pays back (1−)2

in  + 2. Hence, his discounted profits on this one unit are 2( − (1 −
)2) − . Alternatively he could invest his own cash. The discounted

profits from not using the one unit of outside funds and rather investing his

own money is 2−1. Since he receives funds from investors in steady state
(  0) and has funds of his own (  0), this cannot be strictly better,

which implies (1− )22 +  ≤ 1.
Suppose that this inequality is strict. For an arbitrary borrower , this

means that

2( − (1− )2)−   2 − 1 (49)

which is strictly positive by (3). Hence, all borrowers make strictly positive

marginal profits from borrowing and investing and strictly prefer to use bor-

rowed funds for investment rather than internal funds. Therefore, the total

demand for funds is at least
P

 . By (4) this implies that the market for

borrowed funds cannot clear at .

39



This step compares the return of a borrower investing its own funds, which

we can think of as internal finance, with the return on investing customer

funds, which we can think of as external finance. The two returns must be

equal in equilibrium. Note that (48) is solved by  = 1.

3. If   0,  = .

Proof: Suppose that    for one .  can increase his investment

slightly at any date  using his own cash. By condition (3), this yields a

strict increase in discounted profits.

Note that this step requires internal liquidity to be available. Intuitively,

it is then profitable to invest until the investment level reaches .

4. Total steady-state funding by investors is maximal:
P

=1  =  .

Proof: Because   1 by (48), the total supply of funds is inelastically

equal to  in each period. Suppose that
P

=1    . This implies  = 
for all  (otherwise, investors would lend more to at least one borrower).

Consider any borrower  with   0. He can strictly increase his profits by

offering  =  −  for   0 sufficiently small, because he will not lose any

investors.

5. If   0 for all , then  =  for all .

Proof: If   0 for all , then current and future financial gains and

losses from trading asset  must be equalized at the margin.

B) Existence.

Take any allocation described in Proposition 1. As shown in A2 above,

with  = 1 all borrowers make strictly positive discounted profits on each

marginal dollar borrowed and invested and are indifferent between borrowing

and using internal funds. They therefore find it indeed optimal to borrow any

positive amount . Because   1 and all borrowers pay the same interest

rate, patient middle-aged investors find it indeed optimal to roll over their

funding and young investors find it optimal to invest all their endowment.

The bounds (9) and market clearing (
P

  = ) are consistent with (4)

because of (3).

In the allocations described in Proposition 1, steady-state per-period prof-

its are

 = (−1)−(1−)+(1−)
X


− 1

2
(1−+−2) (50)
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If  = 0 for all   (no asset sales), then (9) implies that

 ≥ (2 − 1)  0

Since all profits are strictly positive, there is a set  ⊂ R2

+ with 0 ∈ 

such that for all ()=1 ∈  we have   0. Hence, the allocations

of Proposition 1 are consistent with strictly positive steady-state profits if

()=1 ∈ . By A3 above, investment then is maximal.

The first inequality in (10) is equivalent to the repayment condition (5),

evaluated at the equilibrium values. For the second inequality in (10), note

that in steady state the borrower has   units of fresh and   units of sea-

soned collateral to offer. This total of 2  units of collateral can be pledged

for the total amount of funds provided by investors per period, which is

 [1 + (1− )] =  [1− + ] . It follows that the maximum amount of

collateral per unit that the borrower can offer is

 ≡ 2̄
 [1− + ]

 (51)

The second inequality in (10) is the condition  ≤ . Both inequalities

in (10) are compatible because of (9).

Asset sales  cannot exceed the borrower’s assets net of what he has

pledged as collateral. In equilibrium he pledges ((1− )+ 1)2 units of

seasoned collateral, which implies the right hand side of (11). This right hand

side is non-negative by (10).The right-hand side of (12) is strictly positive by

(9) and (3).
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